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Abstract One of the central considerations in the theory of Markov chains is their
convergence to an equilibrium. Coefficients of ergodicity provide an efficient method
for such an analysis. Besides giving sufficient and sometimes necessary conditions for
convergence, they additionally measure its rate. In this paper we explore coefficients
of ergodicity for the case of imprecise Markov chains. The latter provide a convenient
way of modelling dynamical systems where parameters are not determined precisely.
In such cases a tool for measuring the rate of convergence is even more important
than in the case of precisely determined Markov chains, since most of the existing
methods of estimating the limit distributions are iterative. We define a new coefficient
of ergodicity that provides necessary and sufficient conditions for convergence of the
most commonly used class of imprecise Markov chains. This so-called weak coeffi-
cient of ergodicity is defined through an endowment of the structure of a metric space
to the class of imprecise probabilities. Therefore we first make a detailed analysis of
the metric properties of imprecise probabilities.
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1 Introduction

Modelling Markov chains usually requires estimating a large number of parameters,
which is in many practical situations very difficult to achieve precisely. Thus some-
times parameters are estimated with high imprecision, and the classical theory provides
virtually no better answer than regarding the most likely estimates as precise, leading
to seemingly precise results that do not reflect the lack of certainty in the input data. The
rapid development of methods of imprecise probabilities has allowed the imprecision
in parameters to be incorporated into the models and reflected in the results.

Several approaches to modelling Markov chains with uncertain parameters have
been proposed in the literature by now. A very thorough study of the so-called Mar-
kov set-chains has been presented by Hartfiel (1998) (see also Hartfiel and Seneta
1994). A Markov set-chain is essentially a Markov chain where sets of probabilities
and transition matrices are considered as possible candidates for an unknown true
probability distribution or transition matrix. Special attention is paid to the case where
the sets can be described using probability intervals. This basically means that every
probability of an elementary event is bounded by a lower and upper bound. A simi-
lar model was studied from the perspective of the theory of interval probabilities by
Kozine and Utkin (2002). The more general interval probabilities based on Weich-
selberger’s model Weichselberger (2001) are used in the study of Markov chains by
Škulj (2006, 2007, 2009). A more recent approach by De Cooman et al. (2009) further
generalises the way imprecision is involved into Markov chains, taking an approach
based on upper expectation operators. This approach is known from the study of the
related field of Markov decision processes used by Satia and Lave (1973), followed by
Harmanec (2002), Itoh and Nakamura (2007), Nilim and Ghaoui (2005), White and
Eldeib (1994).

One of the central questions in the theory of Markov chains, also more or less
explored in the above listed literature, is whether the probability distributions at con-
secutive steps converge to a limit distribution and whether such a limit distribution
is independent of the initial state or distribution on the set of states. One of the most
commonly known results is the Perron-Frobenius theorem which shows that the prob-
ability distributions corresponding to a finite regular Markov chain converge to a
unique limit distribution independently of the initial distribution. However, regularity
is not always a necessary condition for convergence. A more general approach is to
use various coefficients of ergodicity (see e.g. Seneta 1979), which additionally to
giving necessary or sufficient conditions for convergence also measure the rate of the
convergence.

In the literature listed above the question of convergence of imprecise Markov
chains and the related problem of invariant sets of probability distributions receive a
great part of attention. Thus, Hartfiel (1998) generalises a coefficient of ergodicity to
characterise the convergence of Markov set-chains. Further focus on the properties of
invariant sets of distributions with a generalised concept of regularity was provided
by Škulj (2009), where a convergence result is shown for regular imprecise Mar-
kov chains and some properties of invariant sets of distributions are analysed in the
case of not necessarily regular imprecise Markov chains. The most general result by
now seems to be the one given by De Cooman et al. (2009) who provide necessary
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and sufficient conditions for convergence in terms of accessibility relations. Their
conditions are substantially weaker than those given by Hartfiel (1998), which is due
to their restriction to models being able to be described using the expectation operators,
which are somewhat less general than the models allowing completely arbitrary sets of
probabilities and transition matrices used by Hartfiel; namely, expectation operators
can only describe closed sets of distributions that are convex. The models using the
expectation operators approach also assume an independence for rows of transition
operators which does not necessarily hold for sets of transition matrices, which can
result in not necessarily convex sets of probabilities. We explain this independence
condition and its possible violations in Sect. 4.

In this paper we extend one of the most commonly used coefficients of ergodic-
ity to the case of imprecise Markov chains. The main idea behind the coefficients of
ergodicity is to measure the distances between rows of transition matrices, which in
the precise case are probability distributions and in the imprecise case are, similarly,
imprecise probability distributions. Thus the desired generalisation of the coefficients
of ergodicity is possible through an appropriate endowment of the structure of a metric
space to the set of imprecise probabilities. The main contribution of this paper is the
introduction of a new so-called weak coefficient of ergodicity that, in an alternative
way, characterises the type of convergence studied by De Cooman et al. (2009). We
show that the conditions for convergence provided by this coefficient are necessary
and sufficient if convex sets of probabilities are used to describe the imprecision of
Markov chains, and if the independence condition for rows of transition operators is
assumed. Moreover, additionally to stating necessary and sufficient conditions, the
weak coefficient of ergodicity gives estimates for the rate of convergence, which is
especially useful because the methods for estimating imprecise Markov chains are
usually iterative. The coefficient of ergodicity then allows estimating an upper bound
for the error of an estimate.

The paper has the following structure. In the next section we review some theory
on lower expectation operators that form a basis for the model of imprecise Markov
chains. Further, in Sect. 3, we explore possibilities to endow the family of imprecise
probabilities with the structure of a metric space, and in Sect. 4 we describe the model
of imprecise Markov chains that we use. In Sect. 5 we give an alternative characterisa-
tion of the uniform coefficient of ergodicity and, as the main contribution of this paper,
we define a new so-called weak coefficient of ergodicity which provides necessary and
sufficient conditions for convergence for an imprecise Markov chain and measures its
rate. Finally we give a numerical example.

2 Lower expectation operators

Imprecision in probability distributions is often described by sets of possible probabil-
ity distributions, which are usually assumed to be convex. Such sets can equivalently
be described using lower or upper expectation functionals. We explore the duality
between both representations from the point of view of metric spaces.

Let � be a finite set and let F be the set of all real-valued maps on �. Further let
F1 denote the subset of all real-valued maps with 0 ≤ f (ω) ≤ 1 for every ω ∈ �.
We denote by 1�, or sometimes just 1, the constant map on � such that 1�(ω) = 1
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for all ω ∈ �. For a pair of maps f and g such that f (ω) ≥ g(ω) for every ω ∈ � we
write f ≥ g, and if at least one of the inequalities is strict we write f > g.

The set F can be equipped with the maximum norm given by

‖ f ‖∞ = max
ω∈�

| f (ω)|,

which induces the Chebyshev distance:

dc( f, g) = max
ω∈�

| f (ω) − g(ω)|.

We can write F1 = { f ∈ F | f ≥ 0, ‖ f ‖∞ ≤ 1}.
We characterise a probability measure or probability on the measurable space

(�, 2�) through its probability mass function p which is a real valued map on �

such that

∑

ω∈�

p(ω) = 1 and p(ω) ≥ 0 for every ω ∈ �.

Therefore p(A) = ∑
ω∈A p(ω) for every A ⊆ �. Thus every probability mass func-

tion can be considered to belong to the set F1. Sometimes we enumerate the elements
of � and for short denote, for instance, fi = f (ωi ).

There is a one-to-one correspondence between closed convex sets of probabili-
ties and the corresponding lower and upper expectation operators (see Walley 1991,
Chaps. 2, 3 for the proofs of the following results of this section). We denote the lower
expectation operator of a closed convex set of probabilities M by P and the upper
expectation operator by P . So for any f ∈ F we define:

P( f ) = min
p∈M

E p f and P( f ) = max
p∈M

E p f, (1)

where E p f = ∑
ω∈� f (ω)p(ω). The min and max in the above equations can be writ-

ten because of the finiteness of the probability space which assures that all closed sets
of probabilities are compact and therefore all minima and maxima exist. In the case
of the above correspondence between a set of probabilities and a lower expectation
operator we say that M is a credal set of P and we may denote

M = M (P).

Since the lower and the upper expectation operator are conjugate, i.e. P( f ) =
−P(− f ), and therefore the upper expectation is determined by the lower one, in
the rest of the paper we will only use lower expectation operators. Every lower expec-
tation operator P has the following properties. Let f, f1, f2, fn be arbitrary elements
from F . Then:

boundedness minω∈� f (ω) ≤ P( f ) ≤ maxω∈� f (ω);

superadditivity P( f1 + f2) ≥ P( f1) + P( f2);
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Coefficients of ergodicity for Markov chains 111

non-negative homogeneity P(λ f ) = λP( f ) for every λ ≥ 0;

constant additivity P( f + μ1�) = P( f ) + μ for every real μ;

monotonicity if f1 ≤ f2 then P( f1) ≤ P( f2);

continuity if fn → f point-wise then P( fn) → P( f );

upper-lower consistency P( f ) ≤ −P(− f ) = P( f ).

Further we note that any expectation operator is completely determined by its val-
ues on the space F1. To see this take any map f ∈ F and define the corresponding
f̃ ∈ F1 with

f̃ = f

2‖ f ‖∞
+ 1

2
1�,

if ‖ f ‖∞ > 0, and f̃ = 1
2 1� otherwise. The value ã = P( f̃ ) then determines

P( f ) =
(

ã − 1

2

)
· 2‖ f ‖∞,

as follows from non-negative homogeneity and constant additivity.

3 Distance measures between imprecise probabilities

The set of probability measures on a measurable space (�,A ) can be made a metric
space using the following metric:

d(p, p′) = max
A∈A

|p(A) − p′(A)| = 1

2

∑

ω∈�

|p(ω) − p′(ω)|, (2)

for every pair of probability measures p and p′.
Given a metric space M and non-empty compact subsets X, Y ⊂ M the Hausdorff

metric (see e.g. Beer 1993, p. 85) is defined as

dH (X, Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
. (3)

This metric makes the set of non-empty compact sets a metric space denoted by F(M).
Moreover, if M is a compact space then so is F(M). Note also that every compact
metric space is complete. The Hausdorff distance can be applied to the family of com-
pact sets of probabilities using the distance function (2) in (3), making it, in the case
of a finite space, a complete metric space.

Let P and P ′ be lower expectation operators. Then we define the following distance
between them:

d̃(P, P ′) = max
f ∈F1

|P( f ) − P ′( f )|. (4)
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Because of the finiteness of � and continuity of lower expectation operators the max
in the above equation exists. If f is any non-negative real-valued map on � then we

have that f̃ = f

‖ f ‖∞
∈ F1. Because of positive homogeneity of lower expectation

operators we conclude that

|P( f ) − P ′( f )| ≤ d̃(P, P ′)‖ f ‖∞. (5)

If a credal set consists of a singleton probability p then the corresponding lower or
upper expectation operator is E p, the expectation operator with respect to p. The next
proposition shows that, given this correspondence, the metrics (4) and (2) coincide for
probability measures. Therefore, from now on we denote both distances with d.

Proposition 1 Let p and p′ be probability measures on (�,A ). Then we have that

max
f ∈F1

|E p f − E p′ f | = d(p, p′).

Proof Define the function

F(ω) =
{

1, p(ω) ≥ p′(ω);
0, otherwise.

For any f ∈ F1 we have

|E p f − E p′ f | =
∣∣∣∣∣
∑

i

(pi − p′
i ) fi

∣∣∣∣∣

≤
∣∣∣∣∣
∑

i

(pi − p′
i )Fi

∣∣∣∣∣ = max
A⊂�

|p(A) − p′(A)| = d(p, p′).

Since for F we have the equality, this proves the proposition.

3.1 Equivalence between the Hausdorff distance and the maximal distance between
lower expectation operators

The definition of a coefficient of ergodicity is based on distances between credal
sets of rows of transition operators, or, equivalently, between the corresponding lower
expectation operators. The following theorem shows that the metric (4) between lower
expectation operators coincides with the Hausdorff metric between their credal sets.
(A similar result also for infinite sets � can be found in Hable (2010, Lemma 3.2).)

Theorem 2 Let M1 and M2 be closed convex sets of probabilities and let P1 and P2
be their lower expectation operators. Then we have that

d(P1, P2) = dH (M1,M2). (6)
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Proof First we show that for any probabilities p1 and p2 we have that

max
f ∈F1

|E p1 f − E p2 f | = max
f ∈F1

E p1 f − E p2 f. (7)

This follows from the fact that f ∈ F1 implies 1� − f ∈ F1 and E p1 f − E p2 f =
−(E p1(1 − f ) − E p2(1 − f )) which implies

max
f ∈F1

|E p1 f − E p2 f | = max
f ∈F1

max{E p1 f − E p2 f, E p1(1 − f ) − E p2(1 − f )}
= max

f ∈F1

E p1 f − E p2 f.

The definition of the Hausdorff distance and the Eq. (7) implies that

dH (M1,M2) = max
p1∈M1

min
p2∈M2

max
f ∈F1

E p1 f − E p2 f (8)

or in the last expression the roles of M1 and M2 can be exchanged, and that case
would be treated equally because of symmetry. Now fix any p1 ∈ M1 and consider
the map:

� : M2 × F1 → R

where

(p2, f ) �→ E p1 f − E p2 f.

Now the set M2 is compact by definition, and the mapping p2 �→ �(p2, f ) is con-
tinuous and affine, therefore also convex, for any fixed f ∈ F1. Furthermore, for a
fixed p2, the mapping f �→ �(p2, f ) is linear, and therefore concave. Now we can
use the minimax theorem (see Fan 1953, Theorem 2) to obtain:

min
p2∈M2

max
f ∈F1

�(p2, f ) = max
f ∈F1

min
p2∈M2

�(p2, f ).

That is

min
p2∈M2

max
f ∈F1

E p1 f − E p2 f = max
f ∈F1

min
p2∈M2

E p1 f − E p2 f.

Using the above equality we obtain:

max
p1∈M1

min
p2∈M2

d(p1, p2)

= max
p1∈M1

min
p2∈M2

max
f ∈F1

E p1 f − E p2 f

= max
p1∈M1

max
f ∈F1

min
p2∈M2

E p1 f − E p2 f
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= max
f ∈F1

max
p1∈M1

min
p2∈M2

E p1 f − E p2 f

= max
f ∈F1

P1( f ) − P2( f )

= max
f ∈F1

P1(1 − f ) − P2(1 − f )

= max
f ∈F1

P2( f ) − P1( f ).

Finally, using this and the symmetry between M1 and M2, we get

dH (M1,M2) = max{ max
p1∈M1

min
p2∈M2

d(p1, p2), max
p2∈M2

min
p1∈M1

d(p1, p2)}
= max

f ∈F1

{P2( f ) − P1( f ), P1( f ) − P2( f )}
= max

f ∈F1

|P1( f ) − P2( f )|
= d(P1, P2),

which completes the proof.

Another approach to coefficients of ergodicity applies the maximal distance
between probability measures belonging to a pair of credal sets M1 and M2 with
the corresponding lower and upper expectation operators P1, P1 and P2, P2 respec-
tively. Using Proposition 1 we have that

max
p1∈M1
p2∈M2

d(p1, p2) = max
p1∈M1
p2∈M2

max
f ∈F1

|E p1 f − E p2 f |

= max
f ∈F1

max
p1∈M1
p2∈M2

|E p1 f − E p2 f |

= max
f ∈F1

max{P1( f ) − P2( f ), P2( f ) − P1( f )}. (9)

However, instead of taking the maxima over the whole F1 in the above equation it
would be enough to only consider characteristic functions of subsets of �, as follows
from Proposition 1. Therefore,

max
p1∈M1
p2∈M2

d(p1, p2) = max
A⊂�

max{P1(1A) − P2(1A), P2(1A) − P1(1A)}. (10)

Now notice again that F1 = {1 − f : f ∈ F1} and use conjugacy and constant
additivity of coherent lower previsions: P( f ) = −P(− f ) = 1 − P(1 − f ) to obtain

max
f ∈F1

{P2( f ) − P1( f )} = max
f ∈F1

{(1 − P2(1 − f )) − (1 − P1(1 − f ))}
= max

g∈F1

{P1(g) − P2(g)}.
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Note also that 1� − 1A = 1Ac , making the above consideration valid also when the
maps f are restricted to the characteristic functions of the subsets of �. Now, com-
bining (9), (10) and the last equality gives, for any pair of lower and upper expectation
operators P1 and P2,

max
f ∈F1

{P2( f ) − P1( f )} = max
A⊂�

{P2(1A) − P1(1A)}. (11)

3.2 Convergence of lower expectation operators

The convergence of imprecise Markov chains is studied in terms of convergence of the
underlying imprecise probabilities in the metric (4). Here we give some preliminary
results.

We will need the following result (see Dunford and Schwartz 1988, Lemma I.5.6):

Lemma 3 A topological space is compact if and only if every family of closed sets,
with the property that the intersection of every finite subfamily is non-empty, has a
non-empty intersection.

Corollary 4 Every decreasing sequence with respect to set inclusion of non-empty
closed compact sets has non-empty intersection.

We use the above corollary to show the following:

Proposition 5 Let {Pn}n∈N be an increasing sequence of lower expectation opera-
tors and {Mn}n∈N the sequence of the corresponding credal sets. Then the sequence
{Mn}n∈N is decreasing with respect to set inclusion and the limit

P∞ = lim
n→∞ Pn

exists and

M (P∞) =
⋂

n∈N

Mn .

Moreover, the above credal set is non-empty.

Proof For every f ∈ F1 we have that the sequence {Pn( f )} is an increasing sequence
bounded from above by 1 and is therefore convergent. Now take any p ∈ ⋂

n∈N
Mn .

Then, by definition, for every f ∈ F1 we have that E p f ≥ P∞( f ), so
⋂

n∈N
Mn ⊆

M (P∞). To see the converse inclusion take any probability p such that E p f ≥
P∞( f ) ≥ Pn( f ) for every n ∈ N. Therefore p ∈ Mn for every n ∈ N and every
f ∈ F1, which implies that p ∈ ⋂

n∈N
Mn . Thus, M (P∞) ⊆ ⋂

n∈N
Mn . As follows

from Corollary 4, the set
⋂

n∈N
Mn is non-empty.

Proposition 6 Let {Pn}n∈N be any convergent sequence of lower expectation opera-
tors and {Mn}n∈N the sequence of the corresponding credal sets. Then the set

M∞ =
⋂

n∈N

co

( ⋃

m≥n

Mm

)
,
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where co denotes the convex hull, is the credal set of the limit lower expectation oper-
ator P∞ = limn→∞ Pn . Moreover, the set M∞ is non-empty and therefore the lower
expectation operator P∞ is well defined.

Proof First we define the following sequence of lower expectation operators:

P̃n = inf
m≥n

Pm .

Clearly, the convergence of the sequence {Pn} implies the convergence of {P̃n} with
the same limit. We only need to see that the credal set of P̃n is co(

⋃
m≥n Mm).

To see this take any f ∈ F . We have

P̃n( f ) = inf
m≥n

Pm( f ) = inf
m≥n

inf
p∈Mm

E p f = inf
p∈⋃

m≥n Mm

E p f. (12)

This implies that the convex closure of
⋃

m≥n Mm is the credal set of P̃n (c.f. Hable

2009, Proposition 2.15). Hence, the credal set of P̃n is also equal to the convex closure
of

⋃
m≥n Mm . Since it is a compact set, this implies that it contains every extreme

point of the credal set of P̃n (c.f. Dunford and Schwartz 1988, Lemma V.8.5). Hence,
the credal set is equal to the convex hull of

⋃
m≥n Mm (c.f. Holmes 1975, p. 36).

To finish the proof we apply Proposition 5 to the increasing sequence {P̃n} and the
corresponding credal sets co(

⋃
m≥n Mn).

Corollary 7 The set of all lower expectation operators is complete in the metric (4).

4 Imprecise Markov chains

One of the most natural ways to involve imprecision in a probabilistic model is to allow
a set of possible probability distributions instead of a single one. In the case of Markov
chains such sets can be allowed in place of transition probabilities as well as initial
probability distributions. Additionally, we usually assume that such sets are closed and
convex. This assumption is particularly useful because, as described in Sect. 2, the sets
can be equivalently described using lower or upper expectation operators. There are
of course many models that allow description of sets of probabilities, such as interval
probabilities (see e.g. Weichselberger 2001) or lower and upper previsions (see e.g.
Walley 1991, 2000).

The most basic form involves placing constraints, usually in the form of intervals, on
the probabilities belonging to the elementary sets (see Hartfiel 1998; Kozine and Utkin
2002). The imprecision concerning the initial distribution is thus presented through
the intervals [q

i
, qi ] which are supposed to contain the unknown initial probability

P(X0 = i). Similarly, the probabilities of transition from the state i to j are given
in the form of intervals [p

i j
, pi j ] supposed to contain the unknown true transition

probability P(Xn+1 = j |Xn = i). Even though the true probabilities are unknown,
it is certain that the sum of all probabilities is 1. Thus the values within the intervals
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Coefficients of ergodicity for Markov chains 117

must be taken so that they sum to 1, or in the case of transition interval matrices, all
rows must sum to 1. An additional assumption that is usually made about the intervals
is that all values within the interval are reachable or, in particular, that the interval
bounds are reachable. To each set of intervals, the set of probabilities assuming their
values within those intervals can be assigned.

One of the crucial differences between precise and imprecise probabilities is that a
precise probability can be fully determined by far less information than an imprecise
probability. Thus to determine any precise probability, only its values on elementary
sets are needed to be found, while the sets of probabilities which can be represented
via simple intervals described above is fairly limited (Many examples can be found
e.g. in Weichselberger 2001; Walley 1991, 2000). Another difference compared to
the classical model is that transition probabilities that govern transitions of a Markov
chain in the imprecise case may change in time. Thus, we are dealing with possibly
non-homogeneous chains, which consequently require considering non-homogeneous
matrix products.

4.1 Sets of probabilities

Now we introduce the terminology used to describe imprecise Markov chains in this
paper. For a more detailed treatment see Škulj (2009). We will assume a non-empty
set � whose elements are called states. For simplicity we will assume they are the
consecutive integers 1, . . . , m, since in the basic model their values have no special
consequences.

We will thus assume a set M0 of initial probability distributions and let P0 be its
lower expectation operator (c.f. (1)). Further, we assume a set of transition matrices P ,
whose rows are separately specified, i.e. for any two transition matrices p and p′ with
i th rows pi and p′

i replacing the i th row of p with p′
i results in a matrix that still

belongs to P . By adopting this property we can associate row sets of distributions
Pi to P so that any independent choice of rows from the row sets gives a transition
matrix in P . If additionally we assume that row sets are closed and convex, we have
the following important property.

Lemma 8 Let P be a convex set of transition matrices with separately specified rows
and let M be a convex set of probabilities. Then the set of probability distributions at
the next step M · P = {q · p | q ∈ M , p ∈ P} is a convex set.

We slightly modify the proof in Hartfiel (1998, Lemma 2.5).

Proof We prove the lemma by showing that given the probabilities q and q ′ ∈ M and
transition matrices p and p′ ∈ P then, whenever α, β ≥ 0 and α + β = 1,

(αq · p + βq ′ · p′) = (αq + βq ′)r (13)

with r ∈ P .
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Take j ∈ �. We have

(αq · p + βq ′ · p′) j = α

m∑

i=1

qi pi j + β

m∑

i=1

q ′
i p′

i j

=
m∑

i=1

(αqi pi j + βq ′
i p′

i j )

=
m∑

i=1

(αqi + βq ′
i )

(
αqi

αqi + βq ′
i

pi j + βq ′
i

αqi + βq ′
i

p′
i j

)
.

Thus taking r with ri j = αqi
αqi +βq ′

i
pi j + βq ′

i
αqi +βq ′

i
p′

i j satisfies (13). Notice that i th row

of r is a convex combination of some elements of Pi and therefore itself a member
of Pi too. Now, because rows are separately specified the resulting matrix is also a
member of P . �

Let X0, X1, . . . , Xn, . . . be a sequence of random variables assuming values in �.
According to the given assumptions we have

P(X0 = i) = q(0)
i ,

where q(0) ∈ M0. The role of the transition matrices is given by

P(Xn+1 = j |Xn = i) = p(n)
i j ,

where p(n) ∈ P .
A basic feature of the theory of Markov chains is the ability to calculate the prob-

ability of being in some state j at time n given an initial probability. Of course, since
the initial and transition probabilities are imprecise, the answer will also be given
in the form of an imprecise probability, that is, in the form of a set of probabilities.
Previous works such as Hartfiel (1998) or Škulj (2009) provide the general answer to
this question based on the classical theory. The set of possible probability distributions
at step n is equal to the set of all possible initial distributions multiplied by all pos-
sible sequences of transition matrices. Let Mn denote the set of possible probability
distributions at step n given the initial distribution M0. Then we have

Mn ={q(0) · p(1) · · · · · p(n) | q(0) ∈ M0, p(i) ∈ P for i = 1, . . . , n}=Mn−1 · P.

(14)

It follows from Lemma 8 that in the case where the set of transition matrices P has
closed convex separately specified row sets, every Mn is also a closed convex set of
probabilities. Therefore, they can be equivalently represented using lower expectation
operators.
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4.2 Expectation operators

Now we turn to expectation operators corresponding to both sets of probabilities and
sets of transition operators. The initial set of probabilities M0 can equivalently be
represented using its lower expectation operator P0 = EM0

. Therefore, M0 is the
credal set of P0. Similarly, to each row set of probabilities we associate the lower
expectation operator T i . Let T then be the matrix lower expectation operator whose
i th row is T i . We will say that the set P is the credal set of T . For every f ∈ F we
clearly have that minp∈P p f = T ( f ).

To calculate the values of Pn on real functions on � we follow the approach pro-
posed by De Cooman et al. (2009). They first calculate the nth power of the transition
operator T using so-called backwards recursion. This method can be described in the
following way. Let f be any real valued map on �. Every expectation operator assigns
to it a real number corresponding to the lower expectation. In particular, every row
lower expectation operator T i assigns to it the value T i ( f ). A transition operator T
thus assigns to every f the vector of values

T ( f ) =

⎛

⎜⎜⎜⎝

T 1( f )

T 2( f )
...

T m( f )

⎞

⎟⎟⎟⎠ . (15)

Now T ( f ) is another real valued function on � to which a new instance of T can
be applied to obtain T 2( f ) and so on. Finally, we can apply P0 to T n( f ) to obtain
Pn( f ). We continue to prove that Pn( f ) is equal to EMn

f for every f ∈ F .

4.3 Correspondence between sets of probabilities and expectation operators

Now we show that calculations using closed convex sets of probabilities using (14) and
those using the corresponding expectation operators produce identical results under
the assumption that row sets of sets of transition matrices are separately specified. We
have the following result.

Proposition 9 Let M0 be an initial set of probabilities and P0 the corresponding
lower expectation operator. Further let P be a set of transition matrices with sep-
arately specified rows and T the corresponding lower transition operator. Then, for
every f ∈ F , we have that

P T n( f ) = EM0Pn f. (16)

An analogous result would follow if the lower expectations were replaced with
upper expectations.

Proof The equation (16) essentially says that for any initial probability q(0) ∈ M0
and any sequence of transition matrices p(1), . . . , p(n) ∈ P we have that, for every
f ∈ F
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P T n( f ) ≤ q(0) · p(1) · · · · · p(n) f, (17)

and that for any given f, q(0) and p(1), . . . , p(n) can be chosen so that equality holds
in (17). The inequality follows immediately from the fact that p(i) f ≥ T ( f ).

To show the existence of q(0) and p(1), . . . , p(n) that yield equality in (17) we pro-
ceed by induction on n where the case n = 0 follows directly from the definitions.
We have

T n( f ) = T n−1T ( f ). (18)

Since rows of T are separately specified we can find probability vectors p(n)
i ∈ Pi

such that E
p(n)

i
f = T i ( f ). The matrix p(n) then satisfies p(n) f = T ( f ).

Now we use the induction assumption to show the existence of matrices
p(1), . . . , p(n−1) ∈ M (T ) and q(0) ∈ M (P) so that P T n−1(T ( f )) = q(0) · p(1) ·
· · · · p(n−1) p(n) f .

As follows from the above propositions the resulting sets of probabilities obtained
using calculations with sets of probabilities and those using expectation operators
coincide, however it is not necessarily true that Pn and M (T n) coincide. Although
the lower expectation operators of the rows Pn

i coincide with the rows T n
i , they are

not necessarily separately specified, which causes the mentioned difference. For an
example see De Cooman et al. (2009, Example 5.1).

4.4 Metric properties of transition operators

The metric (4) can be extended to lower transition operators using the Chebyshev
distance by defining

d(T , T ′) = max
f ∈F1

dc(T f, T ′ f ), (19)

since T f and T ′ f are real valued maps on �. Now

max
f ∈F1

dc(T f, T ′ f ) = max
f ∈F1

max
ω∈�

|T f (ω) − T ′ f (ω)|
= max

f ∈F1

max
i

|T i f − T ′
i f |

= max
i

d(T i , T ′
i ),

where T i and T ′
i denote the i th rows of T and T ′ respectively. Thus (19) is equivalent

to

d(T , T ′) = max
i

d(T i , T ′
i ). (20)

123



Coefficients of ergodicity for Markov chains 121

4.5 Convergence

Once probabilities of states on different steps are calculated, we are often interested
in the limiting behaviour of these probabilities. Thus, the question is what can be said
about the probability P(Xn = i) for a large n and how does it depend on the initial dis-
tribution? In the classical theory, Perron-Frobenius theorem assures convergence for
the class of regular Markov chains (a Markov chain with the transition matrix p is reg-
ular if for some positive integer r the power pr has only strictly positive entries). The
Perron-Frobenius theorem states that the probabilities q(n)

i = P(Xn = i) converge to
some unique limit probabilities independently on the initial distribution.

Regularity is therefore a sufficient condition for unique convergence of a Markov
chain, but not also a necessary one. This is true already in the case of precise Mar-
kov chains, where more general criteria are derived using coefficients of ergodicity that
besides telling whether a chain is convergent also measure the rate of convergence (see
e.g. Seneta 1979). Hartfiel (1998) then applies a generalised coefficient of ergodicity
to study the convergence of Markov set-chains.

Recently, De Cooman et al. (2009) find that the conditions applied by Hartfiel are in
general too strong to assure the convergence of imprecise Markov chains. They define
a class of regularly absorbing imprecise Markov chains, based on the accessibility
relation between states. They show that the property of being regularly absorbing is
necessary and sufficient for convergence. In the following section we construct a new
coefficient of ergodicity for imprecise Markov chains which also gives a necessary
and sufficient condition for convergence.

5 Coefficients of ergodicity

Coefficients of ergodicity or contraction coefficients measure the rate of convergence
of Markov chains. In his paper Seneta (1979) defines a general coefficient of ergodicity
for a stochastic matrix p with no zero columns to be

τ(p) = sup
x,y

d(xp, yp)

d(x, y)
,

where d is some metric on the set of vectors with positive coordinates and whose
components sum to 1 and x, y are such vectors. The value of τ(p) is between 0 and
1 and further τ has the following properties:

(i) τ(p · p′) ≤ τ(p) · τ(p′) for every pair of stochastic matrices with no zero
columns p and p′;

(ii) τ(p) = 0 whenever rank of p is 1 i.e. p = 1v for some vector v.

Depending on the metrics, different coefficients of ergodicity are used. In this paper
we are concerned with the coefficient generated by the metric (2). This coefficient was
introduced by Dobrushin (1956) and its direct evaluation is derived by Paz (1970):

τ(p) = 1

2
max

i, j

m∑

s=1

|pis − p js |.
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According to (2), the above can be stated as

τ(p) = max
i, j

d(pi , p j ), (21)

where pi and p j denote the i th and j th row of p respectively.
Another possible approach is to use the projective distance between vectors x =

(x1, . . . , xm) and y = (y1, . . . , ym) which is defined by

dp(x, y) = max
i, j

ln

(
x1 y j

x j yi

)
(22)

(see Seneta 2006). Let T be a transition matrix with positive entries. Using the above
metric the Birkhoff’s coefficient of ergodicity (Birkhoff 1957) is defined by

τb(T ) = sup
x,y>0
x �=λy

dp(xT, yT )

dp(x, y)
= 1 − √

φ(T )

1 + √
φ(T )

, (23)

where

φ(T ) = min
i, j,k,l

tik t jl

t jk til
. (24)

5.1 The uniform coefficient of ergodicity

For the case of imprecise Markov chains Hartfiel (1998) extends the concept of a
coefficient of ergodicity to Markov chains where sets of transition probabilities are
considered. For a set of transition matrices P he defines the uniform coefficient of
ergodicity as

τ(P) = sup
p∈P

τ(p).

If P is an interval [P, Q], i.e. P ={p | p is a stochastic matrix such that P ≤ p ≤ Q},
then he finds that

τ(P) ≤ 1

2
max

i, j

m∑

k=1

max{|qik − p jk |, |q jk − pik |}

where pik and qik are the components of P and Q respectively. A related problem of
convergence of inhomogeneous products of matrices using coefficients of ergodicity
was studied by Hartfiel and Rothblum (1998).

In our setting of lower and upper expectation operators, the calculation of the
uniform coefficient of ergodicity is given by the following proposition.
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Proposition 10 Let P be a set of transition matrices with separately specified rows
and let T and T be its lower and upper expectation operators. Then we have that

τ(P) = max
i, j

max
f ∈F1

T i ( f ) − T j ( f )

= max
i, j

max
A⊂�

T i (1A) − T j (1A).

Proof The second equality follows from (11). Let p ∈ P be an arbitrary transition
matrix. Then its i th and j th rows are arbitrary probability distributions belonging to
the credal sets of the i th and j th row of P . We have that

τ(P) = max
p∈P

τ(p)

= max
i, j

max
pi ∈M (T i )

p j ∈M (T j )

d(pi , p j )

= max
i, j

max
A⊂�

max{T i (1A) − T j (1A), T j (1A) − T i (1A)}
= max

i, j
max
A⊂�

T i (1A) − T j (1A),

where the third equation follows from (9).

Thus, we may define τ(T ) = τ(M (T )).

Remark 1 The crucial assumption in the above proposition is that rows are sepa-
rately specified. Thus, for instance, τ(Pn) is not guaranteed to be equal to τ(T n),
because, as explained earlier, M (T n) does not necessarily coincide with Pn . In fact,
Pn ⊆ M (T n) always holds, which clearly implies that τ(Pn) ≤ τ(T n).

The uniform coefficient of ergodicity can be used as a contraction measure for a set
of transition matrices. The following theorem holds (Hartfiel 1998, Theorem 3.3):

Theorem 11 Let M1 and M2 be non-empty compact sets of probabilities. Then

dH (M1 · P,M2 · P) ≤ τ(P)dH (M1,M2).

A stochastic matrix p whose coefficient of ergodicity τ(p) is strictly smaller than 1 is
called scrambling (see Seneta 1979). Further if P is a set of transition matrices such
that τ(p(1) · p(2) · · · p(r)) < 1 for any matrices p(i) ∈ P then such a set is called
product scrambling (see Hartfiel 1998), and r is then called its scrambling integer.
Thus we have that τ(Pr ) < 1.

Theorem 11 implies the following more general corollary (Hartfiel 1998, Theo-
rem 3.4):

Corollary 12 Let P be be product scrambling with scrambling integer r and let M0
be a non-empty compact set of probabilities. Then, for any positive integer h,

dH (M0P
h,M∞) ≤ Kβh
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where K = τ(Pr )−1dH (M0,M∞) and β = τ(Pr )
1
r < 1 and M∞ is the unique

compact set of probabilities such that

M∞P = M∞.

Thus,

lim
h→∞ M0P

h = M∞.

As follows from Remark 1 using τ(T r ) instead of τ(Pr ) would produce a more
conservative estimate.

Theorem 11 estimates the rate of convergence for a Markov set-chain in the Haus-
dorff metric. Moreover, if τ(P) < 1 for a set of transition matrices then given any
initial probability distribution q(0) and a sequence of transition matrices {p(i)}i∈N such
that every p(i) ∈ P we have that the sequence q(n) = q(0) p(1) · · · p(n) converges to
some q∞ at the given rate. This is a consequence of the fact that τ(p(1) · · · p(n)) → 0
as n tends to infinity. Moreover, since clearly τ(P ′) ≤ τ(P) for every P ′ ⊆ P , it
follows that given a convergent Markov chain with the set of transition probabilities
P then a Markov chain with the set of transition probabilities P ′ is also convergent.

5.2 The weak coefficient of ergodicity

In the case where sets of probabilities are convex, the above requirements are clearly
sufficient but not necessary. It has been shown by De Cooman et al. (2009) that it is not
necessary to require that every possible transition matrix is a contraction, but instead,
what is needed is only that the corresponding upper (or lower) expectations are becom-
ing more and more similar. As a simple demonstration consider the following example.

Example 1 Let a set of transition matrices on the set � = {1, 2} be given by the
following lower and upper transition matrix

P =
(

0 0
0 0

)
and Q =

(
1 1
1 1

)
.

Clearly this set contains the matrix

(
0 1
1 0

)

which is not contractive. However, given any initial set of distributions the Markov
chain with the above set of transition matrices converges to the set of all probability
distributions on �.

Further sufficient conditions for unique convergence have been found by
De Cooman et al. (2009) by studying the accessibility relation between states. They
define that the state j is accessible from i if it is not impossible to reach i from j in
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some number of steps, meaning that the upper probability is non-zero. A stationary
imprecise Markov chain is called regularly absorbing if there exists a subset of states
called top class such that it is accessible from all other states and no other state is
accessible from this class. If additionally every state in the top class is reachable from
any other in any number of steps greater than some given r then such a chain is called
top class regular. A top class regular Markov chain is regularly absorbing whenever it
is top class regular and the lower probability of reaching its top class from any state is
positive. One of the main results of the paper by De Cooman et al. is that an imprecise
Markov chain is convergent if and only if it is regularly absorbing.

Our aim here is to find a coefficient of ergodicity that would describe this type of
convergence for imprecise Markov chains. We implement the following idea. Given a
lower transition matrix T , the backwards recursion allows the calculation of its powers
T n for every positive integer n. In the case of a precise transition matrix, the rows of
its consequent powers get more and more similar, which is measured by the coeffi-
cient of ergodicity (21). In the case of a lower expectation matrix, the same effect will
be achieved by measuring the distances between the row lower expectation operators
corresponding to the powers of T .

Definition 1 Let T be a transition lower expectation matrix. Then we define the weak
coefficient of ergodicity as

ρ(T ) = max
f ∈F1

i, j

|T i ( f ) − T j ( f )|,

where T i and T j are i th and j th row lower expectation operators respectively.

The following proposition is an immediate consequence of the definitions.

Proposition 13 Let T be a transition lower expectation matrix with rows T i . Then

ρ(T ) = max
i, j

d(T i , T j ).

Proposition 14 Let P1 and P2 be lower expectation operators and T a transition
lower expectation matrix. Then we have that

d(P1T , P2T ) ≤ ρ(T )d(P1, P2).

Proof Denote c f = T ( f ) (see (15)) and let c f and c f be its minimal and maximal

element respectively. Further let P̃1 = P1T and P̃2 = P2T . Then using constant
additivity and (5) we obtain

|P̃1( f ) − P̃2( f )| = |P1(c f ) − P2(c f )|
= |P1((c f − c f ) + c f ) − P2((c f − c f ) + c f )|
≤ d(P1, P2)‖c f − c f ‖∞
= d(P1, P2)(c f − c f )

≤ d(P1, P2)ρ(T )
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Corollary 15 Let R and S be any transition lower expectation matrices. Then:

ρ(R S) ≤ ρ(R)ρ(S).

Proof Denote T = R S and let T i and T j be the i th and j th row lower expectation
operators. We have that, for instance,

T i ( f ) = Ri S( f ).

Proposition 14 then yields

|T i ( f ) − T j ( f )| = |Ri S( f ) − R j S( f )| ≤ d(Ri , R j )ρ(S) ≤ ρ(R)ρ(S),

as required.

The next corollary is now immediate.

Corollary 16 For any lower expectation operator T we have that

ρ(T n) ≤ ρ(T )n .

Thus, it may happen that even if ρ(T ) = 1 it may be that ρ(T n) < 1.
The following proposition shows that the credal set of a contractive lower expec-

tation operator contains at least one contractive transition matrix. The converse does
not hold, as demonstrated by the example following the proposition.

Proposition 17 Let T be a transition lower expectation matrix such that ρ(T ) < 1.
Then there exists a precise transition matrix p ∈ M (T ) such that τ(p) < 1.

Proof Denote ρ := ρ(T ). Then for any pair of indices i and j we have d(T i , T j ) ≤ ρ.
Coherence of T implies that for every set A ⊂ � we have a probability measure pA

such that pA
i (A) = T (1A) for every 1 ≤ i ≤ m. Then |pA

i (A) − pA
j (A)| < 1 and

|pA
i (A′) − pA

j (A′)| ≤ 1 for any A′ ⊂ �. Let λA > 0 for every A ⊂ � and let
∑

A⊂� λA = 1. Let p = ∑
A⊂� λA pA. Clearly then pi (A) − p j (A) < 1 for every

A ⊂ � and thus τ(p) < 1.

Example 2 Let the lower expectation operator T =
(

1 0
0 0

)
be given. Thus the credal

set of T contains all possible stochastic matrices with the first row equal to (1, 0).
Clearly, the weak coefficient of ergodicity of T = T n , for every n ∈ N, is equal

to 1; however, the credal set contains, for instance, the matrix p =
(

1 0
0.5 0.5

)
, whose

coefficient of ergodicity is equal to 0.5.

Proposition 18 Let T be a transition lower expectation matrix such that ρ(T ) < 1.
Then there exists a lower expectation operator P∞ satisfying the property:

P∞T = P∞. (25)
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We will call a lower expectation operator satisfying the property (25) an invariant
lower expectation operator for a transition lower expectation matrix T .

Proof Consider the sequence Pn = P0T n . We will show that it is a Cauchy sequence
in the metric (4). To see this, take some positive integers m and n with m > n. Using
the fact that d(P, P ′) ≤ 1 for any pair of expectation operators, we have that

d(Pn, Pm) = d(P0T n, P0T m)

= d(P0T n, P0T m−nT n)

≤ d(P0, P0T m−n)ρ(T n)

≤ ρ(T n)

≤ ρ(T )n,

and since ρ(T ) < 1 it follows that, with n large enough, this distance can be arbi-
trarily small. Because of the completeness of the set of lower expectation operators
(Corollary 7), the sequence converges to some lower expectation operator P∞.

Clearly, if P is an invariant lower expectation operator for T then it is also invariant
for T r for any r > 0. Thus, if T r has a unique invariant lower expectation P , then it is
also the unique invariant lower expectation operator for T . Therefore, if ρ(T r ) < 1,
for some r > 0, then T has a unique invariant lower expectation operator.

Theorem 19 Let T be a transition lower expectation matrix with ρ(T ) < 1 and P0 an
initial lower expectation operator and P∞ the invariant lower expectation operator
for T . Then

d(P0T n, P∞) ≤ d(P0, P∞)ρ(T )n .

Therefore,

lim
n→∞ P0T n = P∞

independently of P0, and P∞ is thus the unique invariant lower expectation operator
for T .

Proof Using (25) and Proposition 14 and Corollary 16 we obtain

d(P0T n, P∞) = d(P0T n, P∞T n) ≤ d(P0, P∞)ρ(T )n .

Now, since ρ(T ) < 1, the right hand side converges to 0.

A corollary analogous to Corollary 12 of the last theorem can also be stated. We
extend the notion of scrambling lower expectation matrices to the case where the
weak coefficient of ergodicity is used. We will say that a lower expectation matrix T
is weakly scrambling if ρ(T ) < 1 and, if ρ(T ) = 1 but ρ(T r ) < 1 for some positive
integer r , that it is weakly product scrambling with scrambling integer r .
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Corollary 20 Let T be weakly product scrambling with scrambling integer r and let
P0 be a lower expectation operator. Then, for any positive integer h,

d(P0T h, P∞) ≤ Kβh

where K = ρ(T r )−1d(P0, P∞) and β = ρ(T r )
1
r . Thus,

lim
k→∞ P0T k = P∞.

5.3 Necessary and sufficient conditions for convergence

The type of convergence measured by the weak coefficient of ergodicity is clearly
closely related to that described by De Cooman et al. (2009). This suggests that regu-
larly absorbing and weakly scrambling lower expectation matrices are closely related.
In the following we show that indeed both give necessary and sufficient conditions,
and are therefore equivalent.

Now we show that ρ is continuous with respect to the metric (20). Let T and T ′ be
two lower transition operators. Then we have, for instance,

ρ(T ′) = max
i, j

d(T ′
i , T ′

j )

≤ max
i, j

{d(T ′
i , T i ) + d(T ′

j , T j ) + d(T i , T j )}
≤ 2d(T , T ′) + ρ(T ).

It follows that |ρ(T ) − ρ(T ′)| ≤ 2d(T , T ′), and this implies continuity of ρ.
In the following we show that a lower transition operator being weakly product

scrambling is not only a sufficient but also a necessary condition for convergence of
the corresponding Markov chain.

Let T be a lower transition operator such that P∞ = limn→∞ P0T n exists and is
independent of P0. Then the limit limn→∞ T n exists and is the lower transition oper-
ator whose rows are equal to P∞. To see this, define the operator Pi with Pi f = fi .
We have

P∞ f = lim
n→∞ Pi T

n f = lim
n→∞(T n f )i = lim

n→∞(T n)i f

for every f ∈ F . We define the limit lower transition operator T ∞ with (T ∞)i f =
P∞ f . We have that T ∞ = limn→∞ T n . Clearly then

ρ(T ∞) = 0. (26)

Now we can prove the following theorem.

Theorem 21 Let T be the lower transition operator for an imprecise Markov chain.
Then the chain converges uniquely if and only if ρ(T r ) < 1 for some r > 0.

Proof Let T be the lower transition operator of a uniquely converging Markov chain.
Then, as shown above, T ∞ exists and ρ(T ∞) = 0. Now we have, by continuity of ρ,
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ρ( lim
n→∞ T n) = lim

n→∞ ρ(T n) = 0.

The second equality implies that for some r ρ(T r ) must be less than 1.
The converse follows from Theorem 19.

5.4 Calculation of coefficients of ergodicity for 2-monotone models

The special case of imprecise Markov chains where transition probabilities are
bounded by 2-monotone lower probabilities allows an especially convenient way of
calculating the weak coefficients of ergodicity, based on the values of the lower prob-
abilities on the subsets of �. We will use the relation between lower probabilities and
the Choquet integral, which in addition allows a more convenient way of calculating
expectation operators at future time steps.

Let L : 2� → R be a monotone set function with L(∅) = 0 and L(�) = 1 such
that

L(A ∪ B) + L(A ∩ B) ≥ L(A) + L(B). (27)

Then we say that L is a 2-monotone lower probability. Let M (L) be the set of all
additive probabilities p that dominate L: p(A) ≥ L(A) for every A ⊆ �. Then we
have that

min
p∈M (L)

p(A) = L(A) for every A ⊆ �. (28)

Moreover, let f be any real valued map on �. The lower expectation EM (L) f can
now be calculated using the Choquet integral:

EM (L) f = min f +
max f∫

min f

L({ω| f (ω) ≥ x}) dx =:
∫

f dL . (29)

We define the following distance between lower probabilities:

d(L1, L2) = max
A⊆�

|L1(A) − L2(A)| (30)

and show that it coincides with the distance (4) between the corresponding lower
expectation operators.

Proposition 22 Let P1 f = ∫
f dL1 and P2 f = ∫

f dL2 be lower expectation
operators corresponding to 2-monotone lower probabilities L1 and L2 respectively.
Then

d(P1, P2) = d(L1, L2). (31)
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Proof Take an f ∈ F1 and let Sx = {ω| f (ω) ≥ x} be its level sets. We first show
that d(P1, P2) ≤ d(L1, L2). We have

|P1 f − P2 f | =
∣∣∣∣∣∣

1∫

0

L1(Sx ) dx −
1∫

0

L2(Sx ) dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣

1∫

0

(L1(Sx ) − L2(Sx )) dx

∣∣∣∣∣∣

≤
1∫

0

|L1(Sx ) − L2(Sx )| dx

≤ max
A⊆�

|L1(A) − L2(A)|
= d(L1, L2).

Now let f = 1A where A = argmaxA⊆�|L1(A)− L2(A)|. We have Sx = A for every
x ∈ (0, 1) and therefore

|P1 f − P2 f | = |L1(A) − L2(A)| = d(L1, L2),

which completes the proof.

Corollary 23 Let a lower transition operator T be given such that each row Ti cor-
responds to a 2-monotone lower probability Li . Then

ρ(T ) = max
i, j

d(Li , L j ).

The most commonly used model that falls into the class of 2-monotone models is the
model of imprecise Markov chains that uses so-called probability intervals. A lower
and upper probability mass function p and p are given which determine the set of
probability mass functions

M = {p | p(ω) ≤ p(ω) ≤ p(ω) for every ω ∈ �}. (32)

We assume that for each ω ∈ � a probability mass function p ∈ M exists so that
p(ω) = p(ω) and similarly for the upper mass function. The lower probability given by

L(A) = max

{
∑

ω∈A

p(ω), 1 −
∑

ω∈Ac

p(ω)

}
, for every A ⊆ �, (33)

is 2-monotone (see e.g. de Campos et al. 1994) and M (L) = M , where M is the set
defined by (32).
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5.5 Numerical example

Let an imprecise Markov chain on the set � = {1, 2, 3} be given with the lower
transition matrix

PL =
⎛

⎝
0.5 0.1 0.7 0.1 0.7 0.4
0.1 0.4 0.6 0.3 0.5 0.8
0.2 0.2 0.5 0.4 0.7 0.7

⎞

⎠ ,

where the columns denote sets A1 = {1}, A2 = {2}, A3 = {1, 2}, A4 = {3}, A5 =
{1, 3}, A6 = {2, 3}. The weak coefficient of ergodicity is equal to 0.4 = |L1(A1) −
L2(A1)|. Let the initial lower probability be 0. The following figure shows seven
consecutive iterations and the distances to the limit distribution:

i Li (A1) Li (A2) Li (A3) Li (A4) Li (A5) Li (A6) d(Li , L∞)

0 0 0 0 0 0 0 0.6250
1 0.1000 0.1000 0.5000 0.1000 0.5000 0.4000 0.2000
2 0.1800 0.1600 0.5600 0.1900 0.6000 0.5300 0.0700
3 0.2140 0.1850 0.5740 0.2250 0.6200 0.5750 0.0250
4 0.2262 0.1945 0.5788 0.2375 0.6240 0.5910 0.0090
5 0.2303 0.1980 0.5805 0.2419 0.6248 0.5968 0.0032
6 0.2316 0.1993 0.5811 0.2435 0.6250 0.5988 0.0012
7 0.2320 0.1997 0.5813 0.2441 0.6250 0.5996 0.0004

∞ 0.2321 0.2000 0.5813 0.2444 0.6250 0.6000

Clearly, the distances d(Li , L∞) are bounded from above by d(L0, L∞)ρ(T )i .

6 Conclusions

The main contribution of this paper is the definition of the weak coefficient of ergo-
dicity that gives necessary and sufficient conditions for convergence and additionally
measures the rate of convergence of imprecise Markov chains. We have used two
equivalent approaches to its derivation, through sets of probabilities and through the
corresponding lower expectation operators. In the first part our result gives an alterna-
tive approach to the characterisation of convergence conditions, given by De Cooman
et al. (2009), who derive them on the basis of accessibility relations. However, a more
important use of this coefficient is its ability to estimate how close a distribution
obtained at a certain step is to the limit distribution. The importance of such a mea-
sure is even greater in the imprecise case than in precise, since analytical methods to
finding limit distributions are not known at the moment. Thus limit distributions are
being calculated iteratively and the weak coefficient of ergodicity can then be used to
measure how close a certain iteration is to the true distribution.

On the way to derive the coefficients of ergodicity we have studied metric properties
of imprecise measures, and found some interesting relations between the representa-
tion with sets of probabilities and the corresponding expectation operators.
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Another interesting problem where convergence of imprecise Markov chains is con-
sidered was described by Crossman et al. (2009a,b). They consider absorbing Markov
chains and study conditioning of probability distributions on non-absorption. For the
precise case this problem was studied by Darroch and Seneta (1965). It turns out that
conditional on non-absorption probability distributions converge to some limit distri-
bution if some regularity assumptions are made (Crossman and Škulj 2010). One of
the challenges for future work would be to modify the coefficients of ergodicity to also
work for this type of convergence. Possibly, generalising the Birkhoff’s coefficient of
ergodicity would be a step towards solving this problem.

A problem related to convergence of Markov chains is the problem of invariant dis-
tributions for Markov chains. For the case of imprecise Markov chains some results
can be found in Škulj (2009), but the general structure of invariant sets of distributions
has not yet been fully explored.
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