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Abstract The varying coefficient model is widely used as an extension of the linear
regression model. Many procedures have been developed for the model estimation,
and recently efficient variable selection procedures for the varying coefficient model
have been proposed as well. However, those variable selection approaches are mainly
built on the least-squares (LS) type method. Although the LS method is a successful
and standard choice in the varying coefficient model fitting and variable selection,
it may suffer when the errors follow a heavy-tailed distribution or in the presence
of outliers. To overcome this issue, we start by developing a novel robust estimator,
termed rank-based spline estimator, which combines the ideas of rank inference and
polynomial spline. Furthermore, we propose a robust variable selection method, incor-
porating the smoothly clipped absolute deviation penalty into the rank-based spline
loss function. Under mild conditions, we theoretically show that the proposed rank-
based spline estimator is highly efficient across a wide spectrum of distributions. Its
asymptotic relative efficiency with respect to the LS-based method is closely related to
that of the signed-rank Wilcoxon test with respect to the t test. Moreover, the proposed
variable selection method can identify the true model consistently, and the resulting
estimator can be as efficient as the oracle estimator. Simulation studies show that our
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procedure has better performance than the LS-based method when the errors deviate
from normality.

Keywords KLASSO · Oracle property · Polynomial spline · Rank regression ·
Robust estimation · Robust model selection · SCAD

1 Introduction

Consider the varying coefficient model

Y = XT (U )β(U ) + ε, (1)

where Y is the response variable, U and X are the covariates, and β(U ) are some
unknown smooth functions. The random error ε is independent of X and U , and has
probability density function h(·) which has finite Fisher information. In this paper, it
is assumed that U is a scalar and X is a p-dimensional vector which may depend on
U . Since introduced by Hastie and Tibshirani (1993), the varying coefficient model
has been widely applied in many scientific areas, such as economics, finance, politics,
epidemiology, medical science, ecology, and so on.

Due to its flexibility and interpretability, in the past ten years, it has experienced
rapid developments in both theory and methodology; see Fan and Zhang (2008) for a
comprehensive survey. In general, there are at least three common ways to estimate this
model. One is the kernel-based local polynomial smoothing, see for instance, Wu et al.
(1998), Hoover et al. (1998), Fan and Zhang (1999), Kauermann and Tutz (1999); One
is the polynomial spline, see Huang et al. (2002, 2004) and Huang and Shen (2004);
The last one is the smoothing spline, see Hastie and Tibshirani (1993), Hoover et al.
(1998) and Chiang et al. (2001). Recently, efficient variable selection procedures for
the varying coefficient model have been proposed as well. In a typical linear regres-
sion setup, it has been very well understood that ignoring any important predictor can
lead to seriously biased results, whereas including spurious covariates can degrade
the estimation efficiency substantially. Thus, variable selection is important for any
regression problem. In a traditional linear regression setting, many selection criteria,
e.g., Akaike information criterion (AIC) and Bayesian information criterion (BIC)
have been extensively used in practice. Recently, various shrinkage methods have
been developed, which include but are not limited to the least absolute shrinkage and
selection operator (LASSO; c.f., Tibshirani 1996; Zou 2006) and the smoothly clipped
absolute deviation (SCAD; Fan and Li 2001). These regularized estimation procedures
were developed for varying coefficient models. Among others, Lin and Zhang (2006)
develop COSSO for component selection and smoothing in smoothing spline ANOVA.
Wang et al. (2007) propose to use group SCAD method for varying-coefficient model
selection. Wang et al. (2008) extend the application of the SCAD penalty to varying
coefficient models with longitudinal data. Li and Liang (2008) study variable selection
for partially linear varying coefficient models, where the parametric components are
identified via the SCAD but the nonparametric components are selected via a gen-
eralized likelihood ratio test, instead of a shrinkage method. Leng (2009) proposes
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a penalized likelihood method in the framework of the smoothing spline ANOVA
models. Wang and Xia (2009) develop a shrinkage method, called KLASSO (Kernel-
based LASSO), which combines the ideas of the local polynomial smoothing and
LASSO. Tang et al. (2012) develop a unified variable selection approach for both least
squares regression and quantile regression models with possibly varying coefficients.
Their method is carried out by using a two-step iterative procedure based on basis
expansion and an adaptive-LASSO-type penalty.

The estimation and variable selection procedures in the aforementioned papers
are mainly built on least-squares (LS) type methods. Although the LS methods are
successful and standard choice in varying coefficient model fitting, they may suf-
fer when the errors follow a heavy-tailed distribution or in the presence of outliers.
Thus, some efforts have been devoted to construct robust estimators for the varying
coefficient models. Kim (2007) develops a quantile regression procedure for varying
coefficient models when the random errors are assumed to have a certain quantile
equal to zero. Wang et al. (2009) recently develop a local rank estimation procedure,
which integrates the rank regression (Hettmansperger and McKean 1998) and local
polynomial smoothing. In traditional linear regression settings, some also draw much
attention to robust variable selection. Wang et al. (2007) propose a LASSO-based
procedure using the least absolute deviation regression. Zou and Yuan (2008) propose
the composite quantile regression (CQR) estimator by averaging K quantile regres-
sions. They have shown that CQR is selection consistent and can be more robust in
various circumstances. Wang and Li (2009) and Leng (2010) independently propose
two efficient shrinkage estimators, using the idea of rank regression. However, to the
best of our knowledge, there has hitherto been no existing appropriate robust variable
selection procedure for the varying coefficient model, which is the focus of this paper.

In this paper, we aim to propose an efficient robust variable selection method for
varying coefficient models. Motivated by the local rank inference (Wang et al. 2009),
we start by developing a robust rank-based spline estimator. Under some mild condi-
tions, we establish the asymptotic representation of the proposed estimator and further
prove its asymptotic normality. We derive the formula of the asymptotic relative effi-
ciency (ARE) of the rank-based spline estimator relative to the LS-based estimator,
which has an expression that is closely related to that of the signed-rank Wilcoxon
test in comparison with the t test. Further, we extend the application of the SCAD
penalty to the rank-based spline estimator. Theoretical analysis reveals that our proce-
dure is consistent in variable selection; that is, the probability that it correctly selects
the true model tends to one. Also, we show that our procedure has the so-called oracle
property; that is, the asymptotic distribution of an estimated coefficient function is the
same as that when it is known a priori which variables are in the model. Simulation
studies show that our procedure has better performance than KLASSO (Wang and Xia
2009) and LSSCAD (Wang et al. 2008) when the errors deviate from normality. Even
in the most favorable case for KLASSO and LSSCAD, i.e., normal distribution, our
procedure does not lose much, which coincides with our theoretical analysis.

This article is organized as follows. Section 2 presents the rank-based spline pro-
cedure for estimating the varying coefficient model, and some theoretical properties
are provided. In Sect. 3, with the help of the rank-based spline procedure, we pro-
pose a new robust variable selection method and study its theoretical properties. Its
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numerical performance is investigated in Sect. 4. Several remarks draw the paper to
its conclusion in Sect. 5. The technical details are provided in the “Appendix”. Some
other simulation results are provided in another appendix, which is available online
as supplementary material.

2 Methodology

To develop an efficient scheme for variable selection, we choose to consider a poly-
nomial spline smoothing method rather than a local polynomial smoother. The reason
is that using the former the varying coefficient model can be re-formulated as a tradi-
tional multiple regression model and thus it serves the variable selection purpose more
naturally (Wang et al. 2008). In contrast, although works also very well, using local
polynomial smoothers requires more sophisticated approximation and techniques in
the selection procedures and proofs of oracle properties (Wang and Xia 2009). There-
fore, in this section, we develop a rank-based spline method for estimating β(·), which
can be regarded as a parallel to the local rank estimator proposed by Wang et al. (2009).

2.1 The estimation procedure

Suppose that {Ui , X i , Yi }n
i=1 is a random sample from the model (1). Write X i =

(Xi1, . . . , Xip)
T and β(U ) = (β1(U ), . . . , βp(U ))T . Suppose that each βl(U ), l =

1, . . . , p, can be approximated by some spline functions, that is

βl(U ) ≈
Kl∑

k=1

γlk Blk(U ), (2)

where each {Blk(·), k = 1, . . . , Kl} is a basis for a linear space Gl of spline functions
with a fixed degree and knot sequence. In our applications we use the B-spline basis
for its good numerical properties. Following (1) and (2), we have

Yi ≈
p∑

l=1

Kl∑

k=1

Xil Blk(Ui )γlk + εi .

Define Y = (Y1, . . . , Yn)T , X = (X1, . . . , Xn)
T , γ l = (γl1, . . . , γl Kl )

T , γ =
(γ T

1 , . . . , γ T
p )T ,

B(u) =
⎛

⎜⎝
B11(u) · · · B1K1(u) 0 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0 Bp1(u) · · · BpK p (u)

⎞

⎟⎠ ,

Zi = XT
i B(Ui ), and Z = (ZT

1 , . . . , ZT
n )T . Based on the above approximation, we

obtain the residual at Ui

ei = Yi − Ziγ .
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Motivated by the rank regression (Jaeckel 1972; Hettmansperger and McKean 1998),
we define the rank-based spline objective (loss) function

Qn(γ ) = 1

n

∑

i< j

|ei − e j |. (3)

An estimator of βl(u) is obtained by β̂l(u) = ∑Kl
k=1 γ̂lk Blk(u), where the γ̂lk’s are

the minimizers of (3). We term it as rank-based spline estimator because the objective
(loss) function is equivalent to the classic rank loss function in linear models based on
Wilcoxon scores (Hettmansperger and McKean 1998).

2.2 Asymptotic properties

In this subsection, we establish the asymptotic properties of the rank-based spline esti-
mator. The main challenge comes from the nonsmoothness of the objective function
Qn(γ ). To overcome this difficulty, we first derive an asymptotic representation of
γ̂ via a quadratic approximation of Qn(γ ), which holds uniformly in a local neigh-
borhood of the true parameter values. Throughout this manuscript, we will use the
following notation for ease of exposition. Let |a| denote the Euclidean norm of a real
valued vector a. For a real-valued function g, ||g||∞ = supu |g(u)|. For a vector-
valued function g = (g1, . . . , gp)

T , denote ||g||L2 = ∑
1≤l≤p ||gl ||2L2

and ||g||∞ =
maxl ||gl ||∞. Define Kn = max1≤l≤p Kl , ρn = max1≤l≤p infg∈Gl ||βl − g||∞. Let
g∗ = (g∗

1 , . . . , g∗
p) ∈ G be such that ||g∗−β||∞ = ρn , where G = G1 ×· · ·×Gp and

β is the real varying-coefficient function. Then there exists γ 0, such that g∗ = B(u)γ 0.
Define θn = √

Kn/n, γ ∗ = θ−1
n (γ − γ 0), and Δi = XT

i β(Ui ) − Ziγ 0. Let γ̂ ∗ be
the value of γ ∗ that minimizes the following reparametrized function

Q∗
n(γ

∗) = 1

n

∑

i< j

|εi + Δi − ε j − Δ j − θn(Zi − Z j )γ
∗|.

Then it can be easily seen that

γ̂ ∗ = θ−1
n

(
γ̂ − γ 0

)
.

We use Sn(γ ∗) to denote the gradient function of Q∗
n(γ

∗). More specifically,

Sn(γ ∗) = −θn

n

∑

i< j

(
ZT

i − ZT
j

)
sgn

(
εi + Δi − ε j − Δ j − θn

(
Zi − Z j

)
γ ∗) ,

where sgn(·) is the sign function. Furthermore, we consider the following quadratic
function of γ ∗

An(γ ∗) = τθ2
n γ ∗T ZT Zγ ∗ + γ ∗T Sn(0) + Q∗

n(0),
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where τ = ∫
h2(t)dt is the well-known Wilcoxon constant, and h(·) is the density

function of the random error ε.
For the asymptotic analysis, we need the following regularity conditions.

(C1) The distribution of Ui has a Lebesgue density f (u) which is bounded away from
0 and infinity.

(C2) E(X i (u)|u = Ui ) = 0, and the eigenvalues λ1(u) ≤ · · · ≤ λp(u) of 
(u) =
E[X i (u)X i (u)T ] are bounded away from 0 and infinity uniformly; that is, there
are positive constants W1 and W2 such that W1 ≤ λ1(u) ≤ · · · ≤ λp(u) ≤ W2
for all u.

(C3) There is a positive constant M1 such that |Xil(u)| ≤ M1 for all u and l =
1, . . . , p, i = 1, . . . , n.

(C4) lim supn(maxl Kl/ minl Kl) < ∞.
(C5) The error ε has finite Fisher information, i.e.,

∫ [h ′
(x)]2/h(x)dx < ∞.

Remark 1 Conditions (C1)–(C4) are the same as those in Huang et al. (2004). The
assumption on the random errors in (C5) is a standard condition for rank analysis in
multiple linear regression (Hettmansperger and McKean 1998). These conditions are
mild and can be satisfied in many practical situations.

Lemma 1 Suppose Conditions (C1)–(C5) all hold, then for any ε > 0 and c > 0,

P

(
sup√

1/Kn |γ ∗|≤c
|Q∗

n(γ
∗) − An(γ ∗)| ≥ ε

)
→ 0.

Lemma 1 implies that the nonsmooth objective function Q∗
n(γ

∗) can be uniformly
approximated by a quadratic function An(γ

∗) in a neighborhood of 0. It is also shown
that the minimizer of An(γ ∗) is asymptotic within o(

√
Kn) neighborhood of γ̂ ∗, say

|γ̂ ∗ − (2τ)−1(θ2
n ZT Z)−1 Sn(0)| = op(

√
Kn) (see “Appendix”). This further allows

us to derive the asymptotic distribution.
Let β̌l(u) = E[β̂l(u) | X ] be the mean of β̂l(u) conditioning on X =

{(X i , Ui )}n
i=1. It is useful to consider the decomposition β̂l(u) − βl(u) = β̂l(u) −

β̌l(u)+β̌l(u)−βl(u), where β̂l(u)−β̌l(u) and β̌l(u)−βl(u) contribute to the variance
and bias terms, respectively. Denote β̌(u) = (β̌1(u), . . . , β̌p(u)). The following two
theorems establish the consistency and asymptotic normality of the rank-based spline
estimator, respectively.

Theorem 1 Suppose Conditions (C1)–(C5) hold. If Kn log Kn/n → 0, then ||β̂ −
β||2L2

= Op(ρ
2
n + Kn/n); consequently, if ρn → 0, then β̂l , l = 1, . . . , p are consis-

tent.

Theorem 2 Suppose Conditions (C1)–(C5) hold. If Kn log Kn/n → 0, then

{
var[β̂(u)]

}−1/2 (
β̂(u) − β̌(u)

)
d→ N

(
0, Ip

)
.

The above two theorems are parallel to those in Huang et al. (2004). Theorem 1 implies
that the magnitude of the bias is bounded in probability by the best approximation rates
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Robust spline-based variable selection in varying coefficient model 91

by the spaces Gl . Theorem 2 provides the asymptotic normality and can thus be used
to construct confidence intervals.

Next, we study the ARE of the rank-based spline estimator with respect to the
polynomial spline estimator [denoted by β̂ P (u)]) for estimating β(u) in the varying
coefficient model, say ARE(β̂(u), β̂ P (u)). Unlike the ARE study in Wang et al. (2009)
in which the theoretical optimal bandwidth of local polynomial estimators is used, it
seems difficult to plug in theoretical optimal Kl ’s in evaluating ARE(β̂(u), β̂ P (u))

because the closed-form optimal Kl ’s are not available. Thus, in the following analy-
sis, we consider a common choice of the smoothing parameters for both two spline
estimators β̂(u) and β̂ P (u).

According to Huang et al. (2004), we know that

var
[
β̂ P (u) | X

]
= σ 2B(u)

(
ZT Z

)−1
BT (u),

where σ 2 is the variance of ε. Now, we give the conditioned variance of β̂(u). From
the Proof of Theorem 1 shown in the Appendix, we have

var
[
β̂(u) | X

]
= B(u)var(γ̂ )BT (u)

= 1

4τ 2 θ2
n B(u)(θ2

n ZT Z)−1var [Sn(0)|X ]
(
θ2

n ZT Z
)−1

B(u),

where

var[Sn(0) | X ] = n−2θ2
n E

⎧
⎨

⎩
∑

i< j

(ZT
i − ZT

j )sgn
(
(Yi − Y j ) − (Zi − Z j )γ 0

)
⎫
⎬

⎭

2

= n−2θ2
n

⎧
⎨

⎩
∑

i< j

(ZT
i − ZT

j )

⎫
⎬

⎭

2

E (2H(ε) − 1)2 + o(1)

= 1

3
θ2

n ZT Z + o(1),

and H(·) denotes the distribution of ε and the second equation follows from the
independence of ε and X, U . Thus,

var
[
β̂(u) | X

]
= 1

12τ 2 B(u)
(

ZT Z
)−1

BT (u) + o(1).

It immediately follows from Theorem 2 that the ARE of β̂(u) with respect to β̂ P (u)

is

ARE
(
β̂(u), β̂ P (u)

)
= 12σ 2τ 2.
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Remark 2 This asymptotic relative efficiency is the same as that of the signed-rank
Wilcoxon test with respect to the t test. It is well known in the literature of rank analysis
that the ARE is as high as 0.955 for normal error distribution, and can be significantly
higher than one for many heavier-tailed distributions. For instance, this quantity is
1.5 for the double exponential distribution, and 1.9 for the t distribution with three
degrees of freedom. For symmetric error distributions with finite Fisher information,
this asymptotic relative efficiency is known to have a lower bound equal to 0.864.

2.3 Automatic selection of smoothing parameters

Smoothing parameters, such as the degrees of splines, the numbers and locations of
knots, play an important role in nonparametric models. However, due to the com-
putational complexity, automatically selecting those three smoothing parameters is
difficult in practice. In this paper, we select only D = Dl , the numbers of knots for
βl(·)’s, using the data. The location of knots are equally spaced and the degrees of
splines are fixed. We use “leave-one-out” cross-validation to choose D. To be more

specific, let β̂
(i)

(u) be the spline estimator obtained by deleting the i-th sample. The
cross-validation procedure minimizes the target function

CV (D) = 1

n

n∑

i=1

(
Yi − XT

i β̂
(i)

(Ui )
)2

.

In practice, some other criteria, such as the GCV, fivefold CV, BIC and AIC can also
be used. Our simulation studies show that those procedures are also quite effective but
the variable selection results are hardly affected by the choice of selection procedure
for Dl . Moreover, in this paper we restrict our attention to the spline with d = 3
degrees. This works well for the applications we considered. It might be worthwhile
to investigate using the data to decide the knot positions (free-knot splines), which
merits definitely some future research. Also, we may not use the same number of knots
and degree of splines for each coefficient function because each coefficient function
may have different features.

3 Rank-based variable selection and estimation

In this section, in order to conduct variable selection for the varying coefficient model
in a computationally efficient manner, we incorporate the SCAD penalty function
into the objective function (3) to implement nonparametric estimation and variable
selection simultaneously.

3.1 The SCAD-penalty method

Now, suppose that some variables are not relevant in the regression model, so that
the corresponding coefficient functions are zero functions. Let Rk = (ri j )Kk×Kk be
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a matrix with entries ri j = ∫
Bki (t)Bkj (t)dt . Then, we define ||γ k ||2Rk

≡ γ T
k Rkγ k .

The penalized rank-based loss function is then defined as

P Ln(γ ) = 1

n

∑

i< j

|ei − e j | + n
p∑

k=1

pλn

(||γ k ||Rk

)
, (4)

where λn is the tuning parameter and pλ(·) is chosen as the SCAD penalty function
of Fan and Li (2001), defined as

pλ(u) =

⎧
⎪⎨

⎪⎩

λu, 0 ≤ u ≤ λ,

− u2−2aλu+λ2

2(a−1)
, λ < u < aλ,

(a+1)λ2

2 , u ≥ aλ.

where a is another tuning parameter. Here we adopted a = 3.7 as suggested by Fan
and Li (2001). This penalized loss function takes a similar form to that of Wang
et al. (2008) except that the rank-based loss function is used instead of LS-based
functions. An estimator of βl(u) is obtained by β̄l(u) = ∑Kl

k=1 γ̄lk Blk(u), where the
γ̄lk are minimizers of (4). In practice, one can also use the adaptive LASSO penalty to
replace SCAD in (4) and we can expect that the resulting procedure will have similar
asymptotic properties and comparable finite-sample performance (Zou 2006).

3.2 Computational algorithm

Because of nondifferentiability of the penalized loss (4), the commonly used gradient-
based optimization method is not applicable here. In this section we develop an iterative
algorithm using local quadratic approximation of the rank-based objective function∑

i< j |ei − e j | and the nonconvex penalty function pλn (||γ k ||Rk ). Denote that R(ei )

is the rank of ei among {ei }n
i=1. Following Sievers and Abebe (2004), the objective

function is approximated by

∑

i< j

|ei − e j | ≈
n∑

i=1

wi (ei − ζ )2 (5)

where ζ is the median of {ei }n
i=1 and

wi =
{ R(ei )

n+1 − 1
2

ei −ζ
, ei �= ζ,

0, otherwise.

Moreover, following Fan and Li (2001), in the neighborhood of a given positive
u0 ∈ R+,

pλ(u) ≈ pλ(u0) + 1

2

[
p

′
λ(u0)/u0

] (
u2 − u2

0

)
.
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94 L. Feng et al.

Then, given an initial value, γ (0)
k , with ||γ (0)

k ||Rk > 0, the corresponding weights w
(0)
i

and the median of residuals, ζ (0), can be obtained. Consequently, the penalized loss
function (4) can be approximated by a quadratic form

P Ln(γ ) ≈ 1

n

n∑

i=1

w
(0)
i (ei − ζ (0))2 + pλn (||γ (0)

k ||Rk )

+ 1

2

{
p

′
λn

(||γ (0)
k ||Rk )

||γ (0)
k ||Rk

}{
γ T

k Rkγ k − (γ
(0)
k )T Rkγ

(0)
k

}
.

Consequently, removing an irrelevant constant, the above quadratic form becomes

P Ln(γ ) ≈ 1

n

(
S(0) − Zγ

)T
W(0)(S(0) − Zγ ) + 1

2
γ T �λn (γ

(0))γ ,

where S(0) = Y − ζ (0), and W(0) and �λn (γ
(0)) are diagonal weight matrices with

wi , and p
′
λn

(||γ (0)
k ||Rk )/||γ (0)

k ||Rk Rk on the diagonals, respectively. This is a quadratic
form with a minimizer satisfying

{
ZT W(0)Z + n

2
�λn (γ

(0))
}

γ = ZT W(0)S(0). (6)

The foregoing discussion leads to the following algorithm:

Step 1: Initialize γ = γ (0).
Step 2: Given γ (m), update γ to γ (m+1) by solving (6), where γ (0) and the γ (0) in

W(0), S(0) and �λn (γ
(0)) are all set to be γ (m).

Step 3: Iterate Step 2 until convergence of γ is achieved.

Due to the use of nonconvex penalty SCAD, the global minimizer cannot be
achieved in general and only some local minimizers can be obtained (Fan and Li 2001).
In the literature, all the penalized methods based on nonconvex penalties would suffer
from the same drawback as that of SCAD. Thus, a suitable initial value is usually
required for fast convergence. The initial estimator of γ in Step 1 can be chosen as the
unpenalized estimator, which can be solved by fitting a L1 regression on n(n − 1)/2
pseudo observations {(Zi − Z j , Yi − Y j )}i< j . In our numerical studies, we use the
function rq in the R package quantreg. From our numerical experience, our algorithm
converges fast with the unpenalized estimator, and the resulting solution is reasonably
good as demonstrated in our simulation study.

Note that the iterated algorithm will be instable when the weights in (5) are too
large. As suggested by Sievers and Abebe (2004), the algorithm should be modified
so it removes those residuals with very large weights from the iteration and reinstates
them in subsequent iterations when their contribution to the sum

∑n
i=1 wi (ei − ζ )2

becomes significant. Such an algorithm is quite efficient and reliable in practice. The
R code for implementing the proposed scheme is available from the authors upon
request. It is worth noting that we are doing an iterative approximation for both the
original target function and the penalty function. Our numerical experience shows that
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Robust spline-based variable selection in varying coefficient model 95

such an algorithm is usually completed in less than ten iterations and never fails to
converge. For example, it takes <1 s per iteration in R using an Inter Core 2.2 MHz
CPU for a n = 200, p = 7 case and the entire procedure is generally completed in
<10 s. Theoretical investigation of the convergence property of the proposed algorithm
definitely deserves future research.

3.3 Asymptotic properties

Without loss of generality, let βk(u), k = 1, . . . , s, be the nonzero coefficient functions
and let βk(u) ≡ 0, for k = s + 1, . . . , p.

Theorem 3 Suppose Conditions (C1)–(C5) hold. If Kn log Kn/n → 0, ρn →
0, λn → 0, and λn/ max

{√
Kn/n, ρn

} → ∞, we have the following:

(i) β̄k = 0, k = s + 1, . . . , p, with probability approaching 1.

(ii) ||β̄k − βk ||L2 = Op

(
max

{√
Kn
n , ρn

})
, k = 1, . . . , s.

Part (i) of Theorem 3 says that the proposed penalized rank-based method is consistent
in variable selection; that is, it can identify the zero coefficient functions with proba-
bility tending to one. The second part provides the rate of convergence in estimating
the nonzero coefficient functions.

Now we consider the asymptotic variance of the proposed estimate. Let β(1) =
(β1, . . . , βs)

T denote the vector of nonzero coefficient functions, and let β̄
(1) =

(β̄1, . . . , β̄s)
T denote its estimate obtained by minimizing (4). Let γ̄ (1) = (γ̄ T

1 , . . . ,

γ̄ T
s )T and Z(1) denote the selected columns of Z corresponding to β(1). By using

Lemma 1 and the quadratic approximation stated in the above subsection, we obtain
another approximated loss function

P L
′
n(γ ) = An

(
θ−1

n (γ − γ 0)
)

+ 1

2
γ T �λn (γ )γ . (7)

Similarly, let �
(1)
λ denote the selected diagonal blocks of �λ, and S(1)

n (0) denote
the selected entries corresponding to β(1). Thus, the minimizer of (7) yields

γ̄ (1) =
{

2τ(Z(1))T Z(1) + n

2
�

(1)
λn

γ̄ (1)
}−1

θ−1
n S(1)

n (0) + γ 0.

Denote H(1) = 2τ(Z(1))T Z(1) + n
2 �

(1)
λn

γ̄ (1), so the asymptotic variance of γ̄ (1) is

avar(γ̄ (1)) = θ−2
n (H(1))−1var(S(1)

n (0))(H(1))−1.

Since β̄
(1) = (B(1))T γ̄ (1), where B(1) is the first s rows of B(u), we have avar(β̄

(1)
) =

(B(1))T avar(γ̄ (1))B(1). Let var∗(β̄(u)) denote a modification of avar(β̄
(1)

) by replac-
ing �

(1)
λn

with 0, that is
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var∗
(
β̄(u)

) = (4τ 2)−1θ−2
n

(
B(1)

)T (
(Z(1))T Z(1)

)−1
var

(
S(1)

n (0)
)

×
(
(Z(1))T Z(1)

)−1
B(1).

Accordingly, the diagonal elements of var∗(β̄(u)) can be employed as the asymptotic
variances of β̄k(u)’s, i.e., avar(β̄k(u)), k = 1, . . . , s.

Theorem 4 Suppose Conditions (C1)–(C5) hold. Kn log Kn/n → 0, ρn → 0, λn →
0, and λn/ max

{√
Kn/n, ρn

} → ∞. Then, as n → ∞,

{
var∗

(
β̄(u)

)}−1/2
(
β̄(u) − β̆(u)

)
d→ N (0, Is),

where β̆(u) = E[β̄(u) | X ] and in particular,

{
var∗(β̄k(u)

}−1/2
(
β̄k(u) − β̆k(u)

)
d→ N (0, 1), k = 1, . . . , s.

Here var∗(β̄(u)) is exactly the same asymptotic variance of nonpenalized rank-based
estimate using only those covariates corresponding to nonzero coefficient functions
(See Sect. 2). Theorem 4 implies that our penalized rank-based estimate has the ora-
cle property in the sense that the asymptotic distribution of an estimated coefficient
function is the same as that when it is known a priori which variables are in the model.

3.4 Selection of tuning parameters

The tuning parameter λ controls the model complexity and plays a critical role in
the above procedure. It is desirable to select λ automatically by a data-driven method.
Motivated by the Wilcoxon-type generalized BIC of Wang (2009) in which the multiple
linear regression model is considered, we propose to select λ by minimizing

BICλ = 12τ̂n−2
∑

i< j

| (Yi − Zi γ̄ λ

) − (
Y j − Z j γ̄ λ

) | + d fλ log(n/Kn)/(n/Kn)

= 12τ̂n−2
∑

i< j

|
(

Yi − XT
i β̄λ

)
−

(
Y j − XT

j β̄λ

)
| + d fλ log(n/Kn)/(n/Kn),

(8)

where γ̄ λ is the penalized local rank spline estimator with tuning parameter λ, d fλ
is the number of nonzero components in β̄λ = Bγ̄ λ, and τ̂ is an estimate of the
Wilcoxon constant τ . The τ̂ can be robustly estimated by using the approach given
in Hettmansperger and McKean (1998) and easily be calculated by the function wilcox-
ontau in the R package (Terpstra and McKean 2005) with the unpenalized estimates.
We refer to this approach as the BIC-selector, and denote the selected λ by λ̂B I C .
Similar to the BIC in Wang (2009), the first term in (8) can be viewed as an “artifi-
cial” likelihood as it shares some essential properties of a parametric log-likelihood.
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Note that due to the use of spline smoothing, the effective sample size would be n/Kn

rather than the original sample size n. This is because the classic parametric estimation
methods is

√
n-consistent, while the convergence rate of spline methods is

√
n/Kn .

Say, for each u, the spline estimator performs similarly to a parametric estimator as if
a sample of size

√
n/Kn from the model (1) with β(u) were available. Therefore, the

BICλ in (8) replaces log(n)/n in the Wang’s (2009) Wilcoxon-type generalized BIC
by log(n/Kn)/(n/Kn). It can be seen from the proof of Theorem 5, the BIC cannot
achieve consistency without this modification.

Let ST denote the true model and SF denote the full model, and Sλ denote the set
of the indices of the covariates selection by our robust variable selection method with
tuning parameter λ. For a given candidate model S, let βS be a vector of parameters
and its i th coordinate is set to be zero, if i �∈ S. Further, define L S

n = n−2 ∑
i< j |(Yi −

XT
i β̂S) − (Y j − XT

j β̂S)|, where β̂S is the unpenalized robust estimator, i.e., the rank-
based spline estimator for model S. We make the following same assumptions as those
of Wang and Li (2009):

(1) for any S ⊂ SF , L S
n

p→ L S for some L S > 0;
(2) for any S � ST , we have L S > L ST .

The next theorem indicates that λ̂B I C leads to a penalized rank-based estimator
which consistently yields the true model.

Theorem 5 Suppose the assumptions above and Conditions (C1)–(C5) hold, then we
have

P(S
λ̂B I C

= ST ) → 1.

4 Numerical studies

4.1 Simulation

We study the finite-sample performance of the proposed rank-based spline SCAD
(abbreviated by RSSCAD hereafter) method in this section. Wang and Xia (2009) have
shown that the KLASSO is an efficient procedure in finite-sample cases and Wang
et al. (2008) also proposed an efficient procedure based on least-squares and SCAD
(abbreviated by LSSCAD hereafter). Thus, KLASSO and LSSCAD should be two
ideal benchmarks in our comparison. For a clear comparison, we adopt the settings
used in Wang and Xia (2009) for the following two models:

(I) : Yi = 2 sin (2πUi ) Xi1 + 4Ui (1 − Ui )Xi2 + θεi ,

(II) : Yi = exp(2Ui − 1)Xi1 + 8Ui (1 − Ui )Xi2 + 2 cos2 (2πUi ) Xi3 + θεi ,

where for the first model, Xi1 = 1 and (Xi2, . . . , Xi7)
T are generated from a multi-

variate normal distribution with cov(Xi j1 , Xi j2) = ρ| j1− j2| for any 2 ≤ j1, j2 ≤ 7,
while for the second model, Xi1, . . . , Xi7 are generated from a multivariate normal
distribution with cov(Xi j1 , Xi j2) = ρ| j1− j2| for any 1 ≤ j1, j2 ≤ 7. Three cases of the
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correlation between the covariates are considered, ρ = 0.3, 0.5, and 0.8. The index
variable is simulated from Uniform(0, 1). The value of θ is fixed as 1.5. The following
model, which is similar to the one used in Wang et al. (2008), is also included in the
comparison:

(III) : Yi = β0(Ui ) +
23∑

k=1

βk(Ui )Xik + ςεi ,

where

β0(U ) = 15 + 20 sin(0.5πU ), β1(U ) = 2 − 3 cos

(
π(6U − 5)

3

)
,

β2(U ) = 6 − 6U, β3(U ) = −4 + 1

2
(2 − 3U )3,

and the remaining coefficients are vanish. The index variable is still simulated from
Uniform(0, 1). In this model, X depends on U in the following way. The first three
variables are the true relevant covariates: Xi1 is sampled uniformly from [3Ui , 2+3Ui ]
at any given index Ui ; Xi2, conditioning on Xi1, is Gaussian with mean 0 and variance
(1 + Xi1)/(2 + Xi1); and Xi3 independent of Xi1, Xi2, is a Bernouli random variable
with success rate 0.6. The other irrelevant variables are generated from a multivariate
normal distribution with cov(Xi j1 , Xi j2) = 4 exp(−| j1 − j2|) for any 4 ≤ j1, j2 ≤ 23.
The parameter ς , which controls the model’s signal-to-noise ratio, is set to 5. For all
these three models, four error distributions are considered: N (0, 1), t (3) (Student’s
t-distribution with three degrees of freedom), Tukey contaminated normal T (0.10; 5)

(with the cumulative distribution function F(x) = 0.9Φ(x)+0.1Φ(x/5) where Φ(x)

is the distribution function of a standard normal distribution) and Lognormal. In addi-
tion, an outlier case is considered, in which the responses of 10 % generated samples
are shifted with a constant c. We use c = 5 and 25 for the first two models and the
third model, respectively.

Throughout this section we use the B-spline and 1,000 replications for each con-
sidered example. For every simulated data, we firstly fit an unpenalized varying coef-
ficient estimate β̂(Ui ), for which the number of knots, D, is selected via the method in
Sect. 2.3. Then, the same D is used for RSSCAD, where the tuning parameter λ in the
penalty function is chosen by the BIC (8). We report the average numbers of correct
0’s (the average numbers of the true zero coefficients that are correctly estimated to
be zero), the average number of incorrect 0’s (the average number of the non-zero
coefficients that are incorrectly estimated to be zero). Moreover, we also report the
proportion of under-fitted models (at least one of the non-zero coefficients is incor-
rectly estimated to be zero), correctly fitted models (all the coefficients are selected
correctly) and over-fitted models (all the non-zero coefficients are selected but at least
one of the zero coefficient is estimated incorrectly to be non-zero). In addition, the per-
formance of estimators in terms of estimation accuracy is assessed via the following
two estimated errors which are defined by
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Table 1 The simulation results of variable selection for model (I) with ρ = 0.5

Number of zeros Percentage of models

Correct Incorrect Under fitted Correct Over fitted

Error Method

n = 200

Normal RSSCAD 4.998(0.0014) 0.037(0.0060) 0.037(0.0060) 0.961(0.0061) 0.002(0.0014)

KLASSO 4.970(0.0055) 0.020(0.0044) 0.030(0.0054) 0.950(0.0069) 0.020(0.0044)

LSSCAD 4.852(0.0120) 0.003(0.0017) 0.003(0.0017) 0.872(0.0106) 0.125(0.0105)

t (3) RSSCAD 4.994(0.0024) 0.248(0.0137) 0.248(0.0137) 0.752(0.0137) 0.000(0.0000)

KLASSO 4.267(0.0250) 0.043(0.0064) 0.043(0.0064) 0.458(0.0157) 0.499(0.0158)

LSSCAD 4.113(0.0270) 0.060(0.0075) 0.060(0.0075) 0.402(0.0155) 0.538(0.0158)

Lognormal RSSCAD 4.996(0.0020) 0.029(0.0053) 0.029(0.0053) 0.968(0.0056) 0.003(0.0017)

KLASSO 3.690(0.0311) 0.060(0.0075) 0.060(0.0075) 0.270(0.0140) 0.670(0.0149)

LSSCAD 3.465(0.0326) 0.084(0.0088) 0.084(0.0088) 0.220(0.0131) 0.696(0.0145)

T (0.10, 5) RSSCAD 4.996(0.0020) 0.185(0.0123) 0.185(0.0123) 0.813(0.0123) 0.002(0.0014)

KLASSO 2.268(0.0352) 0.193(0.0125) 0.178(0.0121) 0.038(0.0060) 0.784(0.0130)

LSSCAD 3.893(0.0294) 0.078(0.0085) 0.078(0.0085) 0.320(0.0148) 0.602(0.0155)

Outlier RSSCAD 4.995(0.0022) 0.348(0.0151) 0.348(0.0151) 0.651(0.0151) 0.001(0.0010)

KLASSO 3.700(0.0310) 0.010(0.0031) 0.010(0.0031) 0.200(0.0126) 0.790(0.0129)

LSSCAD 4.428(0.0225) 0.041(0.0063) 0.041(0.0063) 0.562(0.0157) 0.397(0.0155)

n = 400

Normal RSSCAD 5.000(0.0000) 0.000(0.0000) 0.000(0.0000) 1.000(0.0000) 0.000(0.0000)

KLASSO 5.000(0.0000) 0.000(0.0000) 0.000(0.0000) 1.000(0.0000) 0.000(0.0000)

LSSCAD 4.967(0.0057) 0.000(0.0000) 0.000(0.0000) 0.971(0.0053) 0.029(0.0053)

t (3) RSSCAD 4.995(0.0041) 0.015(0.0038) 0.015(0.0038) 0.984(0.0040) 0.001(0.0010)

KLASSO 4.713(0.0164) 0.008(0.0028) 0.008(0.0028) 0.767(0.0134) 0.225(0.0132)

LSSCAD 4.633(0.0184) 0.013(0.0036) 0.013(0.0036) 0.710(0.0143) 0.277(0.0142)

Lognormal RSSCAD 5.000(0.0000) 0.000(0.0000) 0.000(0.0000) 1.000(0.0000) 0.000(0.0000)

KLASSO 4.170(0.0263) 0.017(0.0041) 0.017(0.0041) 0.436(0.0157) 0.547(0.0157)

LSSCAD 4.354(0.0237) 0.043(0.0064) 0.043(0.0064) 0.536(0.0158) 0.421(0.0156)

T (0.10, 5) RSSCAD 4.997(0.0030) 0.002(0.0014) 0.002(0.0014) 0.997(0.0017) 0.001(0.0010)

KLASSO 2.546(0.0353) 0.050(0.0069) 0.048(0.0068) 0.048(0.0068) 0.903(0.0094)

LSSCAD 4.458(0.0220) 0.016(0.0040) 0.016(0.0040) 0.661(0.0150) 0.323(0.0148)

Outlier RSSCAD 5.000(0.0000) 0.087(0.0089) 0.087(0.0089) 0.913(0.0089) 0.000(0.0000)

KLASSO 4.505(0.0211) 0.000(0.0000) 0.000(0.0000) 0.595(0.0155) 0.405(0.0155)

LSSCAD 4.883(0.0107) 0.001(0.0001) 0.001(0.0001) 0.895(0.0097) 0.104(0.0097)

Standard errors are given in parentheses

EE1(β̂a) = 1

np

n∑

i=1

p∑

j=1

|β̂aj (Ui ) − β0 j (Ui )|,
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Table 2 The simulation results of estimated errors of β for model (I) with ρ = 0.5

Error LSS RS LSSCAD RSSCAD

n = 200

Normal MEE1 0.19(0.035) 0.23(0.052) 0.06(0.027) 0.09(0.043)

MEE2 0.16(0.028) 0.20(0.048) 0.05(0.022) 0.08(0.041)

t (3) MEE1 0.31(0.077) 0.28(0.066) 0.12(0.067) 0.11(0.057)

MEE2 0.25(0.063) 0.24(0.061) 0.10(0.054) 0.10(0.053)

Lognormal MEE1 0.38(0.118) 0.23(0.061) 0.17(0.095) 0.08(0.038)

MEE2 0.31(0.097) 0.19(0.055) 0.14(0.077) 0.08(0.037)

T (0.10, 5) MEE1 0.34(0.083) 0.28(0.067) 0.14(0.067) 0.11(0.054)

MEE2 0.28(0.068) 0.24(0.061) 0.12(0.055) 0.10(0.051)

Outlier MEE1 0.36(0.063) 0.33(0.076) 0.15(0.063) 0.14(0.062)

MEE2 0.29(0.051) 0.28(0.069) 0.13(0.051) 0.13(0.059)

n = 400

Normal MEE1 0.13(0.023) 0.17(0.041) 0.04(0.012) 0.08(0.035)

MEE2 0.11(0.018) 0.15(0.039) 0.04(0.010) 0.07(0.034)

t (3) MEE1 0.22(0.052) 0.21(0.048) 0.07(0.038) 0.09(0.040)

MEE2 0.18(0.043) 0.18(0.045) 0.07(0.031) 0.08(0.039)

Lognormal MEE1 0.26(0.069) 0.16(0.040) 0.10(0.054) 0.07(0.029)

MEE2 0.22(0.056) 0.14(0.037) 0.09(0.044) 0.07(0.029)

T (0.10, 5) MEE1 0.23(0.051) 0.20(0.047) 0.08(0.041) 0.08(0.038)

MEE2 0.19(0.041) 0.17(0.043) 0.07(0.033) 0.08(0.037)

Outlier MEE1 0.27(0.046) 0.23(0.053) 0.11(0.041) 0.09(0.045)

MEE2 0.23(0.037) 0.20(0.048) 0.09(0.033) 0.09(0.043)

Standard errors are given in parentheses

EE2(Xβ̂a) = 1

np

n∑

i=1

p∑

j=1

|Xi j β̂aj (Ui ) − Xi jβ0 j (Ui )|,

where β̂aj (·) is an estimator of β0 j (·) which is the true coefficient function. The
means (denoted as MEE1 and MEE2) and standard deviations (in parentheses) of
EE1 and EE2 values, are summarized. It is worth noting that because the KLASSO
and RSSCAD use different smoothing approaches, we choose not to tabulate their
MEE results to avoid misleading conclusions. Moreover, we also include two more
unpenalized methods in the comparison, namely the rank-based spline estimator (RS)
and the least-squares spline estimator (LSS).

We summarize the simulation results for the models (I)-(II) with ρ = 0.5 and
the model (III) in Tables 1, 2, 3, 4, 5, and 6, respectively. The simulation results
for the models (I)–(II) with ρ = 0.3 or 0.8 are presented in Tables A.1–A.8 of the
supplemental file. A few observations can be made from Tables 1, 2, 3, 4, 5, and 6.
Firstly, the proposed RSSCAD method is highly efficient for all the distributions under
consideration. In terms of the probability of selecting the true model, the RSSCAD
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Table 3 The simulation results of variable selection for model (II) with ρ = 0.5

Number of zeros Percentage of models

Correct Incorrect Under fitted Correct Over fitted

Error Method

n = 200

Normal RSSCAD 3.996(0.0032) 0.041(0.0063) 0.041(0.0063) 0.957(0.0064) 0.002(0.0014)

KLASSO 3.962(0.0061) 0.000(0.0000) 0.000(0.0000) 0.955(0.0066) 0.045(0.0065)

LSSCAD 3.873(0.0111) 0.000(0.0000) 0.000(0.0000) 0.899(0.0095) 0.101(0.0095)

t (3) RSSCAD 3.998(0.0014) 0.242(0.0138) 0.239(0.0135) 0.760(0.0135) 0.001(0.0010)

KLASSO 3.790(0.0141) 0.080(0.0086) 0.070(0.0081) 0.640(0.0152) 0.290(0.0143)

LSSCAD 3.273(0.0244) 0.064(0.0077) 0.062(0.0076) 0.466(0.0158) 0.472(0.0158)

Lognormal RSSCAD 3.993(0.0044) 0.074(0.0083) 0.074(0.0083) 0.923(0.0084) 0.003(0.0017)

KLASSO 3.320(0.0238) 0.160(0.0116) 0.150(0.0113) 0.480(0.0158) 0.370(0.0153)

LSSCAD 2.094(0.0316) 0.120(0.0103) 0.118(0.0102) 0.106(0.0097) 0.776(0.0132)

T (0.10, 5) RSSCAD 3.999(0.0010) 0.184(0.0126) 0.180(0.0122) 0.819(0.0122) 0.001(0.0010)

KLASSO 2.090(0.0316) 0.330(0.0149) 0.300(0.0145) 0.060(0.0075) 0.640(0.0152)

LSSCAD 3.096(0.0265) 0.095(0.0093) 0.094(0.0092) 0.353(0.0151) 0.553(0.0157)

Outlier RSSCAD 3.997(0.0022) 0.453(0.0171) 0.430(0.0157) 0.570(0.0157) 0.000(0.0000)

KLASSO 2.950(0.0278) 0.000(0.0000) 0.000(0.0000) 0.310(0.0146) 0.690(0.0146)

LSSCAD 3.465(0.0215) 0.056(0.0073) 0.055(0.0072) 0.558(0.0157) 0.387(0.0154)

n = 400

Normal RSSCAD 3.994(0.0042) 0.001(0.0010) 0.001(0.0010) 0.997(0.0017) 0.002(0.0014)

KLASSO 4.000(0.0000) 0.000(0.0000) 0.000(0.0000) 1.000(0.0000) 0.000(0.0000)

LSSCAD 3.994(0.0024) 0.000(0.0000) 0.000(0.0000) 0.997(0.0017) 0.003(0.0017)

t (3) RSSCAD 4.000(0.0000) 0.015(0.0038) 0.015(0.0038) 0.985(0.0038) 0.000(0.0000)

KLASSO 3.930(0.0083) 0.000(0.0000) 0.000(0.0000) 0.936(0.0077) 0.064(0.0077)

LSSCAD 3.738(0.0156) 0.012(0.0034) 0.012(0.0034) 0.769(0.0133) 0.219(0.0131)

Lognormal RSSCAD 3.997(0.0030) 0.000(0.0022) 0.000(0.0017) 0.999(0.0010) 0.001(0.0010)

KLASSO 3.810(0.0135) 0.110(0.0099) 0.110(0.0099) 0.780(0.0131) 0.110(0.0099)

LSSCAD 3.113(0.0263) 0.072(0.0082) 0.072(0.0082) 0.392(0.0154) 0.536(0.0158)

T (0.10, 5) RSSCAD 4.000(0.0000) 0.006(0.0024) 0.006(0.0024) 0.994(0.0024) 0.000(0.0000)

KLASSO 2.488(0.0307) 0.240(0.0135) 0.230(0.0133) 0.220(0.0131) 0.550(0.0157)

LSSCAD 3.638(0.0181) 0.020(0.0044) 0.020(0.0044) 0.681(0.0147) 0.299(0.0145)

Outlier RSSCAD 4.000(0.0000) 0.069(0.0080) 0.069(0.0080) 0.931(0.0080) 0.000(0.0000)

KLASSO 3.905(0.0096) 0.000(0.0000) 0.000(0.0000) 0.955(0.0066) 0.045(0.0066)

LSSCAD 3.881(0.0107) 0.001(0.0010) 0.001(0.0010) 0.895(0.0097) 0.104(0.0096)

Standard errors are given in parentheses

performs slightly worse than KLASSO and LSSCAD when the random error comes
from the normal distribution as we can expect, but it performs significantly better
than KLASSO and LSSCAD when the error distribution is nonnormal. For instance,
when the errors come from the contaminated normal distribution, the KLASSO hardly
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Table 4 The simulation results of estimated errors of β for model (II) with ρ = 0.5

Error LSS RS LSSCAD RSSCAD

n = 200

Normal MEE1 0.28(0.037) 0.28(0.039) 0.16(0.030) 0.17(0.029)

MEE2 0.22(0.030) 0.22(0.031) 0.13(0.024) 0.13(0.023)

t (3) MEE1 0.39(0.085) 0.33(0.050) 0.23(0.070) 0.20(0.049)

MEE2 0.31(0.069) 0.26(0.041) 0.18(0.056) 0.16(0.039)

Lognormal MEE1 0.46(0.125) 0.29(0.046) 0.28(0.105) 0.17(0.031)

MEE2 0.36(0.099) 0.23(0.038) 0.22(0.083) 0.13(0.025)

T (0.10, 5) MEE1 0.41(0.079) 0.32(0.051) 0.25(0.066) 0.19(0.040)

MEE2 0.33(0.064) 0.25(0.041) 0.20(0.053) 0.15(0.032)

Outlier MEE1 0.50(0.086) 0.38(0.064) 0.30(0.075) 0.24(0.070)

MEE2 0.39(0.068) 0.30(0.051) 0.24(0.059) 0.19(0.055)

n = 400

Normal MEE1 0.22(0.025) 0.22(0.026) 0.14(0.016) 0.14(0.016)

MEE2 0.17(0.021) 0.18(0.021) 0.11(0.014) 0.11(0.013)

t (3) MEE1 0.29(0.057) 0.25(0.032) 0.18(0.039) 0.15(0.020)

MEE2 0.23(0.045) 0.20(0.026) 0.14(0.031) 0.12(0.016)

Lognormal MEE1 0.34(0.068) 0.22(0.027) 0.21(0.057) 0.14(0.016)

MEE2 0.27(0.054) 0.17(0.022) 0.16(0.045) 0.11(0.013)

T (0.10, 5) MEE1 0.31(0.049) 0.24(0.031) 0.19(0.040) 0.15(0.018)

MEE2 0.25(0.039) 0.19(0.025) 0.15(0.032) 0.12(0.014)

Outlier MEE1 0.35(0.051) 0.28(0.038) 0.21(0.046) 0.17(0.031)

MEE2 0.28(0.041) 0.22(0.031) 0.17(0.037) 0.13(0.024)

Standard errors are given in parentheses

selects the true model even for n = 400, whereas the RSSCAD selects the true model
with quite large probability. For the third model in which the covariate X depends
on the index U , RSSCAD is still quite effective in selecting the true variables. Also,
from these three Tables 1, 3, and 5, we can see that the proposed smoothing parameter
selection method and the BIC (8) perform satisfactorily and conform to the asymptotic
results shown in Sects. 3.3 and 3.4.

In the literature, it is well demonstrated that BIC tends to identify the true sparse
model well but would result in certain under-fitting when the sample size is not suf-
ficiently large (as in the cases of n = 200). As shown in Theorem 5, the BIC is still
consistent for selecting the variables in the present problem. When the sample size is
larger (such as n = 400), our method would select the correctly fitted models with
a quite large probability, at least 0.9. From Tables 2, 4, and 6, we observe that the
MEEs of those penalized methods are smaller than those corresponding unpenalized
methods in all cases. It means that the variable selection procedure can evidently
increase the efficiency of estimators. Furthermore, the rank-based methods (RS and
RSSCAD) perform better than the corresponding least squares methods (LSS and
LSSCAD) when the error deviates from a normal distribution. Even for normal, the
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Table 5 The simulation results of variable selection for model (III)

Number of zeros Percentage of models

Correct Incorrect Under fitted Correct Over fitted

Error Method

n = 200

Normal RSSCAD 19.955(0.0079) 0.014(0.0037) 0.014(0.0037) 0.950(0.069) 0.036(0.0059)

KLASSO 19.410(0.0239) 0.110(0.0099) 0.110(0.0099) 0.490(0.0158) 0.400(0.0155)

LSSCAD 19.915(0.0092) 0.002(0.0014) 0.002(0.0014) 0.927(0.0082) 0.071(0.0081)

t (3) RSSCAD 19.668(0.0229) 0.040(0.0064) 0.039(0.0061) 0.737(0.0139) 0.224(0.0132)

KLASSO 17.440(0.0472) 0.130(0.0106) 0.130(0.0106) 0.090(0.0090) 0.780(0.0130)

LSSCAD 17.947(0.0429) 0.022(0.0046) 0.020(0.0045) 0.318(0.0147) 0.662(0.0149)

Lognormal RSSCAD 19.663(0.0301) 0.022(0.0046) 0.022(0.0046) 0.777(0.0132) 0.201(0.0127)

KLASSO 15.500(0.0591) 0.230(0.0133) 0.220(0.0131) 0.050(0.0069) 0.730(0.0140)

LSSCAD 15.793(0.0576) 0.054(0.0071) 0.053(0.0071) 0.147(0.0112) 0.800(0.0126)

T (0.10, 5) RSSCAD 19.656(0.0265) 0.025(0.0049) 0.025(0.0049) 0.768(0.0134) 0.207(0.0128)

KLASSO 6.880(0.0672) 0.420(0.0156) 0.380(0.0153) 0.000(0.0000) 0.620(0.0153)

LSSCAD 17.194(0.0491) 0.022(0.0046) 0.022(0.0046) 0.187(0.0123) 0.791(0.0129)

Outlier RSSCAD 18.838(0.0533) 0.092(0.0094) 0.090(0.0091) 0.436(0.0157) 0.474(0.0158)

KLASSO 16.740(0.0522) 0.250(0.0137) 0.240(0.0135) 0.040(0.0062) 0.720(0.0142)

LSSCAD 17.464(0.0471) 0.038(0.0060) 0.038(0.0060) 0.154(0.0114) 0.808(0.0125)

n = 400

Normal RSSCAD 20.000(0.0000) 0.000(0.0000) 0.000(0.0000) 1.000(0.0000) 0.000(0.0000)

KLASSO 19.890(0.0105) 0.010(0.0031) 0.010(0.0031) 0.920(0.0086) 0.070(0.0081)

LSSCAD 20.000(0.0000) 0.000(0.0000) 0.000(0.0000) 1.000(0.0000) 0.000(0.0000)

t (3) RSSCAD 20.000(0.0000) 0.000(0.0000) 0.000(0.0000) 1.000(0.0000) 0.000(0.0000)

KLASSO 17.179(0.0492) 0.030(0.0054) 0.030(0.0054) 0.430(0.0157) 0.540(0.0158)

LSSCAD 19.943(0.0075) 0.016(0.0040) 0.016(0.0040) 0.955(0.0066) 0.029(0.0053)

Lognormal RSSCAD 19.997(0.0022) 0.000(0.0000) 0.000(0.0000) 0.998(0.0014) 0.002(0.0014)

KLASSO 14.340(0.0637) 0.040(0.0062) 0.040(0.0062) 0.268(0.0140) 0.692(0.0146)

LSSCAD 19.574(0.0204) 0.021(0.0045) 0.021(0.0045) 0.781(0.0131) 0.198(0.0126)

T (0.10, 5) RSSCAD 20.000(0.0000) 0.002(0.0014) 0.002(0.0014) 0.998(0.0014) 0.000(0.0000)

KLASSO 10.244(0.0707) 0.230(0.0133) 0.210(0.0128) 0.237(0.0134) 0.553(0.0157)

LSSCAD 19.905(0.0097) 0.008(0.0028) 0.008(0.0028) 0.918(0.0087) 0.074(0.0083)

Outlier RSSCAD 19.996(0.0020) 0.007(0.0026) 0.007(0.0026) 0.989(0.0033) 0.004(0.0020)

KLASSO 17.490(0.0469) 0.050(0.0069) 0.050(0.0069) 0.640(0.0152) 0.310(0.0146)

LSSCAD 19.975(0.0050) 0.000(0.0000) 0.000(0.0000) 0.971(0.0053) 0.029(0.0053)

Standard errors are given in parentheses

MEEs of rank-based methods are merely larger than those least squares methods.
This again reflects the robustness of our rank-based method to distributional assump-
tion. Moreover, when the correlation between the covariates increases (decreases),
all the three penalized methods become worse (better) but the comparison conclu-
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Table 6 The simulation results of estimated errors of β for model (III)

Error LSS RS LSSCAD RSSCAD

n = 200

Normal MEE1 0.62(0.098) 0.66(0.111) 0.31(0.084) 0.35(0.103)

MEE2 0.84(0.140) 0.89(0.153) 0.35(0.115) 0.39(0.136)

t (3) MEE1 0.99(0.253) 0.88(0.170) 0.57(0.270) 0.46(0.147)

MEE2 1.36(0.350) 1.19(0.233) 0.69(0.376) 0.52(0.196)

Lognormal MEE1 1.22(0.360) 0.79(0.163) 0.81(0.411) 0.41(0.138)

MEE2 1.67(0.510) 1.07(0.228) 1.03(0.593) 0.47(0.185)

T (0.10, 5) MEE1 1.07(0.227) 0.85(0.171) 0.65(0.244) 0.44(0.140)

MEE2 1.47(0.318) 1.16(0.235) 0.80(0.346) 0.50(0.186)

Outlier MEE1 1.28(0.224) 1.14(0.211) 0.87(0.258) 0.57(0.192)

MEE2 1.77(0.312) 1.56(0.294) 1.11(0.369) 0.68(0.266)

n = 400

Normal MEE1 0.40(0.055) 0.41(0.088) 0.21(0.046) 0.23(0.066)

MEE2 0.53(0.078) 0.55(0.114) 0.24(0.062) 0.26(0.084)

t (3) MEE1 0.60(0.105) 0.51(0.084) 0.30(0.085) 0.27(0.095)

MEE2 0.81(0.153) 0.68(0.104) 0.34(0.114) 0.30(0.112)

Lognormal MEE1 0.73(0.181) 0.43(0.073) 0.37(0.161) 0.24(0.061)

MEE2 1.00(0.254) 0.57(0.095) 0.43(0.222) 0.27(0.070)

T (0.10, 5) MEE1 0.64(0.147) 0.48(0.092) 0.32(0.107) 0.26(0.081)

MEE2 0.88(0.210) 0.64(0.133) 0.35(0.140) 0.29(0.111)

Outlier MEE1 0.87(0.143) 0.65(0.142) 0.44(0.111) 0.33(0.110)

MEE2 1.18(0.201) 0.87(0.192) 0.49(0.153) 0.36(0.147)

Standard errors are given in parentheses

sion is similar to that of ρ = 0.5 (see Tables A.1–A.8 in the supplemental file). We
also examine other error variance magnitudes for both models and the conclusion is
similar.

To examine how well the method estimates the coefficient functions, Fig. 1 shows
the estimates of the coefficients functions β1(·) and β2(·) for the model (I) with the
normal and lognormal errors when ρ = 0.5 and n = 200. It can be seen that the
estimates fit the true function well from the average viewpoint. The patterns of lower
and upper confidence bands differ much from the true one at the right boundary,
especially for β2(·). This may be caused by the lack of data in that region. The curves
for the other error distributions, which give similar pictures of the estimated functions,
are shown in Figure A.1 of the supplemental file.

4.2 The Boston housing data

To further illustrate the usefulness of RSSCAD, we consider here the Boston Housing
Data, which has been analyzed by Wang and Xia (2009) and is publicly available in
the R package mlbench, (http://cran.r-project.org/). Following Wang and Xia (2009),
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Fig. 1 Fitted regression coefficient functions of the Model (I) with the normal and lognormal errors when
ρ = 0.5 and n = 200. The red line is the true coefficient function and the black solid line is the average
of estimated coefficient function over 1,000 replications. The lower and upper dash lines form the 95 %
confidence bands (color figure online)

we take MEDV [median value of owner-occupied homes in 1,000 United States dollar
(USD)] as the response, LSTAT (the percentage of lower status of the population)
as the index variable, and the following predictors as the X -variables: CRIM (per
capita crime rate by town), RM (average number of rooms per dwelling), PTRATIO
(pupil-teacher ratio by town), NOX (nitric oxides concentration parts per 10 million),
TAX (full-value property-tax rate per 10,000 USD), and AGE (proportion of owner-
occupied units built prior to 1940). Figure A.2 in the supplemental file shows the
normal qq-plot of residuals obtained by using a standard local linear non-penalized
varying coefficient estimation (Fan and Zhang 2008). This figure clearly indicates that
the errors are not normal. In Wang and Xia (2009), the variables are firstly transformed
so that their marginal distribution is approximately N (0, 1). In our analysis, we do not
take the transformation step since the RSSCAD is designed for robustness purpose.
Similar to Wang and Xia (2009), the index variable, LSTAT, is transformed so that its
marginal distribution is U [0, 1].

A standard “leave-one-out” cross-validation method suggests an optimal number
of knots D = 5. The RSSCAD method is then applied to the data with this number
of knots. The optimal shrinkage parameter selected by the BIC criterion (8) is λ̂ =
0.0284. The resulting RSSCAD estimate suggests that NOX, RM, and PTRATIO
are all relevant variables, whereas CRIM, TAX, and AGE seem not quite significant
for predicting MEDV. To confirm whether the selected variables (NOX, RM, and
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Fig. 2 a–c The RSSCAD estimates of the relevant coefficients NOX, RM, and PTRATIO; d the unpenalized
estimates of the irrelevant coefficients

PTRATIO) are truly relevant, we provide in Fig. 2a–c their RSSCAD estimates with
95 % confidence bands. Obviously, they all suggest that these three coefficients are
unlikely to be constant zero, because none of them is close to 0. The unpenalized
estimates of the eliminated variables CRIM, TAX and AGE, are shown in Fig. 2d–f.
We find that they are always close to zero over the entire range of the index variable
LSTAT. Thus, Fig. 2 further confirms that those variables eliminated by RSSCAD
are unlikely to be relevant. In contrast, without transformation of data, the KLASSO
estimate suggests that all the variables are relevant except for AGE. Therefore, the
proposed RSSCAD should be a reasonable alternative for variable selection in varying
coefficient model by taking its efficiency, convenience and robustness into account.

5 Discussion

It is of interest to extend our proposed methodology to other more complex models,
such as varying coefficient partially linear models (Li and Liang 2008; Zhao and Xue
2009). In fact, this amounts to adding further penalty terms into the rank-based loss
function. Moreover, it is also of great interests to see whether RSSCAD and its oracle
property are still valid in high-dimensional settings in which p diverges and even is
larger than the sample size n. The consistency of the BIC criterion proposed in Sect. 3.4
deserves further study as well. Furthermore, our rank-based spline estimator could also
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deal with the case that the distribution of the error term ε varies with time as well as
the coefficient. For example, we can assume the following varying coefficient model
Y = XT (U )β(U ) + σ(U )ε where σ(U ) is a smooth function and the random error
ε is independent of X and U . With certain modifications of the proof and conditions,
we are able to establish the consistency of the rank-based methods.
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Appendix: Proofs of Theorems

In order to prove the theorems, we firstly state a few necessary lemmas. Throughout
this appendix, Mi , i = 1, . . . , 11 are all some positive constants which are independent
of the samples.

Lemma 2 Suppose Conditions (C1)–(C5) all hold and ρn → 0, then

Sn(γ ∗) − Sn(0) = 2τθ2
n ZT Zγ ∗ + op(1)1K ,

where 1K is a K-dimension vector of ones, and K = ∑p
i=1 Ki .

Proof By Δi = Op(ρn),

Sn(γ ∗) − Sn(0)

= −θn

n

∑

i< j

(ZT
i − ZT

j )
[
sgn

(
εi + Δi − ε j − Δ j − (Zi − Z j )γ

∗)

− sgn
(
εi + Δi − ε j − Δ j

)]

= θn

n

n∑

i=1

n∑

j=1

ZT
i

[
sgn

(
εi + Δi − ε j − Δ j

)

− sgn
(
εi + Δi − ε j − Δ j − (Zi − Z j )γ

∗)]

= θn

n

n∑

i=1

n∑

j=1

ZT
i

[
sgn

(
εi − ε j

) − sgn
(
εi − ε j − (Zi − Z j )γ

∗)] (1 + Op(ρn)
)
.

Fixing (X i , Ui , εi ), we define

Wi = 1

n

n∑

j=1

[
sgn

(
εi − ε j

) − sgn
(
εi − ε j − θn(Zi − Z j )γ

∗)] .
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Note that

E(Wi ) = 1

n

n∑

j=1

E
[
sgn

(
εi − ε j

) − sgn
(
εi − ε j − θn(Zi − Z j )γ

∗)]

= 2E
[
H(εi ) − H(εi − θn(Zi − Z j )γ

∗)
]

= 2h(εi )θn Ziγ
∗(1 + op(1)),

and also

var(Wi ) = E(W 2
i ) − (E(Wi ))

2

= 1

n2 E

⎧
⎨

⎩
∑

1≤l,k≤n

[
sgn (εi − εl) − sgn

(
εi − εl − θn(Zi − Zl)γ

∗)]

× [
sgn (εi − εk) − sgn

(
εi − εk − θn(Zi − Zk)γ

∗)]
⎫
⎬

⎭ − (E(Wi ))
2

= − 1

n2 (E(Wi ))
2

+ 1

n2

n∑

j=1

E
[
sgn

(
εi − ε j

) − sgn
(
εi − ε j − θn(Zi − Z j )γ

∗)]2

= − 1

n2 (E(Wi ))
2

+ 2

n2

n∑

j=1

E
[
sgn

(
εi − ε j

) − sgn
(
εi − ε j − θn(Zi − Z j )γ

∗)]

= − 1

n2 (E(Wi ))
2 + 2

n2 E(Wi ).

so, we obtain Wi = 2h(εi )θn Ziγ
∗(1 + op(1)). Thus

Sn(γ ∗) − Sn(0) = θn

n∑

i=1

ZT
i Wi (1 + op(1)) = 2θ2

n

n∑

i=1

h(εi )ZT
i Ziγ

∗(1 + op(1))

= 2τθ2
n ZT Zγ ∗(1 + op(1)).

According to Lemma A.3 in Huang et al. (2004), θ2
n ZT Zγ ∗ is bounded by a positive

constant with probability tending to one, so

θ2
n ZT Zγ ∗(1 + op(1)) = θ2

n ZT Zγ ∗ + op(1)1K .

This completes the proof. ��
Lemma 3 Suppose Conditions (C1)–(C5) all hold. Then |γ̂ ∗−γ̃ ∗|2 = op(Kn), where
γ̃ ∗ = arg min An(γ ∗).
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Proof Define Q∗
n(γ

∗) = An(γ
∗) + rn(γ

∗) and for any constant c > 0,

Tn = inf√
1/K |γ ∗−γ̃ ∗|=c

|An(γ ∗) − An(γ̃ ∗)|,

Rn = sup√
1/K |γ ∗−γ̃ ∗|≤c

|rn(γ
∗)|.

If γ 1 is outside the ball {γ : √
1/K |γ − γ̃ ∗| ≤ c}, then γ 1 = γ̃ ∗ + l1, where 1 is unit

vector and l > c. Then,

c

l

[
Q∗

n(γ 1) − Q∗
n (γ̃ )

]

= c

l
Q∗

n(γ 1) +
(

1 − c

l

)
Qn

(
γ̃ ∗) − Q∗

n

(
γ̃ ∗)

≥ Q∗
n

(c

l
γ 1 +

(
1 − c

l

)
γ̃ ∗

)
− Q∗

n

(
γ̃ ∗)

= An(γ̃ ∗ + c1) − An
(
γ̃ ∗) + (

rn(γ̃ ∗ + c1) − rn
(
γ̃ ∗))

≥ Tn − 2Rn .

This implies if Rn ≤ 1
2 Tn then the minimizer of Q∗

n must be inside the ball. Thus,

P(
√

1/K |γ̂ ∗ − γ̃ ∗| ≥ c) ≤ P

(
Rn ≥ 1

2
Tn

)
.

Since An(γ ∗) is a quadratic form, and γ̃ ∗ is its minimizer, so after some simple
calculations, An(γ ∗) can be rewritten as

An(γ ∗) = An
(
γ̃ ∗) + θ2

n

(
γ ∗ − γ̃ ∗)T ZT Z

(
γ ∗ − γ̃ ∗) .

As a consequence, if γ ∗ = γ̃ ∗ + c1,

An(γ ∗) − An(γ̃ ∗) = c21T
(

K

n
ZT Z

)
1 ≥ M5c2,

where M5 is the smallest eigenvalue of Kn
n ZT Z which is a positive constant with

probability tending to one by Lemma A.3 in Huang et al. (2004). This implies that
Tn ≥ 1

2 M5c2. Hence,

P

(
Rn ≥ 1

2
Tn

)
≤ P

(
Rn ≥ 1

2
M5c2

)
.

On the other hand, according to Lemma 1, we obtain that Rn
p→ 0. Thus, by condition

(C4), |γ̂ ∗ − γ̃ ∗|2 = op(K ) = op(Kn). ��
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Lemma 4 Suppose Conditions (C1)–(C5) all hold, then

Sn(0) = Op(1)1K .

Proof Write Sn(γ ) = (Sn1(γ ), . . . , SnK (γ ))T and denote Δi = XT
i β(Ui ) − Ziγ 0.

It suffices to show that E(Snq(0))2 = O(1), q = 1, . . . , K .

E (Sn1(0))2

= Kn

4n3 E

⎧
⎨

⎩

(
n∑

m=1

n∑

i=1

(Zm1 − Zi1) sgn (εm + Δm − εi − Δi )

)

×
⎛

⎝
n∑

k=1

n∑

j=1

(
Zk1 − Z j1

)
sgn

(
εk + Δk − ε j − Δ j

)
⎞

⎠

⎫
⎬

⎭

= Kn

4n3

n∑

k=1

E

{
n∑

i=1

(Zk1 − Zi1)sgn (εk + Δk − εi − Δi )

}2

+ Kn

4n3 E

⎧
⎨

⎩
∑

m �=k

n∑

i=1

(Zm1 − Zi1) sgn (εm + Δm − εi − Δi )

×
n∑

j=1

(
Zk1 − Z j1

)
sgn

(
εk + Δk − ε j − Δ j

)
⎫
⎬

⎭ := R1 + R2.

We next deal with R1 and R2. Firstly,

R1 = Kn

4n3

n∑

k=1

n∑

i=1

n∑

j=1

E
{
(Zk1 − Zi1)

(
Zk1 − Z j1

)
sgn

(
εk + Δk − ε j − Δ j

)

× sgn (εk + Δk − εi − Δi )
}

≤ O
(

n−3 Kn

) n∑

k=1

n∑

i=1

n∑

j=1

E
{| (Zk1 − Zi1)

(
Zk1 − Z j1

) |}

≤ O
(

n−1 Kn

) n∑

k=1

E
(

Z2
k1

)
+ O

(
n−2 Kn

) n∑

k=1

n∑

i=1

E
(|Zk1 Z j1|

)

+ O
(

n−2 Kn

) n∑

k=1

n∑

i=1

E (|Zi1 Zk1|) + O
(

n−2 Kn

) n∑

i=1

E
(

Z2
i1

)

+ O
(

n−2 Kn

)∑

i �= j

E
(|Zi1 Z j1|

)
.
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By Lemma A.3 (Huang et al. 2004), there exists an interval [M3, M4], 0 < M3 <

M4 < ∞, such that all of eigenvalues of Kn
n ZT Z fall into [M3, M4] with probability

tending to 1. We have R1 = O(1) immediately.
Note that Δi = Op(ρn), i = 1, . . . , n. Thus,

R2 = Kn

4n3

∑

m �=k

E

⎧
⎨

⎩

n∑

i=1

(Zm1 − Zi1)sgn(εm − εi + Op(ρn))

×
n∑

j=1

(Zk1 − Z j1)sgn(εk − ε j + Op(ρn))

⎫
⎬

⎭

= O(n−3 Kn)
∑

m �=k

∑

1≤i, j≤n

E
{
(Zm1 − Zi1)(Zk1 − Z j1)

}
.

By taking the same procedure as R1, we have R2 = O(1), which completes the proof.
��

Proof of Theorem 1 Note that γ̃ ∗ = (2τ)−1(θ2
n ZT Z)−1 Sn(0), so

|γ̃ ∗|2 = 1

4τ 2 ST
n (0)(θ2

n ZT Z)−1(θ2
n ZT Z)−1 Sn(0)

= Op(1)ST
n (0)Sn(0) = Op(1)

K∑

i=1

S2
ni (0)

= Op(K ).

By condition (C4), we obtain that |γ̃ ∗|2 = Op(Kn). By the triangle inequality, we
have

|γ̂ ∗|2 ≤ |γ̂ ∗ − γ̃ ∗|2 + |γ̃ ∗|2,

and thus, by Lemma 3, |γ̂ ∗|2 = Op(Kn). Consequently, |γ̂ −γ 0|2 = Op(n−1 K 2
n ). By

Lemma A.1 in Huang et al. (2004), ||β̂− g∗||2L2
= Op(|γ̂ −γ 0|2/Kn) = Op(n−1 Kn).

Finally, by the Cauchy-Schwarz inequality, ||β̂ − β||2L2
= Op(ρ

2
n + n−1 Kn). ��

Lemma 5 Suppose Conditions (C1)–(C5) all hold, then for any p-variate vector cn

whose components are not all zero,

cT
n (γ̃ ∗)/

√
var(cT

n (γ̃ ∗)) d→ N (0, 1).

Proof By using γ̃ ∗ = (2τ)−1(θ2
n ZT Z)−1 Sn(0) again, it suffices to show that for

any p-variate vector bn whose components are not all zero, bT
n Sn(0) satisfies the

Lindeberg–Feller condition. This can be easily verified by applying the dominated
convergence theorem as briefly described below. Define
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Wi =
√

Kn

n3/2

n∑

j=1

bT
n

(
ZT

i − ZT
j )sgn(εi − ε j + Δi − Δ j

)
,

then we can write bT
n Sn(γ 0) = ∑n

i=1 Wi . Obviously, by applying Lemma 2, EWi =
0, var(Wi ) = ς2

i < ∞ and as n → ∞

max
1≤i≤n

ς2
i → 0,

n∑

i=1

ς2
i → ς2, 0 < ς2 < ∞.

We only need to check that

lim
n→∞

n∑

i=1

E(W 2
i I (|Wi | > ε)) = 0, (9)

for all ε > 0, where I (·) is the indicator function. By applying Lemma 2 and
the Cauchy–Schwarz inequality, we have

√
Kn/n3

∑n
j=1 bT

n (ZT
i − ZT

j ) = op(1).
Note that the random variable inside the expectation in (A.1) is bounded; hence,
by dominated convergence we can interchange the limit and expectation. Since
I (|Wi | > ε) → 0 the expectation goes to 0 and the assertion of the lemma follows
from the central limited theorem. ��
Proof of Theorem 2 By applying Lemmas 3 and 5, the theorem follows immediately
from β̂l(u) = ∑Kl

k=1 γ̂lk Blk(u). ��
Lemma 6 Suppose Conditions (C1)–(C5) all hold. If ρn → 0, λn → 0, Kn/n → 0,
and λn/ρn → ∞ as n → ∞, then |γ̄ − γ̂ | = Op(Kn/

√
n + √

λnρn Kn).

Proof Let γ̄ − γ 0 = δn K 1/2u, with u a vector satisfying |u| = 1, δn > 0 and

γ 0 = (γ 0
1

T
, . . . , γ 0

p
T
)T . We first show that δn = Op(θn + λn). Using the identity

|z − y| − |z| = −ysgn(z) + 2(y − z) {I (0 < z < y) − I (y < z < 0)}

which holds for z �= 0, we have

Qn(γ̄ ) − Qn(γ 0)

= 1

n

∑

i< j

{|Yi − Y j − (Zi − Z j )γ̄ | − |Yi − Y j − (Zi − Z j )γ 0|
}

= 1

n

∑

i< j

(Zi − Z j )(γ 0 − γ̄ )sgn(Yi − Y j − (Zi − Z j )γ 0)

+ 2

n

∑

i< j

(−Yi + Y j + (Zi − Z j )γ̄ )
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×
{

I

(
0 < Yi − Y j − (Zi − Z j )γ 0 < (Zi − Z j )(γ̄ − γ 0)

)

− I ((Zi − Z j )(γ̄ − γ 0) < Yi − Y j − (Zi − Z j )γ 0 < 0)

}

.= Q1 + Q2

According to Lemma 4, we can show that

1

n

∑

i< j

(Zi − Z j )sgn(Yi − Y j − (Zi − Z j )γ 0) = θ−1
n 1K .

And then Q1 ≥ −M6δnnθn for some positive constants M6. Taking the same procedure
as Wi in Lemma 2, we can also obtain that Q2 = τ(γ̄ −γ 0)

T ZT Z(γ̄ −γ 0)(1+op(1)).
Thus, according to Lemma A.3 (Huang et al. 2004), Q2 ≥ M3δ

2
nn. Furthermore,

p∑

k=1

(pλn (||γ̄ k ||Rk ) − pλn (||γ 0
k ||Rk )) ≥ −

p∑

k=1

λn||γ̄ k − γ 0
k ||Rk ≥ −M7λnδn .

Thus,

0 ≥ P Ln(γ̄ ) − P Ln(γ 0)

= Qn(γ̄ ) − Qn(γ 0) + n
p∑

k=1

(pλn (||γ̄ k ||Rk ) − pλn (||γ 0
k ||Rk ))

≥ τ M3δ
2
nn − M6δnnθn − M7nλnδn,

which implies δn = Op(θn + λn).
Next we proceed to improve the obtained rate and show that δn = Op(θn +

(λnρn)1/2). For k = 1, . . . , p, using properties of B-splines basis functions, we have

||γ̄ k − γ 0
k ||2Rk

� K −1
k |γ̄ k − γ 0

k |2,

where A � B means A/B is bounded. Thus, according to the Cauchy–Schwarz
inequality, we have

|||γ̄ k ||Rk − ||γ 0
k ||Rk | ≤ ||γ̄ k − γ 0

k ||Rk � K −1/2
k |γ̄ k − γ 0

k | = op(1).

Note that

|||γ 0
k ||Rk − ||βk ||L2 | ≤ |||g∗

k ||L2 − ||βk ||L2 | ≤ ||g∗
k − βk ||L2 = Op(ρn) = op(1).

It follows that ||γ̄ k ||Rk → ||βk ||L2 and ||γ 0
k ||Rk → ||βk ||L2 with probability tending

to one. Because ||βk ||L2 > 0 for k = 1, . . . , s and λn → 0, we obtain that with
probability tending to one,
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||γ̄ k ||Rk > aλn, ||γ 0
k ||Rk > aλn for k = 1, . . . , s.

On the other hand, ||βk ||L2 = 0, for k = s +1, . . . , p, so ||γ 0
k ||Rk = Op(ρn). Because

λn/ρn → ∞, with probability tending to one,

||γ 0
k ||Rk < λn for k = s + 1, . . . , p.

By the definition of pλ(·),

P
{

pλn

(||γ̄ k ||Rk

) = pλn (||γ 0
k ||Rk )

} → 1, k = 1, . . . , s,

P
{

pλn

(
||γ 0

k ||Rk

)
= λn||γ 0

k ||Rk

} → 1, k = s + 1, . . . , p. (10)

Therefore,

p∑

k=1

(pλn (||γ̄ k ||Rk ) − pλn (||γ 0
k ||Rk )) ≥ −λn

p∑

k=s+1

||γ 0
k ||Rk ≥ −Op(λnρn).

So according to the first part, with probability tending to one,

0 ≥ P Ln(γ̄ ) − P Ln(γ 0) ≥ τ M3δ
2
nn − M6δnnθn − M7nλnρn

which in turn implies that δn = Op(θn + (λnρn)1/2). Then the lemma follows. ��
Proof of Theorem 3 To prove the first part, we use the reduction to absurdity. Suppose
that for sufficiently large n, there exist a constant ξ > 0 such that with probability at
least ξ , there exist a k0 > s such that β̄k0(u) �= 0. Then ||γ̄ k0

||k0 = ||β̄k0(u)||L2 > 0.
Let γ̄ ∗ be a vector constructed by replacing γ̄ k0

with 0 in γ̄ .
Taking the same procedure of Qn as Lemma 6, we obtain

P Ln(γ̄ ) − P Ln
(
γ̄ ∗)

= Qn(γ̄ ) − Qn
(
γ̄ ∗) + npλn (||γ̄ k0

||k0)

= τ
(
γ̄ − γ̄ ∗)T ZT Z

(
γ̄ − γ̄ ∗) (1 + op(1))

+ τ(γ̄ ∗ − γ 0)
T ZT Z(γ̄ − γ̄ ∗)(1 + op(1))

− θ−1
n

(
γ̄ − γ̄ ∗)T Sn(0) + npλn (||γ̄ k0

||k0)

According to Lemma A.3 in Huang et al. (2004) and Lemma 4, we obtain the following
inequalities,

(γ̄ − γ̄ ∗)T ZT Z(γ̄ − γ̄ ∗) ≥ M3
n

Kn
|γ̄ − γ̄ ∗|2 = M3

n

Kn
|γ̄ k0

|2,

|(γ̄ ∗ − γ 0)
T ZT Z(γ̄ − γ̄ ∗)| ≤ M4

n

Kn
|γ̄ ∗ − γ 0||γ̄ − γ̄ ∗| = M4

n

Kn
|γ̄ ∗ − γ 0||γ̄ k0

|,
|θ−1

n (γ̄ − γ̄ ∗)T Sn(0)| ≤ θ−1
n |γ̄ k0

||Sn(0)| ≤ M8
√

n|γ̄ k0
|.
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Consequently, according to (10), with probability tending to one,

pλn (||γ̄ k0
||k0) = λn||γ̄ k0

||k0 � λn
1√
Kn

|γ̄ k0
|

Then,

P Ln(γ̄ ) − P Ln(γ̄ ∗)

≥ τ M3
n

Kn
|γ̄ k0

|2 − 2τ M4
n

Kn
|γ̄ k0

||γ̄ ∗ − γ 0| − M8
√

n|γ̄ k0
|

+ nλn
1√
Kn

|γ̄ k0
| + op(1)

≥ τ(M3 − M4)
n

Kn
|γ̄ k0

|2 − 2τ M9
n

Kn

(
Kn√

n
+ √

λnρn Kn

)
|γ̄ k0

| + op(1)

−M8
√

n|γ̄ k0
| + nλn

1√
Kn

|γ̄ k0
| + op(1)

≥ −2τ M9
n

Kn

(
Kn√

n
+ √

λnρn Kn

)
|γ̄ k0

| − M8
√

n|γ̄ k0
|

+ nλn
1√
Kn

|γ̄ k0
| + op(1).

According to the conditions, the third term dominates both the first and second
terms, which contradicts the fact that Pn(γ̄ ) − Pn(γ̄ ∗) ≤ 0. We thus have proved
part (i). Next, we will prove part (ii). Denote β = ((β(1))T , (β(2))T )T , where
β(1) = (β1, . . . , βs)

T and β(2) = (βs+1, . . . , βp)
T , and γ = ((γ (1))T , (γ (2))T )T ,

where γ (1) = (γ 1, . . . , γ s)
T and γ (2) = (γ s+1, . . . , γ p)

T . Similarly, denote

Zi = (Z(1)
i , Z(2)

i ). Define the oracle version of γ ,

γ̄ oracle = arg min
γ=((γ (1))T ,0T )T

Qn(γ )

which is obtained as if the information of nonzero components were given; the corre-
sponding vector of coefficient functions is designated β̄oracle. By the above lemmas,
we can easily obtain that ||β̄k,oracle||L2 → ||βk ||L2 , for k = 1, . . . , s and by the
definition, ||β̄k,oracle||L2 = 0, for k = s + 1, . . . , p. By part (i) of the theorem,
γ̄ = ((γ̄ (1))T , 0T )T , and

p∑

k=1

pλn (||β̄k,oracle||L2) = pλn (||β̄k ||L2)

with probability tending to one. Let γ̄ − γ̄ oracle = δn K 1/2
n v, with v = ((v(1))T , 0T )T ,

and |v| = 1. Then ||β̄ − β̄oracle||L2 � K −1
n |γ̄ − γ̄ oracle| = δn . Similar to part (i),

0 ≥ P Ln(γ̄ ) − P Ln(γ̄ oracle)
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= An(θ−1
n (γ̄ − γ 0)) − An(θ−1

n (γ̄ oracle − γ 0)) + op(1)

≥ −M10θnδn + M11δ
2
n + op(1).

Thus ||β̄−β̄oracle||L2 � δn = Op(θn), which implies that ||β̄−β||L2 = Op(ρn +θn).
The desired result follows. ��

Proof of Theorem 4 By Theorem 3, with probability tending to one, γ̄ = ((γ̄ (1))T ,

0T )T is a local minimizer of P Ln(γ ). Thus, by the definition of P Ln(γ ),

0 = ∂ P Ln(γ )

∂γ

∣∣∣∣
γ=((γ̄ (1))T ,0T )T

= ∂ Qn(γ )

∂γ

∣∣∣∣
γ=((γ̄ (1))T ,0T )T

+ n
p∑

k=1

pλn (||γ k ||Rk )

∣∣∣∣
γ=((γ̄ (1))T ,0T )T

According to the proof of Lemma 6, ||γ̄ k ||Rk > aλn , for k = 1, . . . , s, so the second

part of the above equation is 0. Thus, ∂ Qn(γ )
∂γ

∣∣∣∣
γ=((γ̄ (1))T ,0T )T

= 0, which implies

γ̄ (1) = arg min
γ (1)

1

n

∑

i< j

|Yi − Y j − (Z(1)
i − Z(1)

j )γ (1)|.

Applying Theorem 2, we can easily obtain the result. ��

Proof of Theorem 5 Firstly, note that β̂ is a consistent estimator of β by Theorem 1,
so, taking the same procedure as the proof of Theorem 1 in Koul et al. (1987), τ̂ is a
consistent estimator of τ . So we replace τ̂ with τ in the following proof. To establish
the consistency of BIC, we first construct a sequence of reference tuning parameters,
λn = log(n/Kn)/

√
n/Kn . By Theorem 4, the penalty estimator β̄λn

is exactly the same
as the oracle estimator β̄oracle. It follows immediately that P(B I Cλn = B I CST ) →
1, which implies B I Cλn

p→ log(L ST ). Next, we verify that P(infλ∈Ω−∪Ω+ B I Cλ >

B I Cλn ) → 1, where Ω− and Ω+ denote the underfitting case and overfitting case,
respectively.

Case 1: Underfitted model, i.e., the model misses at least one covariate in the true
model. For any λ ∈ Ω−, similar to Wang and Li (2009), we have

B I Cλ ≥ n−2
∑

i< j

|(Yi − Zi γ̄ λ) − (Y j − Z j γ̄ λ)| ≥ inf
S�ST

L S
n > L ST

Case 2: Overfitted model, i.e., the model contains all the covariates in the true model
and at least one covariate that does not belong to the true model. For any λ ∈ Ω+, by
Lemma 1, we have
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Qn(γ̄ ST
) − Qn(γ̄ λ)

= An(θ−1
n (γ̄ ST

− γ 0)) − An(θ−1
n (γ̄ λ − γ 0)) + op(1)

= An(γ̃ ∗) − An(θ−1
n (γ̄ λ − γ 0)) + op(1)

= τθ2
n (γ̃ ∗ − θ−1

n (γ̄ λ − γ 0))
T ZT Z(γ̃ ∗ − θ−1

n (γ̄ λ − γ 0)) + op(1).

By Lemma A.3 in Huang et al. (2004) and Lemma 6, we obtain Qn(γ̄ ST
)− Qn(γ̄ λ) =

Op(Kn). Thus, with probability tending to one,

n(B I Cλ − B I Cλn ) = 12τ(Qn(γ̄ λ) − Qn(γ̄ λn
)) + (d fλ − d fλn )Kn log(n/Kn)

≥ 12τ [Qn(γ̄ λ) − Qn(γ̄ ST
)] + op(1) + Kn log(n/Kn).

This implies that

inf
λ∈Ω+

n(B I Cλ − B I Cλn ) ≥ 12τ min
S⊃ST

[Qn(γ̄ λ) − Qn(γ̄ ST
)]

+ op(1) + Kn log(n/Kn).

Since the last term dominates the first term and diverges to +∞, we obtain
P(infλ∈Ω+(B I Cλ − B I Cλn ) > 0) → 1.

Thus, according to the above results, those λ’s which fail to identify the true model
cannot be selected by BIC asymptotically, because at least the true model identified
by λn is a better choice. As a result, the optimal value λ̂B I C can only be one of those
λ’s whose corresponding estimator yields the true model. Hence, the theorem follows
immediately. ��
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