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Abstract Properties of a “blockwise”empirical likelihood for spatial regression with
non-stochastic regressors are investigated for spatial data on a lattice. The method
enables nonparametric confidence regions for spatial trend parameters to be calibrated,
even though non-random regressors introduce non-stationary forms of spatial depen-
dence into the “blockwise” construction. Additionally, the regression results are valid
in a general framework allowing for a variety of behavior in regressor variables as
well as the underlying spatial error process. The same regression method also applies
when the regressors are stochastic.

Keywords Blocking · Spatial lattice data · Non-stationarity · Non-stochastic
regressors

1 Introduction

Estimation of spatial trend is often an important consideration in spatial analysis, as
described by Cressie (1993) (i.e., modeling so-called “large-scale variation”). In this
paper, we consider a real-valued spatial regression model given by

Z(s) = X (s)′β + ε(s), s ∈ Z
d , (1)

where X (s) is a q × 1 vector of non-random regressors, β ∈ R
q is a vector of regres-

sion parameters and {ε(s) : s ∈ Z
d} is a mean-zero strictly stationary random field

on the integer grid Z
d , d ≥ 1. Here d denotes the dimension of sampling so that the

regression model (1) applies to time series (d = 1) as a special case. Such models
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352 D. J. Nordman

with non-random regressors are commonly used, for example, when incorporating the
locations of observations in space or time as regression information (e.g., X (s) ≡ s,
s ∈ Z

d ) or when studying treatment effects in field trials (see Sect. 5.7 of Cressie 1993).
This paper considers an empirical likelihood (EL) method for nonparametric infer-

ence on the regression parameter β based on a spatial sample on a grid and develops
the asymptotic properties of the EL method in a general framework for the regressors
X (·) and error process ε(·) in (1). This EL method uses data blocks in a spatial version
of the blockwise EL proposed by Kitamura (1997) for weakly dependent time series.
Previously, Owen (1991) introduced EL regression with independent error terms ε(·),
which was further investigated by Chen (1993) and Bravo (2002) among others in the
independent data context. For weakly dependent time series, Bravo (2005) examined a
blockwise EL for regression problems with stochastic regressors X (·). In contrast, our
results involve non-random regressors and a spatially dependent error process ε(·),
which introduces non-stationary forms of spatial dependence through the usual EL
estimating functions for regression (see Sect. 2.2). However, the spatial EL is shown
to be valid for regression models (1) despite the non-stationarity involved as well as
conditions permitting the regressors to become unbounded at possibly non-standard
rates. The same method also applies to cases where the regressors X (·) in (1) are
stochastic. For a large class of spatial processes, the EL approach allows confidence
regions for β without knowledge of the underlying spatial dependence structure and
without any explicit spatial variance estimation or studentization, as would be required
for confidence regions based on the ordinary least squares estimator of β, for example.
EL confidence regions for the regression parameter β can be simply calibrated using
the asymptotic chi-squared distribution of a log-EL ratio.

We end this section with a brief literature review on EL for dependent data.
Section 2 describes the spatial blockwise EL method and Sect. 3 presents the main EL
regression results for spatial data on a grid. Section 4 provides a small data example to
illustrate the spatial EL regression method. Proofs of the main results appear in Sect. 5.

Many EL developments continue for independent data (cf. Owen 2001), but recent
work has focused on extending EL to dependent time series, especially in econometric
applications. In a pivotal work, Kitamura (1997) introduced a EL methodology for
time series based on data blocking used for bootstrap and subsampling with time series
(Carlstein 1986; Künsch 1989; Politis and Romano 1994). This “blockwise EL” has
produced fruitful inference in other time series contexts such as blockwise Euclidean
EL (Lin and Zhang 2001), time series regression (Bravo 2005), negatively associated
series (Zhang 2006) and long-range dependence (Nordman et al. 2006). Additionally,
EL and generalized method of moments estimators have been considered for test-
ing moment restrictions in the econometric literature (cf. Hall and Horowitz 1996;
Imbens et al. 1998; Chuang and Chan 2002; Bravo 2004). Using the periodogram
(i.e., a data-transformation rather than data blocking), Monti (1997) and Nordman and
Lahiri (2006) developed a frequency-domain EL for time series. Recently, Nordman
and Caragea (2007) investigated a spatial EL method based on data blocks for vari-
ogram estimation, which partly considered de-trending spatial data with a regression
model in connection to variogram fitting. The purpose of this article is a full develop-
ment of EL spatial regression within a broad framework that permits the non-stochastic
regressors to exhibit standard and non-standard behaviors. This requires developing
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an asymptotic theory for spatial EL regression in which maximal spatial regressor
values may grow unbounded in non-standard ways.

2 Spatial EL method for regression

2.1 Sampling design

Suppose Rn ⊂ R
d , d ≥ 1, represents a spatial sampling region inside of which we

observe the process Z(·), under model (1), at n locations {s1, . . . , sn} ⊂ Z
d . That

is, the sampling sites are {s1, . . . , sn} = Rn ∩ Z
d and the available (paired) data for

inference are {Z(si ), X (si )}n
i=1. We adopt a sampling framework as in Lahiri (2003a,

Chapter 12.2) and Nordman and Lahiri (2004) which permits Rn to expand as the
sample size increases (i.e., “increasing domain asymptotics” as termed by Cressie
1993). Let R0 ⊂ (−1/2, 1/2]d be a Borel subset containing a neighborhood of the
origin such that, for any positive sequence an → 0, the number of lattice cubes
an(i +[0, 1]d) ⊂ R

d , i ∈ Z
d intersecting both closures R0 and Rd \ R0 is O(a−d+1

n )

as n → ∞. The sampling region Rn = λnR0 is then obtained by inflating the tem-
plate set R0 by an increasing sequence of positive scaling factors λn , where λn → ∞
as n → ∞. Because R0 contains the origin, Rn has a fixed center and expands in
volume, maintaining the same shape, as the sample size n increases. The boundary
condition on R0 entails that, as n → ∞, the total sample size n is larger than the
number O

(
λd−1

n

)
of samples near the boundary of Rn ; consequently, spatial volume

and sample size are equivalent in large samples because n/vol(Rn) → 1, where
vol(Rn) = λd

nvol(R0) and vol(·) denotes volume. This assumption is satisfied for
most practical regions of interest (e.g., convex or star-shaped sets) and is used only
to avoid pathological sampling regions. Note that we may obtain a size n time series
stretch (i.e., d = 1) by choosing R0 = (−1/2, 1/2] and λn = n to define Rn as
an interval with n integer points (i.e., observation locations), so the results to follow
include time series as a special case.

2.2 Spatial blockwise EL ratio for regression

For EL regression, we use a standard EL moment condition from Owen (1991) that
links the trend parameter β to the data. Define an estimating function of β ∈ R

q as
Yβ(s) = X (s){Z(s) − X (s)′β}, s ∈ Z

d , which satisfies

EYβ0(s) = 0q ∈ R
q , s ∈ Z

d , (2)

at the true parameter value β0 in (1). The construction of an EL function for β ∈ R
q

involves (2) and blocks of observations Yβ(·), where the blocking mechanism helps
to capture the unknown spatial dependence structure by keeping neighboring spatial
observations together. Similar blocking notions have been key to other nonparametric
likelihoods, like the bootstrap and subsampling, to dependent data (cf. Lee and Lahiri
2002; Lahiri 2003a). However, in contrast to previous blockwise EL formulations with
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time series (cf. Kitamura 1997; Bravo 2005), the spatial process Yβ0(·) = X (·)ε(·) at
the true β0 may exhibit non-stationary forms of dependence when the regressors X (·)
are non-stochastic and non-constant.

To define the spatial blocks, let bn be a sequence of positive integers for block
scaling and let In = {i ∈ Z

d : Bn(i) ⊂ Rn} denote the index set of all d-dimensional
rectangles Bn(i) ≡ i + bn(−1/2, 1/2]d , i ∈ Z

d , lying within Rn . This provides a
collection of maximally overlapping spatial EL blocks as {Bn(i) : i ∈ In}. For exam-
ple, in the time series case d = 1, this blocking scheme would produce n − bn + 1
overlapping blocks of length bn in a time series of length n, i.e., blocks given by
{(Zi , . . . , Zi+bn+1) : i = 1, . . . , n − bn + 1} if Z1, . . . , Zn denotes the time series
(using a notational deviation for simplicity, where a time series would be {Z(s) : s ∈
Rn ∩Z}, Rn = n(−1/2, 1/2] expressed in our notation). Other EL blocking schemes
are possible, such as non-overlapping blocks indexed by {i ∈ Z

d : Bn(bn i) ⊂ Rn},
but overlapping produces more data blocks which reduces variability in estimation
with block resampling methods (cf. Nordman and Lahiri 2004).

We require that block scaling bn → ∞ as n → ∞, but with bn/λn → 0 to ensure
the blocks are small relative to the sampling region Rn ; Sect. 3.1 to follow describes
block conditions in more detail. Each block Bn(i), i ∈ In , in the collection contains∣∣Bn(i) ∩ Z

d
∣∣ = bd

n observations of the process Yβ(·), β ∈ R
q , with a corresponding

block sample mean Ȳβ,i = ∑
s∈Bn(i)∩Zd Yβ(s)/bd

n , i ∈ In (letting |A| denote the size
of a finite set A).

For inference on the regression parameter, we assess the plausibility of a β-value
through the profile EL ratio given by

Rn(β) = N NI
I · sup

⎧
⎨

⎩

∏

i∈In

pi : pi ≥ 0,
∑

i∈In

pi = 1,
∑

i∈In

piȲβ,i = 0q

⎫
⎬

⎭
, β ∈ R

q ,

(3)
where NI = |In| denotes the number of overlapping blocks available. Note that 1
is the largest possible value of Rn(β), occurring when each pi = 1/NI . If the zero
vector 0q ∈ R

q is interior to the convex hull of {Ȳβ,i : i ∈ In} for a given β ∈ R
q ,

then (3) achieves a positive maximum and may be written as

Rn(β) =
∏

i∈In

pβ,i NI , pβ,i = {
NI(1 + t ′β Ȳβ,i)

}−1 ∈ (0, 1), (4)

where tβ ∈ R
q satisfies 0q = ∑

i∈In
Ȳβ,i/(1 + t ′β Ȳβ,i); see Owen (1991) and Qin and

Lawless (1994) for these and further computational details with EL with independent
data, which are applicable here.

3 Main distributional results

3.1 Assumptions with non-stochastic regressors

To describe the main results on the EL regression method, we require some assump-
tions on the process (1). For a vector x = (x1, . . . , xd)′ ∈ R

d , let ‖x‖ and ‖x‖∞ =
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max1≤i≤d |xi | denote the Euclidean and l∞ norms of x, respectively, and define the dis-
tance between two sets E1, E2 ⊂ R

d as: dis(E1, E2) = inf{‖x − y‖∞ : x ∈ E1, y ∈
E2}. Let F(T ) denote the σ -field generated by the random variables {ε(s) : s ∈ T },
T ⊂ Z

d . We define the strong mixing coefficient for the strictly stationary random
field ε(·) as a function of set distance v > 0 and size w > 0,

α(v,w) = sup
{
α̃(T1, T2) : Ti ⊂ Z

d , |Ti | ≤ w, i = 1, 2; dis(T1, T2) ≥ v
}

, (5)

where α̃(T1, T2) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ F(T1), B ∈ F(T2)} for
T1, T2 ⊂ Z

d . In spatial settings d ≥ 2, defining the mixing coefficient (5) with
bounded sets T1, T2 is important to avoid more restrictive forms of mixing (Bradley
1989). We shall assume that α(v,w) ≤ α1(v)g(w), v,w > 0 holds in Assump-
tion A.1 (to follow) for some non-increasing α1(·) and non-decreasing g(·), where
both functions are non-negative. Let β0 denote the unique parameter value satisfy-
ing (2) and define a positive definite matrix An = ∑n

i=1 X (si )X (si )
′ with Mn =

max1≤i≤n ‖A−1/2
n X (si )‖. In the following, recall d denotes the dimension of sam-

pling.

Assumptions

A.1 For some δ > 0, E|ε(s)|6+δ < ∞ holds; there exists τ > 5d(6 + δ)/δ such

that α1(v) ≤ Cv−τ , v ≥ 1; and M2
n n = o

(
λ

τ−d
4τ

n ) as n → ∞. Additionally,

g(w) = o(w
τ−d
4d ) as w → ∞ when d ≥ 2 and, for the time series case d = 1,

g(·) is bounded.
A.2 limn→∞ Var{∑n

i=1 A−1/2
n X (si )ε(si )} ≡ �β0 is positive definite.

A.3 b−1
n + b2d

n /n = o(1) as n → ∞.
A.4 P{Rn(β0) > 0} → 1 as n → ∞.

Mixing conditions in A.1 are mild and embody weak spatial dependence, where
bounds on (5) entail that the spatial dependence decreases as a function of distance
between observations but may increase as a function of set sizes. These resemble
assumptions from Lahiri (2003a, Theorem 12.6) or Lee and Lahiri (2002, condition 7)
for spatial resampling methods. The growth rate on M2

n n in assumption A.1 permits

a central limit theorem for regression sums like
∑n

i=1 A−1/2
n X (si )ε(si ) needed in the

EL theoretical development; in particular, these orders of g(·) and M2
n n are described

by Lahiri (2003b) (Proposition 4.2.ii) for limit theorems under spatial regression. Of
note, this regression framework for EL allows standard regressors for which M2

n n
is typically bounded (e.g., constant regressors X (·) = 1 for defining a real-valued
mean β ∈ R in (1)), but the sequence M2

n n may be unbounded to allow for a variety
of behavior in the non-random regressors X (·). In A.2, �β0 represents the limiting

covariance matrix of A1/2
n (β̂n,O L S −β0) corresponding to a normalized OLS estimator

β̂n,O L S = A−1
n

∑n
i=1 X (si )Z(si ) of β. The block condition in A.3 stipulates that the

squared number (bd
n )2 of observations in a spatial block should be smaller order than

the spatial sample size n, similar to the EL block size condition of Kitamura (1997)
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for time series d = 1. The probability statement in A.4 implies that the EL ratio can
be positively computed at β0, which is required for taking the log of Rn(β0) in the
main EL result of Sect. 3.2. This is a mild condition which is typical in EL regres-
sion contexts (cf. Condition 3.3a of Owen (1991) for independent data). For some
special regressors, such as constant regressors X (·) = 1 mentioned above, the prob-
ability condition in A.4 can also be shown to follow from the remaining assumptions
A.1–A.3.

3.2 Spatial EL result with non-stochastic regressors

The main result of the paper is a nonparametric recasting of Wilks’ theorem for the
spatial EL with non-random regressors, which establishes the asymptotic chi-squared
distribution of the log-EL ratio, −2 log Rn(β0), at the true parameter β0 ∈ R

q . Despite
the general non-stationarity of the estimating functions (2) with non-random regres-
sors X (·) as well as various growth behaviors allowed in the regressors, the EL method
automatically performs studentization within its mechanics so that no spatial variance
estimation is required and confidence regions for β may be simply calibrated with
the log-EL ratio. For η > 0, define a confidence set for the regression parameter as
Cn(η) ≡ {β ∈ R

q : −2 log Rn(β)/bd
n ≤ η}.

Theorem 1 Let η > 0 and t ∈ R
q . Under (2) and Assumptions A.1–A.4, as n → ∞

(i) −2 log Rn(β0)/bd
n

d−→ χ2
q , chi-squared with q degrees of freedom.

(ii) Cn(η) is a connected set in R
q , without voids.

(iii) −2 log Rn(β0 + A−1/2
n �

1/2
β0

t)/bd
n

d−→ χ2
q (‖t‖2) with non-centrality parameter

‖t‖2.

The scalar b−d
n in Theorem 1(i) adjusts the log-EL ratio for the spatial blocking used;

recall bd
n represents the sample size or volume of a spatial block. For time series d = 1,

this adjustment corresponds to the reciprocal of a block length bn and asymptotically
matches the blockwise EL correction of Kitamura (1997, pp. 2087) with overlapping
blocks. (Rephrased in terms of Kitamura’s notation, Q ≡ n − bn + 1 is the number
of maximally overlapping blocks of length M ≡ bn in a time series of length N ≡ n
(see Sect. 2.2 here) so that Kitamura’s block correction (M Q)−1 N is equivalent to
M−1 ≡ b−1

n for such overlapping blocks because N/Q → 1.)
For a wide range of spatial processes and regressors under Theorem 1, an approx-

imate 100(1 − α)% EL confidence region for β can be calibrated as Cn(χ
2
q;1−α

)

based on a lower chi-squared quantile η = χ2
q;1−α

. The size of the confidence set

Cn(χ
2
q;1−α

), as measured by sup{‖β − β0‖ : β ∈ Cn(χ
2
q;1−α

)}, is determined by the

growth of the largest eigenvalue of A−1/2
n (for example, A−1/2

n = n−1/2 when con-
sidering inference on a stationary process mean EZ(s) = β ∈ R in (1) corresponding
to regressors X (s) = 1). Theorem 1(ii) indicates some geometrical properties for
confidence regions produced by the spatial EL method. For independent data, Hall
and La Scala (1990) have shown that EL confidence regions are convex for population
means and must be connected for parameters that are smooth functions of means.
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Theorem 1 indicates that EL regions for regression parameters must be connected sets
as well.

We next provide some comments on block scaling bn and selection in the EL
method. Under Theorem 1, potential choices for the EL block factor may involve
bn = Cnθ or C[vol(Rn)]θ for some C > 0 and 0 < θ < 1/(2d). However, optimal
block sizes for EL coverage accuracy are presently unknown even for time series block-
wise EL methods, making the best blocks in the spatial setting difficult to determine
here. To suggest choices of block scaling bn in practice, one pragmatic approach may be
based on the so-called “minimum volatility” method, described by Politis et al. (1999,
Sect. 9.3) for subsampling time series. The idea is that, while some scaling bn may
produce over- or under-coverage in EL confidence regions, we might expect approx-
imately correct EL inference over a range of bn-values where the method appears
stable and produces confidence regions that change very little volume as a function of
the block scaling. Hence, we may compute EL confidence regions over a series of bn

and, by visual inspection, choose a block size where the EL confidence regions appear
relatively stable. This minimum volatility method is illustrated in more detail with a
data example involving spatial EL regression in Sect. 4.

3.3 Extension to stochastic regressors

We remark that the same EL construction from Sect. 2.2 also provides valid infer-
ence on β with random regressors X (·) in the spatial regression model (1). Namely,
suppose that the random field given by {U (s) = [X (s), ε(s)] : s ∈ Z

d} is strictly
stationary and the orthogonality condition (2) holds. Then the following Theorem 2
shows that the spatial EL method with non-random regressors applies equally to the
stochastic regressor case with spatial data. To state the result, we define slightly mod-
ified assumptions A.1′ and A.2′ by replacing ε(·) with U (·) in the mixing/moment
conditions, by dropping the condition on M2

n n in A.1, and by re-defining An as the
sample size n in A.2 (i.e., setting An ≡ n).

Theorem 2 Suppose (2) and Assumptions A.1′, A.2′, A.3 hold. Then, the distribu-
tional results in Theorem 1 (i) and (iii) remain valid, setting A−1/2

n ≡ n−1/2 in (iii).
In addition, if Var[X (s)] is positive definite, then Theorem 1 (ii) holds as well.

Theorem 2 provides an extension of some blockwise EL regression results in Bravo
(2005), based on random regressors with weakly dependent time series (d = 1), to
the spatial setting.

4 Data example

Here we describe the spatial EL method in a regression example involving simulated
data. On a circular sampling region Rn = {s ∈ R

2 : ‖s‖ ≤ 18} in the plane, a data
realization {ε(s) : s ∈ Z

2 ∩Rn} was generated from a real-valued mean-zero Gaussian
field with covariance structure Cov{ε(s), ε(s+h)} = 3 exp(−‖h‖2), h ∈ Z

2, using the
circulant embedding method of Chan and Wood (1997); this region then contains 1009
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Table 1 90% EL confidence intervals for β = 2 based on one spatial data realization with regressors X (·),
for various spatial block scaling bn ; intervals include the lengths (Len) and an endpoint standard deviation
S(bn) criterion

bn Bounded Regressors X (s) = 1 Unbounded Regressors X (s) = ‖s‖
One realization One realization

90% interval Len S(bn) CP (%) 90% interval Len S(bn) CP (%)

1 (1.837, 2.013) 0.176 2.608 65.8 (1.977, 1.992) 0.015 0.281 67.6

2 (1.798, 2.047) 0.249 2.549 81.8 (1.971, 1.993) 0.022 0.305 82.5

3 (1.785, 2.062) 0.277 2.479 85.7 (1.967, 1.993) 0.026 0.319 87.3

4 (1.778, 2.068) 0.290 1.171 87.9 (1.965, 1.994) 0.029 0.220 89.6

5 (1.770, 2.068) 0.298 0.719 89.6 (1.963, 1.994) 0.031 0.229 91.1

6 (1.761, 2.069) 0.308 0.568 90.9 (1.961, 1.994) 0.033 0.272 92.2

7 (1.763, 2.074) 0.311 0.461 91.9 (1.958, 1.996) 0.038 0.331 93.6

8 (1.764, 2.078) 0.314 0.968 92.3 (1.956, 1.998) 0.042 0.391 94.4

9 (1.769, 2.080) 0.311 0.995 92.3 (1.954, 2.001) 0.047 0.325 94.9

10 (1.736, 2.086) 0.350 1.097 93.7 (1.952, 2.005) 0.053 0.276 96.5

Coverage probabilities of 90% EL intervals (CP) also appear for each bn based 1000 simulations

= |Z2 ∩ Rn| sampling sites. Spatial regression observations Z(s) = β X (s) + ε(s),
s ∈ Z

2 ∩ Rn were formed by taking β = 2 ∈ R in (1) with either bounded X (s) = 1
or unbounded X (s) = ‖s‖ regressors. EL inference on the regression parameter was
considered by applying EL log-ratio in Theorem 1(i) to calibrate confidence inter-
vals. For one spatial realization with each regressor type, Table 1 displays the result-
ing approximate 90% EL confidence intervals for β = 2, over a variety of block
factors bn .

We may illustrate the minimum volatility method described in Sect. 3.2 for pick-
ing block scaling bn with this data example. By visual inspection in Table 1, interval
lengths appear to be fairly stable for bn ∈ {6, 7, 8} with bounded regressors, or for
bn ∈ {4, 5, 6} for unbounded regressors, so that the “minimum volatility” principle
would suggest these block choices as appropriate for the EL method according to this
data realization. For a quantitative measure of volatility, we may compute and mini-
mize a standard deviation criterion using upper and lower endpoints of EL intervals,
say (Lbn , Ubn ), based on block scaling bn (see Politis et al. 1999, Sect. 9.3). That is, for
each integer bn ≥ 1, we compute S(bn) ≡ [SL(bn) + SU (bn)]/2, where SL(bn) is the
standard deviation of lower endpoints {Li : |i − bn| ≤ k} for some k (e.g., k = 1, 2)
defining intervals with scaling in a neighborhood of bn and SU (bn) is analogously
defined with upper endpoints. We then select the block factor bn with a minimal S(bn)

value. For this data example, applying this criterion in Table 1 with k = 2 indicates
block choices bn = 7 for bounded regressors and bn = 4 for unbounded regressors,
which supports blocks indicated by visual inspection of interval lengths. For each
factor bn , Table 1 also gives coverage probabilities for 90% EL confidence intervals
based on 1000 data simulations. The coverage probabilities indicate that the block
choices suggested by “minimum volatility” in this data example are reasonable.
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We comment additionally that, by Theorem 1(iii), the length of an EL interval is
influenced here by A−1/2

n = (
∑

s∈Rn∩Z2 X (s)2)−1/2. In Table 1, this explains the
shorter intervals for the example with unbounded regressors X (s) = ‖s‖ compared to
the case X (s) = 1 that corresponds to inference on the spatial mean EZ(s) = 2. Note
also that coverage probabilities are particulary poor for the unblocked (bn = 1) EL
version with spatial data, which builds the EL function from individual observations
and so fails to capture the data dependence without the blocking mechanism.

5 Appendix: Proofs of main results

Under the regression model (1), it holds for any T ⊂ Z
d and non-stochastic regressors

X (s), s ∈ T that ∥∥∥∥∥

∑

s∈T

X (s)ε(s)

∥∥∥∥∥

6

≤ C |T |3 sup
s∈T

‖X (s)‖6 (6)

by A.1 and moment bounds in Doukhan (1994, Theorem 1, Sect. 1.4.1). For bounded
T1, T2 ⊂ Z

d with dis(T1, T2) > 0, if a random variable Yi is measurable with respect
to F(Ti ), i = 1, 2, then A.1 and mixing bounds in Doukhan (1994, Sect. 1.2.2) yield

|Cov(Y1, Y2)| ≤ 8
{

E|Y1| 6+δ
3 E|Y2| 6+δ

3

} 3
6+δ

α
(
dis(T1, T2); max

i=1,2
|Ti |

) δ
6+δ . (7)

Limits in order symbols are taken as n → ∞ and, for two positive sequences, we
write sn ∼ tn if sn/tn → 1. We let C denote a generic constant which does not depend
on n or any Z

d lattice points and we use 0 for the R
d -zero vector. Lemma 1 provides

tools for proving the spatial EL result in Theorem 1 with non-stochastic regressors.
Recall the data under (1) are located at spatial sites {s1, . . . , sn} = Rn ∩ Z

d ⊂ R
d ,

d ≥ 1 while In denotes the index set of EL blocks and Ȳβ0,i, i ∈ In denotes a block
sample mean satisfying EȲβ0,i = 0q at the true regression parameter β0 by (2).

Lemma 1 Let Wi = A−1/2
n Ȳβ0,i, i ∈ In. Under (2) and Assumptions A.1–A.4,

(i) n = |Rn ∩ Z
d | and NI = |In| ∼ vol(Rn) = λd

nvol(R0), where vol(·)
denotes volume; (ii) Wn ≡ ∑

i∈In
Wi

d−→ N (0q , �β0), a normal limit law; (iii)

maxi∈In bd
n‖Wi‖ p−→ 0; (iv) �̂n ≡ bd

n
∑

i∈In
WiW ′

i
p−→ �β0 ; (v) Qn ≡ ∑

i∈In
Qi is

positive definite for large n, where Qi = ∑
s∈Bn(i)∩Zd X (s)X (s)′/bd

n .

Proof Part (i) follows from the R0-boundary condition in Sect. 2.1; see Nordman

and Lahiri (2004). For part (ii), note Sn ≡ ∑n
j=1 A−1/2

n X (s j )ε(s j )
d−→ N (0q , �β0)

under A.1–A.2 by Lahiri (2003b, Theorem 4.3.ii) and we may write Sn − Wn =∑n
j=1{1 − b−d

n w(s j )}A−1/2
n X (s j )ε(s j ) where w(s j ) ≡ |{i ∈ In : s j ∈ Bn(i)}| is the

number of blocks containing site s j , 1 ≤ j ≤ n. For a special set Ln = {s j : 1 ≤
j ≤ n, (s j + bn(−2, 2]d) ⊂ Rn} of sites in Rn , note w(s j ) = bd

n holds for s j ∈ Ln

implying |{ j : w(s j ) �= bd
n }| ≤ |{ j : s j �∈ Ln}|, where by the R0-boundary condition

|{ j : s j �∈ Ln}| ≤ |{ j : (s j + bn(−2, 2]d) ∩ Rd \ Rn �= ∅}| ≤ Cbnλd−1
n . (8)
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From (6), (8), A.1 and A.3, we have E‖Sn −Wn‖6 ≤ C M6
n |{ j : w(s j ) �= bd

n }|3 = o(1).
Hence, Sn − Wn = op(1) and part (ii) follows by Slutsky’s theorem.

For part (iii), note E(maxi∈In ‖Wi‖) ≤ (
∑

i∈In
E‖Wi‖6)1/6 ≤ C N 1/6

I b−d/2
n Mn =

o(b−d
n ) by (6), Lemma 1(i) and (b2

n/λn)
d/4, λ

d/4+d/6
n Mn = o(1).

Part (v) follows from ‖A−1/2
n Qn A−1/2

n − Iq×q‖ ≤ M2
n |{ j : w(s j ) �= bd

n }| = o(1)

by (8) and A.3, letting Iq×q denote the identity matrix.
We establish part (iv) by showing ‖E�̂n − �β0‖ = o(1) first and then Var(�̂n) =

o(1). Under A.2, ‖�β0 −Var(Sn)‖ = o(1) holds, where Var(Sn) = ∑
h∈Zd Jn(h)σ (h),

letting σ(h) = Cov{ε(0), ε(h)} and

Jn(h) =
∑

1≤ j≤n,s j ∈Rn∩(Rn−h)

A−1/2
n X (s j )X (s j + h)′ A−1/2

n .

Using supn≥1,h∈Zd ‖Jn(h)‖ ≤ C by the Cauchy-Schwarz inequality along with

h �= 0 ∈ Z
d , |σ(h)| ≤ C‖h‖− τδ

6+δ∞ , |{h ∈ Z
d : ‖h‖∞ = m}| ≤ Cmd−1, m ≥ 1,

(9)
by (7), we have

∥∥
∥∥∥∥

Var(Sn) −
∑

h∈Zd ,‖h‖∞≤bn

Jn(h)σ (h)

∥∥
∥∥∥∥

≤
∑

h∈Zd ,‖h‖∞>bn

‖Jn(h)‖|σ(h)|

≤
∞∑

m=bn+1

Cmd−1− τδ
6+δ = o(1).

Setting J̃n(h) = ∑
s j ∈Ln

A−1/2
n X (s j )X (s j + h)′ A−1/2

n , h ∈ Z
d , similar arguments

yield ∥∥∥∥
∥∥

∑

h∈Zd ,‖h‖∞≤bn

{ J̃n(h) − Jn(h)}σ(h)

∥∥∥∥
∥∥

= o(1) (10)

since ‖ J̃n(h) − Jn(h)‖ ≤ C M2
n bnλd−1

n = o(1) for ‖h‖∞ ≤ bn by (8), A.1, A.3.
Toward establishing ‖E�̂n − �β0‖ = o(1), the arguments in the previous para-

graph give ‖�β0 − ∑
‖h‖∞≤bn

J̃n(h)σ (h)‖ = o(1) and we aim now to show ‖E�̂n −
∑

‖h‖∞≤bn
J̃n(h)σ (h)‖ = o(1). For h = (h1, . . . , hd)′ ∈ Z

d , define Kn(h), K̃n(h)

analogous to Jn(h), J̃n(h) but with a summand b−d
n w(s j , h)A−1/2

n X (s j )X (s j + h)′

A−1/2
n , where w(s j , h) ≡ |{i ∈ In : s j ∈ Bn(i) ∩ [Bn(i) − h]}| ≤ bd

n is the number
of blocks containing both s j , s j + h. Then, E�̂n = ∑

‖h‖∞≤bn
Kn(h)σ (h) and so

‖E�̂n − ∑
‖h‖∞≤bn

K̃n(h)σ (h)‖ = o(1) follows as in (10). For s j ∈ Ln and ‖h‖∞ ≤
bn , it holds that w(s j , h) = ∏d

j=1(bn − |h j |) so that K̃n(h) = b−d
n J̃n(h)

∏d
j=1(bn −

|h j |) when ‖h‖∞ ≤ bn . By |1 − b−d
n

∏d
j=1(bn − |h j |)| ≤ Cb−1

n ‖h‖∞ for h ∈ Z
d ,
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‖h‖∞ ≤ bn along with supn≥1,h∈Zd ‖ J̃n(h)‖ ≤ C and (9), we have

∥∥∥∥∥
∥

∑

h∈Zd ,‖h‖∞≤bn

{ J̃n(h) − K̃n(h)}σ(h)

∥∥∥∥∥
∥

≤ b−1
n C

bn∑

m=1

md−τδ/(6+δ) = o(1).

Hence,‖E�̂n−∑
‖h‖∞≤bn

J̃n(h)σ (h)‖ = o(1) and we now have‖E�̂n−�β0‖ = o(1).
To show Var(�̂n) = o(1), write σn(i, h) = Cov(WiW ′

i , Wi+hW ′
i+h) and expand

Var(�̂n) = b2d
n

∑

h∈Zd

∑

i∈In∩(In−h)

σn(i, h) ≡ T1n + T2n

as two sums T1n, T2n over ‖h‖∞ ≤ 2bn or > 2bn , respectively. For any i ∈ In, h ∈
Z

d , it follows that ‖σn(i, h)‖ ≤ C(E‖Wi‖4E‖Wi+h‖4)1/2 ≤ Cb−2d
n M4

n by Holder’s
inequality, (6), (7); hence, ‖T1n‖ ≤ Cλd

nbd
n M4

n = o(1) by A.1, A.2, |In| ≤ λd
n

and |{h ∈ Z
d : ‖h‖∞ ≤ 2bn}| ≤ Cbd

n . For ‖h‖∞ > 2bn , dis{Bn(0),Bn(h)} =
‖h‖∞ − bn ≥ ‖h‖∞/2 holds implying that

‖σn(i, h)‖ ≤ C(i, h)α(‖h‖∞/2, bd
n )

δ
6+δ ≤ Cb−2d

n M4
n ‖h‖− τδ

6+δ∞ g(bd
n )

δ
6+δ , i ∈ In,

by A.1 and (6)–(7), where C(i, h) ≡ (E‖Wi‖ 2(6+δ)
3 E‖Wi+h‖ 2(6+δ)

3 )
3

6+δ . By |In| ≤ λd
n ,

|In ∩ (In − h)| = 0 for ‖h‖∞ > λn and |{h ∈ Z
d : ‖h‖∞ = m ≥ 1}| ≤ Cmd−1, we

find

‖T2n‖ ≤ Cg(bd
n )

δ
6+δ λd

n M4
n

λn∑

m=2bn+1

md−1− τδ
6+δ

≤
{

Cλd+1
n M4

n b
d−1− (3τ+d)δ

24+4δ
n = o(1) d > 1

o(λd
n M4

n ) = o(1) d = 1,

by A.1 and A.3. Then, Var(�̂n) = o(1) follows, proving Lemma 1(iv). ��
Proof of Theorem 1 We begin with Theorem 1(i), using notation in Lemma 1. By A.4
and (4), we may write Rn(β0) = ∏

i∈In
(1 + γθ0,i)

−1 with γβ0,i = t̃ ′β0
Wi > −1, where

t̃β0 = A1/2
n tβ0 ∈ R

q satisfies
∑

i∈I

Wi

1 + γβ0,i
= 0q . (11)

By Lemma 1(iii), it holds that Zn ≡ maxi∈In ‖Wi‖ = op(b−d
n ). From this combined

Wn = Op(1) by Lemma 1(ii), we deduce ‖t̃β0‖ = Op(bd
n ) from (11) following Owen

(1990, pp. 101) so that maxi∈In |γβ0,i| ≤ ‖t̃β0‖Zn = op(1).
We may algebraically solve (11) to find

t̃β0 = bd
n �̂−1

n Wn + φn, φn ≡ bd
n �̂−1

n

∑

i∈In

Wiγ
2
β0,i/(1 + γβ0,i),
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where ‖φn‖ ≤ bd
n Zn‖t̃β0‖2‖�̂−1

n ‖‖�̂n‖/(1 − ‖t̃β0‖Zn) = op(bd
n ). Applying a Taylor

expansion gives log(1 + γβ0,i) = γβ0,i − γ 2
β0,i/2 + �i for each i ∈ In so that

−2b−d
n log Rn(β0) = W ′

n�̂−1
n Wn − b−2d

n φ′
n�̂nφn + 2b−d

n

∑

i∈In

�i.

Theorem 1(i) follows by Slutsky’s Theorem using W ′
n�̂−1

n Wn
d−→ χ2

q by Lemma 1,
b−2d

n φ′
n�̂nφn = op(1) and b−d

n | ∑i∈In
�i| ≤ b−2d

n Zn‖t̃β0‖3‖�̂n‖/(1 − ‖t̃β0‖Zn)3 =
op(1).

To prove Theorem 1(ii), fix a large n for which Qn = ∑
i∈In

Qi is positive definite
by Lemma 1(v). For ν ∈ (0, 1], let Pν denote the simplex of probabilities {pi} ≡
{pi : i ∈ In} satisfying

∑
i∈In

pi = 1,
∏

i∈In
NI pi ≥ ν. Then, for any {pi} ∈ Pν ,

the positivity of Qn and the fact that, for each i ∈ In , Qi is non-negative defi-
nite and pi > 0 imply the matrix

∑
i∈In

pi Qi must be positive and we may define
β{pi} ≡ (

∑
i∈In

pi Qi)
−1 ∑

i∈In
pi X Z i for X Z i ≡ ∑

s∈Bn(i)∩Zd X (s)Z(s)/bd
n , i ∈ In .

Theorem 1(ii) then follows from the set equality {β ∈ R
q : Rn(β) ≥ ν} = {β{pi} ∈

R
q : {pi} ∈ Pν} and the fact that the latter set is connected in R

q since β{pi} is a
continuous function on the compact, convex set Pν .

Theorem 1(iii) follows from simple modifications to Theorem 1(i) arguments. ��
Proof of Theorem 2 In the case that the regressors X (·) are stochastic and stationary,
Lemma 1 remains valid upon re-defining An ≡ NI there (i.e., Wi = N−1/2

I Ȳβ0,i). With
stochastic regressors, the same proof for Lemma 1(ii)–(iv) applies under the conven-
tion that we set Mn ≡ N−1/2

I in the arguments, drop “sups∈T ‖X (s)‖6” in (6), and
note E�̂n = bd

n Var(Ȳβ0,0) → �β0 using stationarity. Lemma 1(v) still holds because

Qn/NI
p−→ EX (0)X (0)′, which is positive definite. Then, Theorem 2 follows from

the proof of Theorem 1, noting A.4 can be shown to hold for stationary regressors.
��
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