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Abstract This paper considers two classes of bivariate distributions having propor-
tional (reversed) hazard rates models as their marginals. Various dependence properties
of the proposed models are studied through their copulas.
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1 Introduction

For a given univariate cumulative distribution function (cdf) F , the function defined
by

G(x) = Fα(x), x ≥ 0, (1)

is a distribution function for α > 0. This model is called proportional reversed hazard
rate (PRHR) model with the proportionality parameter α and proposed by Gupta et al.
(1998) as a dual of the well–known proportional hazard rate (PHR) model
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334 A. Dolati et al.

H(x) = 1 − (1 − F(x))α, x ≥ 0. (2)

The class of distributions of the form Fα is also known as the exponentiated class of
distributions with baseline distribution function F . In recent years, several standard
distributions have been generalized using the exponential function; for instance see
(Gupta and Kundu 2007; Mudholkar and Huston 1996; Nadarajah 2006; Nassar and
Eissa 2003).

In the bivariate case, the construction of distributions with given marginals has been
a problem of interest to statisticians for many years. Today, in view of Sklar’s theorem
(Nelsen 2006), this problem can be reduced to the construction of a copula. Recently,
various authors provided construction methods from the class of copulas to itself, or
from a more general class of functions to another; see, e.g, (Durante 2009; Morillas
2005). One of the purposes for such constructions is to increase the availability for
modeling purposes. In the bivariate case, it is of general interest to extend the models
(1) and (2). Unlike the univariate set up, there is more than one definition for PHR
and PRHR models in the bivariate case; for instance see (Clayton and Cuzick 1985;
Finkelstein 2003; Kundu and Gupta 2010; Sankaran and Gleeja 2006). Our main aim in
this paper is to formulate a suitable notion of bivariate proportional (reversed) hazard
models. We do this by defining bivariate PHR and PRHR models in such a way that
implies their marginals follow univariate PHR and PRHR distributions. Starting from
a given bivariate cdf F(x, y) with the univariate marginal distribution functions F1
and F2, a natural bivariate extension of the PHR model is a bivariate distribution of
the form

H(x, y) = 1 − (1 − F(x, y))α, (3)

and a generalization of the PRHR model is a bivariate distribution with the survival
functions of the form

Ḡ(x, y) = 1 − (1 − F̄(x, y))α, (4)

where F̄(x, y) = 1− F1(x)− F2(y)+ F(x, y) is the survival function associated with
F . Note that the functions G and H have the univariate marginals of the form (1) and
(2), respectively. Unlike the univariate case, the functions defined by (3) and (4) are
not necessary bivariate cdfs. This paper, provides conditions that the proposed models
(3) and (4) define bivariate cdfs and discusses the different dependence properties of
these models through their associated copulas.

An interpretation of the proposed model in terms of bivariate (reversed) hazard rates
is as follows. Let (X1, X2) be the lifetimes of a two component systems whose joint cdf
is F . Then 1− F(x1, x2) = P(X1 > x1 or X2 > x2), gives the probability that at least
of the components will survive beyond the time (x1, x2) and 1− F̄(x1, x2) = P(X1 ≤
x1 or X2 ≤ x2), gives the probability that at least one of the components is not surviving
up to time (x1, x2). Following Roy (2002), let rF (x1, x2) = (r1F (x1, x2), r2F (x1, x2)),

123



Dependence properties of bivariate distributions 335

be the vector of reversed hazard rates define by

ri F (x1, x2) = ∂

∂xi
log(1 − F̄(x1, x2)).

Thus the model defined by (4) is PRHR in the sense that

riG(x1, x2) = αri F (x1, x2), i = 1, 2.

A similar argument holds for the model (3), in terms of the hazard rates defined by
r∗

i F (x1, x2) = − ∂
∂xi

log(1 − F(x1, x2)). That is

r∗
i H (x1, x2) = αr∗

i F (x1, x2), i = 1, 2.

2 Two classes of bivariate distributions

In this section we determine the conditions under which the functions defined by (3)
and (4) are bivariate distribution functions.

2.1 Genesis of the proposed models

Consider a sequence of independent Bernoulli trials in which the kth trial has proba-
bility of αk , 0 < α < 1, k ∈ {1, 2, 3, . . .}. Let N be the trial number on which the first
success occurs. Then N has Mittag-Leffler (Pillai and Jayakumar 1995) distribution
with probability mass function

P(N = n) = (1 − α)
(

1 − α

2

)
. . .

(
1 − α

n − 1

)
α

n

= (−1)n−1α(α − 1) . . . (α − n + 1)

n! . (5)

The probability generating function of N is then

g(t) = E
(

t N
)

= 1 − (1 − t)α, t ∈ [0, 1].

Let (X1,Y1), (X2,Y2), . . . be a sequence of independent and identically distributed
(i.i.d.) random vectors from a continuous bivariate distribution function F(x, y) with
univariate marginal distributions F1 and F2. Let N be a discrete random variable
independent of (Xi ,Yi ) having probability mass function (5). Put

U1 = max(X1, . . . , X N ), U2 = max(Y1, . . . ,YN ),

and

V1 = min(X1, . . . , X N ), V2 = min(Y1, . . . ,YN ).

123



336 A. Dolati et al.

Then (U1,U2) has joint distribution function

H(x, y) = P {U1 ≤ x,U2 ≤ y} =
∞∑

n=1

[P(Xi ≤ x,Yi ≤ y)]n P(N = n)

= g(F(x, y)) = 1 − (1 − F(x, y))α,

whose univariate marginals are PHR models given by

Hi (x) = 1 − F̄αi (x), i = 1, 2. (6)

Similarly, the joint survival function of (V1, V2) is given by (4) with associated
joint distribution function

G(x, y) = Fα1 (x)+ Fα2 (y)− {F1(x)+ F2(y)− F(x, y)}α, (7)

whose marginal cdfs belong to the PRHR model given by

Gi (x) = Fαi (x), i = 1, 2. (8)

In short, we have proved the following result.

Proposition 1 For any bivariate distribution function F and 0 < α ≤ 1, the functions
defined by (3) and (7) are bivariate distribution functions with the PHR and PRHR
marginals, respectively.

Remark 1 Notice that for a given bivariate distribution function F , the models defined
by (3) and (7) may fail to be bivariate distributions when α > 1. For example, let
F(x, y) = max(x + y − 1, 0), x, y ∈ [0, 1] and let x1 = 1

2 , x2 = 1, y1 = 1
2 and

y2 = 1. Then for H(x, y) = 1 − (1 − max(x + y − 1, 0))α , we have that

H(x2, y2)− H(x1, y2)− H(x2, y1)+ H(x1, y1) = −1 + 1

2α−1 < 0,

for all α > 1, and hence H is not a bivariate distribution function.

Example 1 Let F(x, y) = (1 − e−λ1x )(1 − e−λ2 y), x, y ≥ 0. Then (3) defines a
bivariate exponential distribution of the form

H(x, y) = 1 −
{

1 − (1 − e−λ1x )(1 − e−λ2 y)
}α
,

and (4) defines a bivariate distribution with survival function of the form

G(x, y) = 1 −
{

1 − e−(λ1x+λ2 y)
}α
,
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Dependence properties of bivariate distributions 337

whose univariate marginals belong to the family of generalized exponential distribu-
tions (Gupta and Kundu 2007) given by

Gi (x) = (1 − e−λi x )α, i = 1, 2.

Remark 2 If (X1, X2) is a random vector with survival function

G(x1, x2) = 1 − {
1 − F1(x1)F2(x2)

}α
,

with univariate marginals Gi (x) = Fαi (x), i = 1, 2, then the marginal random vari-
ables Yi = −lnGi (Xi ), i = 1, 2 are exponentially distributed with hazard rate α. The
bivariate distribution function of (Y1,Y2) is then

P(Y1 ≤ y1,Y2 ≤ y2) = 1 − {
1 − (1 − e−y1)(1 − e−y2)

}α
,

which is a bivariate cdf of the form (3).

2.2 Mittag-Leffler stability

As shown in (Marshall and Olkin 1997), for a given bivariate distribution function F,
the bivariate proportional odds models defined by

H(x, y) = αF(x, y)

1 − (1 − α)F(x, y)
and G(x, y) = αF(x, y)

1 − (1 − α)F(x, y)
,

satisfy the geometric-maximum stability (geometric-minimum stability) property. A
similar property holds for the models (3) and (4) which we call Mittag-Leffler stability.
To see this, let (X1,Y1), (X2,Y2), . . . be a sequence of independent and identically
distributed random vectors with a common distribution in the family (3) and if N ′ is
independent of (Xi ,Yi )’s has a Mittag-Leffler distribution with parameter β, then the
random vector (max1≤i≤N ′(Xi ),max1≤i≤N ′(Yi )) has a distribution in the family of
the form

H(x, y) = 1 − (1 − F(x, y))αβ . (9)

A similar stability property holds for the random vector of minima. As the extreme
value distributions are limiting distributions for extrema, they are sometimes useful
approximations. In practice, a random variable of interest may be the extreme of only
a finite number N of random variables. When N has a Mittag-Leffler distribution, the
random variable has this type of stability property.
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338 A. Dolati et al.

3 Dependence properties

3.1 Underlying copulas

Let F be a given bivariate distribution function with associated copula D and uni-
variate marginals F1 and F2. Let Gi and Hi , i = 1, 2, denote the univariate marginal
distributions of G and H given by (6) and (8), respectively. In view of Sklar’s Theorem
(Nelsen 2006), solving the eqnarrays

Cα[D] {H1(x), H2(y)} = H(x, y),

and

C∗
α[D] {G1(x),G2(y)} = G(x, y),

for the functions Cα[D] and C∗
α[D], yields the copulas associated with the bivariate

cdfs H and G, respectively, as

Cα[D](u, v) = 1 −
(

1 − D
(

1 − (1 − u)
1
α , 1 − (1 − v)

1
α

))α
, (10)

and

C∗
α[D](u, v) = u + v −

(
u

1
α + v

1
α − D

(
u

1
α , v

1
α

))α
, (11)

for all u, v ∈ (0, 1) and 0 < α ≤ 1. The representations (10) and (11) are “unique”, in
the sense that given a copula D, they generate unique copulas; that is if D1 and D2 are
two copulas such that Cα[D1] = Cα[D2] (C∗

α[D1] = C∗
α[D2]) for every α ∈ (0, 1],

then D1 = D2.

Remark 3 Note that the copula Cα[D] is a special case of a transformation of the
copula D by means of the function ψ(t) = 1 − (1 − t)α; see, e.g, (Durante 2009;
Klement et al. 2005; Morillas 2005).

A bivariate survival function F with marginal survival functions F1 and F2 can be
usefully described by its survival copula D̂ through the relation D̂(F1(x), F2(y)) =
F(x, y), where D̂(u, v) = u + v− 1 + D(1 − u, 1 − v) (see, e.g., Nelsen 2006). The
following result, whose proof is a straightforward calculation, provides a relationship
between Cα[D] and C∗

α[D].
Proposition 2 For a given copula D, let Cα[D] and C∗

α[D] be the copulas defined by
(10) and (11), respectively. Then

Ĉ∗
α[D](u, v) = Cα[D̂](u, v), (12)

for all u, v ∈ (0, 1)andα ∈ (0, 1], where Ĉ∗
α and D̂ are the survival copulas associated

with C∗
α and D, respectively.
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Dependence properties of bivariate distributions 339

The above observation can also be interpreted stochastically: Let (Xi ,Yi ), 1 ≤ i ≤
N , be independent and identically distributed random vectors from (X,Y )with copula
D. Furthere let N be independent of (Xi ,Yi )’s and have a Mittag-Leffler distribution
with parameter α.

Then the random vectors (max1≤i≤N (Xi ),max1≤i≤N (Yi )) and (min1≤i≤N (Xi ),

min1≤i≤N (Yi )) have the copulas Cα[D] and C∗
α[D], respectively. Since the copula of

(−Xi ,−Yi ) is D̂, then the copula structure of (max1≤i≤N (−Xi ), max1≤i≤N (−Yi )),
i.e., Cα[D̂] is the same as the copula structure of (−min1≤i≤N (Xi ),−min1≤i≤N

(Yi )), which is Ĉ∗
α[D].

In the following we provide several examples. First note that C[M] = C∗[M] = M ,
where M(u, v) = min(u, v) is the Fréchet–Hoeffding upper bound copula.

Example 2 Consider the Fréchet-Hoeffding lower bound copula W (u, v) = max(u +
v − 1, 0). Then the copulas generated by (10) and (11) are given by

Cα [W ] (u, v) = max
{

1 −
(
(1 − u)

1
α + (1 − v)

1
α

)α
, 0

}
,

which is an Archimedean copula (see, e.g., Nelsen 2006, for detail) with the non-strict

generator φ(t) = (1 − t)
1
α . Since Ŵ = W , it follows from (12) that

C∗
α [W ] (u, v) = Ĉα [W ] (u, v) = u + v − 1 − max{[u 1

α + v
1
α )]α − 1, 0}.

Example 3 Consider the product copula �(u, v) = uv, which is the copula of inde-
pendent random variables. Then we have

Cα [�] (u, v) = 1 − (1 − u)(1 − v){(1 − u)−
1
α + (1 − v)−

1
α − 1}α, (13)

which is an Archimedean copula with strict generator φ(t) = −ln(1 − (1 − t)
1
α ). A

copula of the form (13) belongs to the known Joe’s family of copulas (see Joe 1997,
for more details). Since the copula � satisfies �̂ = �, we obtain

C∗
α[�](u, v) = Ĉα[�](u, v) = u + v − uv

{
u− 1

α + v− 1
α − 1

}α
.

The following result provides a representation for the stability property given in (9)
in terms of copulas.

Proposition 3 Given a copula D and α, β ∈ (0, 1], Cβ [Cα[D]] = Cαβ [D] and
C∗
β [C∗

α[D]] = C∗
αβ [D].

3.2 Dependence orderings

If C1 and C2 are two copulas, we say that C2 is more concordant than C1 (written
C1 ≺c C2) if C1 ≤ C2. A copula C is positively quadrant dependent (written PQD) if
� ≺c C —reversing the sense of the inequality we have negatively quadrant dependent
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340 A. Dolati et al.

(NQD). A totally ordered parametric family {Cα} of copulas is positively ordered if
Cα1 ≺c Cα2 whenever α1 ≤ α2 and negatively ordered if Cα2 ≺c Cα1 whenever
α1 ≤ α2 (Joe 1997; Nelsen 2006). In what follows, we provide several properties on
ordering of the family of copulas given by (10) and (11).

Proposition 4 Let D1 and D2 be two copulas such that D1 ≺c D2. Then for every
α ∈ (0, 1), Cα[D1] ≺c Cα[D2] and C∗

α[D1] ≺c C∗
α[D2].

Proof The proof can be obtained by routine calculations. 	

Proposition 5 If the copula D is PQD, then the copulas generated by (10) and (11)
are PQD too, i.e. if D �c � then Cα[D] �c � and C∗

α[D] �c �.

Proof If D �c � then D̂ �c �. By using Proposition 4 we have that Cα[D] �c Cα[�]
and from equality (12), Ĉ∗

α[D̂] �c Ĉ∗
α[�] = Cα[�]. Thus it is enough to show that

Cα[�] �c �. Since Cα[�] and� are both Archimedean copulas with the generators

φ1(t) = −ln(1 − (1 − t)
1
α ) and φ2(t) = −ln(t), respectively, the required result

follows from the fact that φ2/φ1 is nondecreasing on (0,1) (see Genest and MacKey
1986). 	


3.3 Tail dependence coefficients

A reason for adding new parameters to a given copula is to produce families that exhibit
some more flexible properties. In particular, copulas with different tail behaviour are
often useful to build models for estimating the extreme and risky events (Joe 1997).
In the following we show how the proposed model (10) and (11) may modify the tail
behaviour of a given copula D, as measured by its tail dependence coefficients. For a
given copula D, the lower (resp. upper) tail dependence coefficient, λL (resp. λU ) is
defined by (Joe 1997; Nelsen 2006)

λL(D) = limu→0+
D(u, u)

u
, (14)

and the upper tail dependence coefficient

λU (D) = 2 − limu→1−
1 − D(u, u)

1 − u
. (15)

Proposition 6 For a given copula D let Cα[D] and C∗
α[D] be the copulas defined by

(10) and (11). Then

λL(Cα[D]) = λL(D), λU (Cα[D]) = 2 − (2 − λU (D))
α,

and

λL(C
∗
α[D]) = 2 − (2 − λL(D))

α, λU (C
∗
α[D]) = λU (D).
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Dependence properties of bivariate distributions 341

Proof By taking into account (14), the lower tail dependence coefficient of Cα[D]
can be expressed as

λL(Cα[D]) = limu→0+
1 − {1 − D(1 − (1 − u)

1
α , 1 − (1 − u)

1
α )}α

u

= limu→0+
1 − (1 − D(u, u))α

1 − (1 − u)α

= limu→0+
d

du
D(u, u) = λL(D).

By taking into account (15), the upper tail dependence coefficient of Cα[D] can be
expressed as

λU (Cα[D]) = 2 − limu→1−

{
1 − D(1 − (1 − u)

1
α , 1 − (1 − u)

1
α )

}α

1 − u

= 2 −
(

limu→1−
1 − D(u, u)

1 − u

)α

= 2 − (2 − λU (D))
α.

Similar argument holds for the lower and upper tail dependence of C∗
α[D]. 	


3.4 Measures of association

The population version of three of the most common nonparametric measures of
association between the components of a continuous random pair (X,Y ) are Kendall’s
tau (τ ), Spearman’s rho (ρ) and Blomqvist’s medial correlation coefficient (β) which
depend only on the copula D of the pair (X,Y ), and are given by

τ(D) = 4

1∫

0

1∫

0

D(u, v) d D(u, v)− 1,

ρ(D) = 12

1∫

0

1∫

0

D(u, v)dudv − 3, (16)

and

β(D) = 4D

(
1

2
,

1

2

)
− 1. (17)

See (Nelsen 2006) for details. The following result provides expressions for these
measures associated with the copulas defined by (10) and (11).
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Proposition 7 For a given copula D, let Cα[D] be the copula defined by (10). Then
for every α ∈ (0, 1],

τ(Cα[D]) = 1 − 4α

1 − 2α
− 4α2

1∫

0

(1 − t)2α−2 K D(t)dt, (18)

where K D(t) = P[D(U, V ) ≤ t], t ∈ (0, 1), is the Kendall’s distribution function of
the copula D,

ρ(Cα[D])=9−12α2
∞∑

j = 0

(−1) j
(
α

j

) 1∫

0

1∫

0

[D(u, v)] j (1 − u)α−1(1−v)α−1dudv, (19)

and

β(Cα[D]) = 3 − 4
(

1 − D
(

1 − 2− 1
α , 1 − 2− 1

α

))α
. (20)

Proof For a given copula D, in view of Proposition 1 in (Genest and Rivest 2001)

with the strictly increasing, differentiable bijection γ (t) = 1−(1− t)
1
α on the interval

(0, 1), the Kendall distribution function of Cα[D] could be obtained as

KCα[D](t) = t − α(1 − t)1− 1
α

{
1 − (1 − t)

1
α − K D(1 − (1 − t)

1
α )

}
.

Now (18) follows from the fact that KCα[D] is related to the τ(Cα[D]) (see Nelsen
2006) via

τ(Cα[D]) = 3 − 4

1∫

0

KCα[D](t)dt.

The expression for ρ(Cα[D])may be easily deduced from formula (16) and using the
binomial expansion

(1 − x)α =
∞∑
j=0

(
α

j

)
(−1) j x j |x | < 1, α ∈ R.

The expression for β(Cα[D]) follows from(10) and (17). 	


The following result provides the lower bounds for Kendall’s tau, Spearman’s rho
and Blomqvist’s beta associated with the copula defined by (10).
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Dependence properties of bivariate distributions 343

Proposition 8 For a given copula D let Cα[D] be the copula defined by (10). Then
for each α ∈ (0, 1]

1 − 2α ≤ τ(Cα[D]) ≤ 1, 9 − 12α2 B(α) ≤ ρ(Cα[D]) ≤ 1 and

3 − 2α+1 ≤ β(Cα[D]) ≤ 1,

where

B(α) =
∞∑
j=0

j∑
k=0

(−1)k
(
α

j

) (
j
k

)
B(α + j + 1, α)

α + j − k
,

where B(a, b) denotes the Beta function B(a, b) = ∫ 1
0 xa−1(1 − x)b−1dx.

Proof Since any copula D satisfies that W ≺c D ≺c M , by using Proposition 4 and
that Cα[M] = M , we have Cα[W ] ≺c Cα[D] ≺c M and then

τ(Cα[W ]) ≤ τ(Cα[D]) ≤ 1, ρ(Cα[W ]) ≤ ρ(Cα[D]) ≤ 1 and

β(Cα[W ]) ≤ β(Cα[D]) ≤ 1.

By using (18) and the fact that KW (t) = 1, t ∈ [0, 1] we obtain that τ(Cα[W ]) =
1 − 2α. The lower bound for the Spearman’s rho, ρ(Cα[D]), can be calculated from
(19) with D = W and the fact that

1∫

0

1∫

0

[W (u, v)] j (1 − u)α−1(1 − v)α−1dudv

=
1∫

0

1∫

1−u

(u + v − 1) j (1 − u)α−1(1 − v)α−1dvdu

=
j∑

k=0

(−1) j−k
(

j
k

)
1

α + j − k

1∫

0

uα+ j (1 − u)α−1du

=
j∑

k=0

(−1) j−k
(

j
k

)
B(α + j + 1, α)

α + j − k
.

The lower bound of Blomqvist’s β follows from (20), which completes the proof. 	

Remark 4 Note that for every copula-based measure of association κ , satisfying
Scarsini’s axioms (Scarsini 1984), κ(C) = κ(Ĉ). Therefore using (12) one can obtain
the measures of association κ , related to the copula C∗

α[D] via

κ(C∗
α[D]) = κ(Cα[D̂]).
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The following result provides the expressions for Kendall’s tau, Spearman’s rho
and Blomqvist’s beta associated with the copula Cα[�].
Proposition 9 Let Cα[D] be the copula defined by (10) with D = �. Then for every
α ∈ (0, 1],

ρ(Cα[�]) = 9 − 12α2
∞∑
j=0

(−1) j
(
α

j

)
[B( j + 1, a)]2,

τ (Cα[�]) = 1 + 4αB(2, 2α − 1)(
(2)−
(2α + 1)),

and

β(Cα[�]) = 3 −
(

2
1 + α

α
− 1

)α
,

where 
 is the digamma function.

4 Concavity properties

A copula C is Schur-concave if and only if,

C(u, v) ≤ C(λu + (1 − λ)v, (1 − λ)u + λv),

for all u, v ∈ (0, 1) and λ ∈ [0, 1] (see Nelsen 2006).
The following result shows that Schur-concavity of a given copula D is preserved

under the constructions (10) and (11).

Proposition 10 Let D be a Schur-concave copula. Then the generated copulas Cα[D]
and C∗

α[D] defined by (10) and (11), respectively, are Schur-concave as well.

Proof Let h(t) = 1 − (1 − t)
1
α . Then h is a concave function and

h(λx + (1 − λ)x) ≥ λh(x)+ (1 − λ)h(y)

and

h((1 − λ)x + λy) ≥ (1 − λ)h(x)+ λh(y).

Moreover, the Schur-concavity of D implies that

D(λh(x)+ (1 − λ)h(x), (1 − λ)h(x)+ λh(y)) ≥ D(h(x), h(y)).

Since D is increasing in each variable, by definition of Cα[D], we have

Cα[D](λx + (1 − λ)y, (1 − λ)x + λy) ≥ Cα[D](x, y).
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The Schur-concavity of C∗
α[D] follows from the relation (12) and the fact that if D is

Schur-concave then D̂ is Schur-concave as well. 	

A copula C is said to be quasi-concave (Nelsen 2006) if for all u, v, u′, v′ ∈ I

2 and
all λ ∈ [0, 1],

C(λu + (1 − λ)v, λu′ + (1 − λ)v′) ≥ min{C(u, u′),C(v, v′)}.

The following result shows that quasi-concavity of a given copula D is preserved
under the constructions (10) and (11).

Proposition 11 If D is quasi-concave, then the generated copula Cα[D] given by
(10), is also quasi-concave.

Proof Let u, u′, v, v′ and λ be in [0,1]. Since h(t) = 1− (1− t)
1
α is concave, we have

that

h(λu + (1 − λ)v) ≥ λh(u)+ (1 − λ)h(v),

and

h(λu′ + (1 − λ)v′) ≥ λh(u′)+ (1 − λ)h(v′).

Moreover, since D is increasing in each variable and quasi-concave, we have

D(h(λu + (1 − λ)v), h(λu′ + (1 − λ)v′))
≥ D(λh(u)+ (1 − λ)h(v), λh(u′)+ (1 − λ)h(v′))
≥ min

{
D(h(u), h(u′)), D(h(v), h(v′))

}
.

But h is increasing so that by definition of Cα[D] we have that

Cα[D](λu + (1 − λ)v, λu′ + (1 − λ)v′) ≥ min{Cα[D](u, u′),Cα[D](v, v′)}.

	

Since each Archimedean copula is quasi-concave (see, e.g., Tibiletti 1995) as a

consequence of Proposition (11) we have:

Corollary 1 If D is an Archimedean copula then the copula Cα[D] generated by (10)
is also quasi-concave.

5 Discussion

We have introduced a method for adding a parameter to a given bivariate distribution to
construct new families. The proposed families have proportional (reversed) hazard rate
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models as their univariate marginals. We study different dependence properties of the
proposed models in terms of their associated copulas. Applications and advantages of
these models to obtain certain bivariate distributions such as the bivariate exponential,
general exponential, Pareto and Weibull distributions through data examples, is in
progress. The reader will recognize that our method could be used to generalize any
given d-dimensional distribution function. Let F be a given d-dimensional distribution
function with univariate marginals F1, . . . , Fd . Then for α ∈ (0, 1], the function
defined by

G(x1, . . . , xd) = 1 − (1 − F(x1, . . . , xd))
α

is a new multivariate distribution function with univariate marginal’s given by Gi (x) =
1 − Fi

α
(x), i = 1, . . . , d, and the function

H(x1, . . . , xd) = 1 − (
1 − F(x1, . . . , xd)

)α

defines a multivariate survival function with univariate marginal’s Hi (x) =
1 − Fαi (x), i = 1, . . . , d.
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