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Abstract Test procedures for detection of a change in the distribution of a sequence
of independent observations based on empirical characteristic functions are devel-
oped and their limit properties are studied. Theoretical results are accompanied by
a simulation study.
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1 Introduction and main results

Let Y1, . . . , Yn be independent random variables, Yj having a distribution function
Fj , j = 1, . . . , n.We consider the testing problem

H0 : F1 = · · · = Fn (1)

against

H1 : F1 = · · · = Fm �= Fm+1 = · · · = Fn f or m < n, (2)
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where m,F1 and Fn are unknown. Most of the test procedures for this problem
assume that the change concerns only a change in the parameters like mean, regres-
sion parameters, variance etc., for a comprehensive treatment see, e.g., the book
by Csörgő and Horváth (1997) and Antoch et al (2001). The nonparametric type
procedures considered in the literature are based either on empirical distribution
functions, quantile functions or U -statistics, for a survey of the recent results see
again the book by Csörgő and Horváth (1997).

In the present paper test procedures based on empirical characteristic functions
for testingH0 againstH1 are considered. Particularly, we study the following class
of test statistics:

Tn,γ (w) = max
1≤k<n

(k(n− k)

n2

)γ k(n− k)

n

∞∫

−∞
|φk(t)− φ0

k (t)|2w(t)dt, (3)

where w(·) is a nonnegative weight function, φk(t) and φ0
k (t) are empirical char-

acteristic functions based on Y1, . . . , Yk and Yk+1, . . . , Yn, respectively, i.e.

φk(t) = 1

k

k∑
j=1

exp{itYj }, k = 1, . . . , n, (4)

φ0
k (t) = 1

n− k

n∑
j=k+1

exp{itYj }, k = 1, . . . , n, (5)

and γ ∈ [0, 1]. Empirical characteristic functions have proved a useful tool in a
variety of estimation and testing problems. Some earlier works include, among
others, Press (1972), Heathcote (1972), Koutrouvelis (1980a,b), Epps and Pulley
(1983) and Csörgő (1985a,b). For recent applications the reader is referred to
Epps (1999), Koutrouvelis and Meintanis (1999), Gürtler and Henze (2000) and
Kankainen and Ushakov (1998). A large part of the literature on the empirical
characteristic function is covered in Ushakov (1999).

Letting

ck,n(γ ) =
(k(n− k)

n2

)γ k(n− k)

n
, k = 1, . . . , n− 1, (6)

straightforward algebra yields that

Tn,γ (w) = max
1≤k<n

ck,n(γ ) Vk,n, (7)

with

Vk,n(w) = 1

k2

k∑
l,m=1

hw(Yl − Ym)+ 1

(n− k)2

n∑
l,m=k+1

hw(Yl − Ym)

− 2

k(n− k)

k∑
l=1

n∑
m=k+1

hw(Yl − Ym), (8)
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where

hw(β) =
∞∫

−∞
cos(βt)w(t)dt. (9)

The choice of the weight function w and of the tuning parameter γ influence the
limit behavior of the considered test statistic. Most of the results presented below
hold true for any nonnegative weight function w with the property

0 <
∫
w(t)dt < ∞.

However, typical choices used in practice are either

w(1)a (t) = exp (−a|t |), t ∈ R1, a > 0, (10)

or

w(2)a (t) = exp (−at2), t ∈ R1, a > 0. (11)

Then the corresponding functions h in (8) have the form

h(1)w (β) = 2a/(a2 + β2), β ∈ R1. (12)

and

h(2)w (β) =
√
π/a exp (−β2/4a), β ∈ R1. (13)

The respective test statistics are denoted by T (1)n,γ (a) and T (2)n,γ (a). The role of the
weight parameter a > 0 is to control the rate of decay of the weight function. With
small (resp. large) values of a, the weight function decreases slowly (resp. rapidly).
In this connection, it may be shown that the family of test statistics {T (1)n,γ (a), 0 <
a < ∞} and {T (2)n,γ (a), 0 < a < ∞} are closed at the boundary a = ∞. Particularly,
by the arguments in Meintanis (2004) we have,

lim
a→∞ a

3 T (1)n,γ (a) = 4 max
1≤k<n

ck,n(γ ) (Ȳk − Ȳ ok )
2,

lim
a→∞ a

3/2 T (2)n,γ (a) =
√
π

2
max

1≤k<n
ck,n(γ ) (Ȳk − Ȳ ok )

2,

where Ȳk = k−1∑k
l=1 Yl and Ȳ ok = (n − k)−1∑n

l=k+1 Yl . Hence apart from irrel-
evant constant factors, the test statistics when suitably normalized approach limit
values. These values correspond to procedures appropriate for detecting changes
in location similar to the tests considered by Antoch and Hušková (2001), among
others.

Concerning the choice of the tuning parameter γ , it would be natural in accor-
dance with other test procedures for detection of changes to choose γ = 0. Then
our test statistic is the maximum of the standardized test statistics for the two sam-
ple problem, where the observations are split into two groups with k and n − k
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observations. However, the disadvantage of this test statistic is that it tends to infin-
ity even under the null hypothesis. More precisely, underH0 and mild assumptions
on w, as n → ∞,

Tn,γ (w) → ∞, γ = 0

in probability, while

Tn,γ (w) = OP (1), γ > 0.

We focus here on γ ∈ (0, 1] and make some comments for the case γ = 0.
Large values of the test statistics indicate that the null hypothesis is not true.

Hence the null hypothesis is rejected when the critical value is exceeded, where
the critical value is determined in such a way that the test has level α. Generally,
to find reasonable approximations for critical values one can either use the limit
distribution under the null hypothesis or use some resampling methods. Concern-
ing the limit distribution, unfortunately, it depends on the unknown parameters
(see Theorem A below) and hence this approach does not provide proper approx-
imations for critical values. Concerning resampling methods they provide good
approximation when the data follow the null hypothesis or local alternatives (see
Theorem C below). Particularly, bootstrap without replacement leads to a test with
level α. Bootstrap without replacement leads to tests with asymptotic level α. In
case of the so called fixed alternatives, resampling methods do not lead to a reason-
able approximation to the critical values, however the resulting tests are consistent.
Such results are discussed in more detail in section 4.

The application of the bootstrap without replacement can be interpreted as an
application of the permutation principle. We will use the later term in the most of
the rest of the paper. The permutation version Tn,γ (w,R) of Tn,γ (w) is defined by
(3) or equivalently by (7) with Y1, . . . , Yn being replaced by YR1, . . . , YRn , where
R1, . . . , Rn is a random permutation of 1, . . . , n. The critical value dn,γ (α,Y ) is
obtained as the 100(1−α)% quantile of the conditional distribution of Tn,γ (w,R)
given Y1, . . . , Yn. The resulting tests then reject H0 on the level α if

Tn,γ (w,R) ≥ dn,γ (α,Y ). (14)

Since the conditional distribution function of Tn,γ (w,R) is discrete the exact level
α need not be attained. However, it can be reached using classical randomization,
(see e.g. Lehmann 1991).

It is known (see, e.g. Meintanis 2004) that the limit distribution of function-
als of characteristic functions are neither exactly nor asymptotically distribution
free under H0. This is an unpleasant property. However we will see that despite
this, the tests work reasonably well. We need not even assume that the underlying
distribution function is continuous.

To assess the performance of the proposed tests we have conducted a simu-
lation study which includes a variety of sampling situations, both under H0 and
under alternatives. The results show that the tests based on T (1)n,γ (a) and T (2)n,γ (a),
defined below (8), keep the actual level of significance close to its nominal value,
while at the same time they are very sensitive in detecting departures from the null
hypothesis.

The rest of the paper is organized as follows. Section 2 studies distributional
properties of the considered test statistics under H0, while section 3 investigates
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properties of their distributional behavior under alternatives. Section 4 discusses
properties of the permutation versions. The results of a simulation study are pre-
sented in section 5. The essence of the proofs is contained in section 6.

2 Results under H0

Here theoretical properties of Tn,γ (w) are studied under the null hypothesis, i.e.
distributional properties of Tn,γ (w) are investigated under the assumptions that
Y1, . . . , Yn are i.i.d. random variables with common distribution function F . The
main results of the section are formulated in Theorem A at the end of the section.

In order to have a picture of the limit behavior of Tn,γ (w) we decompose
Vk,n(w) into a few transparent terms. Towards this end,

h(x, y) = hw(x − y) =
∫

cos(t (x − y))w(t) dt, (15)

h̃(x, y) = h(x, y)− E(h(x, Ys))− E(h(Yr, y))− Eh(Yr, Ys), r �= s.

(16)

Hence

E(h̃(Yr, Ys)|Yr) = E(h̃(Yr, Ys)|Ys) = Eh̃(Yr, Ys) = 0, r �= s. (17)

Then Vk,n(w) can be decomposed as follows:

Vk,n = Vk,n(w) = Ak1 + Ak2 + Ak3, k = 1, . . . , n− 1, (18)

where

Ak1 = n

k(n− k)


1

k

k∑
v=1

k∑
s=1,v �=s

h̃(Yv, Ys)+ 1

(n− k)

n∑
v=k+1

n∑
s=k+1,v �=s

h̃(Yv, Ys)

−1

n

n∑
v=1

n∑
s=1,v �=s

h̃(Yv, Ys)


 , (19)

Ak2 = n

k(n− k)

( ∫
w(t) dt − Eh(Y1, Y2)

)
, (20)

Ak3 = − 2

k2

k∑
r=1

(E(h(Yr, Ys)|Yr)− Eh(Y1, Y2))

− 2

(n− k)2

n∑
r=k+1

(E(h(Yr, Ys)|Yr)− Eh(Y1, Y2)). (21)

Clearly, Ak1 is a function of degenerate U -statistics, Ak2 = E Vk,n(w) is a non-
random term and Ak3 is the sum of independent random variables with zero mean.
Direct calculations give that under H0

varAk1 ≈ 2
( n

k(n− k)

)2
Eh̃2(Y1, Y2)
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and

varAk3 ≈ 4
( 1

k3
+ 1

(n− k)3

)
var {E(h(Y1, Y2)|Y1)},

where an ≈ bn means that an/bn → 1. Hence under the null hypothesis the
terms Ak3 are negligible and do not influence the limit distribution, while Ak2 and√

varAk1 are of the same order and both influence the limit behavior.
Since the function h̃(x, y) is symmetric in its arguments, by (17) and

E h̃2(Y1, Y2) =
∫
h̃2(x, y) dF(x) dF(y) < ∞, (22)

there exist orthogonal eigenfunctions {gj (t), j = 1, 2, . . . } and eigenvalues {λj ,
j = 1, 2, . . . } such that (see, e.g., Serfling 1980)

lim
K→∞

∞∫

−∞

∞∫

−∞

(
h̃(x, y)−

K∑
j=1

λjgj (x)gj (y)
)2
dF(x)dF (y) = 0, (23)

∞∫

−∞
g2
j (x) dF(x) = 1, j = 1, 2, . . . , (24)

∞∫

−∞
gj (x)gi(x) dF(x) = 0, i �= j = 1, 2, . . . (25)

and

E h̃2(Y1, Y2) =
∫
h̃2(x, y) dF(x) dF(y) =

∞∑
j=1

λ2
j . (26)

Next, we formulate the assertions on the limit behavior of the test statistic
Tn,γ (w) under H0.

Theorem A Let Y1, . . . , Yn be i.i.d. random variables with common distribution
function F . Let γ ∈ (0, 1] and letw be a symmetric nonnegative function such that

0 <
∫
w(t) dt < ∞. (27)

Then the limit behavior of Tn,γ (w) is the same as that of

sup
t∈(0,1)

(
t (1 − t)

)γ ∣∣∣
(∫

w(u)du− E h(Y1, Y2)

)

+
∞∑
j=1

λj

{ B2
j (t)

(1 − t)t
− 1

}∣∣∣, (28)

where {Bj,n(t), t ∈ (0, 1)}, j = 1, 2 . . . , are independent Brownian bridges,
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Proof It is postponed to section 6. 	

Remark 2.1 The explicit distribution of (28) is unknown. By properties of Brown-
ian bridges the random variable in (28) is bounded in probability.

Remark 2.2 Since the eigenvalues {λj } and eigenfunctions {gj } depend on the
underlying distribution function F which is unknown, the limit distribution of
(28) depends on the unknown parameters and unknown functions so that the limit
distribution does not provide a useful approximation for the critical values.

Remark 2.3 By results in chapter 4 of de la Peňa and Giné (1999) on the law of
the iterated logarithm for degenerate U -statistics,

Tn,0(w) = OP (log log n).

There is an open question what is the limit distribution of Tn,0(w)(log log n)−1.

3 Behavior of Tn,γ (w) under alternatives

We investigate the limit behavior of Tn,γ (w) under alternatives and as a conse-
quence we obtain the consistency of the proposed tests.

Throughout the section we assume that there is m(< n) such that Y1, . . . , Ym
are i.i.d. with d.f. F1 and Ym+1, . . . , Yn are i.i.d. r.v.’s with d.f. Fn, where all Yi’s
are independent and m and F1, Fn satisfy

m = mn ∈ [κ1n, κ2n] for some 0 < κ1 ≤ κ2 < 1 (29)

and, as n → ∞,

n�n,1 → ∞, γ ∈ (0, 1], (30)

(n�n,1)/(log log n) → 0, γ = 0

and

�n,2

n�2
n,1

→ 0, (31)

where

�n,1 = E(h(Y1, Y2)− 2h(Y1, Yn)+ Eh(Yn, Yn−1)) (32)

=
∫ {( ∫

cos(tx) d(F1(x)− Fn(x))
)2

(33)

+
( ∫

sin(tx) d(F1(x)− Fn(x))
)2}

w(t) dt, (34)

�n,2 = E
(
E(h(Y1, Y2)− h(Y1, Yn))|Y1)

)2
(35)

+E(E(h(Y1, Y2)− h(Yn, Yn−1))|Yn)
)2
. (36)
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Clearly,�n,j , j = 1, 2, describe the considered class of alternatives. It covers both
local and fixed alternatives. Typically these assumptions are satisfied if

√
n sup

x

|F1(x)− Fn(x)| → ∞.

The assumptions (30) and (31) are satisfied, e.g., if F1 = F and Fn = G with F
and G being fixed (i.e. not changing with n), F �= G and �n,1 �= 0.

In order to get a picture of the behavior of Tn,γ (w) we proceed similarly as in
the previous section. Particularly, we use the decomposition (18), where Ak2 and
Ak3 have to be modified as follows:

Ak2 = EVk,n(w), (37)

Ak3 = Bk1 + Bk2 + Bk3, (38)

where

Bk1 = 1

k2

k∑
r=1

k∑
s=1,s �=r

(
E(h(Yr, Ys)|Yr)+ E(h(Yr, Ys)|Ys)−2Eh(Yr, Ys)

)
,

(39)

Bk2 = 2

(n− k)2

n∑
r=k+1

n∑
s=k+1,s �=r

(
E(h(Yr, Ys)|Yr)+ E(h(Yr, Ys)|Ys) (40)

−2Eh(Yr, Ys)
)
,

Bk3 = − 2

(n− k)k

k∑
r=1

n∑
s=k+1

(E(h(Yr, Ys)|Yr)+ E(h(Yr, Ys)|Ys)). (41)

HereE denotes the expectation under the setup considered in this section. Similarly
as under H0 the terms Ak1 are functions of degenerate U -statistics, Ak2 are non-
random terms and Ak3 are sums of independent random variables with zero mean.
It will be shown in section 6 that in our present setup the terms Ak2 dominate Ak1
and Ak3. Therefore we will have a closer look at Ak2. Tedious but straightforward
calculations give uniformly for k ≤ m:

EVk,n(w) = n

k(n− k)

( ∫
w(t) dt − Eh(Y1, Y2)

)

+
(n−m

n− k

)2
�n,1

(
1 +O((n−m)−1)

)
(42)

and, uniformly for k > m:

EVk,n(w) = n

k(n− k)

( ∫
w(t) dt − Eh(Y1, Y2)

)
+
(m
k

)2
�n,1

(
1 +O(m−1)

)
.

(43)

Notice that the first terms in both (42) and (43) are identical and are equal to the
expectation of Vn,k(w) under H0. The second terms are the main ones reflecting
the alternatives. Moreover, they are monotone for 1 ≤ k ≤ m and m < k ≤ n,
respectively, the maximum of their absolute values is reached for k = m and its
order for k = m is O(�n,1).

This implies the following theorem.
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Theorem B Let Y1, . . . , Yn be independent random variables, Y1, . . . , Ym have
common d.f. F1 and Ym+1, . . . , Yn have common distribution function Fn. Let m
satisfy (29) and let γ ∈ [0, 1]. If �n,j , j = 1, 2, satisfy (30) and (31) then, as
→ ∞,

Tn,γ (w) =
(
m(n−m)

n2

)1+γ(
n�n,1 +OP

(√
n|�n,2| + 1 + I{γ = 0} log log n

))
.

(44)

Proof is postponed to section 6. 	

With a larger effort one could get deeper results but they would not provide sub-

stantially more information and the proofs would be much more technical. Clearly,
the limit behavior of Tn,γ (w) under alternatives and the null hypothesis differs
considerably. Under the respective assumptions of Theorem B, as n → ∞,

Tn,γ (w) → ∞,

in probability. Since under H0

Tn,γ (w) = OP (1),

then the test with critical regions

Tn,γ (w) ≥ tn

for any tn → ∞ leads to the consistent tests with asymptotic level αn → 0. How-
ever we can get better results through resampling methods as we will see in the
next section.

In case of γ = 0 we have that the test with critical region

1

log log n
Tn,γ (w) ≥ tn

for any tn → ∞ leads to consistent tests with asymptotic level αn → 0.

4 Properties of permutation versions

Here we investigate properties of the conditional distribution of the permutational
version of the statistic Tn,γ (w,R) given Y1, . . . , Yn with the aim to get a picture
about the approximate behavior of the critical values dn,γ (α,Y ).

We assume that the random variables Y1, . . . , Yn are independent random vari-
ables such that form(≤ n) Y1, . . . , Ym have common distribution function F∗ and
Ym+1, . . . , Yn have common distribution function F ∗, where F∗ and F ∗ do not
depend on n, while m satisfies

m = mn = [nκ] for some κ ∈ (0, 1]. (45)

We set

Fκ(x) = κF∗(x)+ (1 − κ)F ∗(x), x ∈ R1. (46)
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Notice that YRi has the distribution function

P(YRi ≤ x) = m

n
F∗(x)+ n−m

n
F ∗(x) = Fκ(x)+O(n−1), x ∈ R1.

Recall that the permutation version of Tn,γ (w,R) of Tn,γ (w) is defined as

Tn,γ (w,R) = max
1≤k<n

ck,n(γ )
∣∣Vk,n(w,R)

∣∣, (47)

with

Vk,n(w,R) = 1

k2

k∑
s,r=1

h(YRs , YRr )+ 1

(n− k)2

n∑
s,r=k+1

h(YRs , YRr )

− 2

k(n− k)

k∑
s=1

n∑
r=k+1

h(YRs , YRr ), (48)

where R = (R1, . . . , Rn) is a random permutation of (1, . . . , n), independent of
Y1, . . . , Yn.

We decompose Vk,n(w,R) similarly as Vk,n(w):

Vk(w,R) = Ak1(R)+ Ak2(R)+ Ak3(R) (49)

where

Ak1(R) = n

k(n− k)

(1

k

k∑
v=1

k∑
s=1,v �=s

ĥ(YRv , YRs )

+ 1

(n− k)

n∑
v=k+1

n∑
s=k+1,v �=s

ĥ(YRv , YRs )
)
, (50)

Ak2(R) = n

k(n− k)

( ∫
w(t) dt − hn(Y )

)
, (51)

Ak3(R) = − 2

n− 1

( 1

k2

k∑
j=1

n∑
s=1,s �=Rj

(
h(YRj , Ys)− hn(Y )

)

+ 1

(n− k)2

n∑
j=k+1

n∑
s=1,s �=Rj

(
h(YRj , Ys)− hn(Y )

))
, (52)

where

hn(Y ) = 1

n(n− 1)

n∑
v=1

n∑
s=1,s �=v

h(Ys, Yv) (53)

ĥ(YRv , YRs ) = h(YRv , YRs )− E(h(YRv , YRs )|Y , Rv)
−E(h(YRv , YRs )|Y , Rs)+ E(h(YRv , YRs )|Y ), v �= s. (54)



Change point analysis based on empirical characteristic functions 155

Notice that

E(h(YRv , YRs )|Y , Rs) = 1

n− 1

∑
j=1,j �=Rs

h(Yj , YRs )

and

Eĥ(YRv , YRs )|Y , Rs) = 0, s �= v.

The similarity with Akj , j = 1, 2, 3, is obvious. The term Ak1(R) is a functional
ofU -statistics inR1, . . . , Rn,Ak2(R) does not depend onR1, . . . , Rn andAk3(R)
can be viewed as simple linear rank statistics. It can be shown that Ak3 will not
influence the limit behavior of Tn,γ (w,R).

Before we formulate the main assertion of the present section we introduce a
representation of the function

h̃κ (x, y) = h(x, y)− Eκh(x, Z2)− Eκh(Z1, y)+ Eκh(Z1, Z2), (55)

where Z1, Z2 are independent random variables with distribution function Fκ and
Eκ denotes the expectation w.r.t. Fκ .

By Serfling (1980) for each κ ∈ (0, 1] there are orthogonal eigenfunctions
{gj (y; κ), y ∈ R2}∞j=1 and eigenvalues {λj (κ)}∞j=1 such that

lim
K→∞

∫ ∫ (
h̃κ (x, y)−

K∑
s=1

λs(κ)gs(x; κ)gs(y; κ)
)2
dFκ(x)dFκ(y) = 0,

(56)∫
gs(x; κ)dFκ(x) = 0, , s = 1, . . . , (57)

∫
gs(x; κ)gj (y; κ)dFκ(x) = δj,s, j, s = 1, . . . , (58)

where δj,s = 1 if s = j and δj,s = 0 if s �= j .
Here is the main assertion on the limit behavior of the permutational distribution

of Tn,γ (w,R).

Theorem C LetY1, . . . , Yn be independent random variables such thatY1, . . . , Ym
have common distribution functionF∗ andYm+1, . . . , Yn have common distribution
function F ∗, where m satisfies (45). Then, for γ ∈ (0, 1], as n → ∞,

P(Tn,γ (w,R) ≤ x|Y )− P( sup
t∈(0,1)

(
t (1 − t)

)γ ∣∣∣
(∫

w(z) dz− Eκ h(Z1, Z2)

)

+
∞∑
j=1

λj (κ)
{ B2

j (t)

(1 − t)t
− 1

}∣∣∣ ≤ x) →P 0, x ∈ R1, (59)

where Z1, Z2 are independent random variables with distribution function Fκ .

Proof The proof is postponed to section 6. 	
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Noticing that, underH0, λj = λj (1), j = 1, . . . , and comparing the assertions
of TheoremA and Theorem C we see that underH0 the limit distribution of Tn,γ (w)
and the limiting conditional distribution ofTn,γ (w,R) coincide as expected. Unfor-
tunately, this is not true under alternatives with κ ∈ (0, 1) because the eigen-
values {λj } and {λj (κ)} are generally different. However, in any case, Tn,γ (w,R)
is bounded in probability while under alternatives (section 3) Tn,γ (w) → ∞ in
probability. Therefore despite thatdn,γ (α,Y )need not provide a reasonable approx-
imation for critical values, its application leads to consistent tests.

Concerning the limit behavior of Tn,γ (w,R) with γ = 0 we can only show,
using properties of rank statistics and results in Chapter 4 of de la Peňa and Giné
(1999), that

1

log log n
Tn,γ (w,R) = OP (1),

which in combination with the results in Theorems A and B implies that the test
with the critical region (14) is consistent. To obtain deeper results is an open prob-
lem. Nevertheless, even in this case the permutation principle provides a consistent
test with level α.

5 Simulations

In order to investigate the finite-sample behavior of the test statistics we perform
a simulation experiment. For sample sizes n = 40 and n = 100, 2,000 samples
are generated. First the test statistic is calculated based on the original sample
Y1, ..., Yn. Then B permutations of (1, 2, ..., n) are chosen at random from all n!
total number of permutations. For each permutation (R1, ..., Rn) the test statis-
tic is computed based on YR1, ..., YRn . The (1 − α)100% quantile of this ‘subset’
permutation distribution is used as the critical point for the current sample.

Before proceeding to the simulation results some computational guidelines are
given. In particular, the test statistics may conveniently be written as,

T (j)n,γ (a) = ψ(j)
a max

1≤k≤n−1
ck,n(γ )

[
1

k2
S1,k + 1

(n− k)2
S2,k − 2

k(n− k)
S3,k

]
,

with

S1,k =
k∑

l,m=1

ρl,m, S2,k =
n∑

l,m=k+1

ρl,m, S3,k =
k∑
l=1

n∑
m=k+1

ρl,m.

If w(1)a (t) = exp (−a|t |), then ψ(1)
a = 2a, and ρl,m = (a2 + (Yl − Ym)

2)−1. Con-
sequently the test statistic is written as

T (1)n,γ (a) = 2a max
1≤k≤n−1

ck,n(γ )

[
1

k2

k∑
l,m=1

1

a2 + Y 2
lm

+ 1

(n− k)2

n∑
l,m=k+1

1

a2 + Y 2
lm

− 2

k(n− k)

k∑
l=1

n∑
m=k+1

1

a2 + Y 2
lm

]
,

with Ylm = Yl − Ym, and ck,n(γ ) given by (6).
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Likewise, ifw(2)a (t)=exp (−at2), thenψ(2)
a =√

π/a, andρl,m=exp (−Y 2
lm/4a).

Consequently,

T (2)n,γ (a) =
√
π

a
max

1≤k≤n−1
ck,n(γ )

×
[

1

k2

k∑
l,m=1

exp

(
−Y

2
lm

4a

)
+ 1

(n− k)2

n∑
l,m=k+1

exp (−Y
2
lm

4a
)

− 2

k(n− k)

k∑
l=1

n∑
m=k+1

exp

(
−Y

2
lm

4a

)]
.

Recursive formulas for the computation of Sj,k , j = 1, 2, 3, are,

S1,k+1 = S1,k + S1,1 + 2
k∑
l=1

ρk+1,l , S2,k+1 = S2,k − S1,1 − 2
n∑

l=k+2

ρk+1,l ,

S3,k+1 = S3,k +
n∑

l=k+2

ρk+1,l −
k∑
l=1

ρk+1,l .

In Table 1, level results are shown (percentage of rejection rounded to the near-
est integer), for nominal level α = 0.05 and α = 0.10, and B = 200. These
results correspond to the test statistics T (1)n,γ (a) (top entry) and T (2)n,γ (a) (bottom
entry), for γ = 0, 0.5, 1.0. The distributions included are: The normal (N), the
uniform (U), the double exponential (DE), the logistic (L), the gamma distribution
with shape parameter equal to one (�1), and the gamma distribution with shape
parameter equal to two (�2). All distributions considered are in standard form.
From this table it is evident that even with such a small subset of the permutation
distribution, the test statistics capture the nominal level of significance to a satisfac-
tory degree, and are fairly robust with respect to the value of the weight parameter
a. We have also obtained power results, under alternatives with F1(x) being any
of the distributions referred to above, Fn(x) = F1[(x − δ)/b], for δ = 1, b = 1
or

√
2, and m = n/2 or m = n/4. The results are shown in Table 2 (γ = 0),

Table 3 (γ = 0.5) and Table 4 (γ = 1.0). An asterisk denotes power 100%. For
the uniform distribution the power was in all cases 100%. These results indicate
that the tests based on T (1)n,γ (a) and T (2)n,γ (a) are considerably powerful under most
alternative situations considered.

6 Proofs

The proofs of our theorems are rather technical. We focus on the main steps of the
proofs only.

Proof of Theorem A In order to prove the assertion it suffices [confer (18)] to derive
a representation of Ak,1, defined by (19), in terms of functionals of Brownian
bridges and to show that theAk3, defined by (21), do not influence the limit behav-
ior of Tn,γ (w).
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Table 1 Rejection rate underH0 corresponding to 5% and 10% nominal level for the test statistics
T (1)n,γ (a) (top entry) and T (2)n,γ (a) (bottom entry)

n = 40 n = 100

a 1.0 1.5 2.0 3.0 4.0 1.0 1.5 2.0 3.0 4.0

γ = 0
N 4 9 5 10 5 10 5 10 5 10 6 10 6 11 6 11 5 11 6 10

5 10 5 10 6 10 6 10 6 10 6 11 5 11 5 10 6 11 6 11
U 5 10 5 10 5 10 6 10 6 10 6 11 6 11 6 10 6 10 6 11

6 10 6 10 6 10 6 10 6 10 6 11 6 11 5 10 6 10 6 10
DE 4 8 4 9 5 10 4 9 4 9 6 11 5 11 5 11 6 11 6 11

4 9 4 9 5 10 4 10 5 10 5 11 6 11 5 10 6 11 6 11
L 4 8 4 9 5 9 5 10 5 9 5 10 6 10 5 10 5 11 5 11

4 9 5 10 5 9 5 9 5 10 6 10 6 11 5 10 5 11 5 11
�1 5 9 5 9 5 9 4 9 4 10 6 11 5 11 5 11 6 11 6 11

4 10 4 9 5 9 5 9 5 9 6 11 6 11 5 11 5 11 5 11
�2 5 10 5 10 5 10 5 10 5 10 4 9 4 9 4 10 4 10 4 9

5 10 5 10 5 10 5 10 5 10 4 9 4 9 5 10 5 10 5 9

γ = 0.5
N 5 10 5 10 5 10 5 11 5 10 5 10 6 11 6 11 5 10 5 11

5 10 5 11 5 10 5 10 5 10 6 11 5 10 5 11 6 11 6 11
U 6 10 6 10 6 10 6 10 6 10 6 11 6 11 5 11 5 10 6 11

6 10 6 10 6 10 6 10 6 10 6 11 6 11 5 10 5 11 6 11
DE 5 10 5 10 5 10 5 10 5 10 6 11 6 10 6 12 6 10 5 12

5 10 5 10 5 10 5 10 5 10 6 11 5 10 5 11 6 10 6 12
L 5 10 5 10 5 10 5 10 5 11 6 10 5 10 6 11 6 12 6 11

5 11 5 10 5 10 5 11 5 10 5 11 6 10 5 10 6 11 6 12
�1 5 10 5 10 5 10 5 10 5 10 5 10 5 10 6 11 6 11 6 11

5 10 5 10 5 10 5 10 5 10 6 10 5 11 5 11 6 11 6 12
�2 5 10 5 10 5 10 5 10 5 10 5 10 5 9 4 10 4 9 4 9

5 9 5 10 5 10 5 10 5 10 5 9 5 10 5 10 4 9 4 9

γ = 1.0
N 5 11 5 10 5 10 5 10 5 10 6 10 6 11 6 11 6 11 6 10

5 10 5 10 5 10 5 10 5 10 6 11 6 11 6 11 6 10 5 11
U 5 11 6 10 5 11 5 10 5 11 6 11 6 10 5 10 5 11 6 11

5 10 5 10 5 11 5 11 5 11 6 11 6 11 5 11 6 10 6 11
DE 5 10 5 10 5 10 5 10 5 10 6 11 6 11 5 11 6 11 5 11

5 10 5 10 5 10 5 10 5 10 6 11 6 11 5 11 5 10 6 11
L 4 10 5 11 5 10 5 10 5 10 5 11 6 11 6 11 5 11 6 10

5 11 5 10 5 10 5 10 5 10 5 11 6 11 5 11 5 11 5 10
�1 5 11 5 10 5 10 5 10 5 10 6 10 6 11 5 11 6 11 6 11

5 10 5 10 5 10 5 10 5 10 6 10 5 11 6 11 6 11 5 11
�2 5 10 5 10 5 9 5 9 5 9 5 10 5 10 5 10 5 10 5 9

5 9 5 9 5 9 5 9 5 10 5 10 5 10 4 10 5 10 5 9

We start with the later part. Clearly,

Zr = E(h(Yr, Y )|Yr)− Eh(Y1, Y2), r = 1, . . . , n, (60)

are i.i.d. random variables with zero mean and finite variance. Here Y is indepen-
dent of Yr and has the distribution F . Then by the Hájek-Rényi inequality (see, e.g.
Chow and Teicher 1988, Theorem 8, p. 247) for any A > 0 and γ ∈ [0, 1]
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Table 2 Rejection rate under H1 corresponding to 5 and 10% nominal level for the test statistic
T
(1)
n,0 (a) (upper part) and T (2)n,0 (a) (lower part) when Yn = Y1 + 1 (top entry) or Yn = √

2Y1 + 1
(bottom entry)

n = 40 n = 100

a 1.0 1.5 2.0 3.0 4.0 1.0 1.5 2.0 3.0 4.0

N 56 68 61 73 64 75 66 76 67 76 95 98 97 98 97 99 98 99 98 99
m = n/2 44 56 48 60 50 63 51 64 51 63 87 92 90 95 92 95 92 96 92 96

42 54 46 58 48 60 50 63 50 64 84 91 88 93 91 95 92 96 93 96
m = n/4 29 41 31 43 32 44 31 44 30 43 71 82 76 85 77 86 77 87 77 87

DE 49 61 49 61 48 61 44 57 40 54 90 95 90 95 90 94 88 93 85 91
m = n/2 39 52 40 53 39 52 35 47 31 44 82 89 83 90 82 89 79 87 75 83

37 48 37 48 36 47 32 44 29 41 77 85 77 86 77 86 75 83 71 81
m = n/4 25 38 25 38 24 36 21 32 18 28 65 77 66 77 65 75 59 71 53 66

L 19 30 22 32 24 34 25 35 24 34 44 56 50 62 53 64 56 66 56 67
m = n/2 19 28 21 31 21 31 21 32 21 31 43 55 47 59 50 62 51 64 50 63

14 24 16 26 17 27 19 28 19 28 34 45 38 50 40 52 42 54 42 54
m = n/4 12 21 13 22 13 21 13 21 13 20 30 43 34 46 35 46 34 46 32 45
�1 93 96 90 94 85 91 76 86 67 81 
 
 
 
 
 
 
 
 
 


m = n/2 94 97 92 96 90 95 84 92 79 89 
 
 
 
 
 
 
 
 
 


77 85 73 81 67 77 57 70 50 66 99 
 99 99 98 99 96 98 94 97
m = n/4 77 86 75 84 72 82 62 75 55 72 99 
 99 
 99 
 98 99 97 99
�2 43 56 43 56 42 56 40 54 38 51 89 94 89 94 88 94 86 92 83 91

m = n/2 68 78 71 81 73 82 73 81 71 81 99 
 99 
 
 
 
 
 99 


32 45 33 46 32 44 29 41 26 39 74 81 75 82 74 83 71 81 67 79
m = n/4 49 60 50 63 50 63 50 62 48 61 93 96 94 97 95 97 95 98 94 98

N 63 75 66 76 66 76 66 76 67 77 97 99 98 99 98 99 98 99 98 99
m = n/2 50 63 51 64 51 64 51 64 50 63 91 95 93 96 92 96 92 96 92 96

48 60 49 62 50 63 50 64 51 64 90 95 92 95 93 96 93 96 93 96
m = n/4 32 44 32 44 31 44 31 42 30 41 77 86 77 87 77 87 77 87 76 86

DE 47 60 46 58 44 57 41 54 39 53 89 94 88 94 87 93 85 91 83 90
m = n/2 38 51 37 50 35 48 32 45 30 43 82 89 81 88 79 88 76 84 73 83

35 47 34 45 33 44 30 41 28 39 76 85 75 85 74 83 72 81 69 79
m = n/4 24 36 23 34 22 32 20 29 18 27 64 75 62 74 60 72 56 68 52 64

L 22 32 23 35 24 35 24 35 24 34 51 62 54 65 55 66 56 66 56 67
m = n/2 20 31 21 31 22 32 22 32 21 31 48 60 50 63 51 64 50 64 50 63

16 26 17 27 18 28 19 28 19 27 38 51 40 52 41 53 42 54 42 54
m = n/4 13 22 13 22 13 21 13 21 12 20 34 46 35 46 34 47 34 46 32 45
�1 84 90 78 88 74 85 66 80 62 78 
 
 
 
 
 
 99 
 99 


m = n/2 89 94 87 92 84 91 79 89 75 87 
 
 
 
 
 
 
 
 
 


66 76 60 72 55 69 49 65 46 63 97 99 96 98 95 98 93 97 92 96
m = n/4 71 81 66 78 62 75 56 71 51 69 98 99 98 99 98 99 97 99 96 99
�2 42 55 41 54 40 53 38 51 36 50 87 93 86 93 85 92 83 91 81 89

m = n/2 70 80 72 82 72 82 71 80 70 79 99 
 99 
 99 
 99 
 99 


32 45 31 43 30 41 27 39 25 38 72 82 72 82 71 81 68 79 66 77
m = n/4 49 62 50 63 50 63 49 62 48 60 94 97 94 97 94 97 94 98 94 98

PH0

(
max

1≤k<n
n
(k(n− k)

n2

)1+γ 1

k2

∣∣∣∣∣
k∑
r=1

Zr

∣∣∣∣∣ ≥ A
)

≤ varZ1

A2n2γ

n∑
k=1

1

k2(1−γ ) ≤ D1

A2
n− min(2γ,1)(1 + I{γ = 1/2} log n) (61)
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Table 3 Rejection rate under H1 corresponding to 5 and 10% nominal level for the test statistic
T
(1)
n,0.5(a) (upper part) and T (2)n,0.5(a) (lower part) when Yn = Y1 + 1 (top entry) or Yn = √

2Y1 + 1
(bottom entry)

n = 40 n = 100

a 1.0 1.5 2.0 3.0 4.0 1.0 1.5 2.0 3.0 4.0

N 64 74 69 79 72 81 74 84 75 84 98 99 98 99 99 99 99 
 99 


m = n/2 51 63 56 68 59 71 61 73 61 73 92 96 94 97 95 98 96 98 96 98
41 55 47 60 50 64 52 67 54 68 85 92 90 95 92 96 94 97 94 97

m = n/4 29 42 32 46 34 48 34 50 34 49 75 83 79 87 81 89 82 91 81 91
DE 57 68 58 70 59 70 58 70 57 68 95 98 95 98 95 98 95 98 94 97

m = n/2 47 59 49 61 49 62 48 61 47 60 88 94 90 94 90 94 89 94 88 93
36 50 39 52 40 53 40 52 38 51 78 87 80 89 81 89 81 89 79 88

m = n/4 26 39 28 40 28 40 27 39 26 38 68 79 70 80 70 79 68 78 65 77
L 23 34 27 39 29 41 31 43 32 44 53 65 58 69 62 72 65 76 67 77

m = n/2 22 33 24 37 25 38 27 38 27 38 51 65 57 70 60 73 62 75 63 75
14 24 17 27 18 29 20 30 21 31 34 47 40 52 43 55 46 58 47 60

m = n/4 14 21 14 23 15 24 16 25 15 25 32 45 36 48 38 50 39 52 39 51
�1 95 98 94 97 93 96 89 94 87 92 
 
 
 
 
 
 
 
 
 


m = n/2 97 98 96 98 95 98 94 97 93 96 
 
 
 
 
 
 
 
 
 


78 85 77 84 74 82 68 80 65 77 99 
 99 
 99 99 98 99 97 99
m = n/4 78 86 77 86 76 86 74 84 72 82 
 
 99 
 99 
 99 
 99 


�2 52 65 54 66 53 67 53 66 52 65 94 98 95 98 94 97 93 97 92 96
m = n/2 75 84 78 86 80 87 81 89 82 89 99 
 99 
 
 
 
 
 99 


31 44 33 46 34 47 33 46 31 45 75 82 76 85 76 85 76 86 76 85
m = n/4 46 60 51 63 53 65 54 68 55 69 93 96 95 97 96 98 96 99 97 99

N 71 81 74 83 74 84 75 84 76 85 99 99 99 99 99 
 98 
 98 


m = n/2 58 70 60 72 60 73 61 73 61 73 95 98 96 98 96 98 96 98 96 98
50 64 52 66 53 67 54 68 54 68 92 96 93 96 94 97 94 97 94 97

m = n/4 34 38 35 49 34 49 34 48 34 47 80 89 81 89 82 91 81 91 81 91
DE 57 69 58 69 57 69 56 68 56 67 95 97 94 97 94 97 94 97 93 97

m = n/2 47 59 47 61 48 60 47 60 45 59 89 94 89 94 89 94 88 93 87 93
38 52 39 52 39 51 39 50 37 50 80 88 80 89 80 88 79 88 78 87

m = n/4 28 39 27 39 27 39 26 38 25 37 69 78 69 78 68 78 66 77 63 75
L 28 39 30 41 30 43 31 44 32 44 59 70 62 73 64 74 66 76 67 77

m = n/2 24 36 26 38 26 38 27 39 27 39 57 70 60 73 62 74 63 75 63 75
17 27 18 29 19 30 20 31 21 31 40 53 43 56 45 57 47 59 48 60

m = n/4 14 24 14 24 15 24 15 24 15 25 36 49 38 50 39 51 39 52 39 51
�1 92 95 89 94 88 94 86 92 84 90 
 
 
 
 
 
 
 
 
 


m = n/2 94 97 94 97 93 96 92 96 91 96 
 
 
 
 
 
 
 
 
 


72 82 69 80 67 79 65 76 63 75 98 99 98 99 98 99 97 98 97 98
m = n/4 75 85 73 84 73 83 71 82 70 81 98 
 99 
 99 
 99 
 99 99
�2 52 66 52 65 53 65 52 64 51 64 94 97 93 96 93 96 92 96 92 96

m = n/2 78 85 79 87 80 88 81 88 81 88 
 
 
 
 
 
 
 
 
 


33 46 33 46 33 46 31 45 31 45 75 85 76 85 76 85 76 85 75 84
m = n/4 51 63 53 65 53 66 54 68 54 69 95 97 95 98 96 98 96 99 97 99

and

PH0

(
max

1≤k<n
n
(k(n− k)

n2

)1+γ 1

(n− k)2

∣∣∣∣∣
n∑

r=k+1

Zr

∣∣∣∣∣ ≥ A
)

≤ D1

A2
n− min(2γ,1)(1 + I{γ = 1/2} log n).

(62)
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Table 4 Rejection rate under H1 corresponding to 5 and 10% nominal level for the test statistic
T
(1)
n,1.0(a) (upper part) and T (2)n,1.0(a) (lower part) when Yn = Y1 + 1 (top entry) or Yn = √

2Y1 + 1
(bottom entry)

n = 40 n = 100

a 1.0 1.5 2.0 3.0 4.0 1.0 1.5 2.0 3.0 4.0

N 66 77 71 81 74 83 77 85 77 86 98 99 99 99 99 99 99 
 99 


m = n/2 54 65 59 70 61 73 64 75 64 75 93 96 96 98 96 98 97 98 97 99
38 51 43 57 46 61 48 64 50 65 82 90 88 93 90 95 92 96 93 97

m = n/4 28 40 30 45 32 47 33 47 32 47 71 82 76 86 78 88 79 90 79 90
DE 59 70 61 72 62 73 62 72 60 72 96 98 96 98 96 98 96 98 95 97

m = n/2 49 61 51 63 52 64 52 63 50 63 90 95 91 96 91 95 91 95 90 95
34 46 36 49 36 50 37 50 35 49 75 84 77 86 79 87 78 87 77 86

m = n/4 24 37 26 39 28 38 27 38 25 37 63 76 66 77 66 77 65 77 62 75
L 25 36 28 40 31 43 33 45 34 47 56 67 60 71 64 74 68 78 70 79

m = n/2 24 34 26 38 27 39 28 41 29 42 54 68 60 73 63 75 66 77 66 77
14 23 15 26 16 28 18 29 19 29 30 44 35 50 39 53 43 56 45 57

m = n/4 12 21 13 22 14 23 15 24 14 24 29 42 33 47 35 48 37 50 36 50
�1 97 99 95 98 94 97 91 95 89 94 
 
 
 
 
 
 
 
 
 


m = n/2 97 99 96 99 96 98 95 98 94 97 
 
 
 
 
 
 
 
 
 


74 83 72 82 70 80 65 77 63 75 99 
 99 
 98 99 98 99 97 98
m = n/4 73 83 73 83 73 84 71 82 69 81 99 
 99 
 99 
 99 99 99 


�2 55 68 57 70 57 70 57 69 56 68 96 98 96 98 95 98 95 98 94 97
m = n/2 77 85 80 88 82 89 83 90 84 90 
 
 
 
 
 
 
 
 
 


26 40 30 43 31 43 30 44 29 44 70 80 72 82 72 83 73 84 73 84
m = n/4 42 55 46 60 48 63 51 66 53 68 91 95 93 97 94 97 95 98 96 98

N 74 83 76 85 77 86 78 86 78 86 99 99 99 
 99 
 98 
 99 


m = n/2 61 72 63 75 64 75 64 75 64 75 96 98 97 98 97 98 97 98 97 98
46 61 48 63 49 65 50 65 50 66 90 95 91 96 93 96 94 97 94 97

m = n/4 32 46 33 47 33 47 32 47 32 46 77 80 79 89 79 90 79 90 78 90
DE 60 71 61 72 61 72 60 71 59 70 95 98 95 98 95 98 95 97 94 97

m = n/2 50 63 50 64 51 63 50 62 49 61 90 95 91 95 90 94 90 94 89 94
36 49 36 49 36 49 35 49 34 48 77 86 77 87 77 86 77 86 76 85

m = n/4 26 38 26 38 26 38 25 38 25 37 65 76 65 76 65 76 62 75 61 74
L 29 41 31 43 32 45 34 46 34 47 62 71 65 75 66 76 68 78 70 79

m = n/2 26 38 27 39 28 40 29 41 29 42 60 73 63 75 65 76 66 77 66 77
16 26 17 28 18 29 19 30 19 29 37 50 40 53 42 55 44 57 45 58

m = n/4 13 22 14 23 14 24 15 24 15 24 33 47 35 49 36 49 37 50 36 50
�1 93 96 91 95 90 95 88 93 87 92 
 
 
 
 
 
 
 
 
 


m = n/2 95 98 95 97 94 97 94 97 93 97 
 
 
 
 
 
 
 
 
 


68 80 65 78 65 77 63 75 61 74 98 99 98 99 98 99 97 98 97 98
m = n/4 72 82 70 82 70 82 69 81 68 80 99 
 99 
 99 
 98 99 98 99
�2 56 69 56 69 56 68 55 68 55 68 95 98 94 97 94 97 94 97 93 97

m = n/2 80 87 81 89 82 89 83 90 84 90 
 
 
 
 
 
 
 
 
 


30 43 30 43 30 44 30 44 29 43 72 82 73 83 72 83 73 83 72 83
m = n/4 46 61 49 63 49 65 52 66 52 68 93 97 94 97 95 98 95 98 96 98
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with some D1 > 0. Therefore

max
1≤k<n

n
(k(n− k)

n2

)1+γ
|Ak3| = OP

(
n− min(γ,1/2)(1 + I{γ = 1/2} log n)

)
. (63)

Hence the termsAk3 do not influence the limit behavior of the considered statistic.
Next we investigate the terms Ak1. Towards this end, we consider the auxiliary

statistics

Sk(̃h) =
∑

1≤i<j≤k
h̃(Yi, Yj ), k = 1, . . . n,

where h̃ is defined by (16). Since

EH0(Sk+1|Y1, . . . , Yk) = Sk +
k∑
i=1

E(h̃(Yi, Yk+1)|Y1, . . . , Yk) = Sk,

k = 1, . . . , n − 1, {Sk(̃h), σ (Y1, . . . , Yk); k = 1 . . . , n} is a martingale. Here
σ(Y1, . . . , Yk) denotes the σ -field generated by Y1, . . . , Yk . Then by the Hájek-
Rényi inequality (see, e.g., Chow and Teicher 1988)

P
(

max
1≤k<n

n
(k(n− k)

n2

)γ+1 1

k2
|Sk| ≥ A)

≤ A−2 1

n2γ

n−1∑
k=1

1

k2−2γ
E(Sk − Sk−1)

2 ≤ D2

A2
Eh̃2(Y1, Y2)

with some D2 > 0. Proceeding similarly with
∑

k+1≤i<j≤n h̃(Yi, Yj ) we get after
some standard steps that

P
(

max
1≤k<n

n
(k(n− k)

n2

)γ+1
|Ak1| ≥ A

)
≤ D3

A2
Eh̃2(Y1, Y2) (64)

with some D3 > 0. The last inequality holds true for any function h̃ satisfying
(17). Therefore replacing h̃ by the function h̃− h̃K with

h̃K(x, y) =
K∑
s=1

λsgs(x)gs(y), (65)

where {λj , gj } are eigenvalues and eigenfunctions defined in (23)–(25) and K is
an arbitrary natural number, we obtain

P
(

max
1≤k<n

n
(k(n− k)

n2

)γ+1
|Ak1 − Ak1(K)| ≥ A)

≤ D4

A2
E(̃h(Y1, Y2)− h̃K(Y1, Y2))

2

= D4

A2

∞∑
j=K+1

λ2
j (66)
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with some D4 > 0 and for any natural n ≥ 2 and any natural K . Here Ak1(K) is
defined by (16) with h̃ replaced by h̃K (see (65)). Notice that

k(n− k)

n
Ak1(K) = k(n− k)

n

K∑
s=1

λj ×
{(1

k

k∑
j=1

gs(Yj )− 1

n− k

n∑
j=k+1

gs(Yj )
)2

−
( 1

k2

k∑
j=1

g2
s (Yj )+ 1

(n− k)2

n∑
j=k+1

g2
s (Yj )

)}

=
K∑
s=1

λj

{ n

k(n− k)

( k∑
j=1

gs(Yj )− k

n

n∑
j=k+1

gs(Yj )
)2

−1

n

(n− k

k

k∑
j=1

g2
s (Yj )+ k

n− k

n∑
j=1

g2
s (Yj )

)}
.

Since Y1, . . . , Yn are i.i.d. random variables and by (24) and (25), we have as
n → ∞,

{ 1√
n

[nt]∑
i=1

gK(Yi), t ∈ (0, 1)
}

→D((0,1)) {WK(t), t ∈ (0, 1)},

wheregK = (g1, . . . , gK)with components defined in (24) and (25) and {WK(t) =
(W1(t), . . . ,WK(t)), t ∈ (0, 1)} is aK-dimensional Wiener process with indepen-

dent components. Then for γ ∈ (0, 1], max1≤k<n
(
k(n−k)
n2

)γ+1
×Ak1(K) has the

same limit distribution as

max
1≤k<n

n
(k(n− k)

n2

)γ
×

K∑
s=1

λj

{ n2

k(n− k)

(
Ws(k/n)− k

n
Ws(1)

)2
− 1

}
. (67)

Moreover, by the properties of Wiener processes, for arbitraryA > 0 and arbitrary
natural number K ,

P
(

max
1≤k<n

n
(k(n− k)

n2

)γ
×
∣∣∣

∞∑
s=K+1

λj

×
{ n2

k(n− k)

(
Ws(k/n)− k

n
Ws(1)

)2
− 1

}∣∣∣ ≥ A
)

≤ D4A
−2

∞∑
s=K+1

λ2
j . (68)

Combining properties of Wiener processes, (66)–(68) and lettingK → ∞ we can
conclude that the limit distribution of

max
1≤k<n

(k(n− k)

n2

)γ+1
Ak1
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is the same as that of

max
t∈(0,1)

n
(
t (1 − t)

)γ ∞∑
s=1

λj

{ (Ws(t)− tWs(1))2

t (1 − t)
− 1

}
.

Now, regarding (20), (63) and going carefully once more through the proof we
infer that the assertion of Theorem A holds true. 	

Proof of Theorem B Due to (42) and (43) it suffices to show that under the setup
considered in section 3

max
1≤k<n

n
(k(n− k)

n2

)γ+1
|Ak1| = OP (1) (69)

and

max
1≤k<n

n
(k(n− k)

n2

)γ+1
|Ak3| = OP (

√
n�n,2). (70)

To get the former relation we proceed as in treating Ak1 under the null hypothesis
and we get in the very same way that

P

(
max

1≤k<n
n

(
k(n− k)

n2

)γ+1

|Ak1| ≥ A

)
≤ D5

A2

×(Eh2(Y1, Y2)+ Eh2(Y1, Yn)+ Eh2(Yn−1, Yn))

with some D5 > 0, which immediately implies (69). Concerning (70) we obtain,
by tedious but straightforward calculations, that for k ≤ m

Ak3 = 2
n−m

n− k


1

k

k∑
j=1

(G1(Yj )−Gn(Yj ))− 1

n− k

n∑
j=k+1

(G1(Yj )−Gn(Yj ))




−2


 1

k2

k∑
j=1

G1(Yj )+ 1

(n− k)2




m∑
j=k+1

G1(Yj )+
n∑

j=m+1

Gn(Yj )






(71)

and for k > m

Ak3 = 2
m

k


1

k

k∑
j=1

(G1(Yj )−Gn(Yj ))− 1

n− k

n∑
j=k+1

(
G1(Yj )−Gn(Yj )

)



−2


 1

k2




m∑
j=1

G1(Yj )+
k∑

j=m+1

Gn(Yj )


+ 1

(n− k)2

n∑
j=k+1

Gn(Yj )




(72)

with

G1(Yj ) = E(h(Z1, Yj )|Yj )− E h(Z1, Yj ),

Gn(Yj ) = E(h(Zn, Yj )|Yj )− E h(Zn, Yj ),
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where Z1 and Zn have distribution functions F1 and Fn, respectively, and are inde-
pendent of Y1, . . . , Yn. Standard methods give

max
1≤k<n

n
(k(n− k)

n2

)1+γ
|Ak3| = OP

(√
n
(

var(G1(Y1)−Gn(Y1))

+ var(G1(Yn)−Gn(Yn))
)1/2)

= OP (
√
n�n,2).

This immediately implies (70). Theorem B is proved. 	

Proof of Theorem C The proof is somewhat parallel to the proof of Theorem A but
instead of independent random variables we have ranks so that we are loosing the
advantage of working with i.i.d. random variables. However, the statistics that have
to be treated can be viewed as rank statistics that, when properly standardized, are
martingales and hence again the Hájek-Rényi inequality can be employed giving
the desired results. In the final step the theorems of convergence of simple linear
statistics to a Wiener processes are utilized. This holds conditionally, given the
original observations Y1, . . . , Yn, and the results hold true if some limit properties
of statistics in Y1, . . . , Yn are satisfied.

At first we prove an auxiliary lemma on rank statistics.

Lemma Let R1, . . . , Rn be the ranks corresponding to the sample from uniform
distribution on (0, 1) of size n. Let γ ∈ [0, 1] and let an(1), . . . , an(n) and
bn(i, j), i, j = 1, . . . , n be scores such that

n∑
i=1

an(i) = 0,

and

bn(i, j) = bn(j, i), i, j = 1, . . . , n,
n∑

i=1,i �=j
bn(i, j) = 0, j = 1, . . . , n.

Put

Lk =
k∑
i=1

an(Ri), k = 1, . . . , n

and

Qk =
n∑

1≤i<j≤k
bn(Ri, Rj ), Q0

k =
∑

k<i<j≤n
bn(Ri, Rj ), k = 2, . . . , n.

Then for any A > 0 there is a positive constant DA such that

P
(

max
1≤k<n

(k(n− k)

n2

)γ k(n− k)

n

( 1

k2
|Lk| + 1

(n− k)2
|Ln − Lk)|

)
≥ A

)

≤ DAA
−2nmin(2γ,1)

(1

n

n∑
i=1

a2
n(i)

)(
1 + I{γ = 1/2} log n

)
(73)
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and

P
(

max
2≤k<n

(k(n− k)

n2

)γ(1

k
|Qk| + 1

n− k
|Q0

k|
)

≥ A
)

≤ DAA
−2
(1

n

n∑
i=1

n∑
j=1,j �=i

b2
n(i, j)

)(
1 + I{γ = 0} log n

)
. (74)

Proof of Lemma It can be easily checked that { 1
n−kLk, σ (R1, . . . , Rk), k = 1, . . . ,

n−1}, { 1
k
(Ln−Lk), σ (Rk+1, . . . , Rn), k = 1, . . . , n−1}, { 1

(n−k)(n−k+1)Lk, σ (R1,

. . . , Rk), k = 1, . . . , n−1} and { 1
k(k−1)Q

0
k, σ (Rk+1, . . . , Rn), k = 2, . . . , n−1}

are martingales. Applying the Hájek-Rényi inequality we receive similarly as in
the proof of Theorem A the assertion of our lemma. 	


Continuation of the proof of Theorem C Applying Lemma with

an(i) = 1

n− 1

n∑
j=1,j �=i

(h(Yi, Yj )− hn(Y )), i = 1, . . . , n,

we obtain that after some standard steps that for any A > 0 there is a DA1 > 0

P
(

max
1≤k<n

(k(n− k)

n2

)γ k(n− k)

n
|Ak3(R)| ≥ A

)

≤ DA1A
−2n− min(2γ,1) 1

n

n∑
i=1

( 1

n− 1

n∑
j=1,j �=i

(h(Yi, Yj )− hn(Y ))
)2
. (75)

Applying classical theorems on the weak law of large numbers we find that, as
n → ∞,

1

n

n∑
i=1

( 1

n− 1

n∑
j=1,j �=i

(h(Yi, Yj )− hn(Y ))
)2

→P 0. (76)

Therefore the terms Ak3(R), k = 1, . . . , n, do not influence the conditional limit
distribution on Tn,γ (w,R).

Next we treatAk1(R), k = 1, . . . , n, defined by (50). We will stress the depen-
dence of Ak1(R) on the function h writing Ak1(h; R). Applying our Lemma with
bn(i, j) = ĥ(Yi, Yj ), i, j = 1, . . . , n, we receive that for any A there exists
DA2 > 0 such that

P
(

max
1≤k<n

(k(n− k)

n2

)γ k(n− k)

n
|Ak3(h,R)| ≥ A

)

≤ DA2A
−2 1

n2

n∑
i=1

n∑
j=1,j �=i

ĥ2(Yi, Yj ) (77)
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Noticing that

ĥ(YRi , YRj )− ̂̃hκ(YRi , YRj ) = 1

n− 1

{ ∫ (
h(Yj , y)− 1

n

n∑
v=1

h(Yv, y)
)

dFκ(y)

+
∫ (

h(x, Yi)− 1

n

n∑
v=1

h(x, Yv)
)

dFκ(x)
}
, i �= j (78)

we receive by (77) that for any A there exists DA3 > 0 such that

P
(

max
1≤k<n

(k(n− k)

n2

)γ k(n− k)

n
|Ak3(h− h̃κ ,R)| ≥ A

)

≤ DA3A
−2 1

n3

n∑
i=1

( ∫
h(Yi, y) dFκ(y)

)2
(79)

Letting

h̃κ,K(x, y) =
K∑
s=1

λs(κ)gs(x; κ)gs(y; κ) (80)

we get again by (77) that for any A there exists DA4 > 0 such that

P
(

max
1≤k<n

(k(n− k)

n2

)γ k(n− k)

n
|Ak3(̃hκ − h̃κ,K,R)| ≥ A

)

≤ DA4A
−2 1

n2

n∑
i=1

n∑
j=1,j �=i

(
h̃κ (Yi, Yj )− h̃κ,K(Yi, Yj )

)2
(81)

where DA4 does not depend on K , K = 1, . . . . By standard tools we get that for
any natural K conditional limit distribution (given Y ) of

max
1≤k<n

(k(n− k)

n2

)γ k(n− k)

n
Ak3(̃hκ,K,R) (82)

is the same as that of

max
1≤k<n

(k(n− k)

n2

)γ K∑
s=1

λs(κ)
{ n

k(n− k)

( k∑
j=1

(gs(YRj ; κ)− 1

n

n∑
v=1

gs(Yv; κ))
)2

−1

n

(n− k

k

k∑
j=1

g2
s (YRj ; κ)+ k

n− k

n∑
j=k+1

g2
s (YRj ; κ)

)}
(83)

In comparison to the proof of Theorem A we have here, given Y , processes based
on rank statistics. By standard results on processes related to simple linear rank
statistics we infer that if for some sequence of y1, y2, . . . , as n → ∞,

max1≤i≤n g2
s (yi, κ)∑n

j=1 g
2
s (yj , κ)

→ 0, s = 1, . . . , K (84)
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the processes

{ 1√
n

[nt]∑
i=1

gK(yRi , κ), t ∈ (0, 1)
}

→D(0,1) {(B1(t), . . . , BK(t)), t ∈ (0, 1)}

where {Bj(t), t ∈ (0, 1)}, j = 1, . . . , K are independent Brownian bridges.
The rest of the proof is quite analogous to that of Theorem A. Going once more

through the proof of the present theorem and recalling that we treated everything
conditionally given Y we may conclude the assertion of Theorem C holds true.
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