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Abstract Estimators of parameters in semi-parametric left truncated and right
censored regression models are proposed. In contrast to the majority of existing
estimators, the proposed estimators do not require the error term of the regression
model to have a symmetric distribution. In addition the estimators use asymmetric
“trimming” of observations. Consistency and asymptotic normality of the estima-
tors are shown. Finite sample properties are considered in a small simulation study.
For the left truncated case, an empirical application illustrates the usefulness of the
estimator.
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1 Introduction

Several estimators of semi-parametric truncated and censored regression models
have been suggested. Powell (1994) gives a survey on theoretical developments on
estimation of semi-parametric models. Lee and Kim (1998) review some estima-
tors of left truncated regression models and present results from a simulation study
on the properties of the estimators. They find that the symmetrically trimmed least
squares (STLS) estimator (Powell 1986), the quadratic mode (QME) estimator
(Lee 1993), and the cosine (COS) estimator (Lee and Kim 1998) all perform well.

Suggested estimators of semi-parametric censored regression models include
Buckley and James (1979), the censored least absolute deviation (CLAD) esti-
mator (Powell 1984), the symmetrically censored least squares (SCLS) estimator
(Powell 1986), the identically censored least absolute deviations (ICLAD) and
the identically censored least squares (ICLS) estimator (Honoré and Powell 1994).
Honoré and Powell (1994) present results from a simulation study where the CLAD,
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SCLS, and ICLAD estimators perform best in terms of bias, mean square error,
and median absolute deviation. An empirical application of the CLAD, SCLS,
and ICLAD estimators is found in Chay and Powell (2001). Another estimator of
censored regression models is the winsorized mean estimator (WME) (Lee 1992),
which includes CLAD as a special case and is related to the SCLS. One of the
advantages of the WME over the CLAD is that the asymptotic covariance matrix
of the WME is easier to estimate.

Most of the above mentioned estimators of truncated and censored regression
models are based on symmetry assumptions placed on the distribution of the error
terms in the models. However, Laitila (2001) and Newey (2001) show that the
QME of slope parameters is consistent under asymmetrically distributed errors
as well. Newey (2001) also derives a similar result for the WME. Both the QME
and the WME were first derived under the assumption of symmetry and the defi-
nitions of the estimators amounting to “symmetric trimming” of observations is
due to this assumption. In this paper, asymmetric trimming is suggested and corre-
sponding estimators are derived. Asymptotic results are derived using the results
presented by Newey (2001), and finite sample properties are illustrated within a
small simulation study and by an empirical application modelling travel distance.

The truncated and censored regression models are introduced in the next sec-
tion and the proposed estimators are defined in section 3. Simulation results on
the finite sample properties are presented in section 4. The estimator of truncated
regression models is used in a small empirical example in section 5. A concluding
discussion is given in section 6.

2 Models and assumptions

Consider the following linear regression model for the response variable Y ∗
i

Y ∗
i = X T

i β0 + εi , i = 1, 2, . . . , n∗, (1)

where Xi and β0 are p-dimensional vectors of explanatory variables and parame-
ters, respectively, and the εi are independent and identically distributed error terms.

In a left truncated regression model, observations of
(
Y ∗

i , Xi
)

are obtained only
for the part of the population for which Y ∗

i > ti , where ti is a known truncation
point. For simplicity let ti = 0. In a right censored regression model, the observed
response variable is min{si , Y ∗

i }, where si is the known censoring point. Let E∗[·]
and P∗[·] denote expectation and probability in the latent regression model (1),
while E[·] and P[·] denote the counterparts under truncation and censoring.

The ordinary least squares (OLS) estimator is biased and inconsistent for esti-
mating truncated and censored regression models because E[ε|X ] is a function of
X and not equal to zero. Several alternative semi-parametric estimators have been
proposed by Miller (1976), Buckley and James (1979), Powell (1984, 1986), Lee
(1992, 1993), Honoré and Powell (1994), Lee and Kim (1998), and others.

Newey (2001) defines a class of estimators derived through a conditional
moment restriction

E∗[m(Y ∗ − X T β0)|X ] = E∗[m(ε)|X ] = 0, (2)
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where m(·) is a known scalar function. The conditional moment restriction is re-
garded as the first order condition to a minimisation problem defining the estimator
as the minimum of the corresponding objective function, obtained by “integrating
back from” m(ε). For instance with m(ε) = 1[−c ≤ ε ≤ c] ·ε for the left truncated
regression model, the QME,

β̂QM E = arg min
β∈B

1

n

n∑

i=1

1
[
−c < Yi − max

(
X T

i β, c
)

< c
]

×
({

Yi − max
(

X T
i β, c

)}2 − c2
)

, (3)

is obtained. A similar example for the censored regression model is m(ε) = 1[−c ≤
ε ≤ c] · ε + 1[ε > c] · c − 1[ε < −c] · c used by Lee (1992) to define the WME,

β̂W M E = arg min
β∈B

1

n

n∑

i=1

1
[∣∣
∣Yi − max

(
X T

i β, c
)∣∣
∣ < c

]

×
(

0.5
(

Yi − max
(

X T
i β, c

))2
)

+1
[∣∣
∣Yi − max

(
X T

i β, c
)∣∣
∣ ≥ c

]

×
(

c
∣∣
∣Yi − max

(
X T

i β, c
)∣∣
∣ − 0.5c2

)
(4)

for left censoring at si = 0.
The idea of using a symmetric “window” ±c when defining the QME and the

WME, is that a symmetric window together with a unimodal and symmetric den-
sity, for the error term, implies the moment condition E[m(ε)|X ] = 0. However,
the QME and the WME are both consistent for the slope parameters under asym-
metrically distributed errors as well (Laitila 2001; Newey 2001). Thus, the use of
a symmetric window ±c does not seem to be necessary for defining consistent
estimators.

Estimators based on asymmetric windows are suggested in the next section. To
show consistency and asymptotic normality of the proposed estimators the follow-
ing assumptions, which correspond to the assumptions of Theorem 5.1 in Newey
(2001), are used:

(A1) Let ℘X denote the probability distribution of X and U denote Lebesgue
measure. (εi , Xi T ) is independent and identically distributed (i.i.d.) with dis-
tribution that is absolutely continuous with respect to U × ℘X . εi and Xi =
(1, xT

i )T are independent and Xi belongs to a bounded set.
(A2) β0 ∈ interior(B), B is compact.
(A3) There is fε(ε) such that the density function of the error term f (ε) =∫ ε

−∞ fε(u)du and
∫ [

( fε(ε))2 / f (ε)
]

dε < ∞.

(A4) f (ε) is such that it exists a unique µ satisfying E∗[m(ε − µ)] = 0 and such
that the derivative d∗(X) = ∂

∂α
E∗[m(ε − µ + α)]|α=0 is positive.

For the left truncated regression model the following additional assumptions
are used:
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(A5a) P(X T β0 + µ = −�) = 0, where µ satisfies E∗[m(ε − µ)] = 0 and
� = sup{ε̄ : m(ε) = 0 ∀ ε ≤ ε̄},

(A6a) E∗[1[X T β0 + µ > −�]X X T ] exists and is non-singular, and
(A7a) P∗(Y ∗ > 0|X) ≥ τ > 0.

For the right censored regression model

(A5b) P(X T β0 +µ = −�+ s) = 0, where � = inf{ε̄ : m(ε) = m(ε̄) ∀ ε ≥ ε̄},
and

(A6b) E∗[1[X T β0 + µ < −� + s]X X T ] exists and is non-singular

are assumed in addition to Assumptions A1–A4.

3 Estimators

In this section, estimators based on asymmetric windows are suggested for the
estimation of the left truncated regression model and the right censored regression
model. The scalar function used in the truncated case is m(ε) = 1[−cL ≤ ε ≤
cU ] · ε while m(ε) = 1[−cL < ε < cU ] · ε + 1[ε ≥ cU ] · cU − 1[ε ≤ −cL ] · cL
is used in the censored case. Here cL and cU are finite positive constants chosen
by the researcher. The functions used to obtain the QME and the WME are special
cases of these functions with cL = cU = c. However, the use of an asymmetric
window makes these estimators more flexible than the QME and the WME. More
observations can, with the use of an asymmetric window, contribute with possible
information to the estimator instead of being trimmed. This might lead to estimators
that are more efficient.

For the left truncated regression model let

E∗[m(ε)|X ] = E∗[1[−cL ≤ ε ≤ cU ] · ε|X ] = 0 (5)

define the conditional moment restriction in the latent regression. The correspond-
ing estimator, defined as the minimum of the objective function q(ε) = ∫ ε

0 m(u)du+
C , where C can be any constant (Newey 2001), is

β̂LT = arg min
β∈B

n∑

i=1

1[X T
i β > cL ] · {1[−cL ≤ εi ≤ cU ] · 1

2
ε2

i

+1[εi < −cL ] · 1

2
c2

L + 1[εi > cU ] · 1

2
c2

U }

+[X T
i β ≤ cL ] · {1[−cL ≤ Yi − cL ≤ cU ] · 1

2
(Yi − cL)2

+1[Yi − cL < −cL ] · 1

2
c2

L + 1[Yi − cL > cU ] · 1

2
c2

U } (6)

If Assumptions (A1)–(A4) and (A5a)–(A7a) are satisfied, then the function
m(ε) in expression (5) has the following properties:

(P1) E∗[m(ε − µ + α)] ≥ (≤)0 for α ≥ (≤)0.
(P2) m(ε) is bounded and continuous almost everywhere.
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(P3) As a function of α, E∗[(m(ε − µ + α))2] is bounded in a neighbourhood of
every α.

(P4) E∗[(m(ε − µ))2] > 0.
(P5) E∗[||X ||2(d(X))2/E∗[(m(ε −µ))2]] < ∞, where d(X) = ∂

∂α
E[m(ε −µ+

α)]|α=0.
(P6) Q = E∗[d(X)1[X T β0 + µ > cL ]X X T ] exists and is non-singular, where

d(X) = ∂
∂α

E[m(ε − µ + α)]|α=0.

Proofs of (P1)–(P6) are given in Appendix A.
By Theorem 5.1 in Newey (2001), since (P1)–(P6) are satisfied, the LT estima-

tor, β̂LT, is
√

n-consistent for the slope parameters and
√

n(β̂LT − β̃0) converges
in distribution to N (0, VLT), where β̃0 denotes the true parameter vector with the
constant µ added to the intercept. The estimator is also

√
n-consistent for the inter-

cept plus µ. The asymptotic covariance matrix is VLT = 1
d2 σ 2 M−1, where M =

E[ 1[X T β0+µ>cL ]X X T

	(X)
], d∗ = ∂

∂α
E∗[m(ε − µ + α)]|α=0, σ 2 = E∗[(m(ε − µ))2],

and 	(X) = E∗[1[Y ∗ > 0]|X ].
For the right censored regression, consider the conditional moment restriction

E∗ [1[−cL < ε < cU ] · ε + 1[ε ≥ cU ] · cU − 1[ε ≤ −cL ] · cL |X ] = 0 (7)

The estimator obtained based on moment restriction (7) is

β̂RC = arg min
β∈B

n∑

i=1

1[X T
i β < −cU + s] ·

{
1[−cL < εi < cU ] · 1

2
ε2

i

+1[εi ≥ cU ] ·
(

εi · cU − 1

2
c2

U

)
− 1[εi ≤ −cL ] ·

(
εi · cL + 1

2
c2

L

)}

+[X T
i β ≥ −cU + s] ·

{
1[−cL < Yi + cU − s < cU ] · 1

2
(Yi + cU − s)2

+1[Yi + cU − s ≥ cU ] ·
(

(Yi + cU − s) · cU − 1

2
c2

U

)

−1[Yi + cU − s ≤ −cL ] ·
(

(Yi + cU − s) · cL + 1

2
c2

L

)}
(8)

If the Assumptions (A1)–(A4) and (A5b)–(A6b) are satisfied then the function m(ε)
in (7) has the properties (P1)–(P6), with Q in (P6) defined as Q = E∗[d(X)1[X T β0+
µ < −cU + s]X X T ]. Proofs are in Appendix B.

By Theorem 5.1 in Newey (2001) the RC estimator, β̂RC, is
√

n-consistent for
the slope parameters and the intercept parameter plus µ and

√
n(β̂RC − β̃0) con-

verges in distribution to N (0, VRC). The asymptotic covariance matrix is VRC =
1

d2 σ 2 M−1, where M = E[1[X T β0 + µ < −cU + s]X X T ], d∗ = ∂
∂α

E∗[m(ε −
µ + α)]|α=0, and σ 2 = E∗[(m(ε − µ))2].

Note that the asymptotic results of the LT and RC estimators are based on the
assumption that there exists a unique µ satisfying E∗[m(ε−µ)] = 0 (Assumption
A4). This can be made valid by placing appropriate restrictions on cU , cL , and the
density f (ε). For instance, in the LT estimator case, suppose f (ε) is strict unimo-
dal and positive for all ε, and define µ′ by the restriction f (µ′) = f (−cL +µ′). If
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there is a constant θ ∈ (0, 1) such that f (−θcL + µ)/ f (θcL + µ) > γ > 1 for all
µ > µ′, then E∗[m(ε − µ)] = 0 holds if cL < cU < cL · √

1 + (1 − θ2)(γ − 1).
For the function m(ε) used to derive the RC estimator a sufficient condition for

Assumption A4 is, F(cU + µ) − F(−cL + µ) > 0 for all µ.

4 Finite sample properties

Finite sample properties of the LT and RC estimators were studied by means of
simulation. Samples of sizes n = 200, 500, and 1,000 were generated from the
latent model

Y ∗
i = βI + β1 X1i + β2 X2i + σεi , (9)

where X1 ∼ Uniform(−2.5, 2.5), X2 ∼ Uniform(0, 10), β1 = 2, β2 = 3. The
intercept βI was varied to achieve the same levels of truncation or censoring for
the different error distributions used. The parameter σ was adjusted such that the
coefficient of determination, R2, is 0.45 regardless of error distribution. Three
error distributions were considered: the standard normal distribution, the double
exponential distribution, and the extreme value distribution (standard Gumbel dis-
tribution for maxima) for the truncated regressions. For the censored regressions
the Gumbel distribution for minima was used instead of the Gumbel distribution
for maxima to achieve a larger effect of the asymmetric density. The truncation
point, t , was set to zero and the censoring point, s, was set to 35. The QME and
the WME were included for comparison.

Lee and Kim (1998) suggest that the threshold c in expression (3) for QME
is assigned the value of the observed standard deviation of the response variable.
Here the observed standard deviation of the response variable conditional on the
explanatory variables (the standard deviation of the residuals) std(ε̂) was used.
The same choice of c was used in (4) for WME. cL and cU in expression (6) for the
LT estimator were assigned std(ε̂) and 2 · std(ε̂) respectively and cL = 2 · std(ε̂)
and cU = std(ε̂) in (8) for the RC estimator. The std(ε̂) was based on the OLS
residuals. The subroutine DUMPOL of the IMSL Fortran 90 MP Library was used
to calculate (6) and (8).

Table 1 reports the results on relative bias and relative root mean square error
(MSE) of the estimators of the slope parameters of model (9). The bias and the
MSE of both the LT and RC estimators decrease for all error distributions when
the sample size increase; this was expected from the asymptotic results.

For normal distributed errors the LT estimator has smaller bias than the QME
estimator and for the two largest sample sizes the QME has a MSE (in absolute
numbers) almost twice the size of the MSE of the LT estimator. For double expo-
nential distributed errors better results are found for QME than LT but the difference
is rather small. For the extreme value distributed errors better results are found for
QME than LT. The bias and the MSE of the RC estimator are smaller than the bias
and the MSE of the WME estimator for both normal and gumbel distributed errors,
with some few exceptions. For double exponential distributed errors the difference
in results between the two estimators is small. Noteworthy is that the bias, espe-
cially of β̂2, of all four estimators are high for the extreme value distributed errors
when n = 200.
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Table 1 Average relative bias and average relative root mean square error (MSE) of estimators
of slope parameters of model (9)

QME LT WME RC

n Bias MSE Bias MSE Bias MSE Bias MSE

Normal 200 β̂1 0.061 0.497 0.041 0.466 0.030 0.311 0.022 0.293
β̂2 0.075 0.206 0.107 0.210 0.050 0.171 0.036 0.149

500 β̂1 0.032 0.362 0.017 0.297 0.012 0.189 0.008 0.177
β̂2 0.048 0.161 0.043 0.131 0.021 0.103 0.015 0.092

1,000 β̂1 0.022 0.286 0.010 0.208 0.008 0.134 0.004 0.126
β̂2 0.030 0.124 0.017 0.089 0.010 0.072 0.007 0.064

Double exp. 200 β̂1 0.024 0.249 0.028 0.293 0.015 0.237 0.017 0.245
β̂2 0.026 0.114 0.050 0.135 0.032 0.128 0.029 0.127

500 β̂1 0.011 0.164 0.008 0.175 0.005 0.148 0.006 0.153
β̂2 0.012 0.076 0.019 0.085 0.012 0.079 0.012 0.079

1,000 β̂1 0.003 0.114 0.004 0.122 0.003 0.103 0.003 0.107
β̂2 0.005 0.056 0.008 0.059 0.005 0.056 0.005 0.055

Gumbel 200 β̂1 0.167 0.618 0.138 0.860 0.092 0.433 0.088 0.452
β̂2 0.208 0.342 0.363 0.489 0.123 0.283 0.117 0.270

500 β̂1 0.086 0.401 0.090 0.558 0.030 0.245 0.025 0.255
β̂2 0.119 0.233 0.198 0.316 0.043 0.161 0.040 0.153

1,000 β̂1 0.046 0.285 0.056 0.396 0.012 0.172 0.012 0.179
β̂2 0.072 0.165 0.117 0.225 0.021 0.111 0.019 0.104

5,000 replicates. 20–25% truncation or censoring

To study the affect of the number of explanatory variables on the performance
of the estimators samples of sizes n = 500 and n =1,000 were generated from
model (9) expanded with one and two explanatory variables, respectively, under
normal distributed errors. These models were

Y ∗
i = βI + β1 X1i + β2 X2i + β3 X3i + σεi , (10)

Y ∗
i = βI + β1 X1i + β2 X2i + β4 X4i + σεi , (11)

Y ∗
i = βI + β1 X1i + β2 X2i + β3 X3i + β4 X4i + σεi , (12)

where X3 ∼ Normal(0,
√

25/12) and X4 is an indicator variable with P(X4 =
1) = 0.6. The variance of X3 was chosen equal to the variance of X1 and β3 =
β1 = 2 for comparison. Similarly, β4 = 5.89256 was chosen such that the variance
of β4 X4 is equal to the variance of β1 X1. The intercept βI was varied such that
the same levels of truncation or censoring were achieved and σ was adjusted such
that R2 = 0.45 for all models.

Results on relative bias and relative root MSE of the estimators of the slope
parameters are reported in Tables 2–4. For models (10) and (11) the bias and MSE
of the LT estimator are smaller than the bias and MSE of the QME estimator for all
but a few cells. For model (12) the LT estimator has larger bias but smaller MSE
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Table 2 Average relative bias and average relative root MSE of estimators of slope parameters
of model (10)

QME LT WME RC

n Bias MSE Bias MSE Bias MSE Bias MSE

Normal 500 β̂1 0.036 0.376 0.034 0.322 0.009 0.199 0.005 0.188
β̂2 0.040 0.143 0.061 0.142 0.023 0.101 0.017 0.090
β̂3 0.033 0.374 0.030 0.317 0.014 0.197 0.011 0.185

1,000 β̂1 0.029 0.290 0.015 0.218 0.004 0.136 0.002 0.129
β̂2 0.025 0.114 0.023 0.094 0.011 0.070 0.008 0.063
β̂3 0.021 0.280 0.015 0.219 0.009 0.139 0.008 0.132

5,000 replicates. 20–25% truncation or censoring

Table 3 Average relative bias and average relative root MSE of estimators of slope parameters
of model (11)

QME LT WME RC

n Bias MSE Bias MSE Bias MSE Bias MSE

Normal 500 β̂1 0.051 0.388 0.021 0.312 0.011 0.197 0.008 0.188
β̂2 0.041 0.147 0.054 0.135 0.022 0.099 0.017 0.088
β̂3 0.035 0.350 0.021 0.316 0.014 0.188 0.012 0.180

1,000 β̂1 0.034 0.294 0.014 0.217 0.006 0.138 0.003 0.131
β̂2 0.029 0.117 0.022 0.090 0.012 0.070 0.010 0.063
β̂3 0.034 0.274 0.011 0.220 0.007 0.134 0.006 0.126

5,000 replicates. 20–25% truncation or censoring

Table 4 Average relative bias and average relative root MSE of estimators of slope parameters
of model (12)

QME LT WME RC

n Bias MSE Bias MSE Bias MSE Bias MSE

Normal 500 β̂1 0.035 0.394 0.047 0.325 0.015 0.209 0.011 0.195
β̂2 0.035 0.138 0.065 0.141 0.025 0.103 0.018 0.091
β̂3 0.037 0.392 0.041 0.332 0.021 0.207 0.015 0.192
β̂4 0.037 0.336 0.024 0.319 0.015 0.194 0.013 0.184

1,000 β̂1 0.019 0.301 0.022 0.224 0.007 0.144 0.003 0.135
β̂2 0.026 0.110 0.027 0.091 0.011 0.070 0.008 0.063
β̂3 0.030 0.300 0.018 0.226 0.011 0.143 0.008 0.134
β̂4 0.029 0.266 0.007 0.230 0.007 0.138 0.006 0.133

5,000 replicates. 20–25% truncation or censoring

than the QME estimator. Both bias and MSE of the RC estimator are smaller than
bias and MSE of the WME estimator for all three models.

The results are similar to the results in Table 1 for model (9) and the bias and the
MSE decrease when the sample sizes increases. Thus, the number of explanatory
variables does not appear to affect the performance of the estimator.
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Therefore, despite that the choice of threshold values was made more or less
roughly, the proposed estimators with asymmetric windows are in general bet-
ter compared to the corresponding estimators with symmetric windows. However,
there are exceptions such as the truncated case with Gumbel distributed errors
where the QME which may be less sensitive to deviating observations, performed
better.

5 Travel distance modelling

To illustrate the estimation methods, this section presents a problem concerning the
analysis of left truncated data. Data was collected in the recurrent Swedish Travel
Habit Survey and consists of 3,824 shopping trips by car.

The response variable, Y , is the logarithm of self reported travelling distance.
To diminish the risk that travellers forget reporting short travels the travelling dis-
tances are truncated at 2 km. The response is transformed such that the truncation
point, t equals zero. A linear regression model with explanatory variables; X1:
age of traveller; X2: sex of traveller (0=woman, 1=man); X3: logarithm of annual
income (in thousands of Swedish krona) of traveller; X4 and X5, indicators for
travellers living in urban areas and less densely populated areas (reference group is
travellers living in large cities), are estimated with the LT estimator and, for com-
parison, the QME estimator and a maximum likelihood (ML) estimator assuming
normal errors. Values on cL , cU , and c are based on the same rules as in the simula-
tion study. The choice of model is in accordance with a model studied by Brännäs
and Laitila (1991).

In the survey, some travellers reported no income. Therefore, an approach sug-
gested by Battese (1997) is used for the modelling of income effects. An indicator
variable, X6, for having a positive income is included in the model and X3 is set
to zero for individuals without income.

Estimated parameters are presented in Table 5 along with standard errors. The
standard errors of the LT and QME estimates are estimated using a bootstrap pro-
cedure because their covariance matrices depend on the density of the error distri-
bution and are difficult to estimate. Bootstrap have been used by Buchinsky (1995)
and Hahn (1995) in different but similar situations to avoid difficulties of estima-
tion of covariance matrices with density components. Results in Karlsson (2004)
support the use of the bootstrap technique for estimation of the QME covariance
matrix.

The estimated parameters for age, sex, and income have the same sign regard-
less of estimator and the difference in parameter estimates are small between the

Table 5 Parameter estimates (standard errors in parenthesis) for the travel distance model

Intercept β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

LT 2.538 −0.006 0.087 −0.260 −0.037 0.579 0.199
(0.191) (0.003) (0.095) (0.143) (0.122) (0.244) (0.172)

QME 1.651 −0.004 0.136 −0.535 −0.126 −0.381 0.074
(0.142) (0.003) (0.098) (0.276) (0.110) (0.489) (0.151)

ML 1.968 −0.004 0.094 −0.277 −0.064 0.064 0.044
(0.075) (0.001) (0.043) (0.073) (0.048) (0.066) (0.075)
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ML and LT estimators. The estimated impact of age is negative, i.e. a higher age
reduce the distance travelled for shopping purposes. Men have longer shopping
travel distances than women. The income effect is negative. Brännäs and Laitila
(1991) suggest that the negative income effect on shopping trip distance is due to a
time restriction when income has a positive effect on work and business trips. The
ML estimator has the smallest estimated standard errors, but the standard error is
relatively small for the LT and QME estimators too.

The sign of the effects of the indicator variables X4 and X5 are as expected.
Travellers living in urban areas travel in general shorter distances than travellers
living in the largest cities. Living in the least densely populated areas prolongs the
distance travelled for shopping purposes compared to living in large cities, accord-
ing to the LT and ML estimates. The QME estimate indicated the opposite but has
a large standard error.

6 Discussion

The new estimators of the left truncated and right censored regression models have
desirable asymptotic properties such as consistency and asymptotic normality. The
estimators proposed are not based on symmetry assumptions on the error distribu-
tions, whereby they are of more general applicability than many earlier estimators
proposed. In addition, the results of the simulation study show that the estimators
behave well in finite samples with respect to bias and MSE. The results also indi-
cate that the LT and RC estimators with asymmetric windows have a potential to
be more efficient and have smaller bias than the QME and WME estimators with
symmetric windows, although the choice of threshold values, cL and cU , in the
simulation study were made more or less roughly.

The results of the simulation study indicate that rather large sample sizes are
necessary for good performance of the estimators since the bias of the estimators
were rather high, when the sample size was only 200. This was especially clear
for extreme value distributed errors. Perhaps, this result would improved if cL and
cU were chosen more carefully. As pointed out in section 3, the choice of cL and
cU might in some situations be important for the single crossing property of the
conditional moment restriction, e.g. cU should be bounded.

In the example in section 5 the estimated parameters are reasonable on the basis
of theory on travel distances.

The covariance matrix estimation for the LT estimator is complicated by the
dependence on the density of the error distribution. This is also the case for the
QME estimator. The solution used here is the use of bootstrap methods. Simulation
results in Karlsson (2004) support the use of the bootstrap technique for covariance
matrix estimation for the QME. The empirical example indicate that such a solution
might also work for the LT estimator. However, more research on the properties of
the method is needed. The asymptotic covariance matrix for the RC estimator do
not include density components and is easier to estimate.

Finally, data is often both left truncated and right censored (LTRC). A semi-
parametric estimator of linear regression models with LTRC data might be obtained
by combining the two conditional moment restrictions used to obtain the LT and
RC estimators. Studies on the properties of such an estimator are desirable.
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Appendix A

Proofs of (P1)–(P6) for m(ε) = 1[−cL ≤ ε ≤ cU ] · ε

(P1) E∗[m(ε − µ + α)] ≥ (≤)0 for α ≥ (≤)0

Proof E∗[m(ε − µ)] is a continuous function by Assumption A3 and µ satisfying
E∗[m(ε − µ)] = 0 is unique by A4. P1 follows.

(P2) m(ε − µ) is bounded and continuous almost everywhere.

Proof m(ε − µ) = 1[−cL ≤ ε − µ ≤ cU ] · (ε − µ) is larger than or equal to
−cL and smaller than or equal to cU (hence bounded). m(ε) is continuous for all ε
except at ε = −cL and ε = cU . The set of discontinuities is of Lebesgue measure
zero.

(P3) As a function of α, E∗[(m(ε − µ + α))2] is bounded in a neighbourhood of
every α.

Proof

E∗[(m(ε − µ + α))2] = E∗ [
1[−cL + µ − α ≤ ε ≤ cU + µ − α] · (ε − µ + α)2]

≤ max
{
c2

U , c2
L

}
for all α

(P4) E∗[(m(ε − µ))2] > 0.

Proof

E∗[(m(ε − µ))2] = E∗[1[−cL ≤ ε − µ ≤ cU ] · (ε − µ)2]
= E∗[1[−cL ≤ ε − µ ≤ 0] · (ε − µ)2]

+E∗[1[0 < ε − µ ≤ cU ] · (ε − µ)2]
≥ {E∗[1[−cL ≤ ε − µ ≤ 0] · (ε − µ)]}2

+{E∗[1[0 < ε − µ ≤ cU ] · (ε − µ)]}2

by Jensen’s inequality. E∗[1[−cL ≤ ε − µ ≤ 0] · (ε − µ)] < 0 and E∗[1
[0 < ε−µ ≤ cU ] · (ε−µ)] > 0 because µ satisfying E∗[m(ε−µ)] = 0 is unique
and E∗[m(ε−µ+α)] ≥ (≤)0 for α ≥ (≤)0 (see P1). Hence, E∗[(m(ε−µ))2] > 0.

(P5) E∗[||X ||2(d(X))2/E∗[(m(ε − µ))2]] < ∞, where d(X) = ∂
∂α

E[m(ε − µ
+ α)]|α=0

Proof E∗[(m(ε − µ))2] ≥ r > 0 (see P4). E∗[||X ||4] < ∞ because X belongs
to a bounded set (Assumption A1). E∗[(d(X))4] < ∞ by Assumptions (A4) and
(A7a). Then, by Hölder´s inequality,

E∗[||X ||2(d(X))2/E∗[(m(ε − µ))2]] ≤ 1

r
E∗[||X ||2(d(X))2]

≤ 1

r

(
E∗[||X ||2·2])1/2 · (

E∗[(d(X))2·2])1/2

< ∞

�
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(P6) Q = E∗[d(X)1[X T β0 + µ > cL ]X X T ] exists and is non-singular, where
d(X) = ∂

∂α
E[m(ε − µ + α)]|α=0

Proof For all a �= 0,

aT Qa = aT E∗[1[X T β0 + µ > cL ] · 1

1 − Fε∗(−Xβ0)
· [(−cU ) · f (cU + µ)

+(−cL) · f (−cL + µ) + F(cU + µ) − F(−cL + µ)] · X X T ]a
≥ κ · aT E∗[1[X T β0 + µ > cL ]X X T ]a > 0,

where κ is a positive constant, because by Assumption A7a

1 ≤ 1

1 − Fε∗(−Xβ0)
= 1

P∗(Y ∗ > 0|X)
≤ 1

τ
, τ > 0,

by (A4), F(cU +µ)− F(−cL +µ)− cU · f (cU +µ)− cL · f (−cL +µ) = d∗(X)
is positive, and by (A6a) E∗[1[X T β0 +µ > cL ]X X T ] is a positive definite matrix.
Hence, Q is positive definite and non-singular, because the determinant of a positive
definite matrix is positive. 
�

Appendix B

Proofs of (P1)–(P6) for m(ε) = 1[−cL < ε < cU ] · ε + 1[ε ≥ cU ]cU − 1[ε
≤ −cL ]cL

(P1) and (P2) E∗[m(ε − µ + α)] ≥ (≤)0 for α ≥ (≤)0 and m(ε − µ) is bounded
and continuous almost everywhere.

Proof See corresponding proofs in Appendix A. 
�
(P3) As a function of α, E∗[(m(ε − µ + α))2] is bounded in a neighbourhood of
every α.

Proof For all α, E∗[(m(ε − µ + α))2] ≤ max
{
c2

U , c2
L

} + c2
U + c2

L 
�
(P4) E∗[(m(ε − µ))2] > 0.

Proof

E∗[(m(ε − µ))2] = E∗[1[−cL < ε − µ < cU ] · (ε − µ)2

+1[ε − µ ≥ cU ] · c2
U + 1[ε − µ ≤ −cL ] · c2

L ]
= E∗[1[−cL < ε − µ ≤ 0] · (ε − µ)2]

+E∗[1[0 < ε − µ < cU ] · (ε − µ)2]
+P∗[ε − µ ≥ cU ] · c2

U + P∗[ε − µ ≤ −cL ] · c2
L

≥ {E∗[1[−cL < ε − µ ≤ 0] · (ε − µ)]}2

+{E∗[1[0 < ε − µ < cU ] · (ε − µ)]}2

+P∗[ε − µ ≥ cU ] · c2
U + P∗[ε − µ ≤ −cL ] · c2

L > 0

by Jensen’s inequality and Assumption A4. 
�
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(P5) E∗[||X ||2(d(X))2/E∗[(m(ε − µ))2]] < ∞, where d(X) = ∂
∂α

E[m(ε − µ
+ α)]|α=0

Proof (P5) follows by Hölders inequality because E∗[(m(ε−µ))2]] ≥ r > 0 (see
P4), E∗[||X ||4] < ∞ (by Assumption A1), and E∗[(d(X))4] ≤ 1 < ∞.

(P6) Q = E∗[1[X T β0 + µ < −cU + s]X X T ] exists and is non-singular, where
d(X) = ∂

∂α
E[m(ε − µ + α)]|α=0

Proof E∗[1[X T β0 +µ < −cU + s]X X T ] is positive definite by Assumption A6b.
Q is also a positive definite matrix, because for all a �= 0

aT Qa ≥ κaT E∗[1[X T β0 + µ < −cU + s]X X T ]a > 0,

where κ is a positive constant. Q is non-singular because the determinant of a
positive definite matrix is positive.
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