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Abstract The Shannon entropy of a random variable has become a very useful tool
in Probability Theory. In this paper we extend the concept of cumulative residual
entropy introduced by Rao et al. (in IEEE Trans Inf Theory 50:1220–1228, 2004).
The new concept called generalized cumulative residual entropy (GCRE) is related
with the record values of a sequence of i.i.d. random variables and with the relevation
transform. We also consider a dynamic GCRE obtained using the residual lifetime.
For these concepts we obtain some characterization results, stochastic ordering and
aging classes properties and some relationships with other entropy concepts.

Keywords Generalized cumulative residual entropy · Failure (hazard) rate ·
Record values · Nonhomogeneous Poisson process · Mean residual waiting time

1 Introduction

The classic Shannon entropy of a random variable (r.v.) X is a very useful tool in
Probability Theory and Information Theory to measure the uncertainty contained in
X . If X has an absolutely continuous distribution with probability density function f ,
then the (Shannon) entropy is defined by

H(X) = −
∫

f (x) log f (x)dx,
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624 G. Psarrakos, J. Navarro

where, by convention, 0 ln 0 = 0. Dynamic versions of the classic Shannon entropy
were considered in Ebrahimi and Pellerey (1995), Ebrahimi (1996) and Belzunce et al.
(2004). For example, when X is nonnegative, Ebrahimi and Pellerey (1995) considered
the entropy of the residual lifetime Xt = (X − t |X > t) given by

H(X; t) = H(Xt ) = −
∞∫

0

f (x + t)

F(t)
log

f (x + t)

F(t)
dx

for t ≥ 0 such that F(t) > 0, where F(t) = Pr(X > t) is the reliability (survival)
function of X . In particular, H(X; 0) = H(X).

Recently, Rao et al. (2004) (see also Rao 2005) defined the cumulative residual
entropy (CRE) replacing the probability density function by the reliability function,
that is,

E(X) = −
∫

F(t) log F(t)dt.

Several properties of the CRE were obtained in these papers and in Asadi and Zohre-
vand (2007) and Navarro et al. (2010). Asadi and Zohrevand (2007) also considered
a dynamic version of the CRE defined by E(X; t) = E(Xt ). Some characterization
results, stochastic ordering and aging classes properties for E(X; t) were obtained in
Asadi and Zohrevand (2007) and Navarro et al. (2010). Moreover, Kapodistria and
Psarrakos (2012), using the relevation transform, gave some new connections of the
CRE and the residual lifetime. A cumulative version of Renyi’s entropy was studied
in Sunoj and Linu (2012).

In this paper, we extend the concept of cumulative residual entropy relating this
concept with the mean time between record values of a sequence of i.i.d. random
variables and with the concept of relevation transform. We also consider its dynamic
version obtained with the residual lifetime Xt . For these concepts we obtain some
characterization results, stochastic ordering and aging classes properties and some
relationships with other concepts such as the mean residual waiting time defined by
Raqab and Asadi (2010) or the Baratpour entropy defined in Baratpour (2010).

The paper is organized as follows. The definitions, motivations and basic proper-
ties are given in Sect. 2. In Sect. 3, we include the characterizations of exponential,
Pareto and power models and stochastic ordering and aging classes properties. The
relationships with other functions are studied in Sect. 4. Some conclusions and open
questions are given in Sect. 5.

Throughout the paper when we say that a function g is increasing (decreasing),
we mean that it is non-decreasing (non-increasing), that is, g(x) ≤ g(y) (≥) for all
x ≤ y. Whenever we use an expectation or a conditional random variable we are
tacitly assuming that they exist.

2 Definitions and basic properties

We use some preliminaries from Sect. 2 of Baxter (1982). It is well known that in a
renewal process where the failed units are replaced by new units, the distribution of
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the process is obtained by using the convolution of the unit distributions. In a similar
way, in a relevation process a failed unit is replaced (or repaired) by another unit with
the same age. Thus, if the first unit has lifetime X and reliability function F and the
second has lifetime Y and reliability function G(t + x)/G(x) given that X = x , then
the reliability of the relevation process is given by

F#G(t) =
∞∫

0

Pr(X + Y > t |X = x) f (x)dx

=
t∫

0

Pr(Y > t − x |X = x) f (x)dx +
∞∫

t

f (x)dx

= F(t)+
t∫

0

G(t)

G(x)
f (x)dx,

where f is the probability density function of X and the notation # stands for the
relevation transform of F and G.

In particular, if F = G and Fn denotes the reliability function of the time to the
n-th failure Xn , then

Fn(t) =
{

F(t) n = 1

Fn−1#F(t) n ≥ 2.

An equivalent form (see Krakowski 1973) is

Fn(t) = F(t)
n−1∑
k=0

[Λ(t)]k

k! = qn(F(t)) (1)

for n = 1, 2, . . . , where Λ(t) = − log F(t) is the cumulative hazard function and
qn(x) = x

∑n−1
k=0[− log x]k/k! is an increasing function such that qn(0) = 0 and

qn(1) = 1. This expression proves that Fn is a distorted function from F and hence
some ordering properties can be obtained from the results for distorted distributions
given in Navarro et al. (2012). The density is given by

fn(t) = [Λ(t)]n−1

(n − 1)! f (t), n = 1, 2, . . . , (2)

that is, the number of failures in (0, t] forms a nonhomogeneous Poisson process
(NHPP) with intensity function λ(t) = f (t)/F(t), the failure (or hazard) rate of F .
Through the NHPP Gupta and Kirmani (1988) explained why the study of relevation
is equivalent to the study of record values by noting that (2) is the density of the n-th
upper record value of a sequence of i.i.d. random variables (see also, e.g., David and
Nagaraja 2003, p. 32).
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Now we consider the mean value of Fn, μn = ∫ ∞
0 Fn(x)dx, n ≥ 1. Then

μn+1 − μn =
∞∫

0

F(x)
[Λ(x)]n

n! dx . (3)

Let X be a r.v. supported on [0,∞), with reliability function F(t). Rao et al. (2004)
(see also Rao 2005), defined the cumulative residual entropy (CRE)

E(X) =
∞∫

0

F(x)Λ(x)dx . (4)

Notice that n = 1 in (3) yields (4). Motivating by this fact we define the generalized
cumulative residual entropy (GCRE) of X as

En(X) =
∞∫

0

F(x)
[Λ(x)]n

n! dx

for n = 1, 2, . . . . By convention, E0(X) = E(X) = ∫ ∞
0 F(x)dx . For more details on

the terminology of the integral
∫ ∞

0
1
n! [Λ(x)]n F(x)dx , see Sect. 4 of Baxter (1982).

Note that En(X) is the area between the functions Fn+1 and Fn . In particular, E0(X) =
E(X) is the area under F1 = F . In Fig. 1, we plot these areas for an exponential
distribution.

Raqab and Asadi (2010) studied the mean residual waiting time (MRWT) between
records, using the GCRE (without define it as an entropy measure and just as a math-
ematical tool) in the following form

En(X) =
∞∫

0

τn(x)dx, (5)

where

τn(x) = [Λ(x)]n

n! F(x).

Also notice that from (2), the GCRE can be written as

En(X) =
∞∫

0

[Λ(x)]n

n! f (x)
F(x)

f (x)
dx = E

(
1

λ(Xn+1)

)
(6)

for n = 0, 1, 2, . . . , where λ = f/F is the failure (hazard) rate function of F and
Xn+1 is a random variable with reliability Fn+1. From (2), the ratio
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Fig. 1 Fn for an exponential distribution for n = 1, 2, 3, 4, 5 (from below). The area under F1 = F is
E(X) and the areas between these functions correspond to the GCRE En(X) for n = 1, 2, 3, 4

fn+1(t)

fn(t)
= Λ(t)

n

is increasing in t and hence Xn ≤L R Xn+1 where ≤L R denotes the likelihood ratio
order (see Shaked and Shanthikumar 2007, Chap. 1). In particular, this implies that
Xn ≤ST Xn+1, where ≤ST denotes the usual stochastic order, that is, Fn ≤ Fn+1.
Hence, if λ is increasing (resp. decreasing), that is, X is IFR (DFR), then, from (6)
and the equivalence (1.A.7) in (see Shaked and Shanthikumar 2007, p. 4) we have

En(X) ≥ En+1(X) (≤) (7)

for n = 0, 1, 2, . . . . In particular, for the exponential distribution, as the hazard rate
is constant, we obtain the following well known property

En(X) = E0(X) = E(X)

for n = 1, 2, . . . , that is, the areas between the functions in Fig. 1 coincide.
Another interesting property can be obtained by using the hazard rate order (≤H R).

The definition and the basic properties of this order can be seen (see Shaked and
Shanthikumar 2007, Chap. 1). The result can be stated as follows.

Theorem 1 If X ≤H R Y and either X or Y are DFR, then

En(X) ≤ En(Y )

for n = 0, 1, 2, . . . .
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Proof It is well known that X ≤H R Y implies X ≤ST Y (see, e.g., Shaked and
Shanthikumar 2007, p. 17). Hence the result trivially holds for n = 0. Moreover, from
(1), we have

Fn+1(t) = qn+1(F(t)) ≤ qn+1(G(t)) = Gn+1(t),

where G(t) is the reliability function of Y and Gn+1(t) is the reliability function of
Yn+1. That is, Xn+1 ≤ST Yn+1 holds. This is equivalent (see Shaked and Shanthikumar
2007, p. 4) to have

E(φ(Xn+1)) ≤ E(φ(Yn+1))

for all increasing functions φ such that these expectations exist.
Thus, if we assume that X is DFR and λX is its hazard rate, then 1/λX is increasing

and from (6)

En(X) = E

(
1

λX (Xn+1)

)
≤ E

(
1

λX (Yn+1)

)

holds.
On the other hand, X ≤H R Y implies that the respective hazard rate functions

satisfy λX ≥ λY . Hence, we have

E

(
1

λX (Yn+1)

)
≤ E

(
1

λY (Yn+1)

)
= En(Y ).

Therefore, using both expressions we obtain En(Y ) ≤ En(Y ). The proof is similar
when we assume that Y is DFR.

Remark 1 As we have already mentioned similar ordering properties can be obtained
for Xn (i.e. for record values) by using (1) and the results for distorted distributions
given in Navarro et al. (2012). For example, it is easy to see that qn(u) satisfies that
uq ′

n(u)/qn(u) is decreasing in (0, 1) for n = 2, 3, . . . and hence, from Theorem
2.6, (i i), in Navarro et al. (2012), we have that X ≤H R Y implies Xn ≤H R Yn for
n = 0, 1, 2, . . . . Analogously, as qn(u) is concave, from Theorem 2.6, (v), in Navarro
et al. (2012), we have that X ≤I C X Y implies Xn ≤I C X Yn for n = 0, 1, 2, . . . ,
where ≤I C X represents the increasing convex order (see Shaked and Shanthikumar
2007, Chap. 4).

Analogously, we can also consider the dynamic version of the GCRE, that is, the
GCRE of the residual lifetime Xt = (X − t |X > t) given by

En(X; t) = En(Xt ) = 1

n!
∞∫

t

F(x)

F(t)

[
− log

F(x)

F(t)

]n

dx (8)
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for n = 0, 1, 2, . . . . This function is called dynamic generalized cumulative residual
entropy (DGCRE). Notice that En(X; 0) = En(X) and E0(X; t) = E(Xt ) = m(t) is
the mean residual lifetime (MRL) function of X . It is well known that the hazard rate
of the residual lifetime Xt = (X − t |X > t) is λ(x + t) for x ≥ 0. Hence, if X is IFR
(DFR), then Xt is IFR (DFR) and from (7), we have

En(X; t) ≥ En+1(X; t) (≤) (9)

for all t and for n = 0, 1, . . . . Moreover, from (6), we get

En(X; t) = E

(
1

λ(t + Xt,n+1)

)
,

where Xt,n = (Xt )n is a r.v. having the reliability function obtained from (1) and the
reliability function of Xt . Note that Xt,n is not the residual lifetime of Xn , that is,
Xt,n = (Xt )n is not necessarily equal in law to (Xn)t .

Moreover, by using the binomial expansion, we have

En(X; t) = 1

n!
∞∫

t

F(x)

F(t)
[Λ(x)−Λ(t)]ndx

= 1

n!F(t)

∞∫

t

F(x)
n∑

k=0

(
n

k

)
(−1)n−k[Λ(x)]k[Λ(t)]n−kdx

= 1

n!F(t)
n∑

k=0

(
n

k

)
(−1)n−k[Λ(t)]n−k

∞∫

t

F(x)[Λ(x)]kdx (10)

= 1

F(t)

n∑
k=0

(−1)n−k

k!(n − k)! [Λ(t)]
n−k

∞∫

t

F(x)[Λ(x)]kdx . (11)

By (10), solving with respect to
∫ ∞

t F(x)[Λ(x)]ndx , we have

∞∫

t

F(x)[Λ(x)]ndx = n!F(t)En(X; t)

−
n−1∑
k=0

(
n

k

)
(−1)n−k[Λ(t)]n−k

∞∫

t

F(x)[Λ(x)]kdx . (12)

123
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In particular, by (11) for n = 1, we have

E1(X; t) = 1

F(t)

{
−Λ(t)

∞∫

t

F(x)dx +
∞∫

t

F(x)Λ(x)dx

}

= −Λ(t)m(t)+ 1

F(t)

∞∫

t

F(x)Λ(x)dx .

This is the dynamic cumulative residual entropy considered in formula (14) of Asadi
and Zohrevand (2007).

For n = 2, we have

E2(X; t) = [Λ(t)]2

2
m(t)− Λ(t)

F(t)

∞∫

t

F(x)Λ(x)dx + 1

2F(t)

∞∫

t

F(x)[Λ(x)]2dx

and for n = 3,

E3(X; t) = −[Λ(t)]3

6
m(t)+ [Λ(t)]2

2F(t)

∞∫

t

F(x)Λ(x)dx

−[Λ(t)]
2F(t)

∞∫

t

F(x)[Λ(x)]2dx + 1

6F(t)

∞∫

t

F(x)[Λ(x)]3dx .

Finally, we can also consider the mean value of En(X; X) given by

E[En(X; X)] =
∞∫

0

En(X; x) f (x)dx . (13)

3 Monotonicity and characterization results

In this section we study aging classes properties and characterization results. To this
purpose we first give an expression for the derivative of En(X; t).

Theorem 2 If X is absolutely continuous, then

E ′
n(X; t) = λ(t)[En(X; t)− En−1(X; t)] (14)

for n = 1, 2, . . . .
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Proof The relation (11) can be written as

En(X; t)F(t) =
n∑

k=0

(−1)n−k[�(t)]n−k

k!(n − k)!
∞∫

t

F(x)[Λ(x)]kdx .

Differentiating both sides with respect to t gives

E ′
n(X; t)F(t)− En(X; t) f (t) = λ(t)

n−1∑
k=0

(−1)n−k[Λ(t)]n−k−1

k!(n − k − 1)!
∞∫

t

F(x)[Λ(x)]kdx

−[Λ(t)]n F(t)
n∑

k=0

(−1)n−k

k!(n − k)! ,

where

n∑
k=0

(−1)n−k

k!(n − k)! = 1

n!
n∑

k=0

(−1)n−k
(

n

k

)
= (1 − 1)n = 0.

Hence

E ′
n(X; t)F(t)− En(X; t) f (t) = λ(t)

n−1∑
k=0

(−1)n−k[Λ(t)]n−k−1

k!(n − k − 1)!
∞∫

t

F(x)[Λ(x)]kdx,

and using again (11), we have

E ′
n(X; t)F(t)− En(X; t) f (t) = −λ(t)F(t)En−1(X; t),

that is, (14) holds.

For n = 1 in (14), we have the relation (3.4) of Navarro et al. (2010),

E ′
1(X; t) = λ(t)[E1(X; t)− m(t)].

As a consequence of the preceding theorem we have the following result.

Theorem 3 If X is IFR (DFR), then En(X; t) is decreasing (increasing) for n =
0, 1, 2, . . . .

Proof The result is trivially true for n = 0 since En(X; t) = m(t) the MRL function
of X and it is well known that IFR (DFR) implies DMRL (IMRL).

For n ≥ 1, from Theorem 2, we have

E ′
n(X; t) = λ(t)[En(X; t)− En−1(X; t)]
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for n = 1, 2, . . . . Moreover, from (9), we have that if X is IFR (DFR), then

En(X; t) ≤ En−1(X; t) (≥).

Therefore, E ′
n(X; t) ≤ 0 (≥) for all t .

Using this property we can define the following aging classes.

Definition 1 We say that X has an increasing (decreasing) DGCRE of order n, shortly
written as IDGCREn (DDGCREn) if En(X; t) is increasing (decreasing) in t .

Note that Theorem 3 proves that if X is IFR (DFR), then it is DDGCREn (IDGCREn)

for n = 0, 1, . . . . Moreover, DDGCRE0 (IDGCRE0) is equivalent to DMRL (IMRL).
Using again Theorem 2 we can obtain the following characterization result which

extends the result obtained in Theorem 4.8 of Asadi and Zohrevand (2007).

Theorem 4 If for c > 0 En(X; t) = cEn−1(X; t) holds for all t and for a fixed
n ∈ {1, 2, . . . }, then X has an Exponential (c = 1), a Pareto type II (c > 1) or a
power distribution (c < 1).

Proof This result was proved for n = 1 in Theorem 4.8 of Asadi and Zohrevand
(2007). By induction, we assume that the result is true for n − 1 (for n > 1) and we
are going to prove it for n.

We are assuming that for c > 0,

En(X; t) = cEn−1(X; t)

holds. Then we have

E ′
n(X; t) = cE ′

n−1(X; t).

Moreover, from (14), we have

E ′
n(X; t) = cE ′

n−1(X; t) = λ(t)[En(X; t)− En−1(X; t)],

that is,

cE ′
n−1(X; t) = (c − 1)λ(t)En−1(X; t).

Analogously, using (14) for n − 1, we get

cE ′
n−1(X; t) = cλ(t)[En−1(X; t)− En−2(X; t)].

Therefore,

En−1(X; t) = cEn−2(X; t)

and hence, by the induction hypothesis, we get the stated result.

123



Generalized cumulative residual entropy and record values 633

We have already mentioned that if X is exponential, then En(X; t) = En−1(X; t) =
· · · = m(t) = μ. The preceding theorem proves that En(X; t) = En−1(X; t) for a
fixed n and for all t ≥ 0 characterizes the exponential model.

Analogously, the Pareto type II (or Lomax) model with reliability F(t) = ba/(t +
b)a for t ≥ 0, a, b > 0 is characterized by En(X; t) = cEn−1(X; t) for c > 1, a fixed
n and for t ≥ 0. Its mean residual lifetime is given by

m(t) = t + b

a − 1

which is an increasing linear function of t . Hence the functions En(X; t) =
cnm(t), n = 1, 2, . . ., are also increasing linear functions of t with

m(t) ≤ E1(X; t) ≤ E2(X; t) ≤ · · · ≤ En(X; t).

By (9), the above inequalities are expected since Pareto type II is a DFR distribution.
From (14) it is easy to see that c = a/(a − 1) and hence

En(X; t) = an(t + b)/(a − 1)n+1

for t ≥ 0, a > 1 and b > 0.
In a similar way, the power model with reliability F(t) = (b − t)a/ba for 0 ≤ t <

b, a, b > 0, is characterized by En(X; t) = cEn−1(X; t) for 0 < c < 1, a fixed n and
for 0 ≤ t < b. Its mean residual lifetime is given by

m(t) = b − t

a + 1

which is a decreasing linear function of t in (0, b). Hence the functions En(X; t) =
cnm(t), n = 1, 2, . . ., are also decreasing linear functions of t with

m(t) ≥ E1(X; t) ≥ E2(X; t) ≥ · · · ≥ En(X; t).

By (9), the above inequalities are expected since power is an IFR distribution. From
(14) it is easy to see that c = a/(a + 1) and hence

En(X; t) = an(b − t)/(a + 1)n+1

for 0 ≤ t < b, a > 0 and b > 0.

4 Relationships with other functions

We first prove the following preliminary result.
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Lemma 1 For any n = 1, 2, . . ., it holds that

En(X) = 1

n!
∞∫

0

λ(z)

[ ∞∫

z

[Λ(x)]n−1 F(x)dx

]
dz. (15)

Proof By (5) and the fact that Λ(x) = ∫ x
0 λ(z)dz, we have

En(X) = 1

n!
∞∫

0

x∫

0

λ(z)[Λ(x)]n−1 F(x)dzdx .

Fubini’s theorem yields

En(X) = 1

n!
∞∫

0

∞∫

z

λ(z)[Λ(x)]n−1 F(x)dxdz

and the result follows.

Now we can obtain a recursive formula for En(X).

Theorem 5 For any n = 1, 2, . . ., it holds that

En(X) = 1

n
E[En−1(X; X)]

− 1

n!
n−2∑
k=0

(
n − 1

k

)
(−1)n−k−1

∞∫

0

∞∫

z

λ(z)[Λ(z)]n−k−1 F(x)[Λ(x)]kdxdz.

Proof Inserting (12) in (15), we have

En(X) = 1

n!
∞∫

0

λ(z)(n − 1)!F(z)En−1(X; z)dz

− 1

n!
∞∫

0

λ(z)

[ n−2∑
k=0

(
n − 1

k

)
(−1)n−k−1[Λ(z)]n−k−1

∞∫

z

F(x)[Λ(x)]kdx

]
dz

or, equivalently,

En(X) = 1

n

∞∫

0

En−1(X, z) f (z)dz

− 1

n!
n−2∑
k=0

(
n − 1

k

)
(−1)n−k−1

∞∫

0

∞∫

z

λ(z)[Λ(z)]n−k−1 F(x)[Λ(x)]kdxdz.

The relation (13) completes the proof.
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Raqab and Asadi (2010) defined the mean residual waiting time (MRWT) for the
record model as

ψn(t) =
∑n

j=0

∫ ∞
t τ j (x)dx∑n

j=0 τ j (t)
=

∑n
j=0

∫ ∞
t

[Λ(x)] j

j ! F(x)dx
∑n

j=0
[Λ(t)] j

j ! F(t)
. (16)

The connection between En(X) and ψn(t) is obtained in the following theorem.

Theorem 6 For any n = 1, 2, . . ., it holds that

En(X) = 1

n

n−1∑
k=0

[E(ψn−1(Xk+1))− kEk(X)].

Proof By relation (15), we have

kEk(X) = 1

(k − 1)!
∞∫

0

λ(z)

[ ∞∫

z

[Λ(x)]k−1 F(x)dx

]
dz.

Summing with respect to k = 1, 2, . . . , n, we obtain

n∑
k=1

kEk(X) =
∞∫

0

λ(z)
n∑

k=1

∞∫

z

1

(k − 1)! [Λ(x)]
k−1 F(x)dxdz,

or, equivalently,

n∑
k=1

kEk(X) =
∞∫

0

λ(z)
n−1∑
k=0

∞∫

z

1

k! [Λ(x)]
k F(x)dxdz.

Then, using (16), we have

n∑
k=1

kEk(X) =
∞∫

0

λ(z)ψn−1(z)
n−1∑
k=0

1

k! [Λ(z)]
k F(z)dz

=
∞∫

0

ψn−1(z)
n−1∑
k=0

1

k! [Λ(z)]
k f (z)dz

=
n−1∑
k=0

∞∫

0

ψn−1(z) fk+1(z)dz

=
n−1∑
k=0

E(ψn−1(Xk+1)).
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The fact that
n∑

k=1

kEk(X) =
n−1∑
k=1

kEk(X)+ nEn(X) =
n−1∑
k=0

kEk(X)+ nEn(X)

completes the proof.

From Remark 1 in Raqab and Asadi (2010), it holds that

ψn(t) =
n∑

j=0

M j (t)p j (t), (17)

where

M j (t) =
∞∫

t

[
Λ(x)

Λ(t)

] j F(x)

F(t)
dx . (18)

and
p j (t) = [Λ(t)] j/j !∑n

i=0[Λ(t)]i/ i ! . (19)

To obtain the connection betweenψn(t) and En(X; t)we need the following lemma.

Lemma 2 It holds that

M j (t) =
j∑

k=0

j !
( j − k)!

1

[Λ(t)]k
Ek(X; t). (20)

Proof From (18), we have

M j (t) =
∞∫

t

[
Λ(x)

Λ(t)

] j F(x)

F(t)
dx

=
∞∫

t

[− log(F(x)/F(t))

Λ(t)
+ 1

] j F(x)

F(t)
dx

=
∞∫

t

j∑
k=0

(
j

k

)[− log(F(x)/F(t))

Λ(t)

]k F(x)

F(t)
dx

=
j∑

k=0

(
j

k

)
1

[Λ(t)]k

∞∫

t

[
− log

F(x)

F(t)

]k F(x)

F(t)
dx

=
j∑

k=0

j !
( j − k)!

1

[Λ(t)]k
Ek(X; t).

Now we can obtain the connection between ψn(t) and En(X; t).
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Theorem 7 It holds that

ψn(t) =
n∑

k=0

Ek(X; t)ηk(t),

where ηk(t) =
∑n−k

j=0[Λ(t)] j/j !∑n
i=0[Λ(t)]i/ i ! , k = 0, 1, 2, . . . , n.

Proof By (17) and (20), we have

ψn(t) =
n∑

j=0

j∑
k=0

j !
( j − k)!

1

[Λ(t)]k
Ek(X; t)p j (t).

Changing the order of the sums and substituting p j from (19), we take

ψn(t) =
n∑

k=0

n∑
j=k

j !
( j − k)!

1

[Λ(t)]k
Ek(X; t)p j (t)

=
n∑

k=0

1

[Λ(t)]k
Ek(X; t)

n∑
j=k

j !
( j − k)!

[Λ(t)] j/j !∑n
i=0[Λ(t)]i/ i !

=
n∑

k=0

Ek(X; t)

∑n
j=k[Λ(t)] j−k/( j − k)!∑n

i=0[Λ(t)]i/ i !

=
n∑

k=0

Ek(X; t)

∑n−k
j=0[Λ(t)] j/j !∑n
i=0[Λ(t)]i/ i !

which completes the proof.

Remark 2 Theorems 5 and 6 for n = 1 imply the well known result

E1(X) = E(m(X)), (21)

see Asadi and Zohrevand (2007) and Navarro et al. (2010).

Next we present a generalization of (21) using the GCRE, En(X) instead of the
CRE E1(X).

Proposition 1 For any n = 1, 2, . . ., it holds that

En(X) = 1

n

{ n−1∑
k=0

1

k! E

(
[Λ(X)]kmn(X)

)
−

n−2∑
k=0

1

k! E

(
[Λ(X)]kmn−1(X)

)}
,
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where, by convention, we assume
∑ j

k=0 = 0 when j < 0 and where

mn(t) = 1

Fn(t)

∞∫

t

Fn(x)dx, n = 1, 2, . . . .

is the mean residual lifetime of Xn.

Proof By (1), we see that

Fn(t)− Fn−1(t) = [Λ(t)]n−1

(n − 1)! F(t).

Substituting the last equation in (15), we have

En(X) = 1

n

∞∫

0

λ(z)

{ ∞∫

z

[Fn(x)− Fn−1(x)]dx

}
dz

= 1

n

∞∫

0

f (z)

[
Fn(z)

F(z)
mn(z)− Fn−1(z)

F(z)
mn−1(z)

]
dz

= 1

n

∞∫

0

f (z)

[ n−1∑
k=0

[Λ(z)]k

k! mn(z)−
n−2∑
k=0

[Λ(z)]k

k! mn−1(z)

]
dz

= 1

n

n−1∑
k=0

1

k!
∞∫

0

f (z)[Λ(z)]kmn(z)dz

−1

n

n−2∑
k=0

1

k!
∞∫

0

f (z)[Λ(z)]kmn−1(z)dz (22)

and the result follows.

Another generalization of (21) can be stated as follows. The proof is immediate
from (22).

Proposition 2 For any n = 1, 2, . . ., it holds that

En(X) = 1

n

{ n−1∑
k=0

E

(
mn(Xk+1)

)
−

n−2∑
k=0

E

(
mn−1(Xk+1)

)}
,

where, by convention, we assume
∑ j

k=0 = 0 when j < 0.

We finish this section with a remark on the Baratpour entropy. Baratpour (2010)
defined a generalization of the CRE by using the CRE of X1:n = min(X1, . . . , Xn)

given by
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E(X1:n) = −n

∞∫

0

[F(x)]n log F(x)dx = n

∞∫

0

[F(x)]nΛ(x)dx

for n = 1, 2, . . . . If X has a Pareto type I distribution with density

f (x) = aba

xa+1 , x ≥ b,

where a, b > 0, then, by Example 2.1 of Baratpour (2010), it holds that

E(X) =
{

ab
(a−1)2

a > 1,

+∞ a ≤ 1

and

E(X1:n) =
{ nab
(na−1)2

a > 1
n ,

+∞ a ≤ 1
n .

Moreover, he noted that for a > 1, the uncertainty of X is bigger than that of X1:n ,
namely E(X)− E(X1:n) ≥ 0.

For our entropy and keeping in mind that E(X) = E1(X), we have

En(X) = anb

(a − 1)n+1

for n = 1, 2, . . . and a > 1. Thus,

En(X) = a

a − 1
En−1(X)

and

En(X) ≥ En−1(X) ≥ · · · ≥ E1(X).

These results are expected since Pareto type I is a DFR distribution.

5 Conclusions

The GCRE introduced here and its dynamic version show some interesting connec-
tions between some entropy concepts, record values and relevation transforms. The
characterizations, stochastic ordering and aging classes properties obtained here prove
the interest of these concepts in measuring the uncertainty contained in a nonnegative
random variable or in the associated residual lifetime.
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640 G. Psarrakos, J. Navarro

The present paper is just a first step in the study of these concepts and new properties
are waiting to be discovered. In our opinion, one of the main questions for future
research is to study if the dynamic generalized cumulative residual entropy uniquely
determines the underlying distribution function.
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