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Abstract We present a test to determine whether variances of time series are con-
stant over time. The test statistic is a suitably standardized maximum of cumulative
first and second moments. We apply the test to time series of various assets and find
that the test performs well in applications. Moreover, we propose a portfolio strategy
based on our test which hedges against potential financial crises and show that it works
in practice.

Keywords Econometric modeling · Finance · Portfolio optimization ·
Structural breaks · Variance

1 Introduction

It is well known, in particular in empirical finance, that variances among many time
series cannot be assumed to remain constant over longer stretches of time (Krishan et al.
2009). Especially, variances of stock indices seem to vary over time. A good example
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is the recent financial crisis, in which capital market volatilities and correlations raised
quite dramatically. As a consequence, risk figures increased significantly as diversifi-
cation effects were overestimated (Bissantz et al. 2011). In literature, this phenomenon
is sometimes referred to as “Diversification Meltdown” (Campbell et al. 2008) and is
well known also from other contexts.

A change in market parameters has serious consequences in practice, in particular
for portfolio optimization which is based on diversification effects between several
assets. If the relevant market parameters (e.g. volatilities) change, the optimization is
no longer valid and the risk incorrectly calculated. Similar problems occur to applica-
tions in risk management and the valuation of financial instruments.

There are some methods to formally test for changes in volatilities, correlations or
other dependence measures and/or procedures for estimation of change points; many
of them work in a parametric environment (Chu 1995; Chen and Gupta 1997; Kokoszka
and Leipus 2000; Dias and Embrechts 2004; Mikosch and Starica 2004; Andreou and
Ghysels 2006; Galeano and Peña 2007), look at conditional parameters (Andreou and
Ghysels 2002), assume that potential break points are known (Pearson and Wilks 1933;
Jennrich 1970; Goetzmann et al. 2005), or simply estimate correlations from moving
windows without giving a formal decision rule (Longin and Solnik 2002). See also
Andreou and Ghysels (2010) who provide a review on some of these methods.

Only recently, Aue et al. (2009) and Wied et al. (2011) have proposed formal com-
pletely nonparametric tests for unconditional dependence measures in this context.
They do not build upon prior knowledge as to the timing of potential shifts. Aue et al.
(2009) propose a test to detect changes in the covariance structure, while Wied et al.
(2011) present a method to test for changes in the correlation structure between assets.
They are based on cumulated sums of second order empirical cross moments (in the
style of Ploberger et al. 1989) and reject the null of constant covariance or correlation
structure if these cumulated sums fluctuate too much.

This paper considers a non-parametric fluctuation test for constant variances over
time. On the one hand, this test can be regarded as a special case of the Aue et al.
(2009)-test for the one-dimensional case. On the other hand it goes beyond it by rig-
orously proving the asymptotic null distribution for the case that the expected values
are estimated by arithmetic means basing on the first j observations (so that we com-
pare successively estimated empirical variances). Moreover, we derive the asymptotic
distribution of our test statistic under local alternatives.We use proving methods that
were also used for the test for constant correlation described in Wied et al. (2011).

Our second contribution is the application to financial data and the derivation of
an investment strategy. We analyze the volatility structure of four indices including
stocks, bonds and commodities and see that the test performs well throughout the
whole empirical application. The resulting dates of rejection seem to be reasonable.
Besides, we suggest a simple investment strategy based on the test and evaluate it by
an out-of-sample study.

The paper is organized as follows. First, we describe the test statistic and its asymp-
totic distribution in Sect. 2. Section 3 derives local power properties, Sect. 4 analyzes
the finite sample performance of the test by a small simulation study, Sect. 5 applies
the test to financial data and Sect. 6 concludes. Proofs are given below the summary
in the Appendix.
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2 Model and test statistic

Let (Xt , t = 1, 2 . . .) be a sequence of random variables with finite absolute (4 + δ)th
moments. We want to test whether the variance of Xt ,

Var(Xt ) = E(X2
t ) − (E(Xt ))

2,

is constant over time, i.e. we test

H0 : Var(Xt )=σ 2 ∀t ∈ {1, . . . , T } vs. H1 : ∃t ∈ {1, . . . , T − 1} : Var(Xt ) �=Var(Xt+1)

for a constant σ 2. Our test statistic is

QT (X) = max
1≤ j≤T

∣
∣
∣
∣
D̂

j√
T

([VarX ] j − [VarX ]T
)
∣
∣
∣
∣

(1)

where

[VarX ]l = 1

l

l
∑

t=1

X2
t −

(

1

l

l
∑

t=1

Xt

)2

=: X2
l − (

Xl
)2

is the empirical variance calculated from the first l observations. Furthermore,

D̂ =
((

1,−2XT
)

D̂1
(

1,−2XT
)′)−1/2

with

D̂1 = 1

T

T
∑

t=1

Ût Û
′
t + 2

T
∑

j=1

k

(
j

γT

)
1

T

T − j
∑

t=1

Ût Û
′
t+ j

and

Ûl =
(

X2
l − X2

T
Xl − XT

)

,

k(x) =
{

1 − |x |, |x | ≤ 1

0, otherwise
,

γT = √
T .

The scalar D̂ is needed for the asymptotic null distribution. It mainly captures the long-
run-dependence and the fluctuations resulting from estimating the expected value.
The test rejects the null hypothesis of constant variance if the empirical variances
fluctuate too much, as measured by
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max1≤ j≤T
∣
∣[VarX ] j − [VarX ]T

∣
∣, with the weighting factor j√

T
scaling down

deviations at the beginning of the sample where the [VarX ] j are more volatile.
The following technical assumptions are required for the limiting null distribution:

(A1) The sequence (Xt , t = 1, 2 . . .) is weak-sense stationary.
(A2) For

Ut =
(

X2
t − E(X2

1)

Xt − E(X1)

)

and S j := ∑ j
t=1 Ut , we have

lim
T →∞ E

(
1

T
ST S′

T

)

=: D1 is finite and positive definite.

(A3) The r -th absolute moments of the components of Ut are uniformly bounded for
some r > 2.

(A4) The sequence (Xt , t = 1, 2 . . .) is L2-NED (near-epoch dependent) with size
− r−1

r−2 , with r from (A3), and constants (ct ), t = 1, 2, . . . on a sequence (Vt ), t =
1, 2, . . ., which is α-mixing of size φ∗ := − r

r−2 , such that

ct ≤ 2
({

E|X2
t − E(X2

1)|2 + E|Xt − E(X1)|2
}) 1

2
.

Assumption (A4) guarantees that

U∗
t := (

X2
t , Xt

)′

is L2-NED with size 1
2 , see Davidson (1994). It could be modified to φ-mixing, requir-

ing only finite 4-th moments, but this would admit less serial dependence than we allow
here. In particular, assumption (A4) allows for GARCH-effects (see e.g. Hansen 1991
or Carrasco and Chen 2002), which are observed in financial data. Note that Assump-
tion (A1) is already partly fulfilled because we assume constant variances under the
null. The assumption of constant expected values is in line with Aue et al. (2009).

To investigate large sample properties, we make the transformation

QT (X) = sup
z∈[0,1]

∣
∣
∣
∣
D̂

τ(z)√
T

([VarX ]τ(z) − [VarX ]T
)
∣
∣
∣
∣

with τ(z) = [1 + z(T − 1)].
Theorem 2.1 Under H0 and Assumptions (A1)–(A4),

QT (X) → sup
z∈[0,1]

|B(z)|,

where B(z) is a one-dimensional Brownian Bridge.
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The limit distribution of QT (X) is well known, see Billingsley (1968), and its quantiles
provide an asymptotic test.

3 Local power

In this section, we analyze the local power properties of our test. Since the distribu-
tion of the time series now changes with T , we will deal with triangular arrays, i.e.
the random variables (Xt ), t ∈ Z, and (Vt ), t ∈ Z, from assumption (A4) form a
triangular array. However, we stick to the former notation for simplicity, i.e. (Xt ) :=
(Xt,T ), (Vt ) := (Vt,T ), t ∈ Z; T = 1, 2, . . ..

We replace assumption (A1) of weak-sense stationarity by

(A5) The sequence (Xt , t = 1, 2, . . .) fulfills all properties of weak-sense stationa-
rity except for E(X2

t ) = m2
x + 1√

T
g

( t
T

)

for a constant m2
x and a bounded

function g which can be approximated by step functions and which is not
identically 0 such that the function

z∫

0

g(u)du − z

1∫

0

g(u)du

is different from 0 for at least one z ∈ [0, 1].
A typical example for the function g would be a step function with a jump from 0 to g0
in a given point z0 which implies that the variance jumps at time [T · z0]. A piecewise
constant function g with multiple jumps would lead to multiple change points as in e.g.
Inoue (2001) and using a continuous function g would lead to continuously changing
variances. Such local alternatives are also considered in Ploberger and Krämer (1990)
who analyze local power properties of the CUSUM and CUSUM of squares test.

Theorem 3.1 Under Assumptions (A2)–(A5),

QT (X) → sup
z∈[0,1]

|B(z) + D(z)|,

where D(z) = C
(∫ z

0 g(u)du − z
∫ 1

0 g(u)du
)

and C is a positive constant which is

given in the Appendix.

D(z) is a deterministic function which depends on the specific form of the local alter-
native under consideration, characterized by g.

In combination with Anderson’s Lemma, Theorem 3.1 guarantees that the asymp-
totic power is always larger than or equal to α, see Andrews (1997), p. 1114.

The supremum is now taken over the absolute value of a Brownian Bridge plus a
deterministic function D(z). Its distribution is rather unwieldy, but it is possible to give
a more simple result for the rejection probability for large g. To this purpose, rewrite
assumption (A5) as g(z) = Mh(z) for a function h and a factor M . The function h
represents the structural form of the alternative, whereas M captures its amplitude.

123



D. Wied et al.

Corollary 3.2 Let Assumptions (A2)–(A5) be true with g(z) = Mh(z). Let PH1(M)

be the rejection probability for given M under the alternative and let ε > 0. Then
there is a M0 such that

lim
T →∞ PH1(M) > 1 − ε

for all M > M0.

This means that local rejection probabilities become arbitrarily large as structural
changes are increasing.

4 Finite sample behavior

In this section, we investigate the finite sample properties of our test. First, we ana-
lyze the size under fulfilled assumptions. Since Assumption (A3) is questionable in
financial data due to heavy tails (the third or fourth moment might not exist), we also
investigate the robustness against violations of this assumption. Next, we analyze the
power properties of the test.

Finally, we analyze the size properties in an online study, i.e. if we want to do
sequential testing by successively enlarging the data day-by-day. Theorem 2.1 shows
that the test asymptotically keeps the size if it is applied once. The additional question
here is how the size is affected in an online application if several tests are performed.

For the size analysis, we use an AR(1)-process with ρ = 0.1 and tν-distributed
innovations with expectation 0, variance σ 2 = 1 and different values of ν. The assump-
tions require ν > 4, but we also include smaller values of ν. Anyway, ν must be larger
than 2 so that the variance exists. We vary the length of the time series T , always use
5,000 replications and a nominal level of α = 1 and 5%, respectively. Tables 1 and 2

Table 1 Empirical size
(α = 1%)

T = 200 T = 500 T = 800 T =1,000

ν = 3 <0.001 <0.001 0.001 0.001

ν = 4 <0.001 0.001 0.003 0.001

ν = 5 0.001 0.001 0.002 0.002

ν = 8 0.001 0.002 0.002 0.003

ν = 20 0.001 0.003 0.004 0.005

Table 2 Empirical size
(α = 5%)

T = 200 T = 500 T = 800 T =1,000

ν = 3 0.009 0.011 0.018 0.014

ν = 4 0.014 0.021 0.020 0.021

ν = 5 0.016 0.019 0.023 0.027

ν = 8 0.015 0.023 0.028 0.029

ν = 20 0.019 0.025 0.031 0.040
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Table 3 Empirical power: the
variance is equal to σ 2

1 = 1 in
the first half of the sample and
equal to σ 2

2 in the second half
(α = 1%)

T = 200 T = 500 T = 800 T =1,000

σ 2
2 = 2 0.023 0.335 0.672 0.796

σ 2
2 = 4 0.202 0.879 0.969 0.982

σ 2
2 = 0.5 0.013 0.304 0.650 0.788

σ 2
2 = 0.25 0.151 0.872 0.966 0.979

Table 4 Empirical power: the
variance is equal to σ 2

1 = 1 in
the first half of the sample and
equal to σ 2

2 in the second half
(α = 5%)

T = 200 T = 500 T = 800 T =1,000

σ 2
2 = 2 0.262 0.718 0.896 0.939

σ 2
2 = 4 0.718 0.972 0.991 0.993

σ 2
2 = 0.5 0.216 0.682 0.886 0.931

σ 2
2 = 0.25 0.675 0.968 0.987 0.991

Table 5 Results for the online
detection

T = 200 T = 500 T = 800 T =1,000

α = 5% 0.140 0.228 0.270 0.294

α = 1% 0.008 0.016 0.022 0.026

give the results; we see that the test basically keeps the size, but is too conservative.
Nevertheless, the size increases for increasing T and increasing ν, although it seems
that there are convergence problems for ν ≤ 4.

The setup for the power analysis is the same as before with the only difference that
the variance jumps from σ 2

1 = 1 to different values of σ 2
2 in the middle of the time

series. The choices of σ 2
2 are quite realistic because volatilities vary a lot in practice

(see, e.g., Bissantz et al. 2011). We consider different amounts of increasing as well as
decreasing variances. We use t5-distributed innovations. The results are written down
in Tables 3 and 4, it is especially seen that the power increases with T .

For the online setup, we generate time series of length T with again AR(1)-process
with ρ = 0.1, t5-distributed innovations, variance 1 and the nominal levels α = 5%
and α = 1%. We perform tests in a sequential way, i.e. we first apply the test on the
first 20-th data point (see the application section for a discussion of this choice), then
on the 21-st data point and so on. The final test statistic is given by the maximum over
all T − 20 + 1 test statistics. Table 5 gives the empirical size in this setup. We see
that the actual size increases in T and is higher than the nominal levels (especially
for α = 5%), but that it is still controlled, i.e. it does not reach 1. Nevertheless, the
empirical size for α = 5% seems to be too high for practical investigations. Hence,
it would be worthwhile to implement an theoretical analysis about this issue to adjust
the overall size to a given α using ideas of Chu et al. (1996), but this lies beyond the
scope of the present paper. The overall size for α = 1% is still acceptable for practical
applications.
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5 Applications

5.1 Historical rejection dates

In order to evaluate the quality of the test it is applied to several assets: two stock indi-
ces (S&P 500, DAX), a commodity index (CRB Spot Index) and a government bond
index (REX), using daily data (final quote) for the time span 01.01.1988–01.04.2010.
The procedure for the test is as follows. We start at the 20-th available data point and
increase the period of time successively for 1 day. The choice of the starting point is
due to the fact that approximately 20 data points are required for a reliable estima-
tion of the volatility. For each of these time intervals the test is applied for α = 1%.
This procedure is successively performed until the tests rejects the null hypothesis of
constant volatility. If this is the case, the 20-th day after rejection is the new starting
point and the procedure is repeated for the remaining time span. We have to wait
these 20 days as the volatility cannot be assumed to be constant anymore, if the null
hypothesis is rejected. A new reliable estimation requires another 20 data points after
the point in time, where the volatility changed. Otherwise, the estimator would be
biased as data of two different phases were mixed.

Table 6 includes the rejection dates of the null hypothesis for α = 1%. There are
not too many break points detected, which coincides with our simulation study stating
that there are no serious overrejection problems for α = 1%.

The results seem to be reasonable. For example, the rejection dates coincide with
the Asian financial crisis in 1997, the LTCM collapse and the ruble crisis in 1998, the
beginning of the war on Iraq in 2003, the bursting of the U.S. real estate bubble in
2007 or the Lehman bankruptcy in 2008.

Besides, large differences of the market parameters between the break points can
be observed. Figure 1 and Table 7 illustrate this phenomenon for the DAX. Table
7 includes the annualized market parameters (returns and volatilites) for the respec-
tive period between two structural breaks. Figure 1 shows the average and the rolling
250-day volatility of the DAX. Besides, the rejection dates are given for α = 1%.

5.2 A trading strategy

The results above show that changes in market parameters can be detected reasonably
for α = 1%. In order to derive a trading strategy, which is based on the proposed

Table 6 Rejection dates
(α = 1%)

S&P DAX REX CRB

02.12.1993 29.01.1988 10.10.1994 17.11.1998

27.03.1997 12.07.1989 18.03.2009 29.05.2009

15.08.2005 04.10.1994 26.06.2009

11.12.2007 21.10.1997

01.12.2008 24.03.2003

10.09.2009 23.12.2004

06.10.2008
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Fig. 1 Volatility and structural breaks of the DAX

Table 7 Rejection dates and
annualized market parameters
(α = 1%)

DAX Returns (%) Volatilities (%)

29.01.1988–12.07.1989 31.91 14.33

12.07.1989–04.10.1994 5.28 19.06

04.10.1994–21.10.1997 21.93 15.18

21.10.1997–24.03.2003 −7.03 29.92

24.03.2003–23.12.2004 24.35 21.21

23.12.2004–06.10.2008 7.91 16.89

06.10.2008–01.04.2010 4.70 34.28

test, we perform an out of sample study. In this study, we investigate a simple strategy
which applies the proposed test.

The strategy is as follows. The available time span since the last detected change
in volatility is used to calculate the historical return which is used as an estimator for
the future. Moreover, an asset is allowed to be bought if at least 20 days have passed
since the last structural break. Finally, the capital is equally distributed between all
assets with positive expected future return.

Portfolio shiftings are done the day after the test rejected in order to design the
study realistic. We choose α = 1% for the test and neglect transaction costs. Besides,
we assume daily rebalancing and neglect currency fluctuations.

The results can be found in Fig. 2 and Table 8.
The average return of the strategy is 1.06% higher than the average of the underly-

ing assets. The volatility is lower, both compared to the arithmetic mean of all asset
volatilities (30.27%) and compared to the volatility of the naive portfolio in which
diversification effects are included (3.55%). Moreover, the portfolio development is
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Fig. 2 Strategy and underlying assets

Table 8 Summary statistics for all indices and our strategy

Strategy (%) CRB (%) REX (%) DAX (%) S&P (%) Naive strategy (%)

Return p.a. 5.74 2.23 5.76 8.09 6.62 5.68

Volatility p.a. 8.77 6.51 3.30 22.65 17.84 9.09

relatively stable and only a little money is lost during financial crisis. This result is
very remarkable as three risky assets are considered throughout the study.

6 Summary

In this paper, we introduced and proved a new test to determine whether variances of
time series are constant over time. Thereby, the test statistic is a suitably standardized
maximum of cumulative first and second moments. We applied the test to several time
series of assets which are relevant for applications in finance and found that the test
performs well in these applications. The market parameters fluctuate a lot comparing
the different periods between structural breaks.

Moreover, we derived a simple trading strategy, which outperforms a strategy based
on equal portfolio weights. More precisely, the return increased by 1.06% while at
the same time the volatility decreased. This is remarkable because the trading strat-
egy is very simple. We believe that refinements of the strategy will lead to further
improvements. This topic will be in focus of our ongoing research.

Apart from such refinements, there are other aspects which might be worth inves-
tigating in the future.

The test statistic (1) is the supremum over the [VarX ] j -series. Alternatively, other
functionals are likewise possible, such as some standardized version of
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max
1≤ j≤T

([VarX ] j − [VarX ]T
) − min

1≤ j≤T

([VarX ] j − [VarX ]T
)

,

or simply some suitable average (see Krämer and Schotman 1992, or Ploberger and
Krämer 1992). Another interesting topic would be a detailed discussion of the change
point locations. A CUSUM test for retrospective break detection always yields a natu-
ral estimator of the (dominating) change point in a given time series, if the test rejects
the null hypothesis. In our case, it is the point where the weighted differences of the
variances are maximal, i.e.

argmax1≤ j≤T

∣
∣
∣
∣
D̂

j√
T

([VarX ] j − [VarX ]T
)
∣
∣
∣
∣
. (2)

It might be an interesting question for future work, if one obtains different change
point locations with such a retrospective analysis.

Acknowledgments Support from Deutsche Forschungsgemeinschaft (SFB 823, projects A1 and C4) is
gratefully acknowledged. We would also like to thank two unknown referees for their helpful comments,
which led to a substantial improvement of an earlier version of this paper.

Appendix: Proofs

A.1 Main proofs

For the proof of Theorem 2.1 and 3.1, we need some lemmas and some notation: Let
I be some index set, e.g. I = [ε, 1] for some ε ∈ [0, 1). For an integer k ≥ 1, let
l∞(I, R

k) be the set of all bounded functions θ : I → R
k , equipped with supremum

norm

||θ ||∞ := sup
i∈I

||θ(i)||,

where || · || denotes Euclidean norm.
At first, we consider the behavior under the null hypothesis, i.e. we prove

Theorem 2.1.

Lemma A.1 Under H0 and Assumptions (A1)–(A4), in l∞([0, 1], R),

D̂
τ(·)√

T

(

[VarX ]τ(·) − σ 2
)

→d W1(·)

where σ 2 = E(X2
1) − (E(X1))

2 and W1(z) is a one-dimensional Brownian Motion.

Note that Lemma A.1 gives a result about convergence on the interval [0, 1]. It requires
the following auxiliary lemma which differs from Lemma A.1 by considering the inter-
val [ε, 1] for arbitrary ε > 0.

Lemma A.2 Under H0 and Assumptions (A1)–(A4), for arbitrary ε > 0, in
l∞([ε, 1], R),
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D̂
τ(·)√

T

(

[VarX ]τ(·) − σ 2
)

→d W1(·)

where σ 2 = E(X2
1) − (E(X1))

2 and W1(z) is a one-dimensional Brownian Motion.

Lemma A.2 is proved with a basic theorem on a modified functional delta method
given in Subsect. A.2 which is also used in Wied et al. (2011). This method is only

applicable on the interval [ε, 1] and not on [0, 1], because supz∈[ε,1]
∣
∣
∣

√
T

τ(z)

∣
∣
∣ → 0, while

supz∈[0,1]
∣
∣
∣

√
T

τ(z)

∣
∣
∣ → ∞.

Proof of Lemma A.2 For

Ut =
(

X2
t − E(X2

1)

Xt − E(X1)

)

we get with a common multivariate invariance principle, in l∞([ε, 1], R),

1√
T

τ(·)
∑

t=1

Ut = τ(·)√
T

(

X2
τ(·) − E(X2

1)

Xτ(·) − E(X1)

)

→d D1/2
1 W2(·).

Here, W2(z) is a two-dimensional Brownian Motion with independent components
and D1 = E(U1U ′

1) + 2
∑∞

j=1 E(U1U ′
1+ j ).

Applying Theorem A.5 with the function f : R
2 → R, f (x, y) = x − y2, yields

τ(·)√
T

(

X2
τ(·) − (

Xτ(·)
)2 − σ 2

)

→d
(

1 −2E(X1)
)

D1/2
1 W2(·) =: B W2(·)

resp.

τ(·)√
T

(

[VarX ]τ(·) − σ 2
)

→d (B B ′)1/2W1(·).

The lemma then follows with the continuous mapping theorem and the fact that
D1 can be consistently estimated with a kernel estimator from Davidson and de Jong
(2000). �
Proof of Lemma A.1 With WT (z) = D̂ τ(z)√

T

([VarX ]τ(z) − σ 2
)

, let

W ε
T (z) =

{

WT (z), z ≥ ε

0 z < ε
,

W ε(z) =
{

W1(z), z ≥ ε

0 z < ε
.
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Lemma A.2 implies that

W ε
T (·) →d W ε(·)

in l∞([0, 1], R) and also

W ε(·) →d W1(·)

for rational ε → 0 in l∞([0, 1], R).
The convergence of WT (·) in l∞([0, 1], R) follows with Theorem 4.2 in Billingsley

(1968) if we can show that

lim
ε→0

lim sup
T →∞

P( sup
z∈[0,1]

|W ε
T (z)−WT (z)| ≥ η)= lim

ε→0
lim sup

T →∞
P( sup

z∈[0,ε]
|WT (z)| ≥ η)=0

for all η > 0.
For this, note that

WT (z) = D̂
τ(z)√

T

(

X2
τ(z) − E(X2

1)
)

− D̂
τ(z)√

T

((

Xτ(z)
)2 − (E(X1))

2
)

= D̂
τ(z)√

T

(

X2
τ(z) − E(X2

1)
)

− D̂
τ(z)√

T

(

Xτ(z) − E(X1)
) (

Xτ(z) + E(X1)
)

.

We can deduce that

lim sup
T →∞

P( sup
z∈[0,ε]

|WT (z)| ≥ η) ≤ P( sup
z∈[0,ε]

C1|W ∗
1 (z)| ≥ η)

+ P( sup
z∈[0,ε]

C2|W ∗∗
1 (z)| ≥ η),

where C1 and C2 are two constants and W ∗
1 (z) and W ∗∗

1 (z) are two Brownian motions,
respectively. This sum becomes arbitrarily small for ε → 0 and so the lemma is
proved. �
Proof of Theorem 2.1 We have

D̂
τ(z)√

T

([VarX ]τ(z) − [VarX ]T
)

= D̂
τ(z)√

T

(

[VarX ]τ(z) − σ 2
)

+ D̂
τ(z)√

T

(

σ 2 − [VarX ]T

)

= D̂
τ(z)√

T

(

[VarX ]τ(z) − σ 2
)

− τ(z)

T
D̂

τ(1)√
T

(

[VarX ]τ(1) − σ 2
)

and thus get

D̂
τ(·)√

T

([VarX ]τ(·) − [VarX ]T
) →d A(·)
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with A(z) = W1(z)−zW1(1). This is a representation of a one-dimensional Brownian
Bridge. Now, the theorem follows with the continuous mapping theorem. �
We now prove Theorem 3.1 for the local power properties with essentially the same
techniques as Theorem 2.1.

Lemma A.3 Under Assumptions (A2)–(A5), in l∞([0, 1], R),

D̂
τ(·)√

T

(

[VarX ]τ(·) − σ 2
)

→d W1(·) + D∗(·)

where σ 2 = m2
x − (E(X1))

2, W1(z) is a one-dimensional Brownian Motion and

D∗(z) = C

z∫

0

g(u)du

with a positive constant C.

Lemma A.3 requires

Lemma A.4 Under Assumptions (A2)–(A5), for arbitrary ε > 0, in l∞([ε, 1], R),

D̂
τ(·)√

T

(

[VarX ]τ(·) − σ 2
)

→d W1(·) + D∗(·)

where σ 2 = m2
x −(E(X1))

2, W1(z) is a one-dimensional Brownian Motion and D∗(z)
is the same as in Lemma A.3.

Proof of Lemma A.4 For

Ut =
(

X2
t − m2

x − g
( t

T

)

Xt − E(X1)

)

we get as above in Lemma A.4

1√
T

τ(·)
∑

t=1

Ut = τ(·)√
T

(

X2
τ(·) − m2

x

Xτ(·) − E(X1)

)

−
(

1
T

∑τ(·)
t=1 g

( t
T

)

0

)

→d D1/2
1 W2(·).

Another application of the modified functional delta method yields with B =
(

1 −2E(X1)
)

D1/2
1 and D1 from Assumption (A2)

τ(·)√
T

(

[VarX ]τ(·) − σ 2
)

→d (B B ′)1/2W1(·) +
·∫

0

g(u)du.
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The continuous mapping theorem yields

D̂
τ(·)√

T

(

[VarX ]τ(·) − σ 2
)

→d W1(·) + (B B ′)−1/2

·∫

0

g(u)du

which completes the proof with C := (B B ′)−1/2. �
Proof of Lemma A.3 The proof is analogous to the proof of Lemma A.1 with

WT (z) = D̂
τ(z)√

T

(

X2
τ(z) − m2

x

)

− D̂
τ(z)√

T

((

Xτ(z)
)2 − (E(X1))

2
)

.

�
Proof of Theorem 3.1 The proof is analogous to the proof of Theorem 2.1. �
Proof of Corollary 3.2 We have

QT (X) →d sup
z∈[0,1]

|B(z) + M D(z)| = M

∣
∣
∣
∣

B(z)

M
+ D(z)

∣
∣
∣
∣
,

where D(z) �= 0 for at least one z. Hence,

M

∣
∣
∣
∣

B(z)

M
+ D(z)

∣
∣
∣
∣
≥ M R

for a continuously distributed random variable R which is almost surely positive. So
the test statistic becomes arbitrary large, in particular, larger than every quantile of the
asymptotic distribution under the null hypothesis. �

A.2 Modified functional delta method

Theorem A.5 Consider a sequence (θT )T of functions in l∞(I, R
k) converging uni-

formly to a function θ ∈ l∞(I, R
k). Furthermore, let (sT )T be a sequence of functions

sT : I → R\{0} such that ||s−1
T ||∞ → 0, and let (MT )T be a stochastic processes on

I with values in R
k and bounded sample paths such that

||ZT ||∞ = Op(1) with ZT := sT (MT − θT ).

Furthermore, let f : R
k → R

l be a mapping which is continuously differentiable on
an open set  ⊂ R

k with derivative D f . Suppose that

θ(I ) is a compact subset of ,

where θ(I ) stands for the closure of the set {θ(i) : i ∈ I } in R
k . Then it holds
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1. sT (·) ( f (MT (·)) − f (θT (·))) = D f (θ(·))ZT (·) + RT

with a stochastic process such that

||RT ||∞ = op(1).

2. If ZT even converges in distribution (in l∞(I, R
k)) to a stochastic process Z, then

sT (·) ( f (MT (·)) − f (θT (·))) →d D f (θ(·))Z(·).

Proof Assertion 2 directly follows from Assertion 1 with the usual continuous map-
ping theorem.

To prove the expansion from Assertion 1, note that for any i ∈ I ,

RT (i) := sT (i) ( f (MT (i)) − f (θT (i))) − D f (θ(i))ZT (i)

= sT (i)
(

f
(

θT (i) + s−1
T (i)ZT (i)

)

− f (θT (i))
)

− D f (θ(i))ZT (i)

=
1∫

0

D f
(

θT (i) + us−1
T (i)ZT (i)

)

ZT (i)du − D f (θ(i))ZT (i)

=
1∫

0

(

D f
(

θT (i) + us−1
T (i)ZT (i)

)

− D f (θ(i))
)

du · ZT (i), (3)

provided that

rn := ||θT − θ ||∞ + ||s−1
T ||∞||ZT ||∞ = op(1)

is smaller than

ρ := inf
x∈θ(I ),y∈Rk\

||x − y|| > 0.

The latter condition is needed such that (3) is well defined.
Hence

||RT ||∞ ≤ sup
{

||D f (y) − D f (x)|| : x ∈ θ(I ), y ∈ R
k, ||y − x || ≤ rT

}

· ||ZT ||∞.

(4)

Here ||D f (y) − D f (x)|| is the usual operator norm of the matrix D f (y) − D f (x) in
case of y ∈ . (In case of y /∈  define ||D f (y) − D f (x)|| = ∞.) One can easily
deduce from continuity of D f (·) on , compactness of θ(I ) ∈  and rT = op(1)

that the right hand side of (4) converges to zero in probability. �
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