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Abstract In this paper, we discuss the statistical inference of the lifetime distribu-
tion of components based on observing the system lifetimes when the system structure
is known. A general proportional hazard rate model for the lifetime of the components
is considered, which includes some commonly used lifetime distributions. Different
estimation methods—method of moments, maximum likelihood method and least
squares method—for the proportionality parameter are discussed. The conditions for
existence and uniqueness of method of moments and maximum likelihood estimators
are presented. Then, we focus on a special case when the lifetime distributions of the
components are exponential. Computational formulas for point and interval estima-
tions of the unknown mean lifetime of the components are provided. A Monte Carlo
simulation study is used to compare the performance of these estimation methods and
recommendations are made based on these results. Finally, an example is provided to
illustrate the methods proposed in this paper.
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368 H. K. T. Ng et al.

1 Introduction

In reliability testing, experimenters are always interested in the lifetime distribution
of the system as well as the lifetime distribution of the components which make-up
the system. In many cases, the lifetimes of an n-component system can be observed
from a life-test but not the lifetimes of the components. This problem may raise when
it is not possible to put the individual components on a life-test after the n-component
system is built. For instance, we will encounter this problem when the n-component
systems are put on the field to work and our interest is in monitoring the reliability of
the components in the systems. For fielded systems, the information on which com-
ponent leads to the system failure is usually unknown because the experimenter often
does not have the need or capability to identify the failed component or the whole
system is discarded upon failure. In other situations, the distribution of component
lifetimes may change when they are used in a specified system. In these cases, we
can only observe the system lifetime but not the lifetimes of the components, and
consequently the statistical inference of the lifetime distribution of the components
may not be possible unless information on the system structure of the n-component
system is available. On the other hand, the longest lifetime among n components is
always greater than or equal to the lifetime of a n-component system with the same n
components. Therefore, even when life-testing experiment of individual components
are feasible to run, placing the components into n-component system and running the
life-testing experiment on the n-component system possesses the advantage of saving
on experimental time. However, one should keep in mind that the data observed from
the two life-testing experiments are of different forms, with the former giving lifetimes
of all n components while the latter giving only lifetime of the system. For this reason,
the development of statistical inference for the lifetime distribution of components
based on system lifetimes is of interest. In this manuscript, we discuss parametric
statistical inference for the component lifetime distributions when they follow a pro-
portional hazard rate (PHR) model in the case when the system lifetimes are observed
and the systems have the same known structure.

Let T be the lifetime of a coherent system with independent and identically dis-
tributed (IID) component lifetimes X1, X2, . . . , Xn with common absolutely continu-
ous cumulative distribution function (CDF) FX (·), probability density function (PDF)
fX (·), and survival (or reliability) function (SF) F̄X (·) = 1−FX (·). We denote the cor-
responding order statistics of the n component lifetimes as X1:n < X2:n < · · · < Xn:n .
We further denote the SF of the i-th order statistic by F̄i :n(·).

Suppose m independent n-component systems with the same structure are placed
on a life-test with the corresponding lifetimes T1, T2, . . . , Tm being identically dis-
tributed as T with CDF FT (·), PDF fT (·) and SF F̄T (·) = 1 − FT (·).

The system signature p = (p1, p2, . . . , pn) of T is defined by

pi = Pr(system fails upon the failure of the i-th component)

= Pr(T = Xi :n),
where the coefficients p1, p2, . . . , pn are some non-negative real numbers that do not
depend on FX and that satisfy

∑n
i=1 pi = 1 (see Samaniego 1985). Actually, it is well

known that the signature only depends on the structure of the system. Let us assume
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Parametric inference from system lifetime data 369

that the system signature is known and available. From Samaniego (1985) (see also
Kochar et al. 1999; Samaniego 2007), we have the PDF and SF of the system lifetime
T as

fT (t) =
n∑

i=1

pi

(
n

i

)

i fX (t)[FX (t)]i−1 [F̄X (t)
]n−i

and

F̄T (t) =
n∑

i=1

pi F̄i :n(t), (1)

respectively, where F̄i :n(t) = ∑i−1
j=0

(n
j

)[FX (t)] j
[
F̄X (t)

]n− j
. This representation

is called Samaniego representation. Shaked and Suarez-Llorens (1993) gave the
signatures of coherent systems with 3 and 4 components and compared reliability
experiments based on convolution order by means of the system signature. Navarro
and Rubio (2010) gave the signatures of coherent systems with 5 components. Note
that the estimation and prediction of reliability of coherent systems composed of com-
ponents are always of interest, see for example, Li et al. (2005).

Navarro et al. (2007) noted that the SF of the system lifetime T can be expressed as
a generalized mixture of the survival functions, F̄1:i (·), of the series system lifetimes
X1:i = min(X1, X2, . . . , Xi ), i = 1, 2, . . . , n, i.e.

F̄T (t) =
n∑

i=1

ai F̄1:i (t), (2)

for some negative and nonnegative integers a1, a2, . . . , an that do not depend on FX

and satisfy
∑n

i=1 ai = 1. Navarro et al. (2007) called the vector a = (a1, a2, . . . , an)

the minimal signature of the system. The minimal signature of a system can be obtained
from its signature and vice versa Navarro et al. (2007, 2008). For example, from Table 2
in Navarro et al. (2007), we have that the minimal signature of a 4-components system
can be obtained from a = pA4, where

A4 =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 4 −3
0 6 −8 3
4 −6 4 −1

⎞

⎟
⎟
⎠ .

For instance, the system with 4 components and structure given in Fig. 1 has its
lifetime as T = min{X1,max{X2, X3, X4}} and the corresponding system signature
and minimal signature are p = (1/4, 1/4, 1/2, 0) and a = pA4 = (0, 3,−3, 1).

The coherent systems are extended by the mixed systems which are defined as
stochastic mixtures of coherent systems (Boland and Samaniego 2004; Dugas and
Samaniego 2007). So, from (1), they are mixtures of X1:n, X2:n, . . . , Xn:n . The coef-
ficients in that representation are called the signature of the mixed system. Thus, a
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Fig. 1 Two parallel systems in
series

Table 1 Variances of method of moments estimators and minimal signatures for all 3-component system

System System lifetime (T ) Minimal signature (a) mV ar(θ̃ )/θ2

Series X1:3 (0, 0, 1) 1.0000

Series-parallel min{X1,max{X2, X3}} (0, 2, −1) 0.7500

2-out-of-3 X2:3 (0, 3, −2) 0.5200

Parallel-series max{X1,min{X2, X3}} (1, 1, −1) 0.6735

Parallel X3:3 (3, −3, 1) 0.4050

mixed system with signature (p1, p2, . . . , pn) has lifetime T equal to Xi :n with prob-
ability pi and its SF, F̄T (t), can be written as (1), where p1, p2, . . . , pn are arbitrary
nonnegative real numbers such that

∑n
i=1 pi = 1. Hence, F̄T (t) can also be written

as (2) for some real numbers a1, a2, . . . , an such that
∑n

i=1 ai = 1. The vector of
coefficients in that representation are called minimal signature of the mixed system.
For example, the mixed system with signature p = (0.1, 0.2, 0.3, 0.4) has minimal
signature a = (1.6,−0.6, 0, 0).

Navarro et al. (2008) proved that the lifetimes of coherent systems with less than
n components are equal in law to mixed systems of order n. Thus, for example, X1
(which is a series system with one component) is equal in law to the mixed system with
4 components and signature (1/4, 1/4, 1/4, 1/4) (see Table 1 in Navarro et al. (2008)).
Considering the system lifetime instead of individual component lifetime can also be
viewed as an accelerated life-test when the n-component system fails before the indi-
vidual components in expectation, i.e., E(T ) ≤ E(X1). For instance, if we consider a
series system, it is equivalent to having a right-censored sample with total sample size
n (effective sample size=1 and number of components right censored= n−1). Based
on the signature of the system, we can determine if the inequality E(T ) ≤ E(X1)

holds when we know the distribution of component lifetimes (Navarro and Rubio
2010; Navarro and Rychlik 2007).

In recent years, many authors have discussed theory and applications of system
signatures; see, for example Arcones et al. (2002), Boland et al. (2003), Navarro
(2007, 2008), Navarro et al. (2005, 2007, 2008), Navarro and Rychlik (2010), Navarro
et al. (2010), Navarro and Shaked (2010). A comprehensive discussion on system
signatures and their applications in engineering reliability can be found in a recent
book by Samaniego (2007). Although extensive work has been carried out in reliabil-
ity engineering based on system signatures, parametric inference of system lifetime
data, with signature being available, has not been studied much (see Gåsemyr and
Natvig 1998, 2001; Meilijson 1991). The purpose of this paper is to fill this gap by
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Parametric inference from system lifetime data 371

discussing the statistical inference of the lifetime distribution of components based
on observing the coherent (or mixed) system lifetimes when the system structure is
known.

The rest of this paper is organized as follows. Section 2 gives details of the model
of the component and system lifetimes and the problem of interest. We also discuss in
this section the estimation methods for the parameter using the method of moments,
maximum likelihood method and least squares method. The conditions for existence
and uniqueness of method of moments and maximum likelihood estimators are pre-
sented. In Sect. 3, we consider a special case when the lifetime distributions of the
components are exponential. Different methods for point and interval estimation of
the unknown mean lifetime of the components are discussed. A Monte Carlo sim-
ulation study is used to compare the performance of these estimation methods and
recommendations are made based on these results in Sect. 4. An illustrative example
is given in Sect. 5. Finally, some conclusions are provided in Sect. 6.

2 Model and parametric statistical estimation

In this paper, we consider the popular proportional hazard rate (PHR) model for the
common distribution of the IID lifetimes of the components, i.e., we assume that the
SF of Xi is

F̄X (t) = [
Ḡ(t)

]α
(3)

for i = 1, 2, . . . , n, where α > 0 is the unknown parameter and Ḡ(t) is the baseline
SF of a lifetime distribution with support [0,∞), whose form is completely specified
and it does not depend on α. The PHR model covers some commonly used statis-
tical lifetime distributions which are applicable to model component lifetimes. The
following are some examples:
Exponential distribution: Suppose Ḡ(t) = e−t . Then, under the model in (3), we
have F̄X (t) = e−αt , which is equivalent to assuming the lifetime of the components
to be exponentially distributed with constant hazard rate α.
Pareto distribution: Suppose Ḡ(t) = (1 + t)−1. Then, under the model in (3), we
have

F̄X (t) = (1 + t)−α, (4)

which is equivalent to assuming the lifetime of the components to be standard Pareto
type II distributed with shape parameter α (see Johnson et al. 1994, Chap. 20).
Weibull distribution with known shape parameter: Suppose Ḡ(t) = e−tβ with
known β. Then, under the model in (3), we have F̄X (t) = e−αtβ , which is equivalent
to assuming the lifetime of the components to be Weibull distributed with hazard rate
function αβtβ−1.

Based on model (3) and using the fact that X1, X2, . . . , Xn are IID, we have
F̄1:i (t) = Ḡiα(t). Hence, from (2), the PDF and SF of the system lifetime can be
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expressed as

fT (t) = αg(t)
n∑

i=1

iai Ḡ
iα−1(t) (5)

and

F̄T (t) =
n∑

i=1

ai Ḡ
iα(t),

respectively, where g(t) = −dḠ(t)/dt is the baseline PDF.
Suppose m independent n-component systems with the same distribution as T are

placed on a life-test and that the corresponding lifetimes T1, T2, . . . , Tm are observed.
We are interested in estimating the parameter α based on the system lifetimes when
the signature (or, equivalently, the minimal signature) of the system is available.

2.1 Method of moments estimation

The method of moments equates sample moments to parameter estimates. The method
of moments estimators always have the advantage of simplicity. In our case, when the
first moment of the system lifetime exists, it can be obtained as

E(T ) =
∞∫

0

F̄T (t)dt

=
n∑

i=1

ai

∞∫

0

Ḡiα(t)dt.

By equating the first moment with the sample moment, we can obtain the method of
moments estimator by solving the following equation

1

m

m∑

k=1

Tk =
n∑

i=1

ai

∞∫

0

Ḡiα(t)dt. (6)

Proposition 1 If limα→∞
∫∞

0 Ḡα(t)dt = 0, then Eq. (6) has a unique nonnegative
solution.

Proof From Kochar et al. (1999), it is known that the lifetimes of two systems with
the same structure and IID components are stochastically ordered if so are the respec-
tive component distributions. In other words, if X1, X2, . . . , Xn are IID components
from distribution F and Y1,Y2, . . . ,Yn are IID components from distribution F∗, F is
stochastically ordered with respect to F∗ and T = ϕ(X1, X2, . . . , Xn) is the lifetime
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a coherent system with minimal signature a, then T is stochastically ordered with
respect to T ∗ = ϕ(Y1,Y2, . . . ,Yn). Since in the PHR model in (3), it is evident that
for α1 < α2,

[
Ḡ(t)

]α1
>
[
Ḡ(t)

]α2 for all t , by using the above fact, we readily have
the function

φ(α) =
n∑

i=1

ai

∞∫

0

Ḡiα(t)dt

to be strictly decreasing in α and such that φ(∞) = limα→∞ φ(α) = 0. Let us show
that φ(0+) = limα→0+ φ(α) = ∞. First, note that

φ(α) = E(T ) ≥ E(X1:n) =
∞∫

0

Ḡnα(t)dt.

Hence, for a fixed positive real number c, if we choose α such that Ḡnα(2c) ≥ 1/2,
then

φ(α) ≥
∞∫

0

Ḡnα(t)dt ≥
2c∫

0

Ḡnα(t)dt ≥
2c∫

0

(1/2)dt = c.

Therefore, φ(0+) = ∞. Hence, as 1
m

∑m
k=1 Tk > 0, (6) has a unique nonnegative

solution. ��

The next example shows that this method can be used even when the common mean
of the component lifetimes does not exist.

Example 1 Let us consider the system given in Fig. 1 with minimal signature a =
(0, 3,−3, 1) and let us assume a standard Pareto type II baseline SF in (4). Then (6)
reduces to φ(α) = 1

m

∑m
k=1 Tk , where

φ(α) = 3

(
1

2α − 1

)

− 3

(
1

3α − 1

)

+ 1

4α − 1
.

It is easy to see thatφ(α) is a strictly decreasing function in (1/2,∞), withφ(1/2+) =
∞ and φ(∞) = 0. Hence (6) has a unique solution in (1/2,∞). Note E(T ) does not
exist for 0 < α ≤ 1/2. Also note that E(X) = 1/(α− 1) and that it does not exist for
0 < α ≤ 1. Hence, the method of moments, from a sample of system lifetimes, can be
applied forα ∈ (1/2, 1] while it cannot be applied from a component lifetimes sample.
In this example, one can also see that the system lifetime is shorter than individual
component in expectation since E(T ) < E(X), for α > 1.
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2.2 Maximum likelihood estimation

Based on a complete sample with observed lifetimes t1, t2, . . . , tm , the likelihood
function is

L(α) =
m∏

k=1

fT (tk)

=
{∏m

k=1 g(tk)
∏m

k=1 Ḡ(tk)

}

αm
m∏

k=1

n∑

i=1

iai Ḡ
iα(tk)

and the log-likelihood function is

ln L(α) = c + m ln α +
m∑

k=1

ln

{
n∑

i=1

iai Ḡ
iα(tk)

}

,

where c is a constant which does not depend on α. Therefore, the likelihood equation
is

d ln L(α)

dα
= m

α
+

m∑

k=1

{∑n
i=1 i2ai Ḡiα(tk)

∑n
i=1 iai Ḡiα(tk)

}

ln Ḡ(tk) = 0 (7)

and the maximum likelihood estimator of α, α̂, can be obtained by solving the above
non-linear equation for α.

Proposition 2 If q(x) is a strictly decreasing function in (0, 1), where

q(x) =
∑n

i=1 i2ai xi
∑n

i=1 iai xi
,

then (7) has a unique positive solution, and L(α) attains a maximum at that point.

Proof Note that (7) can be written as ψ(α) = 0, where

ψ(α) = m

α
+

m∑

k=1

q
(
Ḡα(tk)

)
ln Ḡ(tk),

ln Ḡ(tk) < 0 and 0 < Ḡα(tk) < 1. Hence, if q(x) is strictly decreasing in (0, 1), then
ψ(α) is strictly decreasing in (0,∞). Moreover, as q(0) = i1 > 0 where i1 = min{i :
ai 
= 0}, and

123



Parametric inference from system lifetime data 375

q(1) =
∑n

i=1 i2ai
∑n

i=1 iai

is a real number or −∞, then ψ(0+) = ∞ and ψ(∞) = i1
∑m

k=1 ln Ḡ(tk) < 0.
Therefore, (7) has a unique positive solution and L(α) attains a maximum at that
point. ��

It is easy to see that the sign of the derivative of q(x) is equal to the sign of

∑

i< j

i jai a j ( j − i)2xi+ j .

Using this property and the minimal signatures given in Navarro et al. (2007), we
have proved that q(x) is a decreasing function for all coherent systems with 4 or less
components. However, we do not know if this property holds for any mixed system
or for coherent systems with more than 4 components. But, this property is easy to
check in practice when the signature is available.

From the asymptotic theory of maximum likelihood estimator, the observed Fisher
information can be computed as

I (α̂) = −d2 ln L(α)

dα2

∣
∣
∣
∣
α=α̂

= m

α̂2 −
m∑

k=1

⎧
⎨

⎩

∑n
i=1 iai Ḡi α̂(tk)[ln Ḡ(tk)]2

∑n
i=1 iai Ḡi α̂(tk)

−
[∑n

i=1 iai Ḡi α̂(tk) ln Ḡ(tk)
∑n

i=1 iai Ḡi α̂(tk)

]2
⎫
⎬

⎭
.

(8)

The variance of α̂ can be approximated by the inverse of the observed Fisher infor-
mation, i.e.,

̂V ar(α̂) = I −1(α̂),

and an asymptotic 100(1 − γ )% confidence interval for α is

α̂ ± z1−γ /2
√

̂V ar(α̂),

where zq is the q-th upper percentile of the standard normal distribution.

2.3 Least squares estimation

If T1:m < T2:m < · · · < Tm:m are the ordered system lifetimes, then

E[FT (Tk:m)] = k

m + 1
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and

V ar [FT (Tk:m)] = k(m − k + 1)

(m + 1)2(m + 2)

are both independent of the parameter α. The least squares estimator of α then can be
obtained by minimizing

GL S(α) =
m∑

k=1

[

FT (Tk:m)− k

m + 1

]2

.

Taking the derivative of GL S(α) with respect to α and setting it to zero, we have

dGL S(α)

dα
= 2

m∑

k=1

[

FT (Tk:m)− k

m + 1

]
d FT (Tk:m)

dα
= 0,

and the least squares estimator of α, α̂L S , can then be obtained by solving

dGL S(α)

dα

= −2
m∑

k=1

[
m + 1 − k

m + 1
−

n∑

i=1

ai Ḡ
iα(Tk:m)

][
n∑

i=1

iai Ḡ
iα(Tk:m)

]

ln Ḡ(Tk:m) = 0

(9)

for α. To solve this equation, we must study the polynomials

pk(x) =
[

m + 1 − k

m + 1
−

n∑

i=1

ai xi

][
n∑

i=1

iai xi

]

for x ∈ [0, 1] and k = 1, 2, . . . ,m, where pk(0) = 0 and pk(1) = −k
m+1

∑n
i=1 iai ≤ 0

from (5). Moreover, note that pk(x) > 0 for positive numbers x in the neighborhood
of 0 and pk(x) < 0 for x in the neighborhood of 1 such that x < 1 (since from (5) we
have

∑n
i=1 iai xi ≥ 0 for all x ∈ [0, 1]). Therefore, GL S(α) is decreasing for α close

to 0 and increasing for large values of α. However, (9) does not necessarily have a
unique positive solution. The weighted least squares estimator ofα can be obtained in a

similar manner by using the weight function wk = 1/V ar [FT (Tk:m)] = (m+1)2(m+2)
k(m−k+1)

for k = 1, . . . ,m.

3 Systems with exponentially distributed components

We assume that the lifetime of the n components in a system are IID with constant
hazard rate, say 1/θ , i.e., they are exponentially distributed with PDF and CDF
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fX (x) = 1

θ
exp

(
− x

θ

)
and FX (x) = 1 − exp

(
− x

θ

)
, x > 0, θ > 0,

respectively. The readers can refer to the volume by Balakrishnan and Basu (1995)
(see also Johnson et al. 1994, Chap. 19) for an extensive review of the genesis of this
distribution and its properties. As mentioned in Sect. 2, this model is equivalent to
setting Ḡ(t) = e−t and α = 1/θ in (3). In this section, we discuss different methods
of point and interval estimation for the parameter α (or, equivalently, θ ).

3.1 Method of moments

From Eq. (6), the first moment of the system lifetime with exponentially distributed
components is

E(T ) =
n∑

i=1

ai

iα
> 0

for all α > 0. From (6), we have the method of moments estimator of α, α̃, as

α̃ = m
∑n

i=1
ai
i∑m

k=1 Tk
. (10)

Since it is easier to work with the method of moments estimate of θ = 1/α in this
case, we will study the properties of the method of moments estimator of θ which is
simply given by

θ̃ =
∑m

k=1 Tk

m
∑n

i=1
ai
i

.

This estimator is unbiased since

E(θ̃) =
∑m

k=1 E(Tk)

m
∑n

i=1
ai
i

= E(T )
∑n

i=1
ai
i

= 1

α
= θ

and the variance of θ̃ is

V ar(θ̃) = 1

m2
[∑n

i=1
ai
i

]2

m∑

k=1

V ar(Tk)

= θ2

m
[∑n

i=1
ai
i

]2

⎧
⎨

⎩
2

n∑

i=1

ai

i2 −
[

n∑

i=1

ai

i

]2
⎫
⎬

⎭

= θ2

m

{
2
∑n

i=1
ai
i2

[∑n
i=1

ai
i

]2 − 1

}

.
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Table 2 Variances of method of moments estimators and minimal signatures for all 4-component system

System lifetime (T ) Minimal signature (a) mV ar(θ̃ )/θ2

X1:4 (1, 0, 0, 0) 1.0000

max{min{X1, X2, X3},min{X2, X3, X4}} (0, 0, 2, −1) 0.8400

min{X1,max2≤i≤ j≤4{Xi , X j }} (0, 0, 3, −2) 0.6667

min{X1,max{X2, X3},max{X2, X4}} (0, 1, 1, −1) 0.7551

min{X1,max{X2, X3, X4}} (0, 3, −3, 1) 0.7037

X2:4 (0, 0, 4, −3) 0.5102

max{min{X1, X2},min{X1, X3, X4},min{X2, X3, X4}} (0, 1, 2, −2) 0.5625

max{min{X1, X2},min{X3, X4}} (0, 2, 0, −1) 0.5556

max{min{X1, X2},min{X1, X3},min{X2, X3, X4}} (0, 2, 0, −1) 0.5556

max{min{X1, X2},min{X2, X3},min{X3, X4}} (0, 3, −2, 0) 0.5200

max{min{X1,max{X2, X3, X4},min{X2, X3, X4}} (0, 3, −2, 0) 0.5200

max{min{X1,max{X2, X3, X4},min{X2, X3}} (0, 4, −4, 1) 0.4711

min{max{X1, X2},max{X3, X4}} (0, 4, −4, 1) 0.4711

min{max{X1, X2},max{X1, X3, X4},max{X2, X3, X4}} (0, 5, −6, 2) 0.4167

X3:4 (0, 6, −8, 3) 0.3609

max{X1,min{X2, X3, X4}} (1, 0, 1, −1) 0.7870

max{X1,min{X2, X4},min{X3, X4}} (1, 2, −3, 1) 0.5733

max{X1 max2≤i≤ j≤4 min{Xi , X j }} (1, 3, −5, 2) 0.4844

max{X1, X2,min{X3, X4}} (2, 0, −2, 1) 0.4681

X4:4 (4, −6, 4, −1) 0.3280

The exact distribution of the method of moments estimator θ̃ can be shown to be a
generalized mixture of gamma distributions. As mentioned earlier in Sect. 1, the per-
formance of the statistical inference procedure can be used as a criteria to compare
systems with different structures. Since the variance of the method of moments esti-
mators does not depend on the observed data, it can be used to compare systems with
different signatures. In Tables 1 and 2, we have provided the variances of θ̃ for all 3-
and 4-component systems, respectively. From these results, we can compare systems
with the same or different number of components in terms of the performance of point
estimate of the parameter θ . For example, we can see that the performance of point
estimate of θ based on a parallel 3-component system (mV ar(θ̃)/θ2 = 0.4050) is
better than a 2-out-of-4 system (mV ar(θ̃)/θ2 = 0.5102).

Since θ̃ is a linear function of a sum of independent random variables Tk, k =
1, 2, . . . ,m, based on central limit theorem, we have

θ̃ − θ
√

V ar(θ̃)

D→ N (0, 1).

As a result, we have two options to construct confidence intervals for θ : (i) Replacing
θ by θ̃ in V ar(θ̃) to estimate the variance of θ̃ and obtain an asymptotic confidence
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interval of θ (namely, AMOM1) as

θ̃ ± z1−γ /2

√
√
√
√ θ̃2

m

{
2
∑n

i=1
ai
i2

[∑n
i=1

ai
i

]2 − 1

}

; (11)

and (ii) Solving the equation

−z1−γ /2 <
θ̃ − θ

√
√
√
√ θ2

m

{
2
∑n

i=1
ai
i2

[∑n
i=1

ai
i

]2 − 1

} < z1−γ /2

for θ to obtain an asymptotic confidence interval of θ (namely, AMOM2) as

θ̃

1 ± z1−γ /2

√
√
√
√ 1

m

{
2
∑n

i=1
ai
i2

[∑n
i=1

ai
i

]2 − 1

} . (12)

It should be noted that the confidence interval forα can be obtained simply by inverting
the confidence limits for θ .

3.2 Maximum likelihood estimation

For systems with exponentially distributed components, the likelihood equation in (7)
is

m

α
+

m∑

k=1

tk

{∑n
i=1 i2ai e−αi tk

∑n
i=1 iai e−αi tk

}

= 0

and the maximum likelihood estimator of α, α̂, can be obtained by solving the above
non-linear equation for α (recall that we know that it has a unique positive solution
for all coherent systems with 4 or less components). Numerical methods, such as the
Newton-Raphson method, can be used for this purpose and the method of moments
estimator α̃ given in (10) can be used as an initial value in the iterative procedure.

The observed Fisher information in (8) is

I (α̂) = m

α̂2 −
m∑

k=1

t2
k

⎧
⎨

⎩

∑n
i=1 i3ai e−α̂i tk

∑n
i=1 iai e−α̂i tk

−
[∑n

i=1 i2ai e−α̂i tk
∑n

i=1 iai e−α̂i tk

]2
⎫
⎬

⎭
.

and an estimate of the variance of α̂ is ̂V ar(α̂) = 1/I (α̂). An asymptotic 100(1−γ )%
confidence interval for α (namely AMLE) is then
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α̂ ± z1−γ /2
√

̂V ar(α̂). (13)

3.3 Least squares estimation

If t1:m < t2:m < · · · < tm:m are the observed values of the ordered system lifetimes,
from the results in Sect. 2.3, the least squares estimate of α, α̂L S , can be obtained by
solving

m∑

k=1

tk:m

[
m + 1 − k

m + 1
−

n∑

i=1

ai e
−αi tk:m

][
n∑

i=1

iai e
−αi tk:m

]

= 0

for α. Similarly, the weighted least squares estimate of α, α̂W L S , can be obtained by
solving

m∑

k=1

wk tk:m

[
m + 1 − k

m + 1
−

n∑

i=1

ai e
−αi tk:m

][
n∑

i=1

iai e
−αi tk:m

]

= 0

for α. Numerical methods are required to solve the above non-linear equation and
the method of moments estimator can be used as an initial estimate in the iterative
procedures.

Since the asymptotic properties of the least squares and weighted least squares
estimators are intractable in this situation, we construct confidence intervals using the
parametric percentile bootstrap method with bias-correction and acceleration (BCA)
based on these estimates (Efron and Tibshirani 1993). To obtain the BCA percen-
tile bootstrap confidence intervals for α based on the least squares estimator, namely
BLSE, we use the following algorithm:
Parametric bootstrap:

1. Based on the original observed system lifetimes t1, t2, . . . , tk , obtain α̂L S , the least
squares estimate of α.

2. Simulate m system lifetimes with minimal signature a with the components follow-
ing an exponential distribution with mean 1/α̂L S, T ∗

1 , T ∗
2 , …, T ∗

m , and put them
in order T ∗

1:m < T ∗
2:m < · · · < T ∗

m:m .
3. Compute the least squares estimate of α based on T ∗

1:m < T ∗
2:m < · · · < T ∗

m:m , say

α̂
(1)
L S .

4. Repeat Steps 2–3 B times and obtain α̂(1)L S, α̂
(2)
L S , …, α̂(B)L S .

5. Arrange α̂(1)L S, α̂
(2)
L S , …, α̂(B)L S in ascending order and obtain α̂[1]

L S < α̂
[2]
L S < · · · <

α̂
[B]
L S .

6. A two-sided 100(1 − γ )% BCA bootstrap confidence interval of α based on least
squares estimators, say [αL

L S, α
U
L S], is then given by

αL
L S = α̂

[Bγ1]
L S , αU

L S = α̂
[Bγ2]
L S ,
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where

γ1 = 	

[

ẑ0 + ẑ0 − z1−γ /2
1 − ĉ(ẑ0 − z1−γ /2)

]

and

γ2 = 	

[

ẑ0 + ẑ0 + z1−γ /2
1 − ĉ(ẑ0 + z1−γ /2)

]

.

Here, 	(·) is the standard normal CDF and the value of bias correction ẑ0 is

ẑ0 = 	−1

(
number of α̂( j)

L S < α̂L S

B

)

,

where	−1(·) is the inverse function of the standard normal CDF; the acceleration
factor ĉ is

ĉ =
∑m

k=1

[
α̂L S(·) − α̂L S(k)

]3

6
{∑m

k=1

[
α̂L S(·) − α̂L S(k)

]2
}3/2 ,

where α̂L S(k) is the least squares estimate of α, computed based on the original
sample with the k-th observation deleted (i.e., the jackknife method, see Efron
(1982)), k = 1, 2, . . . ,m and α̂L S(·) = ∑m

k=1 α̂L S(k)/m.

The bootstrap confidence interval based on weighted least squares estimator, namely
BWLS, can be constructed in a similar manner using the above algorithm. Note that
the parametric bootstrap method can also be applied to the method of moments and
the maximum likelihood estimators. The performance of these interval estimation
methods will be evaluated by means of a Monte Carlo simulation study in the next
section.

4 Monte carlo simulation study

To evaluate the performance of all the methods of point and interval estimation
described in Sect. 3 for systems with exponentially distributed components, we carried
out a Monte Carlo simulation study. Six different four-component systems are con-
sidered. The following algorithm is used to generate a system lifetime T with system
signature p = (p1, p2, . . . , pn) and with exponentially distributed components:

1. Generate a random number v from a discrete n-point distribution with Pr(V =
v) = pv, v = 1, 2, . . . , n.

2. Generate y1, y2, …, yv from IID exponential distribution with parameter α.
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Table 3 System signatures and minimal signatures of the 4-component systems considered in the simula-
tion study

System no. System lifetime (T ) Minimal signature (a)

1 X1:4 (1, 0, 0, 0)

2 min{X1,max{X2, X3, X4}} (0, 3, −3, 1)

3 max{X1,min{X2, X3, X4}} (1, 0, 1, −1)

4 min{X1,max{X2, X3},max{X2, X4}} (0, 1, 1, −1)

5 max{min{X1, X2},min{X1, X3, X4},min{X2, X3, X4}} (0, 1, 2, −2)

6 X3:4 (0, 6, −8, 3)

3. From the properties of order statistics from exponential distribution (see, for exam-
ple, Arnold et al. 1992), the system lifetime T is

T =
v∑

l=1

yl

n − l + 1
.

For a general component lifetime distribution with CDF FX , the system lifetime
T can be generated by replacing Step 3 with

3′. From the properties of order statistics, we generate the v-th order statistic from
uniform distribution, U(v), using the fact that U(v) follows a beta distribution with
parameter v and m + 1 − v. Then, by using inverse transform method, the system
lifetime T is

T = F−1
X (U(v)),

where F−1
X is the inverse function of FX defined by F−1

X (u)= inf{x : FX (x)≥u}.
For notational convenience, Table 3 lists the different systems and their minimal

signatures used in the simulation study. Note that the first mixed system is a series
system equal in law to the minimum of n component lifetimes thus resulting in least
informative data for inference, and so it can be used as a basis for the comparison
of precision of estimates for the component lifetimes based on data of lifetimes from
other coherent systems. Without loss of generality, we took α = θ = 1.

For different choices of sample sizes (m) and systems with signatures available,
we generated 1,000 sets of system lifetimes, in order to obtain the estimated bias and
mean squares errors (MSEs) for the point estimates as well as the estimated cover-
age probabilities and average conditional width (width of confidence intervals which
contained the true value of the parameter) for 95% confidence intervals.

For the point estimation, we considered the method of moments estimator (MOM),
the maximum likelihood estimator (MLE), the least squares estimator (LSE), and the
weighted least squares estimator (WLSE). The simulated bias and mean squares errors
(MSEs) of these point estimates of α are tabulated in Table 4 for m = 5, 10, 15 and
25. Since the numerical computation of the LSE and WLSE was unstable due to the
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Table 4 Simulated biases and mean squares errors (MSEs) of method of moments estimators (MOM), max-
imum likelihood estimators (MLE), least squares estimators (LSE) and weighted least squares estimators
(WLSE) of α for different 4-component systems with m = 5, 10, 15 and 25

m System no. Bias MSE

MOM MLE LSE WLSE MOM MLE LSE WLSE

5 1 0.062 0.062 0.187 0.195 0.184 0.184 0.310 0.303

2 0.044 0.029 0.118 0.127 0.140 0.133 0.203 0.207

3 0.007 0.031 0.068 0.070 0.158 0.160 0.207 0.204

4 0.011 0.012 0.086 0.093 0.155 0.157 0.219 0.217

5 0.002 0.011 0.047 0.049 0.122 0.123 0.161 0.158

6 0.009 0.013 0.032 0.034 0.076 0.076 0.097 0.097

10 1 −0.008 −0.008 0.060 0.060 0.102 0.102 0.140 0.131

2 −0.008 −0.017 0.037 0.038 0.066 0.063 0.095 0.090

3 0.003 0.013 0.051 0.038 0.082 0.078 0.100 0.104

4 0.000 0.002 0.055 0.051 0.081 0.081 0.099 0.102

5 0.011 0.018 0.024 0.016 0.061 0.061 0.069 0.072

6 0.016 0.018 0.014 0.013 0.040 0.040 0.046 0.045

15 1 0.005 0.005 0.044 0.037 0.065 0.065 0.092 0.089

2 −0.004 −0.008 0.034 0.028 0.048 0.046 0.063 0.064

3 −0.004 0.007 0.029 0.025 0.055 0.054 0.062 0.062

4 0.000 0.001 0.026 0.021 0.050 0.050 0.066 0.066

5 −0.002 0.002 0.026 0.023 0.036 0.036 0.048 0.047

6 0.002 0.003 0.013 0.012 0.025 0.025 0.028 0.026

25 1 −0.004 −0.004 0.018 0.016 0.042 0.042 0.055 0.050

2 0.002 −0.002 0.017 0.014 0.030 0.029 0.039 0.036

3 −0.002 0.007 0.016 0.015 0.032 0.030 0.035 0.033

4 −0.002 −0.002 0.023 0.023 0.029 0.029 0.040 0.037

5 0.004 0.006 0.014 0.012 0.022 0.022 0.029 0.027

6 0.001 0.002 0.009 0.008 0.014 0.014 0.017 0.016

present of multiple roots, especially in case of small sample sizes (say, m = 5 and 10),
the values of the LSE and WLSE could not be obtained in some cases (about 5–10%
of times) and so these cases were not taken into account in the simulation results.

For the interval estimation, we considered the two asymptotic confidence inter-
vals based on MOM in Eq. (11) (AMOM1) and Eq. (12) (AMOM2), the asymptotic
confidence interval based on MLE in Eq. (13) (AMLE), the BCA percentile bootstrap
method applied to MOM (BMOM), MLE (BMLE), LSE (BLSE) and WLSE (BWLS).
The confidence level was set to be 95% and for the BCA percentile bootstrap confi-
dence intervals, we set the number of bootstrapped samples as B = 200. The simulated
coverage probabilities and average conditional widths of 95% confidence intervals for
all these methods are tabulated in Tables 5 and 6, respectively, for m = 5, 10, 15
and 25.
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Table 5 Simulated coverage probabilities of 95% confidence intervals of α for different 4-component
systems with m = 5, 10, 15 and 25

m System no. AMLE AMOM1 AMOM2 BMOM BMLE BLSE BWLS

5 1 95.5 80.2 95.7 86.7 86.7 95.8 96.9

2 95.1 82.8 95.3 87.4 86.6 92.7 94.2

3 96.4 87.6 96.5 91.4 92.4 94.0 93.4

4 95.0 83.4 94.2 88.1 89.1 92.6 94.2

5 96.1 89.5 95.5 91.8 92.5 92.1 92.7

6 94.8 89.3 94.8 89.3 90.0 93.0 93.8

10 1 99.3 90.1 95.5 92.0 92.4 92.6 93.3

2 99.1 91.2 95.7 92.9 92.9 92.2 92.5

3 98.2 92.3 94.3 93.5 94.2 94.4 93.6

4 98.7 91.2 94.5 92.6 91.9 93.1 93.0

5 97.7 93.4 94.8 93.2 93.9 94.7 93.8

6 96.6 93.0 94.5 92.9 93.5 92.9 92.1

15 1 99.9 92.4 96.0 93.7 93.2 94.4 93.6

2 99.3 92.1 94.9 93.1 93.7 93.9 93.4

3 99.2 92.1 95.1 93.2 94.7 94.3 94.2

4 99.5 92.4 95.4 92.4 93.3 93.3 92.9

5 98.8 93.6 95.7 93.5 94.0 93.7 94.4

6 97.7 94.1 95.1 93.3 92.7 94.3 94.3

25 1 100.0 93.0 95.0 93.1 93.0 93.2 93.4

2 99.5 93.1 94.5 93.1 93.7 94.0 93.9

3 99.9 94.3 94.8 94.1 94.6 94.9 94.9

4 99.9 93.4 94.5 93.5 93.0 94.0 94.5

5 99.2 94.8 95.3 94.5 93.6 93.9 93.7

6 98.2 94.3 95.1 94.1 93.9 94.4 94.4

4.1 Comparison of point estimators

From Table 4, it is not surprising to see that the MSEs of the estimators are decreasing
with increase sample size (m), and the performance of the estimators depend on the
structure of the system. As mentioned before, System No. 1 in Table 3 is equal in law
to the minimum of n component lifetimes, and therefore serves as a basis for the com-
parison of precision of estimates for the component lifetimes based on data of lifetimes
from other coherent systems. We can see that the inference based on samples from
different systems (System No. 2–6) provide better results (smaller MSE) compared
to the inference based on the minimum of n component lifetimes (System No. 1).
This suggests that it would be more efficient for the estimation of the mean lifetimes
of components if we choose a suitable system structure and place the components in
the system to run the life-testing experiment. For instance, the comparison between
systems with different signatures can be done in terms of the variance of the MOM as
illustrated in Sect. 3.1.
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Table 6 Simulated averaged conditional lengths of 95% confidence intervals ofα for different 4-component
systems with m = 5, 10, 15 and 25

m System no. AMLE AMOM1 AMOM2 BMOM BMLE BLSE BWLS

5 1 2.513 7.855 2.243 2.246 2.251 3.890 3.655

2 1.867 3.260 1.763 1.880 1.741 3.248 3.285

3 1.942 4.063 1.876 1.792 1.902 2.372 2.361

4 1.960 3.735 1.836 1.889 1.866 3.162 3.058

5 1.544 2.385 1.485 1.499 1.548 2.040 2.010

6 1.188 1.475 1.148 1.160 1.154 1.460 1.418

10 1 2.205 2.069 1.399 1.383 1.373 2.032 1.959

2 1.446 1.445 1.132 1.150 1.103 1.668 1.621

3 1.576 1.606 1.205 1.157 1.144 1.460 1.364

4 1.576 1.538 1.183 1.171 1.156 1.560 1.520

5 1.188 1.200 0.987 0.970 0.960 1.113 1.089

6 0.863 0.856 0.767 0.761 0.749 0.850 0.836

15 1 2.086 1.373 1.083 1.087 1.087 1.461 1.400

2 1.252 1.047 0.899 0.913 0.881 1.211 1.152

3 1.386 1.143 0.960 0.937 0.917 1.063 1.042

4 1.375 1.098 0.931 0.928 0.923 1.183 1.143

5 1.019 0.895 0.792 0.783 0.777 0.872 0.849

6 0.724 0.673 0.623 0.620 0.613 0.679 0.662

25 1 2.054 0.937 0.824 0.815 0.829 0.985 0.950

2 1.023 0.738 0.680 0.682 0.664 0.825 0.783

3 1.155 0.799 0.724 0.709 0.700 0.762 0.743

4 1.152 0.774 0.704 0.694 0.700 0.813 0.781

5 0.816 0.644 0.601 0.597 0.596 0.662 0.646

6 0.571 0.499 0.478 0.474 0.475 0.518 0.504

In this simulation study we observe that the MOM has the smallest bias among all
the estimators considered here. The performance of MOM and MLE are quite similar
and they out perform the LSE and WLSE in terms of MSE. Additionally, the LSE
and WLSE are numerically unstable and sometimes there is no unique solution. Since
the MOM has a closed-form solution which makes it easier to calculate, and that the
MLE requires the solution of a non-linear equation numerically, we recommended
the MOM for use in this situation. Note that the MOM may not have the advantage
of having a closed-form solution when the component lifetime distributions are not
exponential. In these cases, we can either use MOM or MLE.

4.2 Comparison of interval estimates

From Tables 5 and 6, once again, we observe that the average widths of the confidence
intervals are decreasing with increasing sample size (m) and the performance of the
confidence intervals do depend on the structure of the system.
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Table 7 Dataset for illustrative example based on system number 2 in Table 3 with exponential components,
signature p = (1/4, 1/4, 1/2, 0) and m = 15

k 1 2 3 4 5 6 7 8

tk:15 0.00904 0.01088 0.13532 0.15275 0.17916 0.18682 0.23807 0.28067

k 9 10 11 12 13 14 15

tk:15 0.32102 0.33895 0.37707 0.46568 0.52325 0.63889 1.02907

When comparing the confidence intervals in terms of coverage probabilities (see
Table 5), we find that the AMLE always maintains coverage probabilities above the
nominal level and also AMOM2 has coverage probabilities above the desired nominal
level in most of the cases. The coverage probabilities of AMOM1 are often smaller
than the nominal level, especially for small sample sizes (say, m = 5 and 10). The
coverage probabilities of the bootstrap confidence intervals (BMOM, BMLE, BLSE
and BWLS) are all quite similar and that they are all below the nominal level. In
general, we observe that the order of performance in terms of coverage probabilities
is AMOM1 < BMOM, BMLE, BLSE, BWLS < AMOM2 < AMLE.

The AMLE always have coverage probabilities above the nominal level, but the
trade-off is the average conditional width is the largest in most of the situations except
for a few cases in small sample sizes. When comparing the confidence intervals in
terms of the average conditional widths (see Table 6), we observe that the order of
widths, in general, is AMOM2, BMOM, BMLE < AMOM1 < BWLS < BLSE <
AMLE.

Taking the coverage probabilities as well as the average conditional widths into
account, the asymptotic confidence interval based on method of moments estimator
(AMOM2) in Eq. (12) provide a good balance between the two even when sample
size is as small as m = 5. Therefore, we would recommend the use of AMOM2 for
interval estimation of the mean lifetime of components.

5 Illustrative example

To illustrate all the methods presented in the preceding section, a sample of size m = 15
is generated from a 4-component system with system signature p = (1/4, 1/4, 1/2, 0)
and minimal signature a = (0, 3,−3, 1) (see Fig. 1), and with components following
the exponential distribution with hazard rate α = 2. The data are presented in Table 7.

With these data, we obtain the point and interval estimates and these are summa-
rized in Table 8. We find that all the confidence intervals do indeed here cover the true
value of the parameter α. We also observe that AMOM2 provids the shortest confi-
dence interval while BLSE, BWLS and AMLE all yield wider confidence intervals,
which are consistent with the findings based on simulations.

6 Conclusions

In this paper, statistical inference on the lifetime distribution of components is dis-
cussed based on data of lifetimes of systems with the same structure for which the
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Table 8 Point and interval
estimates of α for illustrative
example based on system
number 2 in Table 3 with
exponential components,
signature p = (1/4, 1/4,
1/2, 0) and m = 15

Point estimates 95% Confidence intervals

Method Estimate Method Estimate

MOM 2.302 AMOM1 (1.616, 4.000)

AMOM2 (1.325, 3.280)

BMOM (1.509, 3.790)

MLE 2.340 AMLE (0.981, 3.699)

BMLE (1.570, 3.569)

LSE 2.200 BLSE (1.437, 4.115)

WLSE 2.193 BWLS (1.530, 4.226)

signature is known. Different estimators for the proportionality parameter in a general
proportional hazard rate model are derived and their properties are examined. When
the lifetime distribution of the components is exponential, point and interval estimation
of the unknown mean lifetime of the components are studied as well. Comparison of
systems with different structures based on the performance of estimation procedure is
discussed. An extensive Monte Carlo simulation study carried out shows the merit of
placing components in systems with known structure (i.e., signature) and then observ-
ing the lifetimes of those systems rather than conducting a life-testing experiment
directly on individual components. Based on the simulation results, we recommend
the point estimation based on either the method of moments or the maximum likelihood
(with the former being simpler in form for the exponential case) and the asymptotic
confidence intervals based on them for the purpose of interval estimation.
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