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Abstract Bootstrap methods for sequential change-point detection procedures in
linear regression models are proposed. The corresponding monitoring procedures are
designed to control the overall significance level. The bootstrap critical values are
updated constantly by including new observations obtained from the monitoring. The
theoretical properties of these sequential bootstrap procedures are investigated, show-
ing their asymptotic validity. Bootstrap and asymptotic methods are compared in a
simulation study, showing that the studentized bootstrap tests hold the overall level
better especially for small historic sample sizes while having a comparable power and
run length.
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1 Introduction

In recent years an increasing number of data sets are collected automatically and with-
out significant costs in such a way that the observations arrive steadily. Examples
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674 M. Hušková, C. Kirch

include financial data sets e.g. in risk management (Andreou and Ghysels 2006)
or CAPM models (Aue et al. 2009) as well as medical data sets e.g. monitoring
intensive care patients (Fried and Imhoff 2004). More applications can be found in
different areas of applied statistics. With each new observation the question arises
whether the model is still capable of explaining the data. If this is not the case
an alarm needs to be raised, for example the financial models may not be appro-
priate anymore or the condition of the patient in intensive medical care may have
changed.

The consideration of such data sets leads to sequential statistical analysis, which is
sometimes also called on-line monitoring. Model parameters are estimated from a his-
toric data set without change before monitoring starts. Similarly to classical statistical
analysis the sequential tests we are interested in control the overall significance level
of the monitoring procedure. Asymptotic critical values are obtained by letting the
size of the historic data set go to infinity. In previous papers (Chu et al. 1996; Horváth
et al. 2004) monitoring is assumed to continue for infinity (open-end procedure) if no
alarm is raised. Since it is more realistic in many situations that monitoring is stopped
after a finite time horizon even if no change is detected (closed-end procedure), we
generalize their results to include this case. Using the critical values from the open-end
procedure for a closed-end procedure distorts the size of the test resulting in a loss of
power.

Frequently, asymptotic tests perform unsatisfactory for small sample sizes due
to a slow convergence to the limit distribution, which may not even be known
explicitly. This lead to the development of permutation and bootstrap tests, which
usually work better for small samples. For a thorough introduction we refer to
Good (2005). In change-point analysis permutation methods were first suggested
by Antoch and Hušková (2001) and later pursued by others (for a recent sur-
vey confer Hušková 2004). Berkes et al. (2004) showed that the bootstrap pro-
vides better approximations for the critical values than asymptotics in a number
of change-point situations. All of those papers, however, deal with the classical
situation, where the complete data set has been observed before conducting the
test.

In this paper, we develop variations of bootstrap methods for linear regression mod-
els that are suitable in a sequential setting. The bootstrap estimate for the critical value
is updated with every new observation leading to an improvement as more observa-
tions are being used. From a practical point of view the update step should include
all available information but still be computationally fast. From a theoretical point of
view the influence of time-varying critical values on the asymptotic size and power of
the test needs to be checked.

The literature on bootstrapping methods for sequential tests is very scarce. Steland
(2006) used a bootstrap in a sequential unit-root test and Kirch (2008) explored sev-
eral possibilities of sequential bootstrapping for the detection of mean changes in i.i.d.
data. As in classical statistics, those sequential bootstrap tests behave better for small
historic sample sizes than the corresponding asymptotic tests.

In this paper we use the same approach to sequential bootstrapping but some addi-
tional problems arise due to the more complicated data structure. We focus on the
linear regression model
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Bootstrapping sequential change-point tests for linear regression 675

y(i) = x(i)T β i,m + e(i), i ≥ 1, (1)

where x(i) is a p×1 random vector and β i,m is a p×1 vector. Furthermore we assume
that the error sequence is i.i.d. and independent of the regressors. However, the pro-
posed version of the bootstrap can be extended to other sequential setups including
regression models for dependent data or nonlinear models in a similar fashion as the
bootstrap can be extended to such settings in a classical off-line model.

Model estimation is based on a historic sequence of observations, where one
assumes that no change in the regression coefficient has occurred, i.e.

β i,m = β0, 1 ≤ i ≤ m. (2)

Now we are interested in testing the null hypothesis of no change in the monitoring
period

H0 : β i,m = β0, m < i < m + Tm + 1 (3)

against the alternative of a change in the regression coefficient

H1 : there is a k◦
m ≥ 1 such that β i,m = β0, m < i ≤ m + k◦

m

and β i,m = β0
m �= β0, m + k◦

m < i < m + Tm + 1.
(4)

Tm is the observation horizon which can be finite or infinite but has to converge to
infinity with m. The values of β0,β

0
m and k◦

m are not known.
We allow the regression coefficient after the change-point β i,m, i ≥ m + k◦

m , to
depend on m in order to cover both fixed as well as local alternatives, for which
dm := β0

m − β0 → 0 as m → ∞ at a certain rate.
The test is based on the following statistic

�(m, k, γ ) =
∑

m<i≤m+k

(
y(i) − x(i)T β̂m

)
/g(m, k, γ ),

where g(m, k, γ ) = m1/2
(

1 + k

m

) (
k

m + k

)γ
(5)

for 0 ≤ γ < 1/2 and

β̂m = C−1
m

m∑

j=1

x( j)y( j), where Cm =
m∑

i=1

x(i)x(i)T ,

is the least squares estimator of the regression coefficient based on the historic data
set y(1), . . . , y(m). The statistic is then given by

1

σ̂m
sup

1≤k<Tm+1
|�(m, k, γ )| ,
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where Tm/m → ∞, Tm/m → N > 0, as m → ∞ (closed-end procedure), or
Tm = ∞ (open-end procedure) and σ̂ 2

m − σ 2 = oP (1) is a consistent estimator of
σ 2 only depending on the historic data set. In the simulations we use

σ̂ 2
m = 1

m − p

m∑

i=1

(
y(i) − x(i)T β̂m

)2
. (6)

The null hypothesis is rejected at the following stopping time

τ(m) =
{

inf{1 ≤ k < Tm + 1 : 1
σ̂m

|�(m, k, γ )| ≥ c},
∞, if 1

σ̂m
|�(m, k, γ )| < c for all 1 ≤ k < Tm + 1,

(7)

where c is chosen in such a way that the false alarm rate is controlled, i.e. under the
null hypothesis

lim
m→∞ P(τ (m) < ∞) = α (8)

for some given level 0 < α < 1. This shows that the monitoring procedure keeps
the overall significance level α asymptotically as in classical test theory. Under the
alternative H1 we require that

lim
m→∞ P(τ (m) < ∞) = 1, (9)

in other words, the test has asymptotic power one.
The paper is organized as follows: In Sect. 2 some known results on the limit behav-

ior of the test statistic under the null as well as alternative hypotheses are summarized
and extended. In Sect. 3 the so called regression bootstrap is introduced in a sequential
setting and its asymptotic equivalence to the asymptotic procedure shown. This proves
the validity of the sequential bootstrap in this setting. In Sect. 4 a second type of boot-
strap used in linear regression namely the pair bootstrap is introduced in this sequential
setting and corresponding results are obtained. In Sect. 5 some simulations illustrate
the usefulness of the bootstrap methods. Finally the proofs are given in Sects. 6 and 7
for the regression and pair bootstrap, respectively.

2 Assumptions and limit behavior of the test statistic

In this section we formulate the required assumptions and consider the limit behav-
ior of the monitoring procedure. For the open-end procedure those results under the
null hypothesis as well as under fixed alternatives were obtained by Horváth et al.
(2004). Here, we also allow for local changes and explicitly consider the asymptotics
for the closed-end procedure which is very important for the consideration of boot-
strap results, where statistics can only be calculated as closed-end approximations to
possible open-end procedures.

We consider model (1) satisfying the following assumptions:
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Bootstrapping sequential change-point tests for linear regression 677

Assumption A.1 We assume that the sequence of vectors of regressors {x(i)} and
the sequence of random errors {e(i)} satisfy

(i) {e(i) : 1 ≤ i < ∞} are independent identically distributed (i.i.d.) random
variables with

E e(i) = 0, 0 < var e(i) = σ 2, E |e(i)|ν < ∞ for some ν > 2,

(ii) for the sequence of vectors {x(i) = (1, x2(i), . . . , x p(i))T : 1 ≤ i < ∞}
there exists a positive definite matrix C and a constant 0 < ρ ≤ 1/2 such that

∥∥∥∥∥
1

n

n∑

i=1

x(i)x(i)T − C

∥∥∥∥∥
∞

= O(n−ρ) a.s.,

where ‖ · ‖∞ denotes the maximum norm of matrices,
(iii) the sequences {e(i) : 1 ≤ i < ∞} and {x(i) : 1 ≤ i < ∞} are independent,
(iv) 0 ≤ γ < ρ.

Horváth et al. (2004) proved the following asymptotics for the open-end procedure
under the null distribution (i.e. (2) and (3)) if Assumption A.1 holds:

lim
m→∞ P

(
sup

1≤k<∞
|�(m, k, γ )|

σ̂m
≤ y

)
= P

(
sup

0≤t≤1

|W (t)|
tγ

≤ y

)
(10)

for all y ∈ R, where {W (t) : 0 ≤ t < ∞} denotes a Wiener process. The explicit form
of the limit distribution is known explicitly only for γ = 0 and has to be simulated
otherwise. Using quantiles of the limit distribution as critical values c in (7) ensures
that (8) holds, i.e. the corresponding asymptotic open-end-test controls the overall
false-rejection rate.

We now consider the closed-end procedure with

Assumption A.2 Tm < ∞ with limm→∞ Tm/m = N for some 0 < N < ∞ or
limm→∞ Tm/m = ∞.

Under this assumption a slight modification of the proof of the above results shows
that it holds for all y ∈ R as m → ∞

P

(
sup

1≤k<Tm+1

|�(m, k, γ )|
σ̂m

≤ y

)

= P

(
sup

1≤k<Tm+1

|W1(k/m) − k/mW2(1)|
(1 + k/m)(k/(k + m))γ

≤ y

)
+ oP (1), (11)

where {W1(·)}, {W2(·)} are independent Wiener processes.
Going through the proof of Theorem 2.1 in Horváth et al. (2004), the following

result can be seen: The distribution of the right hand side of (11) converges to the
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same limit as given in (10) if Tm/m → ∞ and it converges to the distribution of

sup
0≤t≤N/(N+1)

|W (t)|
tγ

if Tm/m → N . Again the distribution on the right hand side of (11) is not explicitly
known and needs to be simulated. Simulations concerning the location model in Kirch
(2008) show that this distribution is very close to the one in (10) if N ≥ 10. However,
for a smaller observation horizon it is not recommendable to use critical values from
the distribution in (10) (for a detailed discussion we refer to Kirch 2008).

Using the quantiles of the distribution on the right hand side of (11) as critical value
c in (7) guarantees that (8) holds. The corresponding monitoring procedure will be
called asymptotic closed-end procedure.

In the next sections we explore possibilities of obtaining critical values using boot-
strap methods.

For the asymptotic open-end procedure for fixed alternatives, where β0
m = β0 and

cT
1 (β0 − β0) �= 0 (c1 is the first column of C) Horváth et al. (2004) have proven that

1

σ̂m
sup

1≤k<∞
|�(m, k, γ )| P−→ ∞. (12)

This shows that the corresponding monitoring procedure has asymptotic power one,
i.e. fulfills (9). Their proofs can be extended to the class of alternatives fulfilling

k◦
m = O(m), lim

m→∞
√

m|cT
1 dm | = ∞, (13)

where dm = β0
m − β0, which includes certain local alternatives.

Furthermore, their result can be extended to the closed-end procedure if additionally
lim supm→∞ k◦

m/m < N , where N = limm→∞ Tm/m.
For open-end procedures corresponding results have also been proven in a more

general setup including e.g. heteroscedastic errors, cf. Aue et al. (2006). Bootstrap
methods for this more general situation can in principle also be developed, however
the proofs would become much more complex and even less transparent.

Furthermore, a different class of test statistics based on L1 estimators and related
partial sums of residuals instead of the corresponding L2 procedures above has been
considered by Hušková and Koubková (2005), Hušková and Koubková (2006) and
Koubková (2008).

The test based on the test statistic (5) is only consistent under (13) which is quite
restrictive, as essentially the change needs to imply a mean change of y(·). Hušková
and Koubková (2005) introduced test procedures based on quadratic forms of weighted
partial sums of residuals, which yield consistent tests for all fixed alternatives removing
the restriction cT

1 (β0 − β0) �= 0.
Extensions of the bootstrapping techniques developed in this paper to these test

statistics and more general setups are in principle possible but quite technical and will
be considered elsewhere.
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Bootstrapping sequential change-point tests for linear regression 679

3 Regression bootstrap

In linear regression there are essentially two main approaches to bootstrapping, namely
the regression or fixed design bootstrap and the pair bootstrap. We will use the index
R for the regression bootstrap and the index P for the pair bootstrap. We begin with
the discussion of the regression bootstrap in a sequential setup and will consider the
pair bootstrap in the next section.

The general idea of the regression bootstrap is to resample the estimated residuals
but keep the regressors in their original order. As a result, in the bootstrap world one
deals with a regression with a fixed design rather than a stochastic one. In a sequential
setup the additional problem arises that future regressors are not known yet.

To understand the bootstrap statistic, observe that under the null hypothesis as well
as for 	 ≤ k◦

m under the alternative

y(	) − x(	)T C−1
m

m∑

j=1

y( j)x( j) = e(	) − x(	)T C−1
m

m∑

j=1

e( j)x( j). (14)

Thus

�(m, 	, γ ) =
⎛

⎝
m+	∑

i=m+1

e(i) −
m+	∑

i=m+1

x(i)T C−1
m

m∑

j=1

x( j)e( j)

⎞

⎠ /g(m, 	, γ ). (15)

This is the version we will use in the bootstrap as its distribution is equal to the null
distribution which is the one that needs to be approximated by the bootstrap.

The general idea in sequential bootstrapping is to repeat the bootstrap procedure at
several times during the monitoring in order to incorporate the increased knowledge
obtained from the additional observations.

Suppose that m +k observations have been taken (including the m from the historic
data set) and the null hypothesis has not been rejected yet. Based on those m +k obser-
vations (y(i), x(i)), i = 1, . . . , m + k, a bootstrap statistic can now be constructed in
the following way:
First, replace e(i) in the formula on the right hand side of (15) by the bootstrap esti-
mates e∗

m,k(i) below and keep x(i) for 1 ≤ i ≤ k + m.
The test statistic sup1≤	<Tm+1 |�(m, 	, γ )| (with �(m, 	, γ ) as on the right-hand

side of (15)) depends additionally on the future regressors x(	), 	 ≥ k, which have
not been observed yet (at least in the more interesting case of a random design). More
precisely it depends on the term

∑m+	
i=m+1 x(i)T which contains unknown regressors if

	 > k. In order to use as much information as possible and still be close to the original
statistic (also in the situation where k is very small), we propose to replace this term
by c1(m, k, 	) below. Different choices are possible as long as they fulfill Lemma 1
b) as well as

c1(m, k, 	)T (1, 0, . . . , 0)T = 1.
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680 M. Hušková, C. Kirch

To sum up, for the calculation of bootstrap critical values we propose to use
sup1≤	<Tm+1 |�̃(m, 	, γ )| where

�̃(m, 	, γ )(e(1), . . . , e(m + 	))

=
⎛

⎝
m+	∑

i=m+1

e(i) − c1(m, k, 	)T C−1
m

m∑

j=1

x( j)e( j)

⎞

⎠
/

g(m, 	, γ ),

with c1(m, k, 	) =

⎧
⎪⎨

⎪⎩

∑m+	
i=m+1 x(i), 	 ≤ k,∑m+k
i=m+k−	+1 x(i), k < 	 < k + m,

	
m+k

∑m+k
i=1 x(i), 	 ≥ m + k.

(16)

for 1 ≤ 	 < Tm + 1. Let the bootstrap errors be defined by

e∗
m,k(i) = êm,k(Um,k(i)), where êm,k( j) = y( j) − x( j)T β̂m+k, (17)

i = 1, . . . , m + Tm, j = 1, . . . , m + k, where {Um,k(i) : 1 ≤ i ≤ m + Tm} are
i.i.d. random variables with P(Um,k(1) = j) = 1/(m + k), j = 1, . . . , m + k,
independent of {y(i) : 1 ≤ i ≤ m + Tm} and {x(i) : 1 ≤ i ≤ m + Tm}. By
P∗

m,k, E∗
m,k, var∗m,k etc. we denote the conditional probability, expectation, variance etc.

given {(y(i), x(i)T ) : 1 ≤ i ≤ m+k}, i.e. with respect to {Um,k(i) : 1 ≤ i ≤ m+Tm}.
Now, we are ready to discuss the sequential bootstrap more precisely. A first idea

is to calculate critical values at time m + k based on the distribution P∗
m,k , i.e. based

on the quantiles of

F (R∗)
m,k (x) = P∗

m,k

[
1

σ̂
(R∗)
m,k

sup
1≤	<Tm+1

∣∣�̃(m, 	, γ )(e∗
m,k(1), . . . , e∗

m,k(m + 	))
∣∣ ≤ x

]
,

where by (14)

(
σ̂

(R∗)
m,k

)2 = 1

m − p

m∑

i=1

⎛

⎝e∗
m,k(i) − x(i)T C−1

m

m∑

j=1

x( j)e∗
m,k( j)

⎞

⎠
2

(18)

is the bootstrap version of (6).
However, it is often computationally too expensive to generate new bootstrap sam-

ples after each new incoming observation in the above way and calculate the critical
values based on these.

Therefore, we follow an approach by Steland (2006), that has also proven to work
well in Kirch (2008). The idea is that only the older bootstrap samples do not represent
the current data well enough whereas the newer ones are still reasonably good.

We apply two modifications to reduce computation time significantly. First, we cal-
culate new critical values only after each Lth observation. Secondly, and maybe even
more importantly, we use a convex combination of the latest M bootstrap distributions.
Thus, in applications an empirical distribution function not only based on the newest
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Bootstrapping sequential change-point tests for linear regression 681

bootstrap samples but also on older samples is used. As a result only a fraction of
the bootstrap samples need to be generated each time the critical values are updated:
e.g. for αi = 1/M below, only t1 = t/M new samples are needed in each update
to calculate the empirical quantiles based on t samples. Therefore, the procedure is
significantly accelerated even if critical values are updated after each new observation
(L = 1). Let for j ≥ 1,

∑M−1
i=0 αi = 1 and αi ≥ 0

F̃ (R)
m,k =

M−1∑

i=0

αi F (R∗)
m,max(( j−i) L ,0), for k = j L , . . . , ( j + 1)L − 1.

Then, the bootstrap critical values c(R)
m,k at time k + m are obtained as follows

F̃ (R)
m,k (c(R)

m,k) ≥ 1 − α, (19)

c(R)
m,k minimal.

For the simulations in this paper we use the convex combinations with equal weights
αi = 1

M , L = m/5 and M = 5. Consequently, after monitoring for m observations
the bootstrap samples have been completely replaced.

Now we are ready to state the main theorem of this section:

Theorem 1 Let (1), Assumption A.1 and A.2 hold true. Then it holds as m → ∞
a) under the null hypothesis,

P

(
1

σ̂m
sup

1≤k<Tm+1

|�(m, k, γ )|
c(R)

m,k

> 1

)
→ α.

b) If (13) in addition to dm = O(1) holds, then

P

(
1

σ̂m
sup

1≤k<Tm+1

|�(m, k, γ )|
c(R)

m,k

> 1

)
→ 1.

Remark 1 To obtain bootstrap critical values for the open-end procedure obviously
only a finite observation horizon can be used. In this case the assertions of Theorem 1
remain true for the open-end procedure, if critical values are obtained from a bootstrap
based on a statistic with horizon T̃m < ∞ fulfilling T̃m/m → ∞.

Remark 2 Clearly, the test procedure based on the bootstrap approximation of critical
values has the desired properties (8) and (9).

Moreover, under H0 and local alternatives the bootstrap provides an asymptotically
correct approximation for the critical value in the sense given in equation (45).

Under alternatives the proof of the theorem only shows that the bootstrap critical
values are uniformly bounded, cf. (46). However, it is to be expected that using more
technical proofs it can be shown that the bootstrap critical values under alternatives are
asymptotically correct in a P-stochastic sense corresponding to (45). In fact, the term

123



682 M. Hušková, C. Kirch

that is responsible for the weaker result is 1
m+k Ck◦

m ,k (cf. e.g. (34)), which is without
further knowledge only uniformly bounded. As soon as we can prove that it converges
to 0 uniformly for 1 ≤ k ≤ τ̃ (m), where τ̃ (m) is the stopping time of the procedure,
the stronger result follows. Aue et al. (2006) show for the stopping time τ(m) of the
asymptotic open-end procedure that

τ(m) − k◦
m = oP (m + k◦

m).

It is to be expected that this result remains true for a sequence of critical values as in
the bootstrap as long as this sequence is uniformly bounded, which in turn implies
sup1≤k≤τ(m) ‖ 1

m+k Ck◦
m ,k‖∞ = oP (1) as desired.

4 Pair bootstrap

In this section we consider a second popular bootstrap in linear regression models in
a sequential setup. This bootstrap is especially suitable but not restricted to situations
where (e(1), x(1)), (e(2), x(2)), . . . are i.i.d. vectors. For dependent situations a block
version also seems suitable.

The pair bootstrap directly preserves the dependence between x(i) and y(i). There-
fore, we expect it to be more robust in situations where the regression is not purely
linear. In fact, in the simulations of the misspecified Scenarios 4 and 5 the pair bootstrap
does behave quite well.

The specifics about the update step in the sequential setup are the same as for the
regression bootstrap.

Precisely the pairs {(y(i), x(i)) : 1 ≤ i ≤ m + k} are bootstrapped, i.e. one
considers

y∗
m,k(i) = y(Um,k(i)), x∗

m,k(i) = x(Um,k(i)), (20)

where {Um,k(i) : 1 ≤ i ≤ m + Tm} are i.i.d. random variables with P(Um,k(1) =
j) = 1/(m + k), j = 1, . . . , m + k, independent of {y(i) : 1 ≤ i ≤ m + Tm} and
{x(i) : 1 ≤ i ≤ m + Tm} as above. The bootstrap statistic is given by

g(m, 	, γ ) �(m, 	, γ )
(P∗)
m,k

=
∑

m<i≤m+	

⎛

⎜⎝y∗
m,k(i) − x∗

m,k(i)
T

⎛

⎝
m∑

j=1

x∗
m,k( j)x∗

m,k( j)T

⎞

⎠
−1

m∑

j=1

x∗
m,k( j)T y∗

m,k( j)

⎞

⎟⎠

Analogously to Sect. 3 we define

F (P∗)
m,k (x) = Pm,k

(
1

σ̂
(P∗)
m,k

sup
1≤	<Tm+1

∣∣�(m, 	, γ )∗m,k

∣∣ ≤ x

)
, (21)
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Bootstrapping sequential change-point tests for linear regression 683

where

(
σ̂

(P∗)
m,k

)2 = 1

m − p

m∑

i=1

(
y∗

m,k(i) − x∗
m,k(i)

T (
C∗

m,k

)−1
m∑

l=1

x∗
m,k(l)

T y∗
m,k(l)

)2

,

C∗
m,k =

m∑

j=1

x∗
m,k( j)x∗

m,k( j)T ,

is the bootstrap version of (6) and

F̃ (P)
m,k =

M−1∑

i=0

αi F (P∗)
m,max(( j−i) L ,0), for k = j L , . . . , ( j + 1)L − 1.

Finally, the critical value at time k + m is calculated as

F̃ (P)
m,k

(
c(P)

m,k

)
≥ 1 − α,

c(P)
m,k minimal.

To obtain validity of the pair bootstrap somewhat stronger assumptions than before
are needed. Precisely we either assume:

Assumption A.3 Let the observation horizon Tm , on which the bootstrap is based,
fulfill

T 1−ρ
m

m
= O(m−κ)

for some κ > 0 and ρ is as in Assumption A.1 (ii).

This assumption is no restriction for the closed-end procedure. For the open-end pro-
cedure the calculation of bootstrap critical values needs to be based on a statistic with
horizon T̃m fulfilling Assumption A.3 in addition to T̃m/m → ∞. Similarly as in
Remark 1, the monitoring procedure based on the bootstrap critical values fulfill (8)
and (9) (cf. also Remark 3).

Alternatively, we can put some stronger assumptions on the regressors.

Assumption A.4 The regressors fulfill for some r > 1 as k → ∞

k−1
k∑

i=1

‖x(i)x(i)T ‖r∞ = O(1) P − a.s.,

Usually the rate in Assumption A.1 (ii) is obtained by some higher moment assump-
tions which imply Assumption A.4 as well.

The following theorem shows that (8) and (9) hold for the monitoring scheme based
on the pair bootstrap.
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684 M. Hušková, C. Kirch

Theorem 2 Let (1) and Assumptions A.1 as well as A.2 hold true in addition to either
A.3 or A.4. Then, it holds as m → ∞
a) under the null hypothesis,

P

(
1

σ̂m
sup

1≤k<Tm+1

|�(m, k, γ )|
c(P)

m,k

> 1

)
→ α.

b) If (13) in addition to dm = O(1) holds, then

P

(
1

σ̂m
sup

1≤k<Tm+1

|�(m, k, γ )|
c(P)

m,k

> 1

)
→ 1.

Remark 3 The assertion in Remarks 1 and 2 remain true for the pair bootstrap.

We would like to point out that for p = 1 both procedures coincide with the
bootstrap in the location model considered in Kirch (2008).

5 Some simulations

In the previous sections the asymptotic validity of the bootstrap tests has been estab-
lished.

The following simulation study compares the two bootstrap procedures with the
asymptotic closed-end (CE) procedure to get an impression how well the procedures
work for small historic sample sizes.

The goodness of sequential tests can essentially be determined by three criteria:

C.1 The actual level (α-error) of the test should be close to the nominal level.
C.2 The power of the test should be large, preferably close to 1, i.e. the β-error

should be small.
C.3 The stopping time τ(m) should be shortly after the change-point. This is often

also called run-length of the test.

We visualize these features by the following plots:

Size-power curves
The line corresponding to the null hypothesis (d = (0, 0)T ) shows the empirical size
of the corresponding monitoring procedures for a nominal size as given by the x-axis.
The lines corresponding to specific alternatives (d = (1, 0)T , (0, 1)T , (1, 1)T ) show
the empirical power of the monitoring procedure for the nominal size as given by the
x-axis. As a result the plots give a visualization of C.1 and C.2 above. The graph for
the null hypothesis should be close to the diagonal (which is given by the dotted line)
and for the alternatives it should be close to 1.

Size-Power Curves are easily obtained by plotting the empirical distribution func-
tion of the p-values obtained from 1000 random realizations of model (1). The p-value
in a sequential setting with possibly varying critical values can be calculated as fol-
lows: Let the critical value at point m + k be given by ck = G−1

k (1 − α), where
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Gk = F̃ (R)
m,k (Gk = F̃ (P)

m,k ) for the regression (pair) bootstrap and Gk = G is equal to
the distribution function on the right hand side of (11) for the asymptotic closed-end
procedure. Define the p-value at point m + k by pk = 1− Gk(|�(m, k, γ )|/σ̂m −), so
that the null hypothesis is rejected at time point m + k if pk < α. Then the p-value of
this sequential procedure is defined by p := inf1≤k<Tm+1 pk and the null hypothesis
rejected if p < α.

Plot of the estimated density of the run length
For the density estimation we use the standard R procedure which uses a Gaussian
kernel, where the bandwidth is chosen according to Silverman’s rule of thumb (Silver-
man (1986, p. 48 eq. (3.31))). The estimation is based on only those simulations where
the null hypothesis was rejected at the 5% level. The vertical line in the plot indicates
where the change occurred. In the plots given here, we use the specific alternative
dm = (1, 1)T . This visualizes C.3.

Only a combination of the three criteria can result in a reliable judgment of the
quality of the test, and the emphasize on the criteria may also depend on the applica-
tion. For example the actual power is higher if the actual level is higher, so that the
power of two tests can only be reasonably compared if the true size (not the nominal
one) is equal. The estimation of the density of the run length is based only on those
simulations where the null hypothesis was indeed rejected. The percentage of rejected
samples can be found in the SPC-plot right next to it (green line at nominal 5% level)
and needs to be taken into account.

For the simulation study we use a model for p = 2, the results for p = 1 can be
found in Kirch (2008). The following model is considered

Y (i) = x2(i) + d01{i>k◦
m } + d11{i>k◦

m }x2(i) + ε(i)

with parameters

– x2(i) i.i.d. U [0, 2] (Scenario 1), x2(i) = 1 + x̃(i), where x̃(·) is an AR(1) pro-
cess with U [−1, 1] distributed innovations and coefficients −0.5, 0.5 respectively
(Scenarios 2 resp. 3).

– dT
m = (d0, d1) = (0, 1), (1, 0), (1, 1), i.e. changes in the slope resp. intercept only

as well as in both
– m = 10, 20, 50
– Tm = Nm with N = 1, 2, 5, 10
– k◦

m = �ϑm with ϑ = 0.25, 0.5, 2, 5
– standard normally distributed errors and centered exponentially distributed errors
– γ = 0, 0.49

The following misspecified models are also considered (each with x2(·) i.i.d. U [0, 2]):
Y (i) = x2(i) + 0.1 x2(i)

2 + d01{i>k◦
m } + d11{i>k◦

m }x2(i) + ε(i) (Scenario 4)

Y (i) = x2(i)
2 + d01{i>k◦

m } + d11{i>k◦
m }x2(i) + ε(i) (Scenario 5)

Due to limitations of space and similarity of results we will only present a small
selection of plots here, the complete simulation results can be obtained from the authors
(pdf-File, 51 p., 9 MB).
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686 M. Hušková, C. Kirch

For the pair and regression bootstrap we use L = m/5, M = 5, furthermore the
bootstraps are based on 1 000 bootstrap samples while the plots are based on 1 000
repetitions of the procedure. In Figs. 1, 2, 3 some selected size-power curves and
density plots of the run length can be found.

It can be concluded from the simulations that both bootstrap methods perform better
than the asymptotic closed-end procedure for small historic sample sizes:

– The bootstrap methods hold the level much better.
– The run-time of the bootstrap methods is a bit longer, however a smaller percent-

age of all rejections takes place before the change. This can especially be seen in
Fig. 2 and may be caused partly by the smaller level of the bootstrap methods.

– All three methods still work well under the misspecified scenarios 3 and 4 (cf.
Fig. 3).

– All three methods become approximately equivalent for m ≥ 50 (for p = 2).
– The bootstrap methods already work well for a very small historic data length of

m = 10 (for p = 2).

Concerning a comparison of the two bootstrap methods the following can be
noticed:

– The pair bootstrap holds the level better consequently has a somewhat smaller
power and higher run-length. Interestingly, this remains true even if the regressors
are correlated (Fig. 3, Scenarios 2 and 3), where one would expect the regression
bootstrap to be better.

– The bootstrap methods become very close for m ≥ 20.

6 Proofs of Section 3

The following lemma summarizes some results on C and c1(m, k, 	). It follows imme-
diately from Lemma 5.1 in Horváth et al. (2004).

Lemma 1 Under the Assumption A.1 (ii) it holds as m → ∞

a)
∥∥∥mC−1

m − C−1
∥∥∥∞ = O(m−ρ) P − a.s.

b) sup
	≥1

sup
k≥1

‖c1(m, k, 	) − 	c1‖∞
(m + 	)1−ρ + 	m−ρ

= O(1) P − a.s.

Our aim is to prove that the bootstrap critical values are uniformly asymptotically
correct under the null hypothesis and bounded under alternatives (see Eqs. (45) resp.
(46) below).

In view of the following lemma it is clear that for this it is sufficient to prove the
correct asymptotic behavior of supk F (R∗)

m,k (x).
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Fig. 1 Size-power curves and plots of estimated density: Scenario 1, centered exponential errors, γ = 0,
in RL: d = (1, 1), α = 0.05
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688 M. Hušková, C. Kirch

Fig. 2 Size-power curves and plots of estimated density: Scenario 1, centered exponential errors, γ = 0.49,
in RL: d = (1, 1), α = 0.05

Lemma 2 Let c, ck(m) be such that P(Y > c) = α, respectively, P∗
m,k(Yk(m) >

ck(m)) ≤ α for some 0 < α < 1 (ck(m) minimal), where Yk(m) is some statistic and
Y is a random variable with strictly monotone and continuous distribution function
in a compact neighborhood K of c.

a) Moreover let for all x in K (as m → ∞)

sup
1≤k<∞

∣∣P∗
m,k(Yk(m) ≤ x) − P (Y ≤ x)

∣∣ → 0 P − a.s. (22)

Then, as m → ∞,

sup
1≤k<∞

|ck(m) − c| → 0 P − a.s. (23)

b) If instead there only exists a constant A = A(ε) > 0 for each ε > 0, s.t.

sup
1≤k<∞

∣∣P∗
m,k(Yk(m) ≥ A)

∣∣ ≤ ε + o(1) P − a.s. (24)

then

sup
1≤k<∞

|ck(m)| = O(1) P − a.s. (25)
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Fig. 3 Size-power curves and plots of estimated density: centered exponential errors, γ =0, m =10, N=
2, k◦

m =m/4, in RL: d=(1, 1), α = 0.05
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Proof For a) we refer to the proof of Kirch (2008), Lemma A.1. Concerning b), con-
sider the set of all ω ∈ M with P(M) = 1 and such that (24) holds. We prove
(25) for all ω ∈ M by contradiction. If (25) does not hold, we find a subsequence
β(·) and a function f , such that c f (β(m))(β(m)) → ∞. On the other hand since
P∗

m, f (β(m))

(
Y f (β(m))(m) > c f (β(m))

) ≤ α we get by the minimality of c f (β(m))(m) by
(24) that

c f (β(m))(m) ≤ A(α/2),

which is a contradiction.

Note that F (R∗)
m,k is determined mainly by the distribution of (	 = 1, . . . , Tm)

g(m, 	, γ ) �̃(m, 	, γ )(e∗
m,k(1), . . . , e∗

m,k(m + 	))

=
m+	∑

i=m+1

êm,k(Um,k(i)) − c1(m, k, 	)T C−1
m

m∑

j=1

x( j )̂em,k(Um,k(i))

and the bootstrap variance (18). Note that

êm,k(i) = e(i) − x(i)T C−1
m+k

m+k∑

j=1

x( j)e( j)

+1{i>m+k◦
m }x(i)T dm − 1{k>k◦

m }x(i)T C−1
m+k Ck◦

m ,k dm, (26)

and for k > k◦
m

Ck◦
m ,k =

m+k∑

i=m+k◦
m+1

x(i)x(i)T = Ck − Ck◦
m
.

From this we can decompose g(m, 	, γ )�̃(m, 	, γ )(e∗
m,k(1), . . . , e∗

m,k(m + 	)) as
follows:

g(m, 	, γ ) �̃(m, 	, γ )(e∗
m,k(1), . . . , e∗

m,k(m + 	))

= I1(m, k, 	)+ I2(m, k, 	)+ I3(m, k, 	)+ I4(m, k, 	)+ I5(m, k, 	) + I6(m, k, 	),

where

I1(m, k, 	) =
m+	∑

i=m+1

e(Um,k(i)),

I2(m, k, 	) = −c1(m, k, 	)T C−1
m

m∑

j=1

x( j)e(Um,k( j)),
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I3(m, k, 	) =
m+	∑

i=m+1

x(Um,k(i))
T C−1

m+k

m+k∑

j=1

x( j)e( j)− 	

m + k

m+k∑

i=1

e(i),

I4(m, k, 	) = −c1(m, k, 	)T C−1
m

m∑

j=1

x( j)x(Um,k( j))T C−1
m+k

×
m+k∑

v=1

x(v)e(v)+ 	

m + k

m+k∑

i=1

e(i),

I5(m, k, 	) =
m+	∑

i=m+1

(
1{Um,k ( j)>m+k◦

m }x(Um,k( j))T dm

−1{k>k◦
m }x(Um,k( j))T C−1

m+k Ck◦
m ,k dm

)

I6(m, k, 	) = −c1(m, k, 	)T C−1
m

m∑

j=1

x( j)
(

1{Um,k ( j)>m+k◦
m }x(Um,k( j))T dm

−1{k>k◦
m }x(Um,k( j))T C−1

m+k Ck◦
m ,k dm

)
.

In order to prove (22) under H0 resp. (24) under H1, we show that g(m, 	, γ )�̃(m, 	, γ )

(e∗
m,k(1), . . . , e∗

m,k(m + 	)) is asymptotically determined by I1(m, k, 	) respectively
I2(m, k, 	). Precisely, the following lemma shows that I j (m, k, 	), j = 3, 4, con-
verge uniformly to 0 and the terms I j (m, k, 	), j = 5, 6, which are nonzero only
under alternatives, are uniformly bounded.

Lemma 3 Let (1) and Assumption A.1 hold true and either H0 or dm = O(1).

a) Then for all ε > 0 it holds:

(i) sup1≤k<∞ P∗
m,k

(
max1≤	<Tm+1

|I3(m,k,	)|
g(m,	,γ )

≥ ε
)

→ 0 P − a.s.,

(i i) sup1≤k<∞ P∗
m,k

(
max1≤	<Tm+1

|I4(m,k,	)|
g(m,	,γ )

≥ ε
)

→ 0 P − a.s.

b) Under H0 it holds that I j (m, k, 	) = 0, j = 5, 6, under local alternatives, i.e. if
dm = o(1), it holds for all ε > 0 that

(i) sup1≤k<∞ P∗
m,k

(
max1≤	<Tm+1

|I5(m,k,	)|
g(m,	,γ )

≥ ε
)

→ 0 P − a.s.,

(i i) sup1≤k<∞ P∗
m,k

(
max1≤	<Tm+1

|I6(m,k,	)|
g(m,	,γ )

≥ ε
)

→ 0 P − a.s.

c) For alternatives, for which only dm = O(1), we get only the following weaker
assertion: For every ε > 0 there exists A > 0 such that

(i) sup1≤k<∞ P∗
m,k

(
max1≤	<Tm+1

|I5(m,k,	)|
g(m,	,γ )

≥ A
)

≤ ε + o(1) P − a.s.,

(i i) sup1≤k<∞ P∗
m,k

(
max1≤	<Tm+1

|I6(m,k,	)|
g(m,	,γ )

≥ A
)

≤ ε + o(1) P − a.s.
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Proof All terms are sums of i.i.d. random vectors. Therefore, it suffices in all cases
to calculate the variance matrices and to apply the Hájek-Rényi or Markov inequality.
By direct calculations

E∗
m,k x(Um,k(i)) = 1

m + k

m+k∑

j=1

x( j),

and since

m+k∑

j=1

x( j)T C−1
m+kx(v) = (1, 0, . . . , 0)x(v) = 1

we obtain

E∗
m,k

⎛

⎝x(Um,k(i))
T C−1

m+k

m+k∑

j=1

x( j)e( j)

⎞

⎠ = 1

m + k

m+k∑

j=1

e( j),

showing that I3(m, k, 	) is centered. Moreover

E∗
m,k

(
x(Um,k(i))x(Um,k(i))

T
)

= 1

m + k
Cm+k,

hence (by var(Z) ≤ E(Z2))

var∗m,k

⎛

⎝x(Um,k(i))
T C−1

m+k

m+k∑

j=1

x( j)e( j)

⎞

⎠

≤ 1

m + k

⎛

⎝
m+k∑

j=1

x( j)e( j)

⎞

⎠
T

C−1
m+k Cm+k C−1

m+k

⎛

⎝
m+k∑

j=1

x( j)e( j)

⎞

⎠

= 1

m + k

⎛

⎝
m+k∑

j=1

x( j)e( j)

⎞

⎠
T

C−1
m+k

⎛

⎝
m+k∑

j=1

x( j)e( j)

⎞

⎠ .

Standard decoupling arguments yield

sup
k≥1

1

m + k

∣∣∣∣∣∣

m+k∑

j=1

x( j)e( j)

∣∣∣∣∣∣
= o(1) P − a.s., (27)
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since conditioned on {x(·)} the sequence fulfills the Kolmogorov condition for a strong
LLN. This together with Lemma 1 shows that, as m → ∞,

sup
1≤k<∞

1

m + k

⎛

⎝
m+k∑

j=1

x( j)e( j)

⎞

⎠
T

C−1
m+k

⎛

⎝
m+k∑

j=1

x( j)e( j)

⎞

⎠ = o(1) P − a.s.

Denote

Zm,k(Um,k( j)) = x(Um,k( j))T C−1
m+k

m+k∑

v=1

x(v)e(v) − 1

m + k

m+k∑

j=1

e( j). (28)

Conditionally {Zm,k(Um,k( j)} are i.i.d. random variable with

E∗
m,k Zm,k(Um,k(1)) = 0,

sup
k

var∗m,k Zm,k(Um,k(1)) = o(1) P − a.s. (29)

We start by proving assertion a)(i): For some D1 > 0

g(m, 	, γ ) ≥
{

D1m1/2−γ 	γ , 	 ≤ m,

D1m−1/2 	, 	 > m,
(30)

yielding for some D2 > 0

Tm∑

l=1

1

g2(m, 	, γ )
≤ D−2

1 m−1+2γ
m∑

	=1

1

	2γ
+ D−2

1 m
Tm∑

	=m+1

1

	2 ≤ D2. (31)

Then, by the Hájek-Rényi inequality for any ε > 0

P∗
m,k

(
max

1≤	<Tm+1

|I3(m, k, 	)|
g(m, 	, γ )

≥ε

)
≤ε−2 D2 var∗m,k Zm,k(Um,k(1))→0 P − a.s.

uniformly in k which finishes the proof of a)(i) by (29).
Now we prove a) (ii). Notice that I4(m, k, 	) can be expressed as the product of

two terms one of them is (conditionally) nonrandom and depends on 	 while the other
one is (conditionally) random and does not depend on 	. We will make use of this fact,
which is why the proof differs from the one of a)(i). By x(i)T C−1

m
∑m

j=1 x( j) = 1 it
holds

I4(m, k, 	) = −c1(m, k, 	)T C−1
m

m∑

j=1

x( j)Zm,k(Um,k( j)).
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Denote by u j the j th unit vector i.e. the p-dimensional vector u j = (u1, j , . . . , u p, j )
T

with ui, j = 1{i= j}, then by Lemma 1 a)

E∗
m,k

(√
muT

j C−1
m

m∑

i=1

x(i)Zm,k(Um,k(i))

)2

= var∗m,k

(√
m

m∑

i=1

uT
j C−1

m x(i)Zm,k(Um,k(i))

)

= (
var∗m,k Zm,k(Um,k(1))

)
uT

j mC−1
m

m∑

i=1

x(i)x(i)T C−1
m u j

= (
var∗m,k Zm,k(Um,k(1))

)
uT

j (C−1 + o(1)) u j = o(1) P − a.s. (32)

uniformly in k. By Lemma 1 b) in addition to (30) we additionally get for some D3 > 0

sup
k≥1

sup
1≤	<Tm+1

∥∥∥∥
c1(m, k, 	)T

√
m g(m, 	, γ )

∥∥∥∥∞
≤ D3 + o(1) P − a.s. (33)

Together this yields that

E∗
m,k

(
max

1≤	<Tm+1

|I4(m, k, 	)|
g(m, 	, γ )

)2

= o(1) P − a.s.,

which gives the assertion by the Markov inequality. Now, we prove b) and c). First note
that it suffices to consider k > k◦

m , since for k ≤ k◦
m it holds I j (m, k, 	) = 0, j = 5, 6.

Denote

Z̃m,k(Um,k(i)) = 1{Um,k (i)>m+k◦
m }xT (Um,k(i))dm

−1{k>k◦
m }xT (Um,k(i))C−1

m+k Ck◦
m ,k dm .

Direct calculations give

E∗
m,k Z̃m,k(Um,k(i)) = 0,

E∗
m,k

(
Z̃m,k(Um,k(i))

)2 = 1

m + k
dT

m(Ck◦
m ,k − Ck◦

m ,k C−1
m+k Ck◦

m ,k)dm (34)

≤ 1

m + k
dT

m Ck◦
m ,k dm ≤ 1

m + k
dT

m Cm+k dm ≤ dT
m Cdm (1 + o(1)) P − a.s.

uniformly in k by Lemma 1 a).
Assertions b) (i) and c) (i) follow now by the Hájek-Rényi inequality and (31).
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Furthermore (P − a.s.)

E∗
m,k

⎛

⎝√
m uT

j C−1
m

m∑

j=1

x( j)Z̃m,k(Um,k( j))

⎞

⎠
2

≤ dT
mCdm uT

j C−1u j (1 + o(1))

(35)

uniformly in k. This, in addition to (33), yields b) (ii) and c) (ii) by the Markov
inequality.

The next lemma allows us to replace I2(m, k, 	) by a simpler expression.

Lemma 4 Let (1) and Assumption A.1 hold true. Then for all ε > 0 it holds

sup
1≤k<∞

P∗
m,k

(
max

1≤	<Tm+1

|I2(m, k, 	)− −	
m

∑m
j=1 e(Um,k( j))|

g(m, 	, γ )
≥ε

)
→ 0 P − a.s.

Proof The proof is a slight modification of Lemma 5.2 in Horváth et al. (2004). Denote

ēm,k = 1

m + k

m+k∑

i=1

e(i), σ̂ 2
m,k = 1

m + k

m+k∑

i=1

(
e(i) − ēm,k

)2
. (36)

By Assumption A.1 and the law of iterated logarithm we get uniformly in k

sup
k

|m1/2−(ρ−γ )ēm,k | → 0 P − a.s., sup
k

|̂σ 2
m,k − σ 2| → 0 P − a.s., (37)

since by assumption ρ − γ > 0 for ρ from Assumption A.1. Let u j denote again the
j th unit vector. Then, we get uniformly in k

E∗
m,k

(
1

m1/2+ρ−γ
uT

j

m∑

i=1

x(i)e(Um,k(i))

)2

= 1

m1+2(ρ−γ )

m∑

i=1

(uT
j x(i))2 var∗

(
e(Um,k(1))

)

+
(

uT
j

m1/2+ρ−γ

m∑

i=1

x(i) E∗(e(Um,k(1))

)2

= 1

m1+2(ρ−γ )
uT

j Cmu j σ̂ 2
m,k + (uT

j c1 + o(1))2
(

m1/2−(ρ−γ )ēm,k

)2

= o(1) P − a.s. (38)

123



696 M. Hušková, C. Kirch

By Lemmas 1 and (30) we get

sup
k

sup
1≤	<Tm+1

∥∥∥∥∥
c1(m, k, 	)T mC−1

m − 	cT
1 C−1

m1/2−ρ+γ g(m, 	, γ )

∥∥∥∥∥∞

= O(1) sup
1≤	<Tm+1

∣∣∣∣
(m + 	)1−ρ + 	m−ρ

m1/2−ρ+γ g(m, 	, γ )

∣∣∣∣ = O(1) P − a.s.

Since cT
1 C−1 ∑m

i=1 x( j)e(Um,k(i)) = ∑m
i=1 e(Um,k(i)) we obtain the assertion by

an application of the Markov inequality.

We are now ready to state the asymptotics of �̃(m, 	, γ )(e∗
m,k(1), . . . , e∗

m,k(m+	)).

Lemma 5 Let (1) and Assumption A.1 hold true and either H0 or dm = O(1), Tm is
as in Assumption A.2. Let σ̂ 2

m,k as in (36).

a) Under H0 and for local alternatives dm = o(1) it holds

sup
1≤k<Tm+1

∣∣∣∣∣P∗
m,k

(
1

σ̂m,k
sup

1≤	<Tm+1

�̃(m, 	, γ )(e∗
m,k(1), . . . , e∗

m,k(m + 	))

g(m, 	, γ )
≤ x

)

−P

(
sup

1≤k<Tm+1

|W1(k/m) − k/mW2(1)|
(1 + k/m)(k/(k + m))γ

≤ x

)∣∣∣∣∣ → 0 P − a.s.

b) Under H1 for every ε > 0 there exists a constant A > 0 such that (P − a.s.)

sup
1≤k<Tm+1

∣∣∣∣∣P∗
m,k

(
1

σ̂m,k
sup

1≤	<Tm+1

�̃(m, 	, γ )(e∗
m,k(1), . . . , e∗

m,k(m + 	))

g(m, 	, γ )
≥ A

)∣∣∣∣∣≤ε+o(1).

Proof The proof of Theorem 2.3 in Kirch (2008) shows that (note that this corresponds
to the null hypothesis there)

sup
1≤k<Tm+1

∣∣∣∣∣∣
P∗

m,k

⎛

⎝ 1

σ̂m,k
sup

1≤	<Tm+1

∣∣∣
∑m+	

i=m+1

(
e(Um,k(i)) − 1

m
∑m

j=1 e(Um,k( j))
)∣∣∣

g(m, 	, γ )
≤ x

⎞

⎠

−P

(
sup

1≤k<Tm+1

|W1(k/m) − k/mW2(1)|
(1 + k/m)(k/(k + m))γ

≤ x

)∣∣∣∣∣ → 0 P − a.s.

Putting this together with Lemmas 3 and 4, as well as (37) yields the assertion.

Before we finally deal with the bootstrapped variance, we need a small auxiliary
lemma which will also be crucial for the proof of the pair bootstrap.
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Lemma 6 Let (1) and Assumption A.1 hold true. For any 1
2 < ξ < 1 and any ε > 0

(P − a.s.)

a) sup
k≥1

P∗
m,k

(
m−ξ

∥∥∥∥∥

m∑

s=1

x(Um,k(s))
T e(Um,k(s))

∥∥∥∥∥
∞

> ε

)
→ 0

b) sup
k≥1

P∗
m,k

(
m−ξ

∥∥∥∥∥

m∑

s=1

x(Um,k(s))
T e(Um,k(s))1{Um,k (s)>m+k◦

m }

∥∥∥∥∥
∞

> ε

)
→ 0

If for the pair bootstrap additionally Assumption A.4 holds, then we even get the
assertions for ξ = 1

2 .

Proof By the von Bahr–Esseen inequality (cf. Theorem 3 in (1965)) with 1/ξ we get
for some constant D > 0 and for any c > 0

sup
k≥1

P∗
m,k

(
m−ξ

∥∥∥∥∥

m∑

s=1

x(Um,k(s))
T e(Um,k(s))

∥∥∥∥∥
∞

≥ c

)

≤ D

c1/ξ
sup
k≥1

1

m + k

m+k∑

j=1

‖x(i)e(i)‖1/ξ∞ = O(1) P − a.s.,

since conditioned on {x(·)} the sequence fulfills condition (1) in Theorem 5.2.1 in
Chow and Teicher (1997) similarly to (27). This proves a) but b) is analogous.

The same arguments also holds for ξ = 1
2 if the stronger Assumption A.4 holds.

Finally we deal with the bootstrapped variance in the following lemma:

Lemma 7 Let (1) and Assumption A.1 hold true and either H0 or dm = O(1). Let
σ̂ 2

m,k be as in (36).

a) Under H0 or local alternatives (dm = o(1)) it holds for all ε > 0

sup
k

P∗
m,k

(∣∣∣∣∣
σ̂m,k

σ̂
(R∗)
m,k

− 1

∣∣∣∣∣ ≥ ε

)
→ 0 P − a.s.

b) Under H1 for every ε > 0 there exists A > 0 such that

sup
k

P∗
m,k

(∣∣∣∣∣
σ̂m,k

σ̂
(R∗)
m,k

∣∣∣∣∣ ≥ A

)
≤ ε + o(1) P − a.s.

Proof By (26) it holds

e∗
m,k(i) − x(i)T C−1

m

m∑

j=1

x( j)e∗
m,k( j)

= J1(m, k, i) + J2(m, k, i)+ J3(m, k, i)+ J4(m, k, i)+ J5(m, k, i)+ J6(m, k, i),
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where

J1(m, k, i) = e(Um,k(i)),

J2(m, k, i) = −x(i)T C−1
m

m∑

j=1

x( j)e(Um,k( j)),

J3(m, k, i) = −x(Um,k(i))
T C−1

m+k

m+k∑

j=1

x( j)e( j) + ēm,k,

J4(m, k, i) = x(i)T C−1
m

m∑

j=1

x( j)

(
x(Um,k( j))T C−1

m+k

m+k∑

v=1

x(v)e(v) − ēm,k

)
,

J5(m, k, i) = 1{Um,k (i)>m+k◦
m }x(Um,k(i))

T dm − 1{k>k◦
m }x(Um,k(i))

T C−1
m+kCk◦

m ,k dm,

J6(m, k, i) = −x(i)T C−1
m

m∑

j=1

x( j)x(Um,k( j))T

×
(

1{Um,k ( j)>m+k◦
m } − 1{k>k◦

m }C−1
m+kCk◦

m ,k

)
dm,

where ēm,k is as in (36). Note that J5(m, k, i) and J6(m, k, i) are equal to 0 under the
null hypothesis and under alternatives for k ≤ k◦

m .
The following relations hold true for any fixed ε > 0 as m → ∞.
By Lemma A.3 and the proof of Theorem 2.3 in Kirch (2008) (this corresponds to

the null hypothesis there) it holds

sup
k≥1

P∗
m,k

(∣∣∣∣∣

1
m

∑m
i=1(e(Um,k(i)) − ēm,k)

2

σ̂ 2
m,k

− 1

∣∣∣∣∣ ≥ ε

)
→ 0 P − a.s.,

which in addition to (37) yields

sup
k≥1

P∗
m,k

(∣∣∣∣∣

1
m−p

∑m
i=1 J 2

1 (m, k, i)

σ̂ 2
m,k

− 1

∣∣∣∣∣ ≥ ε

)
→ 0 P − a.s. (39)

Denote by u j again the j th unit vector. By Lemma 1 and (38) it holds by the
Cauchy–Schwarz inequality

E∗
m,k

(
1

m

m∑

i=1

J 2
2 (m, k, i)

)
= E∗

m,k

⎛

⎜⎝
1

m

m∑

i=1

⎛

⎝x(i)T C−1
m

m∑

j=1

x( j)e(Um,k( j))

⎞

⎠
2
⎞

⎟⎠

≤ p2‖mC−1
m ‖∞ max

j=1,...,p
E∗

m,k

(
uT

j

m

m∑

i=1

x(i)e(Um,k(i))

)2

→ 0 P − a.s.,
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which yields by an application of the Markov inequality

sup
k≥1

P∗
m,k

(
1

m − p

m∑

i=1

J 2
2 (m, k, i) ≥ ε

)
→ 0 P − a.s. (40)

Noting that J3(m, k, i) = −Zm,k(Um,k(i)) as in the proof of Lemma 3, hence by an
application of the Markov inequality in addition to (29)

sup
k≥1

P∗
m,k

(
1

m − p

m∑

i=1

J 2
3 (m, k, i) ≥ ε

)
→ 0 P − a.s. (41)

Similarly by (32)

sup
k≥1

P∗
m,k

(
1

m − p

m∑

i=1

J 2
4 (m, k, i) ≥ ε

)

≤ sup
k≥1

1

ε
E∗

m,k

⎛

⎝ 1

m − p

m∑

j=1

x( j)T Zm,k(Um,k( j))C−1
m

m∑

j=1

x( j)Zm,k(Um,k( j))

⎞

⎠

≤ 1

ε

∥∥∥∥
1

m
Cm

∥∥∥∥∞
p2

m − p
sup
k≥1

sup
j=1,...,p

E∗
m,k

(√
muT

j C−1
m

m∑

v=1

x(v)Zm,k(Um,k(v))

)2

→ 0 P − a.s. (42)

Putting (39) to (41) together with (37) yields assertion a) under H0.
Now we prove the assertions under alternatives. First, note that it is sufficient to

consider k > k◦
m , since otherwise J5 and J6 are equal to 0. First we prove that J6 is

negligible: By (35) it holds

sup
k≥1

P∗
m,k

(
1

m

m∑

i=1

J 2
6 (m, k, i) ≥ ε

)

≤ 1

ε

p2

m − p

∥∥∥∥
1

m
Cm

∥∥∥∥∞
sup

j=1,...,p
E∗

m,k

⎛

⎝√
muT

j C−1
m

m∑

j=1

x( j)Z̃m,k(Um,k( j))

⎞

⎠
2

= o(1) P − a.s. (43)

J5 is only negligible for local alternatives but still bounded for fixed alternatives.
Precisely for any c > 0,

sup
k≥1

P∗
m,k

(
1

m

m∑

i=1

J 2
5 (m, k, i) ≥ c

)
≤ dT

mCdm

c2 + o(1) P − a.s. (44)
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700 M. Hušková, C. Kirch

by (34), since J5(m, k, i) = Z̃m,k(Um,k(i)) as in the proof of Lemma 3. This yields
a) under local alternatives.

For fixed alternatives note that

(
σ̂

(R∗)
m,k

)2 = 1

m

m∑

i=1

⎛

⎝
6∑

j=1

J 2
j (m, k, i) +

∑

u �=v

Ju(m, k, i)Jv(m, k, i)

⎞

⎠ .

The square terms are negligible except for J 2
1 and J 2

5 by (40)–(43). By the Cauchy–
Schwarz inequality, (39) and (44) the same holds true for the mixed terms except J1 J5
but the latter one is also negligible due to Lemmas 1 and 6 since

1

m

m∑

s=1

(J1(m, k, s)J5(m, k, s)) = 1

m

m∑

s=1

x(Um,k(s))
T e(Um,k(s))1{Um,k (s)>m+k◦

m }dm

− 1

m

m∑

s=1

x(Um,k(s))
T e(Um,k(s))C

−1
m+kCk◦

m ,kdm .

This shows that the only influential terms are 1
m

∑m
i=1(J 2

1 (m, k, i) + J 2
5 (m, k, i)).

But since σ̂
(R∗)
m,k in Lemma 6.6. b) is in the denominator and 1

m

∑m
i=1(J 2

1 (m, k, i) +
J 2

5 (m, k, i)) ≥ 1
m

∑m
i=1 J 2

1 (m, k, i) assertion b) follows by (39).

Putting the above lemmas together we easily obtain Theorem 1.

Proof of Theorem 1 Putting together Lemmas 5 and 7 we obtain under H0 as well as
local alternatives

sup
1≤k<Tm+1

∣∣∣∣∣P∗
m,k

(
1

σ̂
(R∗)
m,k

sup
1≤	<Tm+1

�̃(m, 	, γ )(e∗
m,k(1), . . . , e∗

m,k(m + 	))

g(m, 	, γ )
≤ x

)

−P

(
sup

1≤k<Tm+1

|W1(k/m) − k/mW2(1)|
(1 + k/m)(k/(k + m))γ

≤ x

)∣∣∣∣∣ → 0 P − a.s.

By Lemma 2 this yields

sup
k≥1

|c(R)
m,k − c| → 0 P − a.s., (45)

where c is the asymptotic critical value obtained from the distribution of
sup0≤t≤1− 1

N+1

|W (t)|
tγ . Together with (11) this implies a).

Under H1, by Lemmas 5 and 7 for every ε > 0 there exists a constant A > 0 such
that (P − a.s.)

sup
1≤k<Tm+1

∣∣∣∣∣∣
P∗

m,k

⎛

⎝ 1

σ̂
(R∗)
m,k

sup
1≤	<Tm+1

�̃(m, 	, γ )(e∗
m,k(1), . . . , e∗

m,k(m + 	))

g(m, 	, γ )
≥ A

⎞

⎠

∣∣∣∣∣∣
≤ε+o(1)
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By Lemma 2 this yields

sup
k≥1

|c(R)
m,k | = O(1) P − a.s. (46)

Together with (12) this implies b).

7 Proofs of Section 4

Denote

A1(m, k, 	) =
m+	∑

i=m+1

e∗
m,k(i)

A2(m, k, 	) =
m+	∑

i=m+1

x∗
m,k(i)

A3(m, k) =
m∑

j=1

x∗
m,k( j)x∗T

m,k( j)

A4(m, k) =
m∑

s=1

x∗
m,k(s)e

∗
m,k(s)

A5(m, k, 	) =
m+	∑

i=m+1

x∗
m,k(i)1{Um,k (i)>m+k◦

m }

A6(m, k) =
m∑

s=1

x∗
m,k(s)x∗T

m,k(s)1{Um,k (s)>m+k◦
m }

where e∗
m,k(i) = e(Um,k(i)), which is different from the bootstrapped residuals in the

regression bootstrap. Similarly to (14) it holds

g(m, k, γ ) �(m, 	, γ )∗m,k = B1(m, k, 	) + B2(m, k, 	) + B3(m, k, 	) + B4(m, k, 	),

where

B1(m, k, 	) = A1(m, k, 	),

B2(m, k, 	) = −AT
2 (m, k, 	)A−1

3 (m, k)A4(m, k)

B3(m, k, 	) = (
A5(m, k, 	) − 	 E∗

m,k x∗
m,k(1)1{Um,k (1)>m+k◦

m }
)

dm,

B4(m, k, 	) = −
(

AT
2 (m, k, 	)A−1

3 (m, k)A6(m, k) − 	 E∗
m,k x∗

m,k(1)1{Um,k (1)>m+k◦
m }

)
dm .

The next lemma gives some properties of the terms A j .

Lemma 8 Let (1) and Assumption A.1 hold true.

123



702 M. Hušková, C. Kirch

a) Under either Assumption A.3 or A.4 we get for any ε > 0

sup
1≤k<Tm+1

P∗
m,k

(
1

m1−η
‖A3(m, k) − mC‖∞ ≥ ε

)
→ 0

P − a.s. for some η > 0.
b) Under either Assumption A.3 or A.4 we get for any ε > 0

sup
1≤k<Tm+1

P∗
m,k

(∥∥∥∥
1

m
A6(m, k) − E∗ x∗

m,k(1)x∗
m,k(1)T 1{Um,k (i)>m+k◦

m }
∥∥∥∥∞

≥ ε

)

→ 0 P − a.s.

Proof First note that from Assumption A.1 (ii) we get for every ω ∈ M with P(M) =
1 the existence of a constant D(ω), such that

∥∥∥∥∥∥

j∑

i=1

(x(i)(ω)x(i)T (ω) − C)

∥∥∥∥∥∥∞
≤ D(ω) j−ρ

for each j . Subtracting the term for j and j − 1 we get

‖x( j)(ω)x( j)T (ω)‖∞ ≤ ‖C‖∞ + 2D(ω) j1−ρ,

which yields

‖x( j)x( j)T ‖∞ = O( j1−ρ) P − a.s. (47)

Further note that

E∗
m,k(x

∗
m,k(i)x

∗
m,k(i)

T ) = 1

m + k

m+k∑

j=1

x(i)x(i)T = C + O(m−ρ) P − a.s. (48)

uniformly in k by Assumption A.1. This, (47) and an application of the Chebyshev
inequality yields now (the square of the matrix is meant componentwise)

sup
1≤k<Tm+1

P∗
m,k

(
1

m1−η

∥∥∥∥∥

m∑

i=1

(x∗
m,k(i)x

∗
m,k(i)

T − C)

∥∥∥∥∥
∞

≥ ε

)

≤ O(m2η−2ρ) + O(1)
1

m1−2η
sup

1≤k<Tm+1

1

m + k

∥∥∥∥∥

m+k∑

i=1

(x(i)x(i)T )2

∥∥∥∥∥
∞

≤ O(m2η−2ρ) + O

(
(m + Tm)1−ρ

m1−2η

)
sup
k≥1

sup
j=1,...,p

1

m + k

m+k∑

i=1

x2
j (i)

= O(m2η−2ρ + m2η−ε) = o(1) P − a.s.
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under Assumption A.3 for some ρ > 0, which yields a). A similar argument but
using A.4 and the von Bahr–Esseen inequaltiy (cf. Theorem 3 in (1965)) also yields
assertion a).

Analogously we obtain b).

The next lemma is the analogue to Lemmas 3 and 4 for the regression bootstrap.

Lemma 9 Let (1) and Assumption A.1 hold true and either H0 or dm = O(1).

a) Then for all ε > 0 it holds:

sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B2(m, k, 	) − −	
m

∑m
j=1 e∗

m,k( j)|
g(m, 	, γ )

≥ ε

)
→ 0,

b) Under H0 it holds that B j (m, k, 	) = 0, j = 3, 4, under local alternatives, i.e.
if dm = o(1), it holds for all ε > 0 that

(i) sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B3(m, k, 	)|
g(m, 	, γ )

≥ ε

)
= o(1) P − a.s.,

(i i) sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B4(m, k, 	)|
g(m, 	, γ )

≥ ε

)
= o(1) P − a.s.

c) For fixed alternatives, for which dm = O(1), we get only the following weaker
assertion: For every ε > 0 there exists A > 0 such that

(i) sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B3(m, k, 	)|
g(m, 	, γ )

≥ A

)
≤ε+o(1) P − a.s.,

(i i) sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B4(m, k, 	)|
g(m, 	, γ )

≥ A

)
≤ε+o(1) P − a.s.

Proof

−B2(m, k, 	) = B2,1(m, k, 	) + B2,2(m, k, 	) + B2,3(m, k, 	),

where

B2,1(m, k, 	) = (A2(m, k, 	) − E∗
m,k A2(m, k, 	)T )A3(m, k)−1 A4(m, k)

B2,2(m, k, 	) = E∗
m,k AT

2 (m, k, 	)(E∗
m,k A3(m, k))−1 A4(m, k)

B2,3(m, k, 	) = E∗
m,k AT

2 (m, k, 	)(E∗
m,k A3(m, k))−1(E∗

m,k A3(m, k) − A3(m, k))

×A3(m, k)−1 A4(m, k).
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Direct calculations give

E∗
m,k AT

2 (m, k, 	)(E∗
m,k A3(m, k))−1 = 	

m + k

m+k∑

i=1

x(i)

(
m

m + k

m+k∑

i=1

x(i)x(i)T

)−1

= 	

m
(1, 0, . . . , 0)T (49)

Therefore

B2,2(m, k, 	) = 	

m

m∑

i=1

e∗
m,k(i).

By Lemmas 6 and 8 as well as (48) we get for any ε > 0

sup
k≥1

P∗
m,k

(
mη−1‖A3(m, k) − E∗

m,k A3(m, k)‖∞ ≥ ε
)

→ 0 P − a.s. (50)

sup
k≥1

P∗
m,k

(
m1−ξ‖A3(m, k)−1A4(m, k)‖∞ ≥ ε

)
→ 0 P − a.s. (51)

for some η > 0 and for ξ as in Lemma 8.
By (30) we get

sup
	≥1

	

m g(m, 	, γ )
= O(m−1/2), (52)

which together with (49), (50) and (51) yields

sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B2,3(m, k, 	)|
g(m, 	, γ )

≥ ε

)
→ 0 P − a.s.

Finally note that by Assumption A.1 (ii)

var∗m,k(x
∗
m,k(i)) ≤ 1

m + k

m+k∑

i=1

x(i)x(i)T = C + o(1) P − a.s. (53)

uniformly in k. An application of the Hájek-Rényi inequality, (31) and (51) yields

sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B2,1(m, k, 	)|
g(m, 	, γ )

≥ ε

)
→ 0 P − a.s.

This completes the proof of a).
In the following let D > 0 be some (non-random) constant which can differ in

every occurrence. Concerning b) and c), first note that by Assumption A.1 we get
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uniformly in k ≥ 1

∥∥var∗m,k(x
∗
m,k(i)1{Um,k (i)>m+k◦

m })
∥∥∞ = 1

m + k

∥∥∥∥∥∥

m+k∑

i=m+k◦
m

x(i)x(i)T

∥∥∥∥∥∥∞
≤ D + o(1) P − a.s.

An application of the Hájek-Rényi inequality, (31) and Lemma 8 yields for any
c > 0

sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B3(m, k, 	)|
g(m, 	, γ )

≥ c

)
≤ D

‖dm‖2∞
c2 + o(1) P − a.s.,

which proves b) (i) and c) (i).
Concerning B4(m, k, 	) we need an analogous decomposition as for B2(m, k, 	)

above.

−B4(m, k, 	) = B4,1(m, k, 	) + B4,2(m, k, 	) + B4,3(m, k, 	),

where

B4,1(m, k, 	) =
(

AT
2 (m, k, 	) − E∗

m,k AT
2 (m, k, 	)

)
A3(m, k)−1 A6(m, k)dm

B4,2(m, k, 	) =
(

E∗
m,k AT

2 (m, k, 	)(E∗
m,k A3(m, k))−1 A6(m, k)

−	 E∗
m,k x∗

m,k(1)1{Um,k (1)>m+k◦
m }

)
dm

B4,3(m, k, 	) =
(

E∗
m,k AT

2 (m, k, 	)(E∗
m,k A3(m, k))−1(E∗

m,k A3(m, k) − A3(m, k))

×A3(m, k)−1 A6(m, k)
)

dm .

Since

E∗
m,k x∗

m,k(1)x∗
m,k(1)T 1{Um,k (1)>m+k◦

m } = 1

m + k

m+k∑

i=m+k◦
m

x(i)x(i)T

≤ D + o(1) P − a.s. (54)

uniformly in k, we obtain from Lemma 8 that for each ε > 0 there exists A > 0 such
that

sup
k≥1

P∗
m,k

(
‖A3(m, k)−1A6(m, k)‖∞ ≥ A

)
≤ ε + o(1) P − a.s. (55)
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This in addition to an application of the Hájek-Rényi inequality and (31) yields for
any c > 0

sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B4,1(m, k, 	)|
g(m, 	, γ )

≥ c

)
≤ D

‖dm‖2∞
c2 + o(1) P − a.s.

By (49) we get

B4,2(m, k, 	) = 	

m

m∑

j=1

(x∗
m,k( j)T 1{Um,k ( j)>m+k◦

m } − E∗ x∗
m,k( j)1{Um,k ( j)>m+k◦

m })dm .

An application of the Chebyshev inequality yields for any c > 0

sup
k≥1

P∗
m,k

⎛

⎝ 1√
m

∣∣∣∣∣∣

m∑

j=1

(x∗
m,k( j)T 1{Um,k ( j)>m+k◦

m } − E∗ x∗
m,k( j)T 1{Um,k ( j)>m+k◦

m })dm

∣∣∣∣∣∣
≥ c

⎞

⎠

≤ ‖dm‖2∞
c2 sup

k≥1

1

m + k

∥∥∥∥∥∥

m+k∑

i=m+k◦
m

x(i)x(i)T

∥∥∥∥∥∥∞
≤ D

‖dm‖2∞
c2 + o(1) P − a.s. (56)

Together with (52) this yields

sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B4,2(m, k, 	)|
g(m, 	, γ )

≥ c

)
≤ D

‖dm‖2∞
c2 + o(1) P − a.s.

Finally by (49)

B4,3(m, k, 	) = − 	

m

m∑

j=1

(x∗
m,k( j)T − E∗

m,k x∗
m,k( j)T )A3(m, k)−1A6(m, k)dm

By (52), (55) and an analogous argument to (56) using (53) we finally obtain

sup
1≤k<Tm+1

P∗
m,k

(
max

1≤	<Tm+1

|B4,3(m, k, 	)|
g(m, 	, γ )

≥ c

)
≤ ‖C‖∞

‖dm‖2∞
c2 + o(1) P − a.s.,

which completes the proof. ��
Now, we prove the equivalent of Lemma 7.

Lemma 10 Let (1), Assumption A.1, and either Assumption A.3 or A.4 hold true.
Let σ̂ 2

m,k be as in (36).

a) Under H0 or local alternatives (dm = o(1)) it holds for all ε > 0

sup
k

P∗
m,k

(∣∣∣∣∣
σ̂m,k

σ̂
(P∗)
m,k

− 1

∣∣∣∣∣ ≥ ε

)
→ 0 P − a.s.
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b) Under H1 with dm = O(1) for every ε > 0 there exists A > 0 such that

sup
k

P∗
m,k

(∣∣∣∣∣
σ̂m,k

σ̂
(P∗)
m,k

∣∣∣∣∣ ≥ A

)
≤ ε + o(1) P − a.s.

Proof Note that

y∗
m,k(i) − x∗

m,k(i)
T

⎛

⎝
m∑

j=1

x∗
m,k( j)x∗

m,k( j)T

⎞

⎠
−1

m∑

l=1

x∗
m,k(l)

T y∗
m,k(l)

= D1(m, k, i) + D2(m, k, i) + D3(m, k, i),

where

D1(m, k, i) = e∗
m,k(i),

D2(m, k, i) = −x∗T
m,k(i)A3(m, k)−1A4(m, k),

D3(m, k, i) = x∗T
m,k(i)1{Um,k (i)>m+k◦

m }dm − x∗T
m,k(i)A3(m, k)−1A6(m, k)dm .

By (39) it holds (D1(m, k, i) = J1(m, k, i))

sup
k≥1

P∗
m,k

(∣∣∣∣∣

1
m−p

∑m
i=1 D2

1(m, k, i)

σ̂ 2
m,k

− 1

∣∣∣∣∣ ≥ ε

)
→ 0 P − a.s. (57)

Furthermore since

m∑

i=1

D2
2(m, k, i) = A4(m, k)A−1

3 (m, k)A4(m, k),

for every ε > 0 by Lemmas 6 and 8

sup
k≥1

P∗
m,k

(
1

m − p

m∑

i=1

D2
2(m, k, i) ≥ ε

)
→ 0 P − a.s. (58)

This shows that asymptotically this summand is negligible as is the mixed term of D1
and D2 due to the Cauchy–Schwarz inequality. Since D3 = 0 under H0 this proves a)
under H0.

Concerning alternatives it holds

m∑

j=1

D2
3(m, k, i) = dT

mA6(m, k)dm − dT
mA6(m, k)(A3(m, k))−1A6(m, k)dm,
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which implies due to Lemma 8 and (54) for every c > 0 for some constant D > 0

sup
k≥1

P∗
m,k

(
1

m − p

m∑

i=1

D2
3(m, k, i) ≥ c

)
≤ D

‖dm‖2∞
c2 + o(1) P − a.s. (59)

proving a) for local alternatives, since the mixed terms are again negligible due to the
Cauchy–Schwarz inequality.

Finally for Ã4(m, k) = ∑m
s=1 x∗

m,k(s)e
∗
m,k(s)1{Um,k (s)>m+k◦

m }

m∑

i=1

D1(m, k, i)D3(m, k, i) = Ã4(m, k)dm − A4(m, k)(A3(m, k))−1A6(m, k)dm,

which is also negligible due to Lemmas 6 and 8. We can now finish the proof for fixed
alternatives analogously to the proof of Lemma 7.

Proof of Theorem 2 Due to Lemma 9 we obtain the analogous assertion for the pair
bootstrap to what is given for the regression bootstrap in Lemma 5. We can then
conclude as in the proof of Theorem 1 using Lemma 10.
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