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Abstract In this paper, we propose the diagonal model (DM), a survey technique for
multicategorical sensitive variables. The DM is a nonrandomized response method;
that is, the DM avoids the use of any randomization device. Thus, both survey complex-
ity and study costs are reduced. The DM does not require that at least one outcome of
the sensitive variable is nonsensitive. Thus, the model can even be applied to character-
istics like income which are sensitive as a whole. We describe the maximum likelihood
estimation for the distribution of the sensitive variable and show that the EM algorithm
is beneficial to calculate the estimates. Subsequently, we present asymptotic as well
as bootstrap confidence intervals. Applying properties of circulant matrices, we show
the connection between efficiency loss and the degree of privacy protection (DPP).
Here, we prove that the efficiency loss has a lower bound that depends on the DPP.
Moreover, for any desired DPP, we derive model parameters that ensure the largest
possible efficiency.

Keywords Nonrandomized response method · Randomized response model ·
EM algorithm · Untruthful answers · Circulant matrix

1 Introduction

Sensitive variables often appear in surveys. For instance, an interviewer could ask:
“How much do you earn?” or “Have you ever evaded taxes?”. However, when such
sensitive questions are asked, some interviewees will refuse to respond or will give an
untruthful answer. To estimate the distribution of sensitive variables, countless ran-
domized response (RR) models have been developed since the paper by Warner (1965).
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212 H. Groenitz

What the RR models have in common is that every respondent is supplied with a
randomization device (RD). A RD is an instrument (e.g., a coin or a deck of cards)
used by the interviewee to conduct a random experiment, where the experiment has—
for a fixed respondent—at least two possible results. The outcome of the experiment
influences the answer. It follows that RR techniques have a lack of “reproducibility”
(the same respondent may give different answers if the survey is conducted again; see
Tan et al. (2009), p. 15). A different approach was discussed by Tian et al. (2007),
Yu et al. (2008), Tan et al. (2009), and Tang et al. (2009), see Sect. 2. These authors
proposed some nonrandomized response (NRR) models. That is, their models do not
require any RD, thus reducing both survey complexity and study costs.

The NRR models of the previously mentioned authors are not applicable to mul-
ticategorical variables like income when all categories are sensitive. To overcome
this drawback, we have developed the nonrandomized diagonal model (DM), which
is presented in Sect. 3.1. In Sect. 3.2, we derive the maximum likelihood estimator
for the distribution of the sensitive variable. The computation of standard errors and
confidence intervals is discussed in Sect. 3.3. Subsequently, in Sect. 3.4, we explain
how the design matrices in the diagonal model are related to circulant matrices. In
Sect. 3.5, we investigate the degree of privacy protection and the efficiency of the
estimator depending on the model parameters. Here, under the assumption of a large
sample, we will obtain two key results: first, there are optimal and nonoptimal choices
for the model parameters, and second, a decrease in the degree of privacy protection
(DPP) is the “price” for increasing efficiency.

In our simulation study (Sect. 4), we examine whether the asymptotic results from
Sect. 3.5 hold for fixed, not “too large” sample sizes.

2 Nonrandomized response models

Tian et al. (2007) proposed the hidden sensitivity (HS) model, which does not involve
a RD. This model is used to study the association of two sensitive characteristics with
binary outcomes. As an example, the authors consider the variables X1, X2 ∈ {0, 1},
where X1 = 1 if the respondent takes drugs and X2 = 1 if the respondent has AIDS.
The crosswise model, which can be found in Yu et al. (2008) and Tan et al. (2009), is
a nonrandomized version of Warner’s model and is suitable for two-valued sensitive
variables X ∈ {0, 1}. The model requires choosing a nonsensitive auxiliary variable
W ∈ {0, 1} with a known distribution such that X and W are independent. Tan et al.
(2009) suggested using the respondent’s birthday to construct W . For instance, W may
indicate if the respondent is born between January and May. If X = 0 and W = 0, the
respondent answers A = 1. The answer A = 1 is also required if X = 1 and W = 1.
In any other case, the answer A = 0 must be given. Another NRR model is the multi-
category (MC) model proposed by Tang et al. (2009), which is applicable to sensitive
variables X ∈ {1, . . ., k}, k ≥ 2. For this model, an important assumption is made:

at least one value of X, say X = 1, is nonsensitive. (1)

The MC model demands the choice of a nonsensitive auxiliary variable W ∈ {1, . . ., k}
with a known distribution so that X and W are assumed to be independent. The period
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A new privacy-protecting survey design 213

of the birthday was suggested as a concrete W . If X = 1, the respondent gives an
answer A equal to his or her value of W . If X = j ( j = 2, . . ., k), the answer A = j
is given. The distribution of X can be estimated from the empirical distribution of
answers A. When k = 2, the MC model equals the triangular model proposed by Yu et
al. (2008). The authors of the MC model argue that truthful answers A can be expected,
because the value X = 1 is nonsensitive. However, we doubt that completely truthful
answers will be obtained. To show the reason, consider a respondent with a sensitive
attribute X �= 1. This person may be enticed to respond untruthfully A = 1 with
the intention of pretending that he or she possesses the nonsensitive characteristic
X = 1. Furthermore, assumption (1) constrains the applicability of the MC model
to a subclass of sensitive variables. For instance, consider X ∈ {1, . . ., k} describing
income classes. Then, all values of X are usually sensitive and private. For such X ,
we cannot find any outcome x of X with the property: each respondent who possesses
the attribute x is willing to reveal it. Hence, the MC model may not perform well with
such variables. To avoid these disadvantages of the MC model, we have developed a
new nonrandomized response model, which is presented in the following section.

3 Diagonal model

3.1 The answer formula

Let X ∈ {1, . . ., k} be a sensitive variable. As in the crosswise model, we choose a
nonsensitive auxiliary variable W , but now with values 1, . . ., k. We assume that the
distribution of W is known and that X and W are independent. The respondent gives
the answer

A := [(W − X) mod k] + 1. (2)

Formula (2) should not be presented to the respondents, because some of them may
be not familiar with the modular arithmetic. Instead, every respondent receives a table
that gives a simple illustration of (2). For example, for k = 4, such a table would look
as follows:

The number in the table provides the required answer A depending on X and W .
If we artificially expand this table, we obtain the following form (not presented to the
interviewees).

X/W W = 1 W = 2 W = 3 W = 4

X = 1 1 2 3 4

X = 2 4 1 2 3

X = 3 3 4 1 2

X = 4 2 3 4 1

This table has four (boldfaced) diagonals of length four, where the answer
A describes the diagonal the respondent belongs to. This explains the name
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X/W 1 2 3 4 1 2 3

1 1 2 3 4 1 2 3

2 4 1 2 3 4 1 2

3 3 4 1 2 3 4 1

4 2 3 4 1 2 3 4

“diagonal model”. Note that it is not possible to identify the X value with the help
of the answer. Unlike the MC model, the answers A do not restrict the possible X
values. Thus, there is no temptation to give an untruthful answer. Hence, we assume
no nonresponses and truthful answers. Moreover, the diagonal model is applicable
even if all the outcomes of X are sensitive (e.g., if X represents income classes).

We complete the section with an example for W where k = 4: let W depend
on the birthday of the respondent’s mother, where W = 1 if the mother was born
between January 1st and August 16th, W = 2 if the mother was born between August
17th and October 1st, and W = 3 if the mother was born between October 2nd and
November 16th. Otherwise, define W = 4. Ignoring leap years and assuming a uniform
distribution of births over 365 days of the year, we have (P(W = 1), . . .,P(W = 4)) =(

228
365

46
365

46
365

45
365

)
. If census data are available that provide deviating probabilities,

one should work with them. In principle, the respondent’s birthday can also be used
to construct W . However, this variable is dangerous if the respondent thinks that the
survey agency knows such data. Another example of an auxiliary characteristic is “last
digits of the mother’s phone number”.

3.2 The maximum likelihood estimator (MLE) for π

Define πi := P(X = i), π := (π1, . . ., πk)
T , ci := P(W = i) and c :=

(c1, . . ., ck) where π is unknown and c is known. The answer pattern implies that
λ := (λ1, . . ., λk)

T := (P(A = 1), . . .,P(A = k))T = C0 · π . Here, C0 is a k × k
matrix where every row is a left-cyclic shift of the row above. The first row of C0
equals c. We call the probabilities c1, . . ., ck the model parameters and C0 the design
matrix induced by c. To estimate π , assume n persons are interviewed. Let Xi ,Wi

and Ai denote the i-th respondent’s value of the sensitive characteristic, the value of
the auxiliary characteristic and the given answer, respectively. We assume:

(D1) The n vectors (Xi ,Wi ), i = 1, . . ., n, are i.i.d. with (Xi ,Wi ) ∼ (X,W ).
(D2) Xi and Wi are independent for every i .
(D3) c1, . . ., ck �= 0. (Otherwise, if a ci equaled zero, every answer A would restrict

the possible X values.)
(D4) The matrix C0 is invertible.

Assumption (D1) can be fulfilled by selecting the respondents according to simple
random sampling with replacement. Further, let ni be the absolute frequency of answer
A = i and define hi := ni/n as well as h := (h1, . . ., hk)

T . The likelihood function
for π is
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L(π)=
k∏

i=1

P(A = i)ni , π ∈{(x1, . . ., xk)
T : xi ∈[0, 1], x1+· · ·+xk = 1}=: D.

(3)

Define E := {C0 · x : x ∈ D}. It can be shown by standard calculus that π̂ =
C−1

0 · h is the unique MLE for π if h ∈ E . If π1, . . ., πk > 0, we have P(h ∈
E) −→ 1 as n → ∞ due to the weak law of large numbers. However, h /∈ E
(that is C−1

0 h /∈ D) may occur. In this case, the estimation of π is most convenient
with the expectation maximization (EM) algorithm. The complete data matrix is Y =
(Ai , Xi )i=1,...,n . With realizations (ai , xi ) the complete data log-likelihood for π ∈ D
is equal to

lcom(π; a1, . . ., an, x1, . . ., xn) = log

(
n∏

i=1

P(Ai = ai , Xi = xi )

)

= C +
k∑

i=1

mi · logπi , (4)

where C is a negligible constant and mi = ∑n
j=1 1{x j =i}, that is mi is the number of

persons in the sample whose value of the sensitive variable equals i . The observed data
log-likelihood for π ∈ D equals log L where L is from (3). For the E step, suppose we
have an estimate π(t) from the preceding iteration t and let Mi be the random variables
corresponding to the values mi . Then

m̂i := Eπ(t) (Mi | A1 = a1, . . ., An = an) =
k∑

j=1

n j · π
(t)
i · C0(i, j)

Pπ(t) (A = j)
, (5)

where C0(i, j) denotes entry (i, j) of the design matrix C0. Thus, the log-likelihood
(4) is estimated by l̂com(π) = C + ∑k

i=1 m̂i · logπi . At the succeeding M step, the

maximum of l̂com , which is given by π(t+1)
i = m̂i/

∑k
j=1 m̂ j , is calculated. As initial

parameter π(0)i = 1/k can be used.

3.3 Standard errors and confidence intervals

To express the dependence of h and the MLE π̂ on n, we will occasionally write hn

and π̂n in the sequel. The multivariate central limit theorem implies
√

n(hn − λ) L−→
N (0,Σ) with Σ = diag(λ)− λλT . Note, N (0,Σ) is a singular normal distribution.
Consider the estimator π̃n := C−1

0 hn . If hn ∈ E , then π̂n = π̃n holds. The estimator
π̃n is unbiased and we have V ar(π̃n) = 1

n · C−1
0 ·Σ · C−1

0 = 1
n · (Γ +Δ) with

Γ := C−1
0 · diag(λ) · C−1

0 − diag(π) and Δ := diag(π)− π · πT (6)
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By the continuous mapping theorem
√

n(π̃n − π)
L−→ N (0, Γ + Δ). We claim√

n(π̂n − π)
L−→ N (0, Γ +Δ). To prove the claim, it suffices to show the stochastic

convergence of δn := √
n(π̂n − π̃n) to 0: For ε > 0 we have P(|δn| > ε) ≤ P(hn /∈

E) → 0(n → ∞), because hn converges almost surely to λ.
Now consider a function ψ = f (π) ∈ R of the parameter π . The MLE for ψ is

given by ψ̂ = f (π̂). Let Γ̂ and Δ̂ arise by using the MLE π̂ instead of π as well
as C0π̂ instead of λ in (6) and define S2

ψ̂
= 1

n · ∇T f (π̂) · (Γ̂ + Δ̂) · ∇ f (π̂) where

∇ denotes the gradient. Applying the delta method (cf. Van der Vaart 2007, p. 25)
and Slutzky’s theorem (ψ̂ − ψ)/S

ψ̂
converges in distribution to the standard normal

distribution. Thus, AS := [ψ̂− z1−α/2 · S
ψ̂
, ψ̂+ z1−α/2 · S

ψ̂
] is an asymptotic (1−α)

confidence interval (CI) for ψ . Here, z1−α/2 is the (1 − α/2) quantile of the standard
normal distribution.

Bootstrap standard errors and bootstrap confidence intervals can be derived accord-
ing to Efron and Tibshirani (1993), chapters 6 and 12–13. Assume π̂ and ψ̂ are cal-
culated. A bootstrap replication ψ̂(i), i = 1, . . ., B, can be generated by drawing new
answer frequencies n(i) := (n(i)1 , . . ., n(i)k ) ∼ Multinomial(n,C0π̂), computing the
MLE π̂ (i) based on n(i) and defining ψ̂(i) := f (π̂ (i)). Then, the bootstrap estimate
ˆSE(ψ̂) for the standard error of ψ̂ is given by the empirical standard deviation of the

replications ψ̂(1), . . ., ψ̂(B). Further, if (ψ̂ − ψ)/ ˆSE(ψ̂) is approximately standard
normal, BT 1 := [ψ̂ − z1−α/2 · ˆSE(ψ̂), ψ̂ + z1−α/2 · ˆSE(ψ̂)] is a (1−α) bootstrap CI
for ψ . Alternatively, a (1 − α) bootstrap CI for ψ without the normality assumption
is given by BT 2 := [

ψα/2, ψ1−α/2
]

where the bounds are the α/2 and (1 − α/2)

quantiles of the replications ψ̂(1), . . ., ψ̂(B).
In simulations, which are not included in the paper, we have considered k = 3,

n ∈ {100, 200}, several values of π and c, as well as linear functions f (e.g., the
projection f (x1, x2, x3) = x2). We have seen that AS and BT 2 usually provide
empirical coverage probabilities (CP) between 93 and 96 % (α = 5 %). The CP of
BT 1 turned out to be lower than the CP of AS and BT 2. Furthermore, the average
width of AS was mostly larger than the average width of BT 2. For these reasons, we
recommend the use of the BT2 confidence intervals.

(A MATLAB program that computes the MLE for π and confidence intervals for ψ
is provided as online supplemental material.)

3.4 The special shape of the design matrix

In this section, we show the connection between C0 and circulant matrices. Further,
we mention some properties of circulant matrices that can be found in Gray (2006),
chapter 3, and will be applied in the next section.

If we permute the rows of C0, we obtain a matrix C where every row of C is a
right-cyclic shift of the row above. In particular, define C = S ·C0 where the entries of
S are given by S(i, j) = 1{C0(i, j)=c1}.C is a circulant matrix (circulant matrices are a
subset of Toeplitz matrices). Occasionally, we will write C = circulant (c1, . . ., ck).
Define ψ1, . . ., ψk by
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A new privacy-protecting survey design 217

ψl =
k∑

m=1

exp

(
−2π i · (l − 1) · (m − 1)

k

)
· cm . (7)

Then, ψ := (ψ1, . . ., ψk) is a vector of eigenvalues of C and ψ can be computed
by multiplying the k × k Fourier matrix F = [

exp (−2π i · (l − 1) · (m − 1)/k)
]
l,m

with the vector cT = (c1, . . ., ck)
T , i.e., ψ is the discrete Fourier transform of cT .

Moreover, C−1 is circulant if C is circulant and invertible.

3.5 Efficiency loss and degree of privacy protection

To study the efficiency of the MLE π̂ = π̂n , the mean squared error M SE(π̂n) =
E

(
(π̂n − π)(π̂n − π)T

)
is suitable. The whole matrix M SE(π̂n) is cumbersome, so

we use trace(M SE(π̂n)) = M SE(π̂n,1)+· · ·+M SE(π̂n,k), i.e., the sum of the mean
squared errors of the components π̂n, j , as a measure of the estimation inaccuracy.
Define π̃n as in Sect. 3.3. We claim

T̂ / T̃ := trace(M SE(π̂n)) / trace(M SE(π̃n))
n−→ 1. (8)

To see (8), note that n ·M SE(π̃n) = Γ +Δ, as described in Sect. 3.3. Because π̂n = π̃n

for large n, we have T̂ /T̃ = (n · T̂ )/(n · T̃ )
n−→ trace(Γ +Δ) / trace(Γ +Δ) = 1.

That is, π̂n and π̃n are equally efficient as n → ∞. Hence, for large n,

trace(M SE(π̂n)) ≈ trace(M SE(π̃n)) = trace (V ar(π̃n))

= trace (Γ /n)+ trace (Δ/n). (9)

Imagine the respondents are interviewed directly, i.e., they are requested to tell their
values of X , and assume that truthful answers are given. If n people are asked, the
MLE for π is given by π̂dir = (π̂dir

1 , . . ., π̂dir
k )T with π̂dir

i = 1
n

∑n
j=1 1{X j =i}.

The variance matrix of π̂dir is then given by Δ/n. Since 1
n · trace(Γ ) ≈

trace(M SE(π̂n))− trace(M SE(π̂dir )), the quantity 1
n · trace(Γ ) describes the effi-

ciency loss caused by questioning according to the diagonal model, instead of direct
questioning.

The efficiency loss trace(Γ )/n converges to zero as n increases and we have:

Theorem 1 Let π and c = (c1, . . ., ck) describe the distribution of the sensitive
variable X and the auxiliary variable W , respectively. Further let Γ be defined by
(6). Then:

(a) trace(Γ ) depends on c, but not on π .
(b) trace(Γ ) ≥ 0.
(c) trace(Γ ) attains its minimum value zero iff W has a degenerate distribution (i.e.,

W is a constant variable).

Proof Define C0 as design matrix induced by c and C = circulant (c1, . . ., ck). Let
S be given by S(i, j) = 1{C0(i, j)=c1}. Then, S is a self-inverse permutation matrix.
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The equation C0 = S · C implies D0 := C−1
0 = C−1S, i.e. D0 arises by column

permutation of a circulant matrix. Thus, every row of D0 is a left-cyclic shift of the
row above. Let (d1, d2, . . ., dk) denote the first row of D0. The vector of the diagonal
elements of Γ fulfills

Γ̃ := (Γ (1, 1), . . ., Γ (k, k))T =
(

D(2)
0 · C0 − I

)
· π (10)

where D(2)
0 is the componentwise square of D0. For (10), the definitions of Γ and D0

as well as the identity π = D0 · λ yield Γ̃ = (D(2)
0 − D0) · λ = (D(2)

0 − D0) · C0 · π .
This verifies (10).

Using the shape of C0 and D(2)
0 it is easy to verify that E :=

(
D(2)

0 · C0 − I
)

is

circulant. Since trace(Γ ) equals the sum of the first column of E , we have

trace(Γ ) = d2
1 + · · · + d2

k − 1, (11)

which shows (a). Consider an arbitrary eigenvalue ψ of C0 with eigenvector v =
(v1, . . ., vk)

T where the 1-norm of v equals 1. Then, by the triangle inequality:

|ψ | = ‖C0v‖1 ≤ (|v1| + · · · + |vk |) (c1 + · · · + ck) = 1. (12)

Further, for i = 1, . . ., k let ψi and ψi (M) denote the (not necessarily distinct)
eigenvalues of C0 and an arbitrary k × k-matrix M , respectively. By a well-known
property of the Frobenius norm ‖ · ‖F (see Gentle 2007, p. 132) and (12) we have

d2
1 + · · · + d2

k = 1

k
‖D0‖2

F = 1

k

k∑

i=1

ψi (D0 · D0) = 1

k

(
1

ψ2
1

+ · · · + 1

ψ2
k

)

≥ 1,

(13)

that is, trace(Γ ) ≥ 0 as claimed in (b). Further, we have

trace(Γ ) = 0 ⇐⇒ ψ2
1 = ψ2

2 = · · · = ψ2
k = 1 ⇐⇒ C0 · C0 = I.

Consider c := (c1, . . ., ck) and assume c j = 1 and ci = 0 for i �= j . Then, clearly
C2

0 = I holds. Conversely, consider a c with C2
0 = I . It follows that c2

1 +· · ·+c2
k = 1.

Thus c1(1 − c1) + · · · + ck(1 − ck) = 0, which is only satisfied if c j = 1 for some
j ∈ {1, . . ., k} and ci = 0 for any i �= j . Altogether we have trace(Γ ) = 0 iff c
corresponds to a degenerate distribution. ��

Theorem 1 (a) says that the efficiency loss trace(Γ ) is independent of the unknown
π . Occasionally, we will write trace(Γ (c)) to symbolize the dependence of trace(Γ )
on c. Furthermore, Theorem 1(c) states that the diagonal model would be most efficient
for a constant auxiliary variable W . However, such a W is not appropriate, because the
interviewer can conclude the X value from answer (2). This would be contradictory
to the idea of the diagonal model and would result in nonresponses and untruthful
answers.
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A new privacy-protecting survey design 219

In the remainder of this section, we will have a closer look at the connection between
the DPP and efficiency loss.

As explained above, the privacy is not protected if W has a degenerate distribution.
In contrast, the privacy is protected as much as possible in the case of an exactly
uniformly distributed W ; in this case, any answer A according to the diagonal model
does not change the probability that the variable X attains a value x , i.e., A and X are
independent (notice the constant likelihood function in this case). To measure the DPP,
it seems reasonable to consider the closeness of the distribution of W to a degenerate
and a uniform distribution. This motivates us to quantify the DPP by the empirical
standard deviation of the vector c

σ(c) := std(c) =
√
(c2

1 + · · · + c2
k )/(k − 1)− [(k − 1)k]−1 ∈ [0,√1/k]. (14)

A large std(c) means an approach to a degenerate distribution and consequently a
small DPP, while a small std(c) indicates that the distribution of W is close to a
uniform distribution and a high DPP is available.

The efficiency loss trace(Γ ) has a lower bound depending on σ :

Theorem 2 (a) Consider a vector c = (c1, . . ., ck) describing the distribution of the
auxiliary variable W . Let σ > 0 and trace(Γ ) denote the corresponding DPP
and efficiency loss due to indirect questioning, respectively. Then

trace(Γ ) ≥ (k − 1)
( 1

k − σ 2
)

kσ 2 . (15)

(b) Let σ ∈
(

0,
√

1
k

]
be given. Define c = (c1, . . ., ck) with

c1 = 1

k
+ k − 1

k

√
kσ 2 and c2 = · · · = ck = 1

k
− 1

k

√
kσ 2. (16)

Then, we have std(c) = σ and trace(Γ (c)) = (k−1)( 1
k −σ 2)

kσ 2 .

Proof (a) We first minimize the function

f (x) = f (x1, . . ., xk−1) := 1

k

(
1

x2
1

+ · · · + 1

x2
k−1

)

− 1 + 1

k
, xi �= 0

under the restriction g(x) = x2
1 + · · · + x2

k−1 − k(k − 1)σ 2 = 0. Since f → ∞
if xi → 0, f possesses a global minimum m∗ = (m∗

1, . . .,m∗
k−1). By Lagrange

multipliers, one can show
(
m∗

1

)2 = · · · = (
m∗

k−1

)2 = kσ 2. Then
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f (m∗) = (k − 1)
( 1

k − σ 2
)

kσ 2 ≤ f (x), for all x with xi �= 0, g(x) = 0. (17)

Now define C0 as the design matrix formed with the vector c. For i = 1, . . ., k let
ψi and ψi

(
C2

0

)
denote the eigenvalues of C0 and C2

0 , respectively. By a property of
the Frobenius norm ‖ · ‖F (Gentle 2007, p. 132)

c2
1 + · · · + c2

k = 1

k
‖C0‖2

F = 1

k

k∑

i=1

ψi

(
C2

0

)
= 1

k

(
ψ2

1 + · · · + ψ2
k

)
.

holds. Thus, with (14) we obtain

σ 2 = 1

(k − 1)k

(
ψ2

1 + · · · + ψ2
k − 1

)
= 1

(k − 1)k

(
ψ2

2 + · · · + ψ2
k

)
(18)

where the latter equality is true since C0 has an eigenvalue equal to 1 (with eigenvector
(1, . . ., 1)T ). According to (11) and (13) we have

trace(Γ ) = 1

k

(
1

ψ2
1

+ · · · + 1

ψ2
k

)

− 1 = 1

k

(
1

ψ2
2

+ · · · + 1

ψ2
k

)

− 1 + 1

k
. (19)

Then, the claim follows by application of (17).
(b) Consider c as in the claim. Let C0 be the corresponding design matrix with

eigenvalues ψ1, . . ., ψk and x = (x1, . . ., xk) the first row of C2
0 . It follows straight-

forwardly that

x1 = 1

k
(1 + (k − 1)kσ 2) and x2 = · · · = xk = 1

k
(1 − kσ 2). (20)

Since C2
0 is a circulant matrix, the eigenvalues can be obtained by a discrete Fourier

transform of x , cf. (7). Then, ψ2
1 = ∑k

i=1 xi = 1 and with the formula for the sum of
a geometric sequence we have for l = 2, . . ., k

ψ2
l =

k∑

m=1

exp

(
−2π i · (l − 1) · (m − 1)

k

)
· xm

= x1 + x2 ·
k−1∑

m=1

exp

(
−2π i · (l − 1) · m

k

)
= x1 − x2 = kσ 2.

Hence, by (18) and (19) we can compute that std(c) equals the given σ and that

trace(Γ (c)) attains the lower bound
(k−1)( 1

k −σ 2)

kσ 2 . ��
We immediately attach two remarks concerning this theorem:
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(1) If k = 2 or k = 3, then for every c = (c1, . . ., ck), the point
(

std(c), trace

(Γ (c))
)

is located on the curve

{(
σ ,

(k−1)( 1
k −σ 2)

kσ 2

)
: 0 ≤ σ ≤

√
1
k

}
.

For k = 2: One eigenvalue of C0, sayψ1, is always equal to 1 andψ2
2 equals 2σ 2

due to (18). Then, (19) implies trace(Γ (c)) = ( 1
2 −σ 2)·(2σ 2)−1. Similar in case

k = 3: We obtainψ1 = 1 andψ2
2 +ψ2

3 = 6σ 2. Additionally, 1 = c1 + c2 + c3 =
trace(C0) = ψ1 +ψ2 +ψ3 implies ψ2 = −ψ3. Thus, ψ2

2 = ψ2
3 = 3σ 2 and the

claim follows with (19).
(2) Fix a σ > 0 and consider c given in Theorem 2 (b). This c is not the only

vector with a provided DPP equal to σ and a caused efficiency loss trace(Γ )

that attains the lower bound
(k−1)( 1

k −σ 2)

kσ 2 .

Assume c′ �= c has design matrix C ′
0 and (C ′

0)
2 = circulant (x1, . . ., xk) with

the xi from (20). Then, according to the proof of theorem 2(b), std(c′) = σ

and trace(Γ (c′)) = (k − 1)( 1
k − σ 2) · (kσ 2)−1 hold, that is, c′ would be an

alternative to c. Now, such a vector c′ can be found by permuting c. However,
other choices are also possible: For instance, for k = 4 and σ = 0.4 we can use(
0.45 + √

0.1591, 0.02, 0.45 − √
0.1591, 0.08

)
, too. ��

Theorem 2 contains two core statements: first, there are optimal and nonoptimal
distributions of W . A distribution of W is not optimal if the corresponding vector c

has a standard deviation σ , but trace(Γ (c)) �= (k−1)( 1
k −σ 2)

kσ 2 . In this case, c would lead
to an efficiency loss larger than necessary for a DPP in the amount of σ . A vector c
is optimal if and only if (σ (c), trace(Γ (c))) is an element of the “optimality curve”
O := {(σ, γ ∗(σ )) : σ ∈ (0,√1/k], γ ∗(σ ) = (k − 1)(k−1 − σ 2)/(kσ 2)}. Of course,
it is reasonable to use only optimal vectors c. For these vectors, the efficiency loss is
a function of the DPP. Since γ ∗ is a decreasing function, the efficiency loss decreases
if the standard deviation increases. This implies the second key result: Increasing effi-
ciency of the diagonal model corresponds to decreasing protection of the respondents’
privacy.

4 Simulation study

Remember that the results in 3.5 were obtained under the assumption of a large sample
size n. In the subsequent simulation study, we are going to examine the validity of
the results for a concrete example with different sample sizes. We run all simulations
using MATLAB, Version 7.11.

4.1 Simulated MSE sum

For our simulations, we consider a concrete variable X with a known distribution.
Let π̂ = (π̂1, . . ., π̂k)

T denote the DM estimator for a known π . For a fixed and
possibly “small” sample size n, we cannot calculate trace(M SE(π̂)) with the help
of Sect. 3.5, because (9) holds only for “large” n. Therefore, assume l independent
realizations of π̂—denoted with π̂ (i) = (π̂

(i)
1 , . . ., π̂

(i)
k )T , i = 1, . . ., l—are available.
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Define ̂M SE(π̂ j ) := 1
l

∑l
i=1(π̂

(i)
j − π j )

2 for j = 1, . . ., k. The simulated MSE

sum ̂trace(M SE(π̂)) := ∑k
j=1

̂M SE(π̂ j ) is then a suitable approximation for the
efficiency measure trace(M SE(π̂)).

4.2 DPP and efficiency in a simulated example

We assume that the attribute “income” is the subject of a survey. For instance, a
company could be interested in the income of customers, because products and prices
must be attuned to it. We use Germany’s income distribution published by the Federal
Statistical Office, Germany (2009). Suppose we focus on four income classes (in Euro
per year): below 10,000 (X = 1), 10,000–24,999 (X = 2), 25,000–49,999 (X = 3),
and more than 50,000 (X = 4). According to the data of the Federal Statistical Office,
the distribution PX is given by

PX ∼ π = (
π1 π2 π3 π4

)T = (
0.2371 0.3203 0.3343 0.1083

)T
. (21)

To express the dependence of the DM estimator on the sample size n and on the
distribution of W , i.e., on the vector c = (c1, . . ., c4), we write π̂n(c). First, we
investigate the efficiency of π̂n(c) for randomly drawn vectors c. In particular, 500
vectors are drawn so that they are preferably uniformly scattered over the set of valid
points Dk = {(x1, . . ., xk) ∈ [0, 1]k : x1 + · · · + xk = 1}. To obtain one such vector
c, we firstly generate c̃ := (c1, . . ., ck−1) from a Dirichlet distribution with parameter
(1, . . ., 1), see Gentle (1998), p. 111. Subsequently, we define ck = 1 − (c1 + · · · +
ck−1).

For each drawn vector c:

1. Calculate σ(c).
2. Generate l = 1, 000 independent simple random samples with replacement of size

n ∈ {50, 100, 250} from the distribution PX in (21). For each sample, we compute
the DM estimator, so we have l independent realizations of π̂n(c).

3. Calculate the simulated MSE sum ̂trace(M SE(π̂n(c))).

Subsequently, we choose different vectors c∗ according to Theorem 2 (b)—see
Table 1—and run steps 2 and 3 for these vectors.

For all considered vectors, we plot the simulated MSE sum against the standard
deviation in Fig. 1. Here, we see that the key results described after Theorem 2, which
were obtained under the assumption of a “large” n, remain valid for n ∈ {50, 100, 250}.
In particular, the point clouds for the randomly drawn vectors c have lower bounds.
Thus, there are optimal and nonoptimal vectors c. For all considered n, the points(
σ(c∗(i)), ̂trace(M SE(π̂n(c∗(i))))

)
, which are marked with × in the figure, are

located close to this bound. In other words, c∗(i) (i = 1, . . ., 7) are good choices
for the distribution of W for the corresponding degrees of privacy protection.

Furthermore, if we connect the points marked with ×, we obtain a decreasing
function. Thus, an increasing standard deviation implies a decreasing estimation
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Table 1 The vectors c∗ that we used from Theorem 2(b)

i c∗(i) = (c∗(i)
1 , . . ., c∗(i)

4 ) σ (c∗(i))

1 0.400 0.200 0.200 0.200 0.10

2 0.475 0.175 0.175 0.175 0.15

3 0.550 0.150 0.150 0.150 0.20

4 0.625 0.125 0.125 0.125 0.25

5 0.700 0.100 0.100 0.100 0.30

6 0.775 0.075 0.075 0.075 0.35

7 0.850 0.050 0.050 0.050 0.40

0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

standard deviation

si
m

ul
at

ed
 M

S
E

 s
um

(a) n=50

0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

standard deviation

si
m

ul
at

ed
 M

S
E

 s
um

(b) n=100

0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

standard deviation

si
m

ul
at

ed
 M

S
E

 s
um

(c) n=250

Fig. 1 Plots of simulated MSE sum against standard deviation for different sample sizes. Each point (·)
corresponds to a vector c drawn randomly from D4, and each black cross corresponds to a vector c∗(i)

inaccuracy. Hence, a decreasing DPP corresponds to increasing efficiency. Finally,
for any c∗(i), the simulated MSE sum decreases with increasing sample size.

In practice, the investigator should first fix a DPP σ around the middle of the
range (0, 0.5]. For this σ , he or she should then choose a vector c using Theorem 2
(b). Subsequently, an auxiliary attribute W such as the “birthday of the respondent’s
mother” or the “last digits of the mother’s phone number” should be adapted to the
chosen c. For example, define W as in the concrete example of Sect. 3.1, where
c = (c1, . . ., c4) = (

228
365

46
365

46
365

45
365

) ≈ (
0.625 0.126 0.126 0.123

)
. This c is then a

good approximation to c∗(4) from Table 1, which was obtained from Theorem 2 (b).

5 Summary

In this paper, we have presented the nonrandomized diagonal model, which is a privacy-
protecting survey design for multichotomous sensitive variables. The proposed method

123



224 H. Groenitz

can be conducted even if all values of the considered variable are sensitive. We have
shown that the formula for the answer can be easily explained to the respondents. After
deriving the MLE and confidence intervals, we discussed the DPP and efficiency. Here,
a mathematical function for the dependence of the efficiency on the model parameters
was derived in Theorem 2. This enables the interviewer to choose optimal model
parameters for a desired DPP.
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