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Abstract Multiplier methods are used to round probabilities on finitely many
categories to rational proportions. Focusing on the classical methods of Adams
and Jefferson, we investigate goodness-of-fit criteria for this rounding process.
Assuming that the given probabilities are uniformly distributed, we derive the lim-
iting laws of the criteria, first when the rounding accuracy increases, and then when
the number of categories grows large.

Keywords Apportionment method · q-Stationary multiplier method · Rounding
error analysis · Sainte–Laguë divergence · Convergence in distribution ·
Gaussian limit law

1 Introduction

Let W = (W1, . . . , Wc) be some “arbitrary” probability vector, for a fixed num-
ber of categories c. We model “arbitrariness” by assuming W to be random and,
moreover, to follow a continuous distribution on the probability simplex

Sc = {(w1, . . . , wc) ∈ [0, 1]c : w1 + · · · + wc = 1
}
.

Rounding methods are used to round the continuous weights Wi to rational propor-
tions of the form Ni/n, for some prescribed integer accuracy n. In order that the
proportions Ni/n again form a valid probability vector, the numerators N1, . . . , Nc
must of course sum to n.

The idea underlying q-stationary multiplier methods (for some fixed q ∈ [0, 1])
relies on the rounding function rq(x), which rounds down to the next integer if the
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fractional part of the number x is less than q , and up to the next integer if it is
greater than or equal to q . More formally,

rq(x) := �x + 1 − q� =
{

�x� for x − �x� < q,

�x� + 1 for x − �x� ≥ q,

where �x� denotes the integer part of x ∈ R, i.e. x − 1 < �x� ≤ x .
Now, given a set W1, . . . , Wc of weights, each weight is first scaled by some

global multiplier ν > 0 and then rounded as Ni = rq(νWi ), where the multiplier
ν is adjusted such as to achieve the correct total

∑

i≤c

Ni = n.

Note that individual rounding of each of the scaled weights nWi to integers
rq(nWi ) (for some q ∈ [0, 1]) does not guarantee that these integers achieve the
correct total n. The rounding errors connected with q-stationary multiplier methods
are described by the discrepancy

D(n)
c (q, ν) =

∑

i≤c

rq(νWi ) − n for ν ≥ 0,

see L. Heinrich et al. (submitted) and references therein. For the global multiplier
νn = n + c(q − 1/2) the discrepancy

D(n)
q,c := D(n)

c (q, νn) =
∑

i≤c

(
rq(νnWi ) − νnWi

) + c

(
q − 1

2

)
(1)

attains the integer values −� c−1
2 �, . . . , 0, . . . , � c−1

2 � for all W ∈ Sc \N (n)
q,c , where

N (n)
q,c is a subset of Sc with Lebesgue measure zero for all n ≥ c. For distributional

properties of D(n)
q,c we refer the reader to Happacher (2001).

Since in general the above discrepancies do not disappear, many statistical
publications include a salvatory clause, often hidden away in some small-print
footnote, that “percentages may not sum to 100 due to rounding errors”.

There are other spheres of life, though, that do not tolerate such a liberal attitude
towards rounding errors. Most noticeably this concerns apportionment methods for
proportional representation in electoral systems. There, the c categories signify the
political bodies participating in the apportionment process, and the accuracy n is
the number of seats to be apportioned among them. For instance, the n = 435
seats of the US House of Representatives are apportioned to the c = 50 States,
proportionally to their population, or the n = 598 seats in the German Bundes-
tag are apportioned among c = 5 eligible parties, proportionally to their elec-
toral votes. In the political arena it is plainly not acceptable that an apportionment
procedure would terminate with a nonvanishing discrepancy, leaving some seats
unaccounted for “due to rounding errors”. In fact, the field of politics abounds with
apportionment methods properly partitioning the total n into integers N1, . . . , Nc.
The seminal monograph of Balinski and Young (2001) is an excellent source for
the political history of proportional representation, as well as for the mathematical
theory of apportionment methods that flows from the historical experience.
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Because each apportionment method includes a rounding process, inevitable
gaps arises between the ideal seat allocations nWi based on continuous fractions
and the actual seat allocations Ni based on the accuracy given by the size n of the
parliament. It is generally accepted that these gaps should be minimized simul-
taneously. However, there are many ways of carrying out the optimization. For
example, minimizing the so-called Sainte–Laguë divergence

∑

i≤c

(Ni − nWi )
2

Wi
with N1 + · · · + Nc = n,

gives rise to the multiplier method with standard rounding. Heinrich et al. (2004)
study the limiting law of this criterion for an increasing rounding accuracy n as
well as for a large number of categories. Minimizing the Sainte–Laguë divergence
is motivated as follows: if party i gains weight Wi = Vi/V , calculated from the
vote count Vi and the vote total V , then

∑

i≤c

(Ni − nWi )
2

Wi
= n2

V

∑

i≤c

Vi

(
Ni/n

Vi/V
− 1

)2

is the sum, for each of the Vi voters, of the squared differences between the realized
success values of the voters Ni /n

Vi /V and the ideal success value 1.
However, other functions seem likewise worth to be optimized. From the par-

ties’ point of view, it is desirable that the maximal discrepancy between the ideal
and actual seat allocations becomes as small as possible. To achieve this objective
we consider the goodness-of-fit criteria

S J
c,n = max

i≤c

(
Ni

Wi
− n

)
, (2)

and

S A
c,n = min

i≤c

(
Ni

Wi
− n

)
, (3)

in both cases conditional on N1 +· · ·+ Nc = n. Minimizing the Jefferson criterion
S J

c,n ,

min





max
i≤c

(
ni

Wi
− n

)
: n1, . . . , nc ∈ {0, 1, . . . , n},

∑

i≤c

ni = n





,

makes the most advantaged party as little advantaged as possible, and leads to the
multiplier method with rounding down (q = 1), the method of Jefferson (Balinski
and Young 2001, Proposition 3.10). Similarly, maximizing the Adams criterion
S A

c,n ,

max





min
i≤c

(
ni

Wi
− n

)
: n1, . . . , nc ∈ {0, 1, . . . , n},

∑

i≤c

ni = n





,
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makes the least advantaged party as advantaged as possible, and leads to the multi-
plier method with rounding up (q = 0), the method of Adams (Balinski and Young
2001, Proposition 3.10).

In section 2 we present a slightly modified form of the Adjustment Algorithm
for q-stationary multiplier methods (see L. Heinrich et al. (2005)) to find the appor-
tionment vector (N (n)

q,1, . . . , N (n)
q,c) and summarize some asymptotic results for S J

c,n

and S A
c,n as the accuracy n tends to infinity. The corresponding weak limits S J

c and
S A

c turn out to be approximately Gaussian distributed for large c. These and related
results are formulated in section 3. The proofs are deferred to the sections 4 and
5. The final section 6 rounds off the paper with a brief discussion about possible
extensions and potential applications of the obtained results.

2 Some preliminary results

To be mathematically precise, let [�, A, P] be a common probability space on
which all random elements in this paper will be defined. Slightly stronger than
in section 1, we assume that the random vector W(c−1) := (W1, . . . , Wc−1) takes
values only in the (c − 1)-dimensional open unit simplex

Tc−1 = {(w1, . . . , wc−1) ∈ (0, 1)c−1 : w1 + · · · + wc−1 < 1
}
,

according to some absolutely continuous distribution, and let

Wc = 1 − W1 − · · · − Wc−1. (4)

Next, we shall rewrite the discrepancy D(n)
q,c defined by (1) in terms of the q-sta-

tionary residuals νnWi − rq(νnWi ) for i = 1, . . . , c − 1. For this, we introduce the

sequence of random vectors U (n)
(c−1)(q) := (U (n)

q,1, . . . , U (n)
q,c−1) taking values in the

half-open cube (−1/2 , 1/2]c−1 with components

U (n)
q,i = rq(νn Wi ) − νn Wi + q − 1

2
for i = 1, . . . , c − 1 and i = c.

From (4) it is easy to see that

U (n)
q,c =

⌊

(c − 1)

(
q − 1

2

)
−
∑

i<c

νn Wi + 1

2

⌋

− (c − 1)

(
q − 1

2

)
+
∑

i<c

νn Wi

=
⌊
∑

i<c

U (n)
q,i + 1

2

⌋

−
∑

i<c

U (n)
q,i

(
∈
(

−1

2
,

1

2

])
,

which, by (1), gives

D(n)
q,c =

∑

i≤c

U (n)
q,i =

⌊
∑

i<c

U (n)
q,i + 1

2

⌋

.
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Next, for fixed q ∈ [0, 1], define a double sequence of (measurable) random func-
tions { X (n)

q,c(τ, · ) , τ ∈ [0, c/2] } over [�, A, P] by

X (n)
q,c(τ, ω) :=

∑

i≤c

⌊
τ Wi (ω) + sgn(D(n)

q,c(ω)) U (n)
q,i (ω) + 1

2

⌋
for ω ∈ �.

To ensure that each of the piecewise constant, nondecreasing, and right-continuous
functions τ �→ X (n)

q,c(τ, ω) possesses only upward-jumps of magnitude 1 we have
to “clean” � from a P-nullset � \ �∗

c (due to the distributional assumption on
W(c−1) ), where

�∗
c =

⋂

n≥c

{
ω ∈ � : X (n)

q,c(0, ω) = 0 , X (n)
q,c(τ, ω) − X (n)

q,c(τ − 0, ω) ≤ 1 , ∀τ >0
}
.

Hence, the values of the random variable

τ (n)
q,c (ω) :=

{
min

{
τ > 0 : X (n)

q,c(τ, ω) = | D(n)
q,c(ω) |

}
, D(n)

q,c(ω) 
= 0

0, D(n)
q,c(ω) = 0

are uniquely defined for ω ∈ �∗
c . For completeness, set τ

(n)
q,c (ω) = 0 otherwise. By

introducing the non-negative integers

m(n)
i (D(n)

q,c) :=
⌊

τ (n)
q,c Wi + sgn(D(n)

q,c) U (n)
q,i + 1

2

⌋
for i = 1, . . . , c, (5)

which coincide with the adjustment terms m(n)
i (D(n)

q,c) obtained by the Adjustment
Algorithm in L. Heinrich et al. (2005) [Lemma 2.1], it is immediately seen that

∑

i≤c

sgn(D(n)
q,c) m(n)

i (D(n)
q,c) = D(n)

q,c (on �),

which yields the final apportionment vector (N (n)
q,1, . . . , N (n)

q,c) with

N (n)
q,i = rq(νn Wi ) − sgn(D(n)

q,c) m(n)
i (D(n)

q,c) i = 1, . . . , c. (6)

The following result, which has been established in L. Heinrich et al. (2005) (see
Heinrich et al. 2004 for the case of standard rounding q = 1/2), gives the key to
determine the limiting behaviour of the Sainte–Laguë divergence (for q ∈ [0, 1],
see L. Heinrich et al. (2005)) as well as of the criteria S J

c,n (for q = 1) and S A
c,n

(for q = 0) of Jefferson and Adams, respectively, as n → ∞.

Theorem 1 If the weight vector W(c−1) := (W1, . . . , Wc−1) has a Riemann inte-
grable Lebesgue density on Tc−1, then

(
U (n)

(c−1)(q) , W(c−1)

)
d−−−→

n→∞
(

U(c−1) , W(c−1)

)
, (7)

for any fixed q ∈ [0, 1], where the random vector U(c−1) := (U1, . . . , Uc−1)

is uniformly distributed on the (c − 1)-dimensional cube (−1/2, 1/2)c−1 (with
independent components) and stochastically independent of W(c−1).
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Multiple application of the Continuous Mapping Theorem (see e.g. Billingsley
1999, p 21) reveals that the above random sequences D(n)

q,c, U (n)
q,c , and X (n)

q,c(τ, ·)
for τ ∈ [0, c/2] converge in distribution (as n → ∞) to random variables Uc, Dc,
and Xc(τ, ·) (defined on [�, A, P] and having distributions not depending on q)
defined by

Dc :=
⌊
∑

i<c

Ui + 1

2

⌋

, Uc := Dc −
∑

i<c

Ui

(
∈
(

−1

2
,

1

2

] )
,

and

Xc(τ, ω) :=
∑

i≤c

⌊
τ Wi (ω) + sgn(Dc(ω)) Ui (ω) + 1

2

⌋
for ω∈�, 0 ≤ τ ≤ c

2
.

Moreover, again using the Continuous Mapping Theorem, we get

τ (n)
q,c

d−−−→
n→∞ τc and

(
m(n)

i (D(n)
q,c)
)c

i=1

d−−−→
n→∞ (mi (Dc))

c
i=1 .

The weak limits of the adjustment terms (5) are expressible by

mi (Dc) :=
⌊

τc Wi + sgn(Dc) Ui + 1

2

⌋
for i = 1, . . . , c, (8)

with

τc(ω) :=






min {τ > 0 : Xc(τ, ω) = | Dc(ω) |} , if Dc(ω) 
= 0, ω ∈ �∗

0, otherwise ,

(9)

where the event

�∗ =
⋂

c≥2

{ω ∈ � : Xc(0, ω) = 0, Xc(τ, ω) − Xc(τ − 0, ω) ≤ 1, ∀τ > 0 }

differs from � by a P-nullset in view of the distributional properties of W(c−1) and
U(c−1).

It should be noticed that, by using simply the properties of the function �·�, the
vector of the “limit adjustment terms” (8) is uniquely determined (at least on �∗)
by the min–max-inequalities:

max
i≤c

(
mi (Dc) − sgn(Dc) Ui − 1

2

Wi

)

≤ τc < min
i≤c

(
mi (Dc) − sgn(Dc) Ui + 1

2

Wi

)

.

Rewriting the apportionment numbers (6) in terms of the random variables U (n)
q,i ,

i = 1, . . . , c, gives

N (n)
q,i − n Wi = U (n)

q,i − sgn(D(n)
q,c) m(n)

i (D(n)
q,c) + (c Wi − 1)

(
q − 1

2

)
.
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In the extremal cases q = 1 (rounding down) and q = 0 (rounding up), the latter
leads to the following expressions for the minimized Jefferson criterion (2) and the
maximized Adams criterion (3):

S J
c,n = max

i≤c

(
U (n)

1,i − sgn(D(n)
1,c) m(n)

i (D(n)
1,c) − 1

2

Wi
+ c

2

)

,

and

S A
c,n = min

i≤c

(
U (n)

0,i − sgn(D(n)
0,c) m(n)

i (D(n)
0,c) + 1

2

Wi
− c

2

)

.

Theorem 1 and its above-stated consequences combined with the Continuous Map-
ping Theorem can be summarized in

Theorem 2 Under the assumptions of Theorem 1 we have

S J
c,n

d−−−→
n→∞ S J

c := max
i≤c

(
Ui − sgn(Dc) mi (Dc) − 1

2

Wi
+ c

2

)

,

and

S A
c,n

d−−−→
n→∞ S A

c := min
i≤c

(
Ui − sgn(Dc) mi (Dc) + 1

2

Wi
− c

2

)

.

For the simplest case of two categories with uniformly distributed weights
(W1, W2), a short calculation confirms that the weak limits S J

c and S A
c are uni-

formly distributed on (0, 1) and (−1, 0), respectively. How the distributions of
these random variables behave for large c is answered in the next section.

3 Limit theorems for large numbers of categories

In this section we formulate our main results on the normal approximation of some
of the weak limits obtained in section 2 (as n → ∞) when additionally the number
c of categories increases unboundedly. To begin with, observe that Lévy’s central
limit theorem applied to the identity

sgn(Dc)
∑

i≤c

mi (Dc) = Dc =
⌊
∑

i<c

Ui + 1/2

⌋

, (10)

yields

sgn(Dc)√
c

∑

i≤c

mi (Dc)
d−−−→

c→∞ N

(
0,

1

12

)
, (11)



198 L. Heinrich, U. Schwingenschlögl

regardless which probability density W(c−1) has. As usual N (0, σ 2) denotes a
mean zero Gaussian random variable with variance σ 2 > 0 having the distribution
function �(x/σ), where

�(x) = 1√
2 π

x∫

−∞
e−t2/2 dt for x ∈ R.

The proofs of the subsequent results need the additional assumption that W =
(W1, . . . , Wc) is uniformly distributed on Sc.

Theorem 3 Assume that the distribution W(c−1) is uniform on Tc−1 (i.e. W is
uniformly distributed on Sc), and let the random variables U1, . . . , Uc−1 be inde-
pendent and uniformly distributed on (−1/2, 1/2) and independent of W(c−1).
Then we have

sgn(Dc) τc√
c

d−−−→
c→∞ N

(
0,

1

12

)
, (12)

i.e.

P
(
τc > x

√
c
) −−−→

c→∞ 2
(

1 − �(2
√

3 x)
)

for all x ≥ 0. (13)

The asymptotic normality of τc/
√

c is essential to derive the Gaussian limits in
Theorems 4 and 5.

Theorem 4 Under the assumption of Theorem 1 we have

sgn(Dc)

c3/2

∑

i≤c

mi (Dc)

Wi

d−−−→
c→∞ N

(
0,

1

12

)
. (14)

As an immmediate consequence of Theorem 4 we get

Corollary 1

1

c2

∑

i≤c

mi (Dc)

Wi

P−−−→
c→∞ 0, (15)

where
P−−−→

c→∞ means “convergence in probability".

It should be mentioned that the summands in (14) are neither independent nor have
finite expectation. Corollary 1 turns out to be indispensible in proving the exact
asymptotics of Sainte–Laguë’s divergence in particular in the case of non-standard
rounding, see Theorem 2 in L. Heinrich et al. (2005).

Finally, the suitably centered and normalized weak limits S J
c and S A

c of The-
orem 2 can be shown to have Gaussian limits. At the first glance this result is
somewhat surprising since both functionals are defined as extreme value statistics.
On the other hand, both limiting relations reveal that the lower and upper bound of
τc in the above min–max-inequality differ only by a stochastic term of order o(

√
c)

as c → ∞.
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Fig. 1 Simulated probability density functions of ( S J
c − c

2 )/
√

c (dashed curves) based on 200.000
realizations of the random vectors U(c−1) and W(c−1). The plotted empirical densities illustrate

the rate of convergence to the limit probability density function
√

6
π

exp{−6 x2} , x ∈ R (solid
curve)

Theorem 5 Let the assumption of Theorem 1 be satisfied. Then

S J
c − c/2√

c
= max

i≤c

(
Ui − sgn(Dc) mi (Dc) − 1

2√
c Wi

)
d−−−→

c→∞ N

(
0,

1

12

)

and

S A
c + c/2√

c
= min

i≤c

(
Ui − sgn(Dc) mi (Dc) + 1

2√
c Wi

)
d−−−→

c→∞ N

(
0,

1

12

)
.

Figure 1 gives an impression of a local version of Theorem 5 which does not
directly follow from the pointwise convergence of distribution functions.

4 Proofs of Theorems 3 and 4

The ω-wise definition (9) of the random variable τc implies that, for any x ≥ 0,
the identity

{
τc√

c
> x

}
∩ �∗ =






∑

i≤c

⌊
x

√
c Wi + sgn(Dc) Ui + 1

2

⌋
< | Dc |





∩ �∗

holds. Together with (−U1, . . . , −Uc−1)
d= (U1, . . . , Uc−1) and

⌊
∑

i<c

−Ui + 1

2

⌋

= −
⌊
∑

i<c

Ui + 1

2

⌋

P-a.s.,
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we get

P
(

τc√
c

> x

)
= P




∑

i≤c

⌊
x

√
c Wi + Vi

⌋
<

∣
∣
∣
∣
∣

⌊
∑

i<c

Ui + 1

2

⌋∣∣
∣
∣
∣



 ,

where Vi = Ui + 1
2 for i = 1, . . . , c. By definition, each Vi is uniformly distributed

on (0, 1), where Vc depends on the independent random variables V1, . . . , Vc−1.
Further, using the well-known distributional identity

(W1, . . . , Wc)
d=
(

E1

Sc
, . . . ,

Ec

Sc

)
with Sc =

∑

i≤c

Ei , (16)

where E1, . . . , Ec are independent, exponentially distributed random variables
with unit mean, see Aitchison (1986), we may write

P
(

τc√
c

> x

)
= P




∑

i≤c

⌊
x

√
c Ei

Sc
+ Vi

⌋
<

∣
∣
∣
∣
∣

⌊
∑

i<c

Ui + 1

2

⌋∣∣
∣
∣
∣



 . (17)

Now, define Sc := Sc/c and let ε ∈ (0, 1) be fixed. By the decomposition

� =
{

1

1 + ε
≤ 1

Sc
≤ 1

1 − ε

}
∪ { | Sc − 1 | > ε

}
, (18)

and the elementary estimate | �y + 1/2� | ≤ | y | + 1/2 for all y ∈ R, we conclude
from (17) that

P
(

τc√
c

> x

)
≤P( |Sc − 1| > ε ) + P

(
∑

i<c

⌊
x Ei

(1 + ε)
√

c
+ Vi

⌋
<

∣
∣
∣
∣
∣

∑

i<c

Ui

∣
∣
∣
∣
∣
+ 1

2

)

.

We need the following auxiliary result.

Lemma 1 Let V be uniformly distributed on (0, 1) and independent of the expo-
nentially distributed random variable E with E(E) = 1. Then

E (� γ E + V �) = γ and E
(� γ E + V �2) = |γ | coth

(
1

2|γ |
)

(19)

for any γ ∈ R, where coth(x) = (1 + e−2x )/(1 − e−2x ).

The proof of Lemma 1 is shifted to the end of this section.
Making use of (19) with γ replaced by the null sequence γc = x/(1 + ε)

√
c

(as c → ∞ ), we find that

1√
c − 1

∑

i<c

E (� γc Ei + Vi �) = √
c − 1 γc = x

1 + ε
− γc√

c + √
c − 1
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and

Var

(
1√

c − 1

∑

i<c

� γc Ei + Vi �
)

= γc

(
coth

(
1

2 γc

)
− γc

)
−−−→
c→∞ 0.

Hence, by means of Chebyshev’s inequality, it follows that

Rc(x, ε) := 1√
c − 1

∑

i<c

� γc Ei + Vi � − x

1 + ε
− 1

2
√

c − 1

P−−−→
c→∞ 0

for any x ≥ 0 und 0 < ε < 1. Applying Lévy’s central limit theorem to the i.i.d.
sequence U1, . . . , Uc−1 combined with Slutzky’s theorem yields

1√
c − 1

∣
∣
∣
∣
∣

∑

i<c

Ui

∣
∣
∣
∣
∣
− Rc(x, ε)

d−−−→
c→∞

∣
∣
∣
∣ N

(
0,

1

12

) ∣∣
∣
∣ ,

which is the same as

P

(
1√

c − 1

∣
∣
∣
∣
∣

∑

i<c

Ui

∣
∣
∣
∣
∣
>

1√
c − 1

∑

i<c

� γc Ei + Vi � − 1

2
√

c − 1

)

−−−→
c→∞ P

(∣∣
∣
∣ N

(
0,

1

12

) ∣∣
∣
∣ ≥

x

1 + ε

)
= 2

(

1 − �

(
2
√

3 x

1 + ε

))

.

Since, by the weak law of large numbers, P( | Sc − 1 | > ε ) −−−→
c→∞ 0, we obtain

lim sup
c→∞

P
(

τc√
c

> x

)
≤ 2

(

1 − �

(
2
√

3 x

1 + ε

))

, (20)

for any x ≥ 0 and 0 < ε < 1.

In the next step we use (17) to estimate P( τc > x
√

c ) from below. For doing
this, let U∗

c be an additional random variable chosen independently of U1, . . . , Uc−1

with U∗
c

d= Uc. Clearly, the estimates
⌊

x Ec√
c Sc

+ Uc + 1

2

⌋
<

⌊
x Ec√

c Sc
+ U∗

c + 1

2

⌋
+ 1,

and
∣
∣
∣
∣
∣

⌊
∑

i<c

Ui + 1

2

⌋ ∣∣
∣
∣
∣
≥
∣
∣
∣
∣
∣

∑

i<c

Ui + U∗
c

∣
∣
∣
∣
∣
− 1

hold ω-wise. To simplify notation we write again Uc instead of U∗
c so that U1, . . . ,

Uc i.i.d. uniformly on (−1/2 , 1/2). Hence, the previous estimates and (17) imply

P
(

τc√
c

> x

)
≥ P

(
∑

i<c

⌊
x Ei√
c Sc

+ Vi

⌋
+ 2 <

∣
∣
∣
∣
∣

∑

i<c

Ui

∣
∣
∣
∣
∣

)

.
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Using this and the inclusion � ⊇ {Sc ≥ 1 − ε} ⊇ � \ {|Sc − 1| > ε}, we can
deduce the inequality

P
(

τc√
c

> x

)
≥ P



 1√
c

∑

i≤c

⌊
x Ei√

c (1 − ε)
+ Vi

⌋
+ 2√

c
<

1√
c

∣
∣
∣
∣
∣
∣

∑

i≤c

Ui

∣
∣
∣
∣
∣
∣





−P( |Sc − 1| > ε ).

By repeating almost verbatim the arguments used to prove (20) we can derive from
the latter inequality that

lim inf
c→∞ P

(
τc√

c
> x

)
≥ 2

(

1 − �

(
2
√

3 x

1 − ε

))

for any x ≥ 0 and 0 < ε < 1. This combined with (20) proves the desired limiting
relation (13).

Having in mind the symmetry of the cases Dc > 0 and Dc < 0 together
with {τc = 0} ∩ �∗ = {Dc = 0} ∩ �∗, it is clear that P(τc > (≥) x

√
c) = 2 P

(τc > (≥) x
√

c, Dc > 0) for x ≥ (>) 0 and −sgn(Dc) τc
d= sgn(Dc) τc.

Hence, in view of (13),

P
(

sgn(Dc) τc√
c

≤ x

)
=
{

1 − P(τc > x
√

c, Dc > 0) for x ≥ 0
P(τc ≥ −x

√
c, Dc > 0) for x < 0

−−−→
c→∞ �( 2

√
3 x ) for all x ∈ R, (21)

which proves (12). Thus, the proof of Theorem 3 is completed. ��
The proof of Theorem 4 relies on the identity

{
τc√

c
> x

}
∩ �∗ =






∑

i≤c

mi (Dc)

Wi
>
∑

i≤c

� x
√

c Wi + sgn(Dc) Ui + 1
2 �

Wi





∩ �∗

for all x ≥ 0, whence, due to the symmetry −U(c−1)
d= U(c−1) and (16), we obtain

P
(

τc√
c

> x

)
= P



 1

c3/2

∑

i≤c

mi (Dc)

Wi
>

Sc√
c

∑

i≤c

� x Ei/
√

c Sc + Vi �
Ei



 .

Hence, relation (13) and Slutzky’s theorem imply

P



 1

c3/2

∑

i≤c

mi (Dc)

Wi
> x



 −−−→
c→∞ 2

(
1 − �(2

√
3 x)

)
, (22)

for x ≥ 0, if we are able to prove

Sc√
c

∑

i≤c

� x Ei/Sc
√

c + Vi �
Ei

P−−−→
c→∞ x
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or, equivalently,

1√
c

∑

i≤c

( � x Ei/
√

c + Vi �
Ei

− x√
c

)
P−−−→

c→∞ 0. (23)

The equivalence of the latter two limiting relations seems to be evident in view of

Sc
P−−−→

c→∞ 1. A rigorous proof is based on lower and upper bounds of the terms

�x Ei/Sc
√

c+Vi� according to the decomposition (18) for arbitrarily small ε > 0.
The details are left to the reader.

To verify (23) we consider only the sum of the first c − 1 i.i.d. summands,
calculate its expectation, and apply Chebychev’s inequality. This requires to check
the relations
√

c E
(� x E1/

√
c + V1 �

E1

)
−−−→
c→∞ x and Var

(� x E1/
√

c + V1 �
E1

)
−−−→
c→∞ 0,

which are immediately seen from the following

Lemma 2 For random variables V and E as defined in Lemma 1 and 0 ≤ γ ≤ 1/2,
we have
∣
∣
∣
∣E
(� γ E + V �

E

)
−γ

∣
∣
∣
∣ ≤ γ e−1/γ and

∣
∣
∣
∣
∣
E
(� γ E + V �

E

)2

−γ

∣
∣
∣
∣
∣
≤ 2 γ e−1/γ .

The proof of Lemma 2 relies on similar calculations as carried out in the proof of
Lemma 1. Some additional estimates and the technical details are left to the reader.

To accomplish the proof of (14) we make use of (22) and repeat the symmetry
arguments showing the equivalence of relations (13) and (21). This completes the
proof of Theorem 4. ��
Proof of Lemma 1 The relations (19) are obviously valid for γ = 0. Since �−x� =
−�x + 1� for any non-integer x ∈ R and V

d= 1 − V , it is clear that

E (�−γ E + V �) = −E (� γ E − V + 1 �) = −E (� γ E + V �) ,

as well as

E
(�−γ E + V �2) = E

(� γ E + V �2) .

Therefore, it suffices to show (19) for γ > 0. By definition of the integer part �·�
we obtain

E (� γ E + V �) =
∑

n≥1

n P( (n − V )/γ ≤ E < (n + 1 − V )/γ )

=
∑

n≥1

n

1∫

0

(
e(v−n)/γ − e(v−n−1)/γ

)
dv

=
1∫

0

ev/γ dv
e−1/γ

1 − e−1/γ
= γ,

where we have used that
∑

n≥1 n(zn − zn+1) = z/(1 − z) for |z| < 1.
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Likewise, applying the formula
∑

n≥1 n2(zn − zn+1) = z(1 + z)/(1 − z)2 for
z = e−1/γ , we get

E
(� γ E + V �2) =

∑

n≥1

n2

1∫

0

(
e(v−n)/γ − e(v−n−1)/γ

)
dv

=
1∫

0

ev/γ dv
e−1/γ (1 + e−1/γ )

(1 − e−1/γ )2 = γ
1 + e−1/γ

1 − e−1/γ
,

which is just the second relation of (19) for γ > 0. ��

5 Proof of Theorem 5

We introduce the abbreviation {x} := x − �x� for the fractional part of x ∈ R. By
definition (8), assuming Dc 
= 0, we first rewrite the maximum-term (S J

c −c/2)/
√

c
as

S J
c − c/2√

c
= − min

i≤c

(
1
2 − Ui + sgn(Dc) mi (Dc)√

c Wi

)

= − sgn(Dc)
τc√

c

− min
i≤c

(
1
2 (1 + sgn(Dc)) − sgn(Dc){τc Wi + sgn(Dc) Ui + 1

2 }√
c Wi

)

and the minimum-term (S A
c + c/2)/

√
c as

S A
c + c/2√

c
= min

i≤c

(
1
2 + Ui − sgn(Dc) mi (Dc)√

c Wi

)

= −sgn(Dc)
τc√

c

+ min
i≤c

(
1
2 (1 − sgn(Dc)) + sgn(Dc){τc Wi + sgn(Dc) Ui + 1

2 }√
c Wi

)

.

The remaining case Dc = sgn(Dc) = 0 can be neglected by noting that

P(Dc = 0) = P

(

−1

2
<
∑

i<c

Ui ≤ 1

2

)

−−−→
c→∞ 0.

The above identities reveal that both assertions of Theorem 5 follow immediately
from (12) combined with Slutzky’s theorem whenever each of the sequences

min
i≤c

(
1 − {τc Wi ± Ui + 1

2 }√
c Wi

)

and min
i≤c

(
{τc Wi ± Ui + 1

2 }√
c Wi

)

converges to zero in probability as c → ∞. Note that both minima are taken over
dependent random variables having infinite expectation. This requires particularly
careful estimates which are demonstrated in case of the left-hand sequence. The
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other sequence can be treated analogously. As in section 4, we use the symme-

try −U(c−1)
d= U(c−1) and (16). Therefore, in view of Sc

P−−−→
c→∞ 1, our problem

reduces to show

√
c min

i<c

(
1 − { τc

Sc
Ei + Vi }

Ei

)
P−−−→

c→∞ 0, (24)

where Vi = Ui + 1
2 , i = 1, . . . , c − 1, are independent and uniformly distributed

on (0, 1).
Let ε ∈ (0, 1) be fixed. Define the events 
c,1 = {maxi<c Ei ≤ c1/4

}
and


c,2 =
{

min
i<c

(
1 − Vi

Ei

)
≤ ε√

c

}
, 
c,3 =

{
0 < c1/4 τc

Sc
≤ ε

}
,

�i (ε) =
{

1 − Vi − τc

Sc
Ei +

⌊
τc

Sc
Ei + Vi

⌋
≥ ε Ei√

c

}
for i = 1, . . . , c − 1.

Theorem 2 implies τc/c3/4 P−−−→
c→∞ 0 so that P

(

c

c,3

)
−−−→
c→∞ 0.

Furthermore, we get

P
(

c

c,1

) ≤ (c − 1) P
(
E1 > c1/4) = (c − 1) e−c1/4 −−−→

c→∞ 0

and

P
(

c

c,2

) =
(

P
(

1 − V1 >
ε√
c

E1

))c−1

=
(

1 − ε√
c

(
1 − e−√

c/ε
))c−1

−−−→
c→∞ 0.

Now, we are in a position to bound the probability of the event

{

min
i<c

(
1 − Vi − τc

Sc
Ei + � τc

Sc
Ei + Vi �

Ei

)

≥ ε√
c

}

=
⋂

i<c

�i (ε),

by sequences tending to zero for any ε > 0.
Observe that, for ω ∈ 
c,1 ∩ 
c,3, the term τc(ω)

Sc(ω)
Ei (ω) + Vi (ω) lies in the

interval (0, 2) so that the integer � τc(ω)
Sc(ω)

Ei (ω)+ Vi (ω) � takes only the values 0 or

1 according to τc(ω)
Sc(ω)

Ei (ω)+ Vi (ω) < 1 or τc(ω)
Sc(ω)

Ei (ω)+ Vi (ω) ≥ 1, respectively.
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By definition of the above events, the following inclusions are valid for each
i = 1, . . . , c − 1:

�i (ε) ∩
3⋂

k=1


c,k

⊆ 
c,2 ∩ 
c,3 ∩
({

1 − Vi − τc

Sc
Ei ≥ ε Ei√

c

}
∪
{

τc

Sc
Ei + Vi ≥ 1

})

= 
c,2 ∩ 
c,3 ∩
({

1 − Vi

Ei
≥ τc

Sc
+ ε√

c

}
∪
{

1 − Vi

Ei
≤ τc

Sc

})

⊆ 
c,3 ∩
{

1 − Vi

Ei
≤ τc

Sc

}
⊆
{

1 − Vi ≤ ε

c1/4 Ei

}
.

Hence,

⋂

i<c

�i (ε) ∩
3⋂

k=1


c,k ⊆
{

min
i<c

(
1 − Vi

Ei

)
≤ ε

c1/4

}
.

Finally, by standard arguments combined with the above limits, we arrive at

P

(
⋂

i<c

�i (ε)

)

≤
3∑

k=1

P
(

c

c,k

)+
( ε

c1/4

(
1 − e−c1/4/ε

) )c−1 −−−→
c→∞ 0,

which is equivalent to (24). Thus, the proof of Theorem 5 is complete. ��

6 Concluding remarks

Although the proofs of the Theorems 3, 4, and 5 heavily depend on the uniform
distribution of W , there are some reasons which give rise to the conjecture that all
above results will remain true under milder distributional assumptions on W . This
conjecture is mainly supported by the fact that the Gaussian limits in (12), (14),
and in Theorem 5 coincide with the weak limit of Zc := (U1 + · · · + Uc−1)/

√
c

as c → ∞, see (10) and (11). The uniform distribution of W is essentially used
to approximate the left-hand sides of (12), (14), and of both relations in Theorem
5 by Zc up to a stochastic null sequence. For making this remainder term arbi-
trarily small (as c becomes large), for example, it suffices to choose weights of the
form Wi = Xi/(X1 + · · · + Xc) for i = 1, . . . , c, where X1, X2, . . . are indepen-
dent (not necessarily identically distributed) positive random variables satisfying
suitable moment assumptions.

In the light of such robustness of our results against the assumed uniform
distribution of W , Theorem 5 can be used for testing two hypotheses, namely,
that an apportionment vector (N1, . . . , Nc) (provided n and c are large enough)
is obtained either by minimizing the Jefferson criterion S J

c,n , see (2), or by maxi-
mizing the Adams criterion S A

c,n , see (3). Given a level α > 0 of significance, the
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null hypothesis that the apportionment vector (N1, . . . , Nc) minimizes the Jeffer-
son criterion S J

c,n , i.e. it is obtained by the multiplier method with rounding down
(q = 1), is rejected at level α when

√
3

c
| 2 S J

c,n − c | ≥ zα

2
, where �(zα/2) = 1 − α

2
.

Analogously, the inequality
√

3 | 2 S A
c,n + c |/√c ≥ zα/2 contradicts the hypothesis

(at level α) that (N1, . . . , Nc) maximizes the Adams criterion S A
c,n .

Furthermore, for small sizes of categories c (with large n), the two limiting
relations of Theorem 2 suggest corresponding tests based on simulated values of the
weak limits. The hypothesis that an apportionment vector results from a q-station-
ary multiplier method [for some q ∈ (0, 1)] can be checked using the non-normal
limits of the Sainte–Laguë divergence obtained in Heinrich et al. (2004), L. Hein-
rich et al. (submitted).
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