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Abstract This paper considers estimation of a functional partially quantile regression
model whose parameters include the infinite dimensional function as well as the slope
parameters. We show asymptotical normality of the estimator of the finite dimen-
sional parameter, and derive the rate of convergence of the estimator of the infinite
dimensional slope function. In addition, we show the rate of the mean squared predic-
tion error for the proposed estimator. A simulation study is provided to illustrate the
numerical performance of the resulting estimators.
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1 Introduction

Since first proposed by Koenker and Bassett (1978), quantile regression has emerged
as an important statistical methodology. By estimating various conditional quantile
functions, quantile regression complements the focus of classical least squares regres-
sion on the conditional mean and explores the effect of covariate on the location, scale
and shape of the distribution of the response variable. It has been used in wide range
of applications including economics, biology, and finance. A comprehensive review
of the theory of quantile regression and some of the most recent development can be
found in Koenker (2005).

In order to reduce severe modeling biases caused by the mis-specifying parametric
models, there has been an upsurge of interests and efforts in nonparametric models.
Although the nonparametric approach is useful in exploring hidden structures and
reducing modeling biases, it can be too flexible to make the concise conclusions, and
faces the curse of dimensionality due to a large number of covariates. In order to over-
come these shortcomings, Engle et al. (1986) proposed the partially linear regression
model (PLRM) which allowed some explanatory variables to act in a nonparametric
manner, while the others to have a linear relation with the response variable. PLRM not
only avoids the curse of dimensionality problem in nonparametric regression, but also
retains the interpretation of the effect of the explanatory variables in linear regression.
Therefore, PLRM has received considerable attention. For example, several papers
have been published on this class of model for the independent and identically distrib-
uted case (see Speckman 1988; Shi and Li 1994; Mammen and Geer 1997) as well
as for dependent data (see Gao 1995; Fan and Li 1999; Liu 2011), for more details
see Härdle et al. (2000). Estimation methods in above mentioned papers are mainly
based on the mean regression. As for partially linear quantile regression model, He
and Shi (1996) used bivariate tensor-product B-splines to approximate the nonpara-
metric function. He and Liang (2000) introduced partially linear quantile regression
in errors-in-variables models.

There is a large collection of functional data literature on mean regression (see
Ramsay and Silverman 2005 for a review), but relatively few studies from a quantile
regression perspective. Only Cardot et al. (2005) introduced penalized quantile regres-
sion when the covariates are functions. It is well known quantile regression approach
is insensitive to outliers and more robust than the ordinary least squares method. More-
over, it may even work beautifully when the variance of random error is infinite, while
the least squares method breaks down. In addition, fitting data at a set of quantiles
provides a more comprehensive description of the response distribution than does the
mean. In many applications, the functional impacts of the covariates on the response
may vary at different percentiles of the distribution (see Wang et al. 2009). In many
practical application, we are interested in the low or high quantile of the response
variable when some explain covariates are functions and others may be classifiable
variates. In the conditional growth charts, for example, one often uses the gender as
classifiable variate because the adult male height is higher than woman’s in general,
and uses the entire growth phase as function. The ultimate outcome interest is the adult
height. We are very much concerned about the low quantile of adult height, and want
to decide which factors stunt height growth and which factors facilitate. All of these
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motivate us to combine the quantile and semiparametric approaches with functional
regression, which result in the functional partially linear quantile regression model
(FPLQRM). It is obvious that the proposed FPLQRM is more flexible than functional
linear quantile regression model proposed by Cardot et al. (2005), since it not only
contains the nonparametric function, but also the linear variables which may be cate-
gorical variable. To the best of our knowledge, there is not yet any work that combines
the semiparametric and quantile approaches in a functional semiparametric model in
existing literature. We attempt to sort out this problem. However, there are many dif-
ficulties in this task. Firstly, unlike the square loss function, the quantile loss function
is not differentiable at the origin, which makes it difficult to derive large sample prop-
erties of the resulting estimators. Secondly, one needs to estimate simultaneously the
parametric and nonparametric component which have different convergence rates. In
this paper, we develop new estimators for the parameters of functional partially linear
quantile regression model from the perspective of the Karhunen-Loéve expansion and
show the consistence and asymptotical normality of the resulting estimators.

The remainder of the paper is organized as follows. Section 2 introduces functional
partially linear quantile regression model. Section 3 then develops an approach. The
large sample properties of the proposed estimators are given in Sect. 4. Simulation
studies are presented in Sect. 5. The proofs of the main results are presented in the
“Appendix”.

2 Functional partially linear quantile regression model

Let Y be a real value random variable defined on a probability space (�,B, P).
Z = (Z1, Z2, . . . , Z p) is a p−dimensional random variables and let {X (t) : t ∈ F}
be a zero mean, second-order stochastic process defined on (�,B, P) with sample
paths in L2(F), the Hilbert space containing square integrable functions with inner
product 〈x, y〉 = ∫

F x(t)y(t)dt,∀x, y ∈ L2(F) and norm ‖x‖ = 〈x, x〉1/2. Without
loss of generality, we suppose throughout the paper that F = [0, 1]. At a given quantile
level τ ∈ (0, 1), the dependence between Y and (X,Z) is expressed as

Y =
1∫

0

β(t, τ )X (t)dt + ZT θ(τ )+ ε(τ ), (1)

where ε(τ ) is a random error whose τ th quantile equals zero, β(t, τ ) is a square
integrable function on [0,1], θ(τ ) is p-dimensional unknown real vector. In the rest of
the article, we will suppress τ in θ(τ ) and β(t, τ ) for notational simplicity.

Remark 1 Model (1) generalizes both the linear quantile regression model and func-
tional linear model which correspond to the cases β = 0 and θ = 0, respectively.
If τ = 0.5 and ε have symmetric distributions with a finite mean, then the median
FPLQRM is equal to the conditional mean. Therefore, model (1) also includes the
partially functional linear regression model proposed by Shin (2009) and includes the
semi-functional partially linear regression model in Aneiros-Pérez and Vieu (2006)
given by Y = βT z + m(X)+ ε when m(X) = ∫ 1

0 γ (t)X (t)dt .
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3 Estimation methods

Let {(Xi ,Zi ,Yi ), i = 1, . . . , n} be an independent and identically distributed sample
which is generated from model (1). Define the covariance function and the empirical
covariance function respectively as

K (s, t) = Cov(X (t), X (s))

and

K̂ (s, t) = 1

n

n∑

i=1

Xi (s)Xi (t).

The covariance function K defines a linear operator which maps a function f to K f
given by (K f )(u) = ∫

K (u, v) f (v)dv. We shall assume that the linear operator with
kernel K is positive definite. Let λ1 > λ2 > · · · > 0 and λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 be
the ordered eigenvalue sequences of the linear operators with kernels K and K̂ , {φ j }
and {φ̂ j } be the corresponding orthonormal eigenfunction sequences respectively. It is
clear that the sequences {φ j } and {φ̂ j } each forms an orthonormal basis in L2([0, 1]).
Then, the spectral decompositions of the covariance functions K and K̂ can be written
as

K (s, t) =
∞∑

j=1

λ jφ j (s)φ j (t)

and

K̂ (s, t) =
∞∑

j=1

λ̂ j φ̂ j (s)φ̂ j (t),

respectively.
According to the Karhunen-Loève representation, we have

X (t) =
∞∑

i=1

ξiφi (t)

and

β(t) =
∞∑

i=1

γiφi (t) (2)

where the ξi are uncorrelated random variables with mean 0 and variance E[ξ2
i ] = λi ,

and γi = 〈β, φi 〉, for more details see Ramsay and Silverman (2005). Substituting (2)
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into model (1), we can get

Y =
∞∑

j=1

γ j 〈φ j , X〉 + ZT θ + ε(τ ). (3)

Therefore, the regression model in (3) can be well approximated by

Y ≈
m∑

j=1

γ j 〈φ j , X〉 + ZT θ + ε(τ ), (4)

where m ≤ n is the truncation level that trades off approximation error against vari-
ability and typically diverges with n. We replace the φ j by φ̂ j for j = 1, . . . ,m, model
(4) can be rewritten as

Y ≈ ZT θ + Uγ + ε,

where U = {〈X, φ̂ j 〉} j=1,...,m , γ = (γ1, . . . , γm)
T . The quantile coefficient estimates

of γ and θ can be obtained by minimizing

n∑

i=1

ρτ

(
Yi − Uiγ − ZT

i θ
)
, (5)

where ρτ (u) = u {τ − I (u < 0)} is the quantile loss function. The solution to (5)
satisfies the following gradient condition:

n∑

i=1

ψτ

(
Yi − Uiγ − ZT

i θ
) (

Ui ,ZT
i

)T = 0,

where ψτ is score function of ρτ .

4 Large sample properties

Before presenting the main asymptotic results, we first introduce some conditions
required for our asymptotic properties. Throughout this paper, the constant C may
change from line to line for convenience.

C1: E‖X‖4 < C < ∞.
C2: For each j , E[U 4

j ] ≤ Cλ j . For the eigenvalues λ j and Fourier coefficients γ j ,

we require that λ j − λ j+1 ≥ C−1 j−a−1 and |γ j | ≤ C j−b for j > 1, a > 1 and
b > a/2 + 1.
C3: For the tuning parameter m, we assume that m ∼ n1/(a+2b).
C4: E‖Z‖4 < ∞.
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Conditions C1–C3 are very common in functional linear regression model (see Hall
and Horowitz 2007; Shin 2009). Condition C4 is common in functional partially linear
regression model (see Shin 2009).

One complicating issue for FPLQRM comes from the dependence between Z and
X . Similar to Shin (2009), we let Z = η+〈g, X〉, where η = (η1, . . . , ηp) is zero-mean
random variable, g = (g1, . . . , gp) with g j ∈ L2([0, 1]), j = 1, . . . , p.

C5: E[η] = 0 and E[ηηT ] = . Furthermore, we need that is a positive definite
matrix.

Condition C5 controls the limiting behaviour of the variance of θ̂ . Speckman (1988),
Moyeed and Diggle (1994), He et al. (2002) and Shin (2009) used a similar device for
modeling the dependence between parametric and nonparametric component.

The following Theorem 1 describes the rate of convergence of the functional slope
parameter β and the asymptotic normality of constant slope parameters θ .

Theorem 1 Under conditions C1–C5, we have

‖β0 − β̂‖2 = Op

(
δ2

n

)
,

and

√
n(θ̂ − θ) → N

(
0,�−1

)
(6)

where δ2
n = n−(2b+1)/(a+2b),� = τ(1−τ)

f 2(0)
with f (ε) is density function of the random

error.

5 Simulation studies

In this section, we investigate the finite sample performance of the proposed estimation
method with Monte Carlo simulation studies. We consider two sample sizes n = 100
and n = 400. We focus on τ = 0.25, 0.5 and τ = 0.75 in this study.

The data are generated from the following quantile regression model

Y = z1θ1 + z2θ2 +
1∫

0

X (t)β(t)dt + ε(τ ),

where z1 follows the standard normal distribution and z2 follows a Bernoulli distri-
bution with 0.5 probability of being 1, θ1 = 2 and θ2 = 1. ε(τ ) = ε − F−1(τ )

with F being the CDF of ε. Here, F−1(τ ) is subtracted from ε to make the τ th
quantile of ε(τ ) zero for identifiability purpose. For the functional linear com-
ponent, we take the same form as Shin (2009), that is, the functional coefficient
β(t) = √

2 sin(π t/2) + 3
√

2 sin(3π t/2) and X (t) = ∑
j ξ jφ j (t), where the ξ j are

distributed as independent normal with mean 0 and variance λ j = (( j − 0.5)π)−2

and φ j (t) = √
2 sin(( j − 0.5)π t).

We consider three cases for generating random error ε.
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Table 1 Simulations results

Case Sample size Criterion τ = 0.25 τ = 0.5 τ = 0.75

θ1 θ2 θ1 θ2 θ1 θ2

Case 1 n = 100 Bias −0.02 −0.01 −0.43 −0.45 0.48 −0.08

MSE 14.07 19.37 13.43 18.10 14.13 19.79

n = 400 Bias −0.20 0.33 0.06 −0.20 −0.28 0.29

MSE 6.84 9.88 6.33 8.94 7.00 9.92

Case 2 n = 100 Bias −0.07 −0.68 −0.73 −0.70 0.30 0.36

MSE 17.41 23.75 15.20 20.08 17.43 24.84

n = 400 Bias 0.08 −0.67 −0.32 0.14 0.46 0.50

MSE 8.33 12.26 7.06 10.10 8.26 12.21

Case 3 n = 100 Bias −2.80 −18.63 1.39 −0.62 −1.37 16.48

MSE 28.61 46.50 19.45 27.07 27.92 45.76

n = 400 Bias 0.36 −5.49 0.61 −0.39 −0.52 5.53

MSE 13.22 20.03 8.34 11.33 14.63 23.11

Bias and MSE of the estimated θ with different sample sizes and quantile levels for different cases (×102)

Case 1. ε follows a standard normal distribution.
Case 2. ε follows a t (3) distribution. This yields a model with heavy-tailed.
Case 3. ε follows a standard Cauchy distribution. This yields a model in which the
expectation of the response do not exist.

Throughout our numerical studies, we choose the number of eigenfunctions as the
minimizer to the following Schwarz-type information criterion,

SIC(m) = log

{
n∑

i=1

ρτ

(
Yi − zT

i θ̂ (m) − Ui γ̂ (m)

)
}

+ log(n)

2n
(m + p),

where p = 2, θ̂ (m) and γ̂ (m) are the τ th quantile estimators obtained from minimizing
(5) with m eigenfunctions; see He et al. (2002) and Wang et al. (2009) for a similar
criterion for tuning parameters selection. Based on Condition C3, the optimal order
of m should have the same order as n1/(a+2b) with a > 1 and b > a/2 + 1. Similar
to Zhang and Liang (2011), we propose to choose the optimal knot number, m, from
a neighborhood of n1/5.5. In our simulation studies, we have used [2/3Nr, 4/3Nr ],
where Nr = ceiling(n1/5.5) and the function ceiling(·) returns the smallest integer not
less than the corresponding element. Then the optimal knot number, mopt , is the one
which minimizes the SIC value. That is

mopt = arg min
m∈[2/3Nr,4/3Nr ] SIC(m).

Base on 1,000 random perturbations, Table 1 summarizes the bias (Bias) and mean
squared error (MSE) of the estimated θ with different sample sizes under different
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Fig. 1 The boxplots of resulting estimator of θ̂ − θ0 at different quantile levels with different sample sizes
for standard normal random error
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Fig. 2 The true β(t) (blue) and β̂(t) (red) for standard normal random error with n = 100 (color figure
online)

quantile level for different cases. Bias is reasonably small in general. We may conclude
that this simulation study provides strong evidence in support of the asymptotic theory
that we derive in Sect. 4.

Figure 1 shows the boxplots for standard normal random error with different sample
sizes and quantile level. For the student t distribution with 3◦ and standard Cauchy
random error distribution, the figures perform similarly with the standard normal
distribution. To save space, we omit them. From the boxplots, we known that the
proposed methods is consistent.

Figures 2, 3 and 4 demonstrate the performance of the curve estimation of the slope
parameter β(·) for different cases under different levels with n = 100 and show that
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Fig. 3 The true β(t) (blue) and β̂(t) (red) for standard Cauchy random error with n = 100 (color figure
online)
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Fig. 4 The true β(t) (blue) and β̂(t) (red) for t(3) random error with n = 100 (color figure online)

the estimated curves are very close to the true curve β(·). We may conclude that the
proposed estimation of the function β(·) performs reasonably well.

Acknowledgments The authors would like to thank the referees for their helpful comments that led an
improvement of an early manuscript.

Appendix

Let Z = (ZT
1 , . . . ,ZT

n )
T and U = (U1, . . . ,Un)

T be the n by p design matrix and
the n by m design matrix for the constant slope parametric and the functional slope
parametric component, respectively. Also let P = U(UT U)−1UT ,Z∗ = (I − P)Z,
Z∗ = (Z∗

1, . . . ,Z∗
n)

T , Sn = Z∗T Z∗.

Lemma 1 Under conditions C1–C5, one has

1

n
Sn =  + op(1).

Proof Let η = (η1, . . . , ηn)
T and Z = (Z − �) + � = η + �, where � =

(〈g, X1〉, . . . 〈g, Xn〉)T and g = (g1, . . . , gp)
T is defined in Condition C5. We can
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write

Sn = ((I − P)Z)T ((I − P)Z)

= (η +�)T (I − P)T (I − P)(η +�)

= ηT η +�T (I − P)T (I − P)�+�T (I − P)T (I − P)η

+ηT (I − P)T (I − P)�− ηT PT Pη

= ηT η + In1 + In2 + In3 + In4,

where

In1 = �T (I − P)T (I − P)�,

In2 = ηT (I − P)T (I − P)�,

In3 = �T (I − P)T (I − P)η,

In4 = ηT PT Pη.

Invoking the central limit theorem, one has

1

n
ηT η → , a.s. (7)

Invoking (7), to prove Lemma 1, it is enough to show that

‖Inl‖ = op(n), l = 1, 2, 3, 4.

By Condition C2, the fact ‖φ j − φ̂ j‖2 = Op(n−1 j2) and the Karhunen-Loève
representation, one has

‖�− UM‖2 =
n∑

i=1

p∑

l=1

∥
∥
∥
∥
∥
∥
〈xi , gl〉 −

m∑

j=1

〈xi , φ̂ j 〉λ′
l j

∥
∥
∥
∥
∥
∥

2

=
n∑

i=1

p∑

l=1

∥
∥
∥
∥
∥
∥

∞∑

j=1

φ jλl j −
m∑

j=1

φ̂ jλ
′
l j

∥
∥
∥
∥
∥
∥

2

=
n∑

i=1

p∑

l=1

∥
∥
∥
∥
∥
∥

∞∑

j=m+1

φ jλl j +
m∑

j=1

(
φ jλl j − φ̂ jλ

′
l j

)
∥
∥
∥
∥
∥
∥

2

≤ 2
n∑

i=1

p∑

l=1

∞∑

j=m+1

∥
∥
∥
∥
∥
∥
〈xi , φ j 〉λl j‖2+2

n∑

i=1

p∑

l=1

‖
m∑

j=1

(
φ jλl j −φ̂ jλ

′
l j

)
∥
∥
∥
∥
∥
∥

2

≤ 2
n∑

i=1

p∑

l=1

∞∑

j=m+1

j−2b+2
n∑

i=1

p∑

l=1

m∑

j=1

‖φ j (λl j − λ
′
l j )+(φ j −φ̂ j )λ

′
l j‖2
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= Op

(
n− 2b−1

a+2b

)
n + Op

⎛

⎝n
m∑

j=1

‖φ j − φ̂ j‖2

⎞

⎠

= Op

(
n− 2b−1

a+2b

)
n + Op

⎛

⎝n
m∑

j=1

n−1 j2

⎞

⎠

= Op

(
nn− 2b−1

a+2b

)
+ Op

(
m(2m + 1)(m + 1)

6

)

= Op

(
n

a+1
a+2b

)
+ Op(m

3),

where λ
′
l j = 〈φ̂ j , gl〉 and λl j = 〈φ j , gl〉, l = 1, . . . , p.

By Condition C3, there exists a matrix M such that ‖�− UM‖2 = Op
(
na1/(a+2b)

)
,

where a1 = max(3, a + 1). In addition, as P is a projection matrix, we have

‖(I − P)�‖2 = ‖�− UM‖2 + ‖UM − P�‖2

≤ 2‖�− UM‖2 = Op

(
na1/(a+2b)

)
. (8)

By Condition C4 and the strong law of large numbers, one has 1
nη

T η converges
almost surely to . For k �= l, one has

E
{
(ηT Pη)kl

}2 = (kl)
2(trace(P))2 +

{
kkll + (kl)

2
}

trace(PPT )

+
{

E[η2
1kη

2
1l ] − 2(kl)

2 −kkll

} ∑

s

Pss . (9)

In addition, as P is a projection matrix, this expression is O(m). Since P is a positive
semidefine matrix, when k = l,

E
{
(ηT Pη)kk

}
= kk trace(P) = O(m). (10)

Invoking (9) and (10), we have

‖Pη‖2 = Op(m). (11)

Similarly, we have

‖(I − P)η‖2 = Op(m). (12)

Invoking (11) and (12) and Condition C2, we have

‖In1‖ = ‖(I − P)�‖2 = Op

(
na1/(a+2b)

)
= op(n),

‖In2‖ = ‖In3‖ = ‖ηT (I − P)T (I − P)�‖2
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≤ ‖(I − P)η‖2‖(I − P)�‖2

= Op(m)Op

(
n

a1
a+2b

)

= op(n),

and

‖In4‖ = ‖ηT PT Pη‖2 = Op(m) = op(n).

The proof is hence complete. ��
Lemma 2 Under conditions C1–C5, we have

S
− 1

2
n Z∗Tψ(ε) → N (0, τ (1 − τ)Ip),

where ψ(ε) = (ψ(ε1), ..., ψ(εn))
T .

Proof Invoking Z = η +�, we have

S
− 1

2
n Z∗Tψ(ε) = S

− 1
2

n ((I − P)Z)Tψ(ε)

= S
− 1

2
n ((I − P)(η +�))Tψ(ε)

= S
− 1

2
n ηTψ(ε)− S

− 1
2

n (Pη)Tψ(ε)+ S
− 1

2
n ((I − P)�)Tψ(ε).

By Lemma 1, (8) and (11), we have

‖S
− 1

2
n (Pη)T ‖2 = op(1) and ‖S

− 1
2

n ((I − P)�)Tψ(ε)‖2 = op(1).

Thus,

S
− 1

2
n Z∗Tψ(ε) = S

− 1
2

n ηTψ(ε)+ op(1).

By condition C5 and the central limit theorem, one has

S
− 1

2
n Z∗Tψ(ε) → N

(
0, τ (1 − τ)Ip

)
.

��
Proof of Theorem 1 Let

ξ

(
θ

γ

)

=
(
ξ1
ξ2

)

=
⎛

⎝ f (0)S
1
2
n (θ − θ0)

H
1
2

m (γ − γm)+ H
− 1

2
m UZ(θ − θ0)

⎞

⎠ ,
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where Hm = mUT U. Let ξ̂ = ξ(θ̂, γ̂ ) = (ξ̂
T
1 , ξ̂

T
2 )

T . Now, we show that ‖ξ̂‖ =
Op(δn). To do so, let Z̃i = 1

f (0)S
− 1

2
n Zi , Ũi = H−1

m Ui , Ri = ∑m
j=1〈xi , φ̂ j 〉γ j0 −

∫ 1
0 β(t)x(t)dt .

Note that ‖φ j − φ̂ j‖2 = Op(n−1 j2), one has

‖Ri‖2 =
∥
∥
∥
∥
∥
∥

m∑

j=1

〈xi , φ̂ j 〉γ j0 −
∞∑

j=1

〈xi , φ j 〉γ j0

∥
∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
∥

m∑

j=1

〈xi , φ̂ j 〉γ j0 −
m∑

j=1

〈xi , φ j 〉γ j0

∥
∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥
∥

∞∑

j=m+1

〈xi , φ j 〉γ j0

∥
∥
∥
∥
∥
∥

2

≤
m∑

j=1

∥
∥
∥φ̂ j − φ j

∥
∥
∥

2 |γ j0|2 +
∞∑

j=m+1

|γ j0|2

=
m∑

j=1

Op

(
n−1 j2−2b

)
+

∞∑

j=m+1

j−2b

= Op

(
n− 2b−1

a+2b

)
+ O

(
n−(2b−1)/(a+2b)

)

= Op

(
n− 2b−1

a+2b

)
.

Thus, one has

n∑

i=1

ρτ (Yi − ZT
i θ − UT

i γ ) =
n∑

i=1

ρτ

(
εi − Z̃

T
i ξ1 − Ũ

T
i ξ2 − Ri

)
,

which is minimized at ξ̂ .
By similar arguments to these of Lemma 1 of Cardot et al. (2005) for any κ > 0,

there exists Lκ such that

P

{

inf
‖ξ‖>Lκ δn

n∑

i=1

ρτ

(
εi − Z̃

T
i ξ1 − Ũ

T
i ξ2 − Ri

)
>

n∑

i=1

ρτ (εi − Ri )

}

> 1 − κ.

On the other hand, we have

n∑

i=1

ρτ

(
εi − Z̃

T
i ξ̂1 − Ũ

T
i ξ̂2 − Ri

)
= inf
ξ∈Rm+p

ρτ

(
εi − Z̃

T
i ξ1 − Ũ

T
i ξ2 − Ri

)
. (13)

Thus, we have

n∑

i=1

ρτ

(
εi − Z̃

T
i ξ̂1 − Ũ

T
i ξ̂2 − Ri

)
<

n∑

i=1

ρτ (εi − Ri ).
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Then connecting this with Eq. (13), we obtain

P

{

inf
‖ξ‖>Lκ δn

n∑

i=1

ρτ

(
εi − Z̃

T
i ξ1 − Ũ

T
i ξ2 − Ri

)

>

n∑

i=1

ρτ

(
εi − Z̃

T
i ξ̂1 − Ũ

T
i ξ̂2 − Ri

)
}

> 1 − κ.

Thus, ‖ξ̂‖ = Op(δn). This together with Lemma 1, and the definition of ξ̂ , one has

‖θ̂ − θ0‖ =
∥
∥
∥
∥

1

f (0)
S

− 1
2

n ξ̂1

∥
∥
∥
∥ = Op

(
n− 1

2 ‖ξ̂1‖
)

= Op(n
− 1

2 δn).

Note that

‖β̂(t)− β0(t)‖2 =
∥
∥
∥
∥
∥
∥

m∑

j=1

γ̂ j φ̂ j −
∞∑

j=1

γ jφ j

∥
∥
∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥
∥
∥

m∑

j=1

γ̂ j φ̂ j −
m∑

j=1

γ jφ j

∥
∥
∥
∥
∥
∥

2

+ 2

∥
∥
∥
∥
∥
∥

∞∑

j=m+1

γ jφ j

∥
∥
∥
∥
∥
∥

2

≤ 4

∥
∥
∥
∥
∥
∥

m∑

j=1

(γ̂ j − γ j )φ̂ j

∥
∥
∥
∥
∥
∥

2

+ 4

∥
∥
∥
∥
∥
∥

m∑

j=1

γ j (φ̂ j − φ j )

∥
∥
∥
∥
∥
∥

2

+ 2
∞∑

j=m+1

γ 2
j

= Kn1 + Kn2 + Kn3.

Now we consider Kn1, by the fact that the sequences {φ̂ j } forms an orthonormal basis
in L2([0, 1]), one has

Kn1 =
∥
∥
∥
∥
∥
∥

m∑

j=1

(γ̂ j − γ j )φ̂ j

∥
∥
∥
∥
∥
∥

2

≤
m∑

j=1

(γ̂ j − γ j )
2

≤ ‖γ̂ − γm‖2.

By Lemma 1 of Stone (1985), it is easy to show that Hm is positive definite for
sufficiently large n. Therefore, one has

‖γ̂ − γm‖2 ≤ C(γ̂ − γm)
T Hm(γ̂ − γm)

≤ Op(n
−1‖ξ̂2‖2)+ Op(‖θ̂ − θ0)‖) = Op

(
δ2

n

)
.
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As a result, we have Kn1 = Op
(
δ2

n

)
.

Kn2 ≤ m
m∑

j=1

‖φ̂ j − φ j‖2γ 2
j ≤ n−1m

m∑

j=1

j2γ 2
j

= Op

⎛

⎝n−1m
m∑

j=1

j2−2b

⎞

⎠ = Op

(
n− a+3b−1

a+2b

)
= op

(
δ2

n

)
,

Kn3 =
∞∑

j=m+1

γ 2
j ≤ C

∞∑

j=m+1

j−2b = O(n− 2b−1
a+2b ) = O

(
δ2

n

)
.

Therefore, one has

‖β̂ − β‖2 = Op

(
δ2

n

)
.

Next we will show the asymptotic normality of θ̂ , let ξ∗
1 = 1

f (0)S
− 1

2
n

∑n
i=0 Z∗

i ψτ (εi ),
according to Lemmas 1 and 2, ξ∗

1 is asymptotically normal with variance-covariance
τ(1−τ)

f 2(0)
Ip.

On the other hand, similar to He and Shi (1996), we can proof that ‖ξ̂∗
1 − ξ̂1‖ =

op(1). Thus,

ξ̂1 = ξ̂
∗
1 + op(1) = 1

f (0)
S

− 1
2

n

n∑

i=0

Z∗
i ψτ (εi )+ op(1).

Obviously,

√
n(θ̂0 − θ0) → N

(

0,
τ (1 − τ)

f 2(0)


)

.

This completes the proof of Theorem 1.
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