
Abstract. Existence and uniqueness of a Nash equilibrium feedback is
established for a simple class nonzero-sum differential games on the line.
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1 Introduction

The object of this paper is the study of Nash equilibria for some nonzero-sum
two players differential games on the line. The dynamics of the differential
game is

x0 ¼ uþ v; with u 2 ½�1; 1�; v ¼ ½�1; 1�: ð1Þ
The payoff is the terminal payofff gðxðT ÞÞ ¼ ðg1ðxðT ÞÞ; g2ðxðT ÞÞÞ, for some
function g : R! R2. Player I, playing with u, wants to maximize g1ðxðT ÞÞ,
while player II, playing with v, wants to maximize g2ðxðT ÞÞ. Our goal is to
investigate closed-loop Nash equilibrium feedbacks for this game.

For zero-sum differential games, i.e., when g2 ¼ �g1, the notion of Nash
equilibrium is replaced by the notion of value of the game. The existence and the
characterization of the value for such a game is now well-known (see in par-
ticular, for the existence, [4, 5], and for the characterization [3]). For the
dynamics (1), the value function V ðt; xÞ (for Player I) of the game is simply given by

8ðt; xÞ 2 ½0; T � � R; V ðt; xÞ ¼ g1ðxÞ:
Moreover, if g1 is sufficiently regular (for instance, if g1 ¼ �g2 is C

1 and has a
finite number of local extrema), we can define explicitely optimal feedback
strategies u�ðt; xÞ and v�ðt; xÞ for player I and II given respectively by:

u�ðt; xÞ ¼ sgnðg01ðxÞÞ and v�ðt; xÞ ¼ �sgnðg01ðxÞÞ;
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geu, B.P. 809, 29285 Brest cedex, France (e-mail: Pierre.Cardaliaguet@univ-brest.fr)
2Nicholas Copernicus University, Faculty of Mathematics and Computer Science, Chopina 12/8,
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where sgnðsÞ ¼ 1 if s > 0 , �1 if s < 0, and 0 if s ¼ 0.
In conclusion, for the dynamics (1), the solution of the zero-sum differ-

ential game is completely understood and essentially trivial. Surprizingly, this
is not at all the case for nonzero-sum differential games, even for dynamics as
simple as (1).

For nonzero-sum differential games, played with closed loop strategies
or with strategies with memory, one can find in the litterature merely two
approaches:

The first one is inspired by Isaacs work for zero-sum differential games. Its
main goal is the explicit computation of the Nash equilibrium payoff as a
function of the time and the space, i.e., in our example, as a function
E : ½0; T � � R! R2, which associates with any initial condition ðt0; x0Þ
‘‘some’’ Nash equilibrium payoff Eðt0; x0Þ (see in particular [2], [9] and the
references therein). The key idea is that the payoff E should satisfy a system of
Hamilton-Jacobi equations given for our game (with dynamics (1)) by:
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�
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@x sgnð@E2

@x Þ ¼ 0
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�
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@x sgnð@E1

@x Þ ¼ 0

(

ð2Þ

with terminal condition EðT ; �Þ ¼ g. Unfortunately, there is up to now no
global theory for such a system. In particular, it does not fit with the
assumptions required in the theory of viscosity solutions for systems of first
order PDEs. A local theory exists - the so-called characteristic method - but it
is only applicable in a neighbourhood of the points ðT ; xÞ where g01ð�Þ and
g02ð�Þ are well defined and do not vanish. Therefore this method says very little
in the case we are studying.

However when this method is applicable, it enjoys several interesting
properties. First the solution E satisfies a dynamic programming property
(also called ‘‘time consistency’’ in [2]): For any time T0 2 ð0; T Þ, the restriction
of E to the interval ½0; T0� is a Nash equilibrium payoff for the game with
horizon T0 and terminal payoff EðT0; �Þ. Second this method provides Nash
equilibrium feedbacks, i.e., strategies which only depend on the current
position of the player and on the current time, and which ensure Nash
equilibrium payoffs whatever the initial position of the game.

Another theory for the nonzero-sum differential games has been devel-
opped by Kononenko in [7], by Kleimenov in [6] and by Tołwiński, Haurie
and Leitmann in [10]. This theory is the counterpart of the so-called ‘‘Folk
Theorem’’ for repeated (discrete) games. Its main result is the characterization
of Nash equilibrium payoffs when the game is played with memory strategies.
The basic idea is that memory strategies incorporate a threat which will be
used if the opponent does not observe the agreement, memory allowing each
player to recall a possible deviation from the agreement. In [6], [7], [10], the
Nash equilibrium payoffs for such strategies are completely characterized
and, under the well-known Isaacs conditions, are proved to exist for any
initial position.

Unfortunately, there are in general infinitely many such Nash equilibrium
payoffs for a given initial position. Thus the question of selecting ‘‘good’’
Nash equilibrium payoffs arises naturally. Kleimenov gives in [6] several
selection methods, but none makes the connection with the feedback strate-
gies suggested by the first theory described above. In particular, none enjoys
the dynamic programming property.
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The main objective of this paper is to make a link between the two
approaches for the game with dynamics (1) and a terminal payoff g. For
this we construct, for the dynamics (1) and for a large class G of terminal
payoffs g, a pair ðu�; v�Þ of feedback strategies, depending only on the
current position of the player and on the current time, such that, for any
initial position of the game, the associated payoff is, on the one hand, a
selection of the set of Nash equilibrium payoffs in the sense of [6], [7], [10]
and, on another hand, satisfies the dynamic programming property. We call
such a pair of strategies a Nash equilibrium feedback.

It turns out that this notion of Nash equilibrium feedback is not enough
discriminating: Indeed, even for elementary examples, there are in general
many ‘‘uninteresting’’ Nash equilibrium feedbacks (see Example 2.16 below).
So we are led to introduce an additional requirement of being ‘‘completely
maximal’’.

We say that a payoff ðe1; e2Þ 2 R2 is maximal for a given initial position
ðt0; x0Þ if there is some solution �xxð�Þ of the controlled system (1) (for some
time-measurable control ð�uuð�Þ; �vvð�ÞÞÞ such that: ðe1; e2Þ ¼ gð�xxðT ÞÞ and both e1
and e2 are the maximum of g1 and g2 among the values that can be reached by
the controlled system (1) starting from ðt0; x0Þ. Of course, such a maximal
payoff seldom exists, but when it exists, it is reasonable to think that both
players should prefer it. We say that a Nash equilibrium feedback is maximal
if, at any point ðt0; x0Þ where such a maximal payoff exists, the payoff of the
feedback is equal to this maximal payoff. It is completely maximal, if its
restriction to any subinterval ½0; T0�, with T0 < T is also maximal. Note that
the condition of being completely maximal is not very restrictive, because
there are in general few point for which a maximal payoff exists.

Our main result (Theorem 2.11) is that such a completely maximal Nash
equilibrium feedback exists. Its associated payoff is even unique—in the sense
that any two completely maximal Nash equilibrium feedbacks have the
same payoff. Moreover, at each point ðt0; x0Þ, this payoff is a Nash equilib-
rium payoff in the sense of [6], [7], [10]. It is even a Pareto one in the set of
these payoffs (Theorem 2.15). This holds true for a large class of terminal
payoffs g, and, in particular, when g is continuous and g1 and g2 have a finite
number of local extrema. To the best of our knowledge, this result is the first
of this nature.

However, it is quite difficult to prove, and this is the reason why we had to
restrict our study to the dimension one and to the particular dynamics
x0 ¼ uþ v. We have actually faced two main issues:

First we were unable to find a general existence argument for a Nash
equilibrium feedback even for a small interval of time. Hence we had to
compute explicitely the solution for such a small interval. For this, we had
to restrict ourself to the dynamics (1) and a particular class of terminal
payoffs (the class GÞ. There are up to now very few complete solutions of
nonzero-sum games with constraints on the controls (apart [9] and some
references therein). We think that some examples treated here are com-
pletely new and present unexpected features: See for instance the solution
of the game where g1 and g2 are continuous, decreasing on ð�1; 0Þ and
increasing on ð0;þ1Þ (case III-III in part 3). Let us point out that, al-
though some parts of the construction could probably be extended to more
general dynamics on the line, we have absolutely no idea how to do it in
higher space dimensions.
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The second difficulty we have met is that the payoff associated with a
completely maximal Nash equilibrium feedback turns out to be discontinuous
in general. Worse, at these points of discontinuity, such a payoff cannot be
defined univoquely in a natural way. This has several consequences, the main
one being that the concatenation of two Nash equilibrium feedbacks, defined
on some time intervals ½T0; T1� and ½T1; T2�, is not necessarily a Nash equilib-
rium feedback on the time interval ½T0; T2�. So we have to be very carefull
when constructing our feedbacks, in order to guaranty such a concatenation
property to hold. Here again, the choice of a suitable class G of terminal
payoffs plays a crucial role.

We are aware that the conditions under which we are working are ex-
tremely restrictive: We only consider an example on the line, with a dynamics
(1) which is the simplest possible one. For the moment we are unable to say in
what extent our results could be generalized to more general dynamics and
terminal payoffs. In particular, it is possible that the notion of maximal payoff
is only interesting in the framework of dynamics (1); it has certainly to be
adapted in higher dimensions of space.

However we would like to point out that the class of examples we are
studying is not trivial. It is sufficiently rich to allow investigations on some
basic properties of the payoffs of the completely maximal Nash equilibrium
feedbacks, in particular, on the stability property of these payoffs, and on the
connections between these payoffs and the system of Hamilton-Jacobi
Equations (2). These question are currently under study. Moreover, even such
simple class of examples shows very interesting and new features: It shows
that dynamic programming is not sufficient for selecting interesting Nash
equilibrium payoffs (see example 2.16). It also shows that there are some
points in the time-space at which one cannot define Nash equilibrium payoffs
(at least in a simple way) in order to guaranty the dynamic programming. We
do not think that these two points have ever been noticed.

Let us now explain how this paper is organized. In Section 2, we introduce
the different notions used in the paper, state the main results (Theorem 2.11
and Theorem 2.15) and give several examples. The rest of the paper is de-
voted to proofs: in Section 3 we construct the solution for small intervals of
times, while, in Section 4, we show that the construction can be extended to
the full interval ½0; T �.

2 Nash equilibrium feedbacks

In this section we introduce the main definitions of this paper as well as the
main result (Theorem 2.11).

2.1 Feedbacks and payoffs

The dynamics of the differential game is (1):

x0ðtÞ ¼ uðtÞ þ vðtÞ uðtÞ 2 ½�1; 1� and vðtÞ 2 ½�1; 1�:
The game is of fixed duration and the terminal time is denoted by T . The
terminal payoff is a function g ¼ ðg1; g2Þ : R! R2: Player I wants to maxi-
mize g1ðxðT ÞÞ while Player II wants to maximize g2ðxðT ÞÞ.
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We denote by U the set of functions u : ½0; T � � R! ½�1; 1�, interpreted as
strategies for Player I, and by V the set of functions v : ½0; T � � R! ½�1; 1�
interpreted as strategies for Player II. We call a pair ðu; vÞ 2 U�V a feed-
back.

As usual we have to give a sense to the equation

x0ðtÞ ¼ uðt; xðtÞÞ þ vðt; xðtÞÞ

for discontinuous feedbacks ðu; vÞ 2 U�V. This has already been done be-
fore (see for instance [8]), and we follow more or less the same method.

For any ðt0; x0Þ 2 ½0; T � � R and any feedback ðu; vÞ 2 U�V, we denote
by Xðt0; x0; u; vÞ the set of solutions of the differential inclusion

_xx 2 ~ff ðt; x; u; vÞ on ½t0; T �
xðt0Þ ¼ x0

�

where ~ff ðt; x; u; vÞ is the smallest upper semi-continuous (usc) convex and
compact set-valued map containing the map ðt; xÞ ! uðt; xÞ þ vðt; xÞ. It is well-
known that this set of solutions is compact for the uniform convergence, and
that it has a closed graph (see [1]).

We also denote by Xðt0; x0Þ the set of all the solutions of (1).
The lower and upper payoffs of the strategies ðu; vÞ for the initial position

ðt0; x0Þ are respectively given by: For j ¼ 1; 2, the lower payoff of Player j,
denoted by J [j ðt0; x0; u; vÞ, is

J [j ðt0; x0; u; vÞ ¼ inf
x2Xðt0;x0;u;vÞ

ðgjÞ�ðxðT ÞÞ

while the upper payoff J ]j ðt0; x0; u; vÞ is

J ]j ðt0; x0; u; vÞ ¼ sup
x2Xðt0;x0;u;vÞ

ðgjÞ�ðxðT ÞÞ:

Here ðgjÞ� and ðgjÞ� are respectively the lower semi-continuous and the upper
semi-continuous envelopes of gj (i.e., respectively the largest lower semi-
continuous (lsc) function which is not larger than gj and the the smallest
upper semi-continuous (usc) function which is not smaller than gj).

Proposition 2.1. If g1 and g2 are usc and ðu; vÞ 2 U�V, then, for j ¼ 1 or
j ¼ 2, there is some xjð�Þ 2 Xðt0; x0; u; vÞ such that

J ]j ðt0; x0; u; vÞ ¼ gjðxjðT ÞÞ:

Proof: The proof is a straightforward consequence of the compactness of the
set Xðt0; x0; u�; v�Þ for the topology of the uniform convergence. h

We use below the notations

J ]ðt0; x0; u; vÞ ¼ ðJ ]1ðt0; x0; u; vÞ; J
]
2ðt0; x0; u; vÞÞ and J [ðt0; x0; u; vÞ

¼ ðJ [1ðt0; x0; u; vÞ; J [2ðt0; x0; u; vÞÞ:
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2.2 Definition of the Nash equilibrium feedbacks

Definition 2.2. A Nash equilibrium feedback on the time interval ½T0; T � for the
terminal time T and the terminal payoff g is a feedback ðu�; v�Þ 2 U�V such
that for all t0 2 ½T0; T � there exists a set St0 � R of zero measure such that for
any x0 2 RnSt0 , we have

8u 2 U; inf
x2Xðt0;x0;u�;v�Þ

ðg1Þ�ðxðT ÞÞ � sup
x2Xðt0;x0;u;v�Þ

ðg1Þ�ðxðT ÞÞ

and

8v 2V; inf
x2Xðt0;x0;u�;v�Þ

ðg2Þ�ðxðT ÞÞ � sup
x2Xðt0;x0;u�;vÞ

ðg2Þ�ðxðT ÞÞ:

Remarks:

1. Using the notations of the previous section, the two above inequalities can
be rewritten

8ðu; vÞ 2 U�V; J [1ðt0; x0; u�; v�Þ � J ]1ðt0; x0; u; v�Þ and J [2ðt0; x0; u�; v�Þ
� J ]2ðt0; x0; u�; vÞ:

2. Setting ðu; vÞ ¼ ðu�; v�Þ in the previous inequality shows that, for j ¼ 1; 2,
we have

8x0 =2 St0 ; J
[
j ðt0; x0; u�; v�Þ ¼ J ]j ðt0; x0; u�; v�Þ:

In order to simplify the notations, we denote by J1ðt0; x0; u�; v�Þ (resp.
J2ðt0; x0; u�; v�Þ) this common value. We say that Jðt0; x0; u�; v�Þ ¼
ðJ1ðt0; x0; u�; v�Þ; J2ðt0; x0; u�; v�ÞÞ is the payoff of the Nash equilibrium
feedback ðu�; v�Þ at the point ðt0; x0Þ. It is defined for any t0 2 ½0; T � and for
any x0 2 RnSt0 where St0 has a zero measure in R.

3. From standard arguments, it is easy to check that the map
x! J ]ðt; x; u�; v�Þ is continuous at each point ðt; xÞ 2 R for which the fol-
lowing equality holds:
J ]ðt; x; u�; v�Þ ¼ J [ðt; x; u�; v�Þ:

We also need below the following remark:

Lemma 2.3. Let ðu�; v�Þ 2 U�V be a Nash equilibrium feedback on the time
interval ½T0; T � for the game with terminal time T and terminal payoff g and let
ðStÞ be its associated set of zero measure. Then for any t0 2 ½T0; T �, any x0 =2 St0
and any x�ð�Þ 2 Xðt0; x0; u�; v�Þ, we have

J ]ðt;x�ðtÞ;u�;v�Þ¼ J [ðt;x�ðtÞ;u�;v�Þ¼ Jðt0;x0;u�;v�Þ¼ gðx�ðT ÞÞ 8t2 ½t0;T �:

In particular, the map J ]ðt; �; u�; v�Þ is continuous at x�ðtÞ.
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Proof: Since ðu�; v�Þ is a Nash equilibrium feedback and x0 =2 St0 , the last
equality holds and g is continuous at x�ðT Þ. Let t 2 ½t0; T � and
xð�Þ 2 Xðt; x�ðtÞ; u�; v�Þ. It is enough to prove g is continuous at xðT Þ and that
gðxðT ÞÞ ¼ gðx�ðT ÞÞ. For this, let us define the solution x1ð�Þ by setting
x1ð�Þ ¼ x�ð�Þ on ½t0; t� and x1ð�Þ ¼ xð�Þ on ½t; T �. Then x1ð�Þ belongs to
Xðt0; x0; u�; v�Þ. Therefore, since ðu�; v�Þ is a Nash equilibrium feedback and
x0 =2 St0 , g is continuous at x1ðT Þ ¼ xðT Þ and

gðx�ðT ÞÞ ¼ Jðt0; x0; u�; v�Þ ¼ gðx1ðT ÞÞ ¼ gðxðT ÞÞ: h

Before giving the next definition, we introduce a notation : For a map
g : R! R2 and a point x 2 R, we set

ess� limsup
x0!x

gðxÞ ¼ fa 2R2 j8� > 0;8r > 0; jg�1ðB�ðaÞÞ\�x� r;xþ r½ j > 0g;

where jAj denotes the outward Lebesgue measure of a subset A of R and
where B�ðaÞ denotes the ball of center a and radius � in R2.

Definition 2.4. [Maximal payoff] Let ðt0; x0Þ 2 ½0; T � � R and ðe1; e2Þ 2 R2.
We say that ðe1; e2Þ is a maximal payoff at the point ðt0; x0Þ for the game with
terminal time T and terminal payoff g if there is some x0ð�Þ 2 Xðt0; x0Þ such
that ðe1; e2Þ 2 ess� lim supx0!x0ðT Þ gðx0Þ and such that, for any xð�Þ 2 Xðt0; x0Þ,
we have

for j ¼ 1; 2; ej � ðgjÞ�ðxðT ÞÞ:

Remarks:

1. Loosely speaking, this only means that both functions g1 and g2 reach a
maximum at the same point x0ðT Þ among the points xðT Þ that one can
reach starting from ðt0; x0Þ.

2. For a given point ðt0; x0Þ such a maximal equilibrium payoff does not
necessarily exist (and in fact seldom exists). However, if it exists, it is
clearly unique.

3. If g is continuous, we have of course ðe1; e2Þ ¼ gðx0ðT ÞÞ. However, for later
use, we need to have this definition at points where the function g can be
discontinuous.

A typical example of what we want to avoid is the following situation. Let
g : R! R2 be defined by

8x 2 R; gðxÞ ¼
ð�1; 1Þ if x < 0
ð1;�1Þ if x > 0
ð1; 1Þ if x ¼ 0

8

<

:

Then the value ð1; 1Þ does not belong to ess� lim supx0!0 gðx0Þ, although it
could be a good candidate for being a maximal payoff, since at this point both
functions g1 and g2 have a maximum. But examples of differential games can
be given for which this would lead to some contradictions (see example 2.18).

For later use, we need the following remark:
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Lemma 2.5. Let ðt0; x0Þ 2 ½0; T � � R. Suppose that at ðt0; x0Þ there is some
maximal payoff ðe1; e2Þ 2 R2 for the game with terminal time T and terminal
payoff g. Let x0ð�Þ 2 Xðt0; x0Þ be such that

ðe1; e2Þ 2 ess� lim sup
x0!x0ðT Þ

gðx0Þ:

Then, for any t1 2 ½t0; T Þ, ðe1; e2Þ is the maximal payoff at the point ðt1; x0ðt1ÞÞ
for the game with terminal time T and terminal payoff g.

Proof: It is a straightforward application of the concatenation property of
the solutions of system (1). h

Definition 2.6. [Maximal Nash equilibrium feedback] Let ðu�; v�Þ 2 U�V be
a Nash equilibrium feedback on some time interval ½T0; T � (with T0 < T ) for the
game with terminal time T and terminal payoff g. We say that ðu�; v�Þ is
maximal on ½T0; T � for the game with terminal time T and terminal payoff g, if
ðu�; v�Þ is a Nash equilibrium feedback on ½T0; T � and if ðu�; v�Þ satisfies the
additional requirement: For any ðt0; x0Þ 2 ½T0; T Þ � R, if there is some maximal
payoff ðe1; e2Þ for the game with terminal time T and terminal payoff g at the
point ðt0; x0Þ, then

for j ¼ 1; 2; ej ¼ J ]j ðt0; x0; u�; v�Þ:

Remark. The requirement of ðu�; v�Þ to be maximal is somehow the weakest
requirement we could make because there are in general few initial conditions at
which such a maximal payoff exists. Let us point out that, in general, Nash
equilibrium feedbacks are not maximal (see example 2.16 below).

Before introducing the last—and main—definition of this section, we need
the following remark:

Proposition 2.7. Let us assume that g1 and g2 are usc. Let ðu�; v�Þ be a Nash
equilibrium feedback on the time interval ½T0; T �. Then, for any T1 2 ðT0; T Þ, the
restriction of ðu�; v�Þ to ½T0; T1� � R is a Nash equilibrium feedback for the
horizon T1 and the terminal payoff J ]ðT1; �; u�; v�Þ.

Remark. This result is nothing but the well-known dynamic programming
principle (or time consistency). Although its proof follows standard arguments,
we give it nevertheless since some attention has to be paid to the payoff of the
feedback ðu�; v�Þ which is not well defined at time T1 on the set ST1 .

Proof: We only prove that, for any t0 2 ½T0; T1Þ, there is some set St0 of zero
measure such that, for any u 2 U, for any x0 2 RnSt0 , we have

inf
x�ð�Þ2Xðt0;x0;u�;v�Þ

ðJ ]1Þ�ðT1; x�ðT0Þ; u�; v�Þ � sup
xð�Þ2Xðt0;x0;u;v�Þ

ðJ ]1Þ
�ðT1; xðT0Þ; u�; v�Þ:

ð3Þ
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The inequality for J2 can be obtained in a symmetric way.
Let ðStÞ be the set of zero measure associated with ðu�; v�Þ. Then, for any

x0 2 RnSt0 , for any u 2 U, let us fix x�ð�Þ 2 Xðt0; x0; u�; v�Þ and
xð�Þ 2 Xðt0; x0; u; v�Þ. Let us recall that J ]1 is usc. Hence ðJ ]1Þ

� ¼ J ]1. From
Lemma 2.3, we know that J ]ðT1; �; u�; v�Þ is continuous at x�ðT0Þ and that we
have the equality

ðJ ]1Þ�ðT1; x�ðT0Þ; u�; v�Þ ¼ J1ðT1; x�ðT0Þ; u�; v�Þ ¼ g1ðx�ðT ÞÞ: ð4Þ

Since g1 is usc, Proposition 2.1 states that there is some solution
x1ð�Þ 2 XðT1; xðT1Þ; u�; v�Þ such that

g1ðx1ðT ÞÞ ¼ J ]1ðT1; xðT1Þ; u�; v�Þ:

Let us now define

~uuðt; xÞ ¼ uðt; xÞ if t 2 ½t0; T1Þ
u�ðt; xÞ if t 2 ½T1; T �

�

and ~xxðtÞ ¼ xðtÞ if t 2 ½t0; T1Þ
x1ðtÞ if t 2 ½T1; T �

�

Then we have clearly ~xxð�Þ 2 Xðt0; x0; ~uu; v�Þ. Therefore, since ðu�; v�Þ is a Nash
equilibrium feedback, and since x0 2 RnSt0 , we have

g1ðx�ðT ÞÞ � g1ð~xxðT ÞÞ: ð5Þ
Moreover, from the construction of ~xxð�Þ, we have

g1ð~xxðT ÞÞ ¼ g1ðx1ðT ÞÞ ¼ J ]1ðT1; xðT1Þ; u�; v�Þ: ð6Þ

Then combining (4), (5) and (6) together gives (3). h

Definition 2.8. Let ðu�; v�Þ 2 U�V be a Nash equilibrium feedback on some
time interval ½T0; T � (where T0 < T ) for the game with terminal time T and
terminal payoff g. We say that ðu�; v�Þ is completely maximal on the time
interval ½T0; T � if, for any T1 2 ðT0; T �, ðu�; v�Þ is a maximal Nash equilibrium
feedback for the game with terminal time T1 and terminal payoff J ]ðT1; �; u�; v�Þ.

Remark. This assumption is the weakest one if one want that the Nash equi-
librium payoff is maximal and satisfies some time consistency.

2.3 The main Theorem

In order to state the main results of this paper, we have to define the class G of
terminal payoffs for which we can solve the problem.

Definition 2.9. The class of admissible payoffs G is the set of maps
g ¼ ðg1; g2Þ : R! R2 for which there is a partition r0 ¼ �1 < r1 < � � � <
rk < rkþ1 ¼ þ1 such that

1. for any i ¼ 0; . . . ; k,
– either g1 (resp. g2) is continuous and (strictly) increasing or decreasing on
ðri;riþ1Þ,
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– or g1 and g2 are simultaneously constant on the interval ðri; riþ1Þ,
2. g1 and g2 are usc on R, and, for i ¼ 1; . . . ; k and j ¼ 1; 2; gj is right or left

continuous at ri.
3. if g1 (resp. g2) has a strict local maximum at the point ri, then g1 and g2 are

continuous at ri.

Terminology. We say below that R ¼ fr0 < r1 < � � � < rk < rkþ1g is the
partition associated with the map g.

Remark. In particular, if g ¼ ðg1; g2Þ is continuous and g1 and g2 have a finite
number of local extrema, then g belongs to G.

For later use, let us introduce another class of terminal payoffs:

Definition 2.10. The subclass of admissible payoffs eGG is the set of maps
g ¼ ðg1; g2Þ 2 G which satisfy the additional requirement: If g1 (resp. g2) has a
strict local maximum at some point ri belonging to the partition associated with
g, then g2 (resp. g1) has a local minimum at r.

We are now ready to give the main result of this paper:

Theorem 2.11. Assume that the terminal payoff g belongs to the class G. Then
there exists a completely maximal Nash equilibrium feedback for the game with
terminal time T and terminal payoff g on the time interval ½0; T �.

Moreover, the payoffs of any two completely maximal Nash equilibrium
feedbacks coincide almost everywhere.

Remark

1. The uniqueness part of the result means the following: Let ðu�; v�Þ be some
completely maximal Nash equilibrium feedback on the time interval ½0; T �,
and let ðu�1; v�1Þ be another completely maximal Nash equilibrium feedback
on some time interval ½T1; T � with T1 2 ½0; T Þ. Then

8t 2 ½T1; T �; Jðt; �; u�; v�Þ ¼ Jðt; �; u�1; v�1Þ a.e. :

2. We prove below that, for any t 2 ½0; T Þ, the function Jðt; �; u�; v�Þ belongs to
eGG in some sense.

The proof of Theorem 2.11 is given in the last two parts of the paper.
Roughly speaking, we mimic the proof of existence of solutions of ordinary
differential equations: We first prove existence and uniqueness of a completely
maximal Nash equilibrium feedback on a small interval of time (Proposi-
tion 3.1). Then we show that—under suitable conditions—the concatenation
of two completely maximal Nash equilibrium feedbacks is still a completely
maximal Nash equilibrium feedback (Proposition 4.5). From this we deduce
that there is a maximal interval ðT0; T � of existence for the feedback. In order
to prove that this interval is in fact the full interval ½0; T �, we have to show
that, otherwise, one could enlarge again the interval of definition of the
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feedback. For this we prove an extension result, which roughly states that, at
time T0, the payoff of the completely maximal Nash equilibrium feedback still
belongs to the class G of admissible terminal payoffs: This is the aim of
Proposition 4.6.

2.4 Link with Nash equilibrium payoffs for memory-strategies

We now make the link between the Nash equilibrium feedbacks defined above
and the Nash equilibrium payoffs for memory strategies as defined in [6], [7],
[10].

We only recall here the characterization of these payoffs, since their exact
definition would require the introduction of memory strategies, which we
prefer to avoid for sake of shortness. For the original definition and the
interpretation, see [6], [7], [10].

Proposition 2.12. Let us consider the game with dynamics (1) and with terminal
payoff g ¼ ðg1; g2Þ where g : R! R2 is a continuous function. Let
ðt0; x0Þ 2 ½0; T Þ � R be a fixed initial position. A pair ðe1; e2Þ 2 R2 is a Nash
equilibrium payoff for this game played with memory strategies (in short Nash
equilibrium payoff) for the point ðt0; x0Þ, if and only if there is some solution
xð�Þ 2 Xðt0; x0Þ such that

8t 2 ½t0; T �; for j ¼ 1; 2; gjðxðtÞÞ � ej ¼ gjðxðT ÞÞ:
We call the solution xð�Þ a Nash trajectory.

Remarks:

1. The exact statement of the characterization result of [6], [7], [10] is the
following: A pair ðe1; e2Þ 2 R2 is a Nash equilibrium payoff for the point
ðt0; x0Þ, if and only if there is some solution xð�Þ 2 Xðt0; x0Þ such that

8t 2 ½t0; T �; for j ¼ 1; 2; Vjðt; xðtÞÞ � ej ¼ gjðxðT ÞÞ;

where V1 and V2 are respectively the value functions of the zero-sum games
where, on the one hand, Player I wants to maximize g1ðxðT ÞÞ while Player
II wants to minimize this quantity, and where, on another hand, Player II
wants to maximize g2ðxðT ÞÞ while Player I wants to minimize this quantity.
For the game with dynamics (1), the value functions V1 and V2 is the unique
solution (in the viscosity sense) of the Hamilton-Jacobi-Isaacs equation

Vt þ HjðVxÞ ¼ 0 on ½0; T Þ � R

V ðT ; �Þ ¼ gjð�Þ in R

�

where, for j ¼ 1, H1ðpÞ ¼ supu2½�1;1� infv2½�1;1�ðuþ vÞp ¼ 0, while, for j ¼ 2,
H2ðpÞ ¼ infu2½�1;1� supv2½�1;1�ðuþ vÞp ¼ 0 (see ([3]) for instance). Therefore
V1ðt; xÞ ¼ g1ðxÞ and V2ðt; xÞ ¼ g2ðxÞ, whence the Proposition.

2. Let us recall that the characterization result only holds for continuous
terminal payoffs g. The discontinuous case is still an open problem.
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Definition 2.13. We say that a Nash equilibrium payoff ðe1; e2Þ 2 R2 is Pareto
at the point ðt0; x0Þ, if, for any other Nash equilibrium payoff ðe01; e02Þ 2 R2 at
ðt0; x0Þ,

we have:

either e1 � e01 or e2 � e02:

In the rest of the section, we assume that g is continuous.

Proposition 2.14. Let ðu�; v�Þ be some Nash equilibrium feedback on the time
interval ½0; T � and ðStÞt2½0;T � be its associated set of zero measure. Then, for any
t 2 ½0; T Þ and x =2 St, the payoff ðe1; e2Þ ¼ Jðt; x; u�; v�Þ is a Nash equilibrium
payoff and any solution x�ð�Þ 2 Xðt; x; u�; v�Þ is a Nash trajectory.

Moreover the payoff of a completely maximal Nash equilibrium feedback
is Pareto at any ‘‘regular’’ point:

Theorem 2.15. Let ðu�; v�Þ be a completely maximal Nash equilibrium feedback
and ðStÞ be its associated set of zero measure. Then, for any t 2 ½0; T Þ and for
any x =2 St, the payoff Jðt; x; u�; v�Þ is Pareto.

Proposition 2.14 and Theorem 2.15 are proved at the end of the paper.

2.5 Examples of Nash equilibrium feedbacks

We now give several examples of Nash equilibrium feedbacks for various
terminal payoffs.

Example 2.16. Let us assume that g1 and g2 are both strictly increasing and
usc. Then the feedback given by

8ðt; xÞ 2 ½0; T � � R; u�ðt; xÞ ¼ v�ðt; xÞ ¼ 1

is a completely maximal Nash equilibrium feedback.Moreover, the payoff of any
other maximal Nash equilibrium feedback coincides almost everywhere with the
payoff of ðu�; v�Þ.

However, there exists infinitely many Nash equilibrium feedbacks for which
the associated payoff differs from the payoff for ðu�; v�Þ. For instance, for any
fixed a 2 R at which g is continuous, the feedback ðua; vaÞ defined by

8ðt;xÞ 2 ½0;T � �R; uaðt;xÞ ¼ vaðt;xÞ ¼ 1 if x > a or xþ 2ðT � tÞ< a
�1 otherwise

�

is a Nash equilibrium feedback.

Proof: Let ST be the set of points at which g is discontinuous and, for any
t 2 ð0; T �, St ¼ ST � 2ðT � tÞ. Then, for any t, the set St has a zero measure
since it is enumerable. Moreover, for any point ðt; xÞ 2 ½0; T � � R, with x =2 St,
the payoff gðxþ 2ðT � tÞÞ is maximal because g1 and g2 are both increasing
and continuous at xþ 2ðT � tÞ. This proves that the feedback ðu�; v�Þ is a
maximal Nash equilibrium feedback, because, for any ðt; xÞ 2 ½0; T � � R, the
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unique solution xð�Þ 2 Xðt; x; u�; v�Þ is xð�Þ ¼ xþ 2ð� � tÞ. Moreover, the
payoff of any other maximal Nash equilibrium payoff coincides with the
payoff of ðu�; v�Þ almost everywhere, because it has to coincide at the points
ðt; xÞ with x =2 St since at these points there is a maximal payoff. Finally, the
feedback ðu�; v�Þ is completely maximal because, for any T1 2 ½0; T �, the maps
J ]ðT1; �; u�; v�Þ ¼ gjð� þ 2ðT � T1ÞÞ are increasing, and thus the previous
arguments apply to these maps.

Let us finally prove that the feedback ðua; vaÞ is a Nash equilibrium
feedback with a payoff different from the payoff of ðu�; v�Þ. A straightforward
computation shows that 8ðt; xÞ; 8xð�Þ 2 Xðt; x; ua; vaÞ;

xðT Þ ¼ xþ 2ðT � tÞ if x > a or x � a� 2ðT � tÞ
a if a� 2ðT � tÞ � x < a

�

(for x ¼ a, then xðT Þ 2 ½a; aþ 2ðT � tÞ�). Thus the payoff for ðua; vaÞ differs
from the payoff for ðu�; v�Þ on the set E ¼ fa� 2ðT � tÞ < x < ag. Let us also
point out that, on this set, the payoff of ðua; vaÞ is well defined (i.e., J ] ¼ J [)
because g is continuous at a. Let us set Rt ¼ fag [ ½Stnða� 2ðT � tÞ; aÞ�.

For proving that ðua; vaÞ is a Nash equilibrium feedback with associated
set of zero measure ðRtÞt2½0;T �, let ðu; vÞ 2 U�V. We have to prove that, for
any t 2 ½0; T Þ and for any x 2 RnRt, we have

J [1ðt; x; ua; vaÞ � J ]1ðt; x; u; vaÞ and J [2ðt; x; ua; vaÞ � J ]2ðt; x; ua; vÞ:

We only do the proof for the first inequality, the proof of the second one
being symmetric.

If x =2ða� 2ðT � tÞ; aÞ the result is clear, because Jðt; x; ua; vaÞ is the max-
imal payoff at ðt; xÞ. Let us assume that x 2 ða� 2ðT � tÞ; aÞ. Then
J1ðt; x; ua; vaÞ ¼ gðaÞ. Let now xð�Þ 2 Xðt; x; u; vaÞ and let us check that
xðT Þ � a. Indeed, let us denote by h the first time the trajectory xð�Þ leaves the
set E. As long as xðsÞ 2 E, va ¼ �1 in a neighbourhood of ðs; xðsÞÞ. Hence
x0ðsÞ � 0 and the solution xð�Þ is non increasing on this interval. Thus xðhÞ � x
and xðhÞ ¼ a� 2ðT � hÞ because ðh; xðhÞÞ 2 @E. Therefore xðT Þ � xðhÞþ
2ðT � hÞ ¼ a. Since g1 is increasing, we have

J ]1ðt; x; u; vaÞ � g1ðaÞ ¼ J [1ðt; x; ua; vaÞ: h

Next we give an example where there is no maximal payoff.

Example 2.17. Let us assume that g1 is strictly increasing while g2 is strictly
decreasing in R, and that both functions are usc. Then the feedback ðu�; v�Þ
given by

8ðt; xÞ 2 ½0; T � � R; u�ðt; xÞ ¼ 1 ¼ �v�ðt; xÞ:

is a completely maximal Nash equilibrium feedback.
Moreover, for any Nash equilibrium feedback ð�uu; �vvÞ, we have

8t 2 ½0; T �; Jðt; x; �uu; �vvÞ ¼ Jðt; x; u�; v�Þ ¼ gðxÞ a.e. x 2 R:

Remark. Note that there is no maximal payoff at any point ðt; xÞ because g1 is
strictly increasing while g2 is strictly decreasing.

Existence and uniqueness of a Nash equilibrium feedback 45



Proof: Let ST be the enumerable set of points x at which the function g is
continuous and let St ¼ ST for any t 2 ½0; T �. For any ðt; xÞ, there is a unique
solution xð�Þ ¼ � in Xðt; x; u�; v�Þ. Then it is very easy to check that ðu�; v�Þ is a
Nash equilibrium feedback with associated payoff Jðt; x; u�; v�Þ ¼ gðxÞ. It it
also completely maximal, since there is no maximal payoff.

Let now ð�uu; �vvÞ be any Nash equilibrium feedback and let ðRtÞt2½0;T � be its
associated set of zero measure. Then, for any ðt; xÞ 2 ½0; T � � R with x =2 St,
and any xð�Þ 2 Xðt; x; �uu; �vvÞ we have, on the one hand:

g1ðxðT ÞÞ ¼ J1ðt; x; �uu; �vvÞ � J ]ðt; x; 1; �vvÞ � g1ðxÞ
because any solution of Xðt; x; 1; �vvÞ is non decreasing and g1 is increasing.
Inequality g1ðxðT ÞÞ � g1ðxÞ implies that xðT Þ � x. On the other hand,

g2ðxðT ÞÞ ¼ J2ðt; x; �uu; �vvÞ � J ]2ðt; x; �uu;�1Þ � g2ðxÞ
because any solution of Xðt; x; �uu;�1Þ is non increasing and g2 is decreasing.
Then the inequality g2ðxðT ÞÞ � g2ðxÞ implies that xðT Þ � x. Accordingly,
xðT Þ ¼ x, and the desired result is proved: Jðt; x; �uu; �vvÞ ¼ gðxÞ. h

Next we give an example in which the payoff associated with a completely
maximal Nash equilibrium feedback is discontinuous and is not well-defined
at the point of discontinuity.

Example 2.18. We assume that

8x 2 R; g2ðxÞ ¼ g1ð�xÞand g1ðxÞ ¼
1 if x � �2
�x� 1 if �2 � x � 1
x� 3 if 1 � x � 2
�1 if x � 2

8

><

>:

Then for any completely maximal Nash equilibrium feedback ðu�; v�Þ, we have

	 If t 2 ½T � 1; T �, then, for almost all x 2 R, J2ðt; x; u�; v�Þ ¼ J1ðt;�x; u�; v�Þ
and

J1ðt; x;u�; v�Þ ¼

1 if x < �2þ 2ðT � tÞ
�x� 1þ 2ðT � tÞ if �2þ 2ðT � tÞ � x < �1þ ðT � tÞ
�x� 1 if �1þ ðT � tÞ � x < 1� ðT � tÞ
x� 3þ 2ðT � tÞ if 1� ðT � tÞ � x < 2� 2ðT � tÞ
�1 if x � 2� 2ðT � tÞ

8

>>>><

>>>>:

	 If t � T � 1, then for almost all x 2 R, J2ðt; x; u�; v�Þ ¼ J1ðt;�x; u�; v�Þ and

J1ðt; x; u�; v�Þ ¼
1 if x < 0
�1 if x � 0

�

We shall not do the proof since existence and uniqueness for such a game are
constructed in the next sections. We mainly want to point out that, at time
t ¼ T � 1, we have

8x 2 R; J ]1ðT � 1; x; u�; v�Þ ¼ 1 if x � 0
�1 if x > 0

�
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while

8x 2 R; J ]2ðT � 1; x; u�; v�Þ ¼ �1 if x < 0
1 if x � 0

�

In particular, J ]ðT � 1; 0; u�; v�Þ ¼ ð1; 1Þ, and thus the point x ¼ 0 is a point of

maximum for both J ]1ðT � 1; �; u�; v�Þ and J ]2ðT � 1; �; u�; v�Þ. However, it is
not a Nash equilibrium payoff in the sense of [6], [7], [10] since there no point
x 2 R such that gðxÞ ¼ ð1; 1Þ. Therefore the payoff ð1; 1Þ cannot be considered
as a maximal payoff at ðT � 1; 0Þ without causing trouble. This has lead us to
the above definition of maximal payoffs.

3 Local existence and uniqueness

In this section, we compute explicitely, for any terminal payoff g 2 G, a
completely maximal Nash equilibrium feedback on a time interval ½T � s; T �
for some s > 0. Moreover we prove that the associated payoff belongs to eGG
and that the associated payoff of any other completely maximal feedback
strategy coincides with it.

3.1 The local existence and uniqueness result

Proposition 3.1. Let us assume that the terminal payoff g belongs to G and that
R is an associated partition. Then:

A) [Existence] there is some feedback ðu�; v�Þ 2 U�V and some s > 0 such
that
i) ðu�; v�Þ is a completely maximal Nash equilibrium feedback on the time
interval ½T � s; T �,
ii) for any t 2 ½T � s; T Þ, J ]ðt; �; u�; v�Þ belongs to eGG,
iii) for any t 2 ½T � s; T �, there is some partition St associated with
J ]ðt; �; u�; v�Þ such that

8x =2 St; J ]ðt; x; u�; v�Þ ¼ J [ðt; x; u�; v�Þ;

iv) the set-valued map t! St is 2-Lipschitz continuous on ½T � s; T �, with
ST ¼ R, and there is some fixed M such that the cardinal of St is not larger
than M,
v) for any t0 2 ½T � s; T Þ, for any x0 =2 St0 , for any x�ð�Þ 2 Xðt0; x0; u�; v�Þ, we
have

8t 2 ½t0; T Þ; x�ðtÞ =2 St:

(we say that ðu�; v�Þ is proper with respect to the set ðStÞt2½T�s;T �).

vi) if moreover g belongs to eGG, then the cardinal of St is not larger than the
cardinal of R and, for any t0 2 ½T � s; T Þ, for any x0 =2 St0 , for any
x�ð�Þ 2 Xðt0; x0; u�; v�Þ, we have x�ðT Þ =2R (we say that ðu�; v�Þ is proper with
respect to the terminal set R).
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B) [Uniqueness] any other completely maximal Nash equilibrium feedback
ðu�1; v�1Þ defined on some interval ½T � s1; T � satisfies: for
t 2 ½T �minfs; s1g; T �, for j ¼ 1; 2;

Jjðt; x; u�; v�Þ ¼ Jjðt; x; u�1; v�1Þ for almost all x 2 R:

The proof of Proposition 3.1 is splitted in several steps. We first define
explicitely the feedback ðu�; v�Þ. Then we prove that it is indeed Nash and
maximal, and that the payoff of any completely maximal Nash feedback
strategy coincides with the payoff of ðu�; v�Þ. Next we show that condition (ii)
is satisfied. We finaly establish that ðu�; v�Þ is completely maximal.

3.2 Construction of the maximal Nash equilibrium feedback

In this part we explain the construction of the strategy ðu�; v�Þ. For doing so,
we first construct some s > 0 and maps t! rþi ðtÞ and t! r�i ðtÞ in such a way
that, for any t 2 ½T � s; T �,

r0ðtÞ ¼ �1 < r�1 ðtÞ � rþ1 ðtÞ < � � � < r�k ðtÞ � rþk ðtÞ < rkþ1 ¼ þ1:
Then, for any t 2 ½T � s; T �, we define ðu�ðt; xÞ; v�ðt; xÞÞ in a suitable way
according to the interval ðrþi ðtÞ;r�iþ1ðtÞÞ or ðr�i ðtÞ; rþi ðtÞÞ the point x belongs
to. The set St shall be defined below as

St ¼ fr�i ðtÞ; i ¼ 1; . . . ; kg [ frþi ðtÞ; i ¼ 1; . . . ; kg:
Let g 2 G and R ¼ fr0 ¼ �1; r1; . . . ; rk; rkþ1 ¼ þ1g be an associated par-
tition. We divide the singularities ri in 4 classes. For j ¼ 1; 2, and i ¼ 1; . . . ; k,
the point ri is of the type I (resp. II, III or IV ) for the map gj if:

	 Type I: gj is monotonous on ðri�1; riþ1Þ.
	 Type II: gj has a strict local maximum at the point ri and is continuous at

ri.
	 Type III: gj has a strict local minimum at the point ri and is continuous at

ri.
	 Type IV: gj is discontinuous at ri and its lsc enveloppe has a strict local
minimum at ri.

Remark. Let us underline that a point ri is of one and only one type for gj
(j ¼ 1 or j ¼ 2) because g belongs to G.

Notation: If / : R! R and x 2 R, we denote by /ðx�Þ (resp. /ðxþÞÞ the limit,
if it exists, of /ðsÞ when s! x� (resp. s! xþ).

Definition of rþi ð�Þ and r�i ð�Þ:

For any i ¼ 1; . . . ; k, the singularity ri propagates via two arcs, denoted rþi ð�Þ
and r�i ð�Þ. For defining these arcs, we have to consider all the possible cases:
For A 2 fI ; II ; III ; IV g and B 2 fI ; II; III ; IV g, the case A–B is the case where
ri is of type A for g1 and of type B for g2.
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In order to restrict the (lengthy) cases discussion, we use the symmetry of the
problem, which implies that the propagation of the singularity in the case (A–
B) is the same as in the case (B–A).

	 Case I–I:
– if g1 and g2 are simultaneously non decreasing (resp. non increasing) on
the interval ðri�1; riþ1Þ and if either g1 or g2 is non constant on this
interval, then we set rþi ðtÞ ¼ r�i ðtÞ ¼ ri � 2ðT � tÞ (resp.
rþi ðtÞ ¼ r�i ðtÞ ¼ ri þ 2ðT � tÞ), - otherwise, we set rþi ðtÞ ¼ r�i ðtÞ ¼ ri.

	 Case I–II:
– if g1 is strictly increasing, then r�i ðtÞ ¼ ri � 2ðT � tÞ and rþi ðtÞ ¼ ri,
– if g1 is strictly decreasing, then r�i ðtÞ ¼ ri and rþi ðtÞ ¼ ri þ 2ðT � tÞ,
	 Case I–III:
– if g1 is strictly increasing, then rþi ðtÞ ¼ r�i ðtÞ ¼ riðtÞ where riðtÞ is the
unique solution x 2 ðri � 2ðT � tÞ; riÞ of the equation
g2ðxÞ ¼ g2ðxþ 2ðT � tÞÞ

– if g1 is strictly decreasing, then rþi ðtÞ ¼ r�i ðtÞ ¼ riðtÞ where riðtÞ is the
unique solution x 2 ðri � 2ðT � tÞ; riÞ of the equation
g2ðxÞ ¼ g2ðxþ 2ðT � tÞÞ

	 Case I–IV:
– if g1 is non decreasing and g2ðr�i Þ < g2ðrþi Þ, then

rþi ðtÞ ¼ r�i ðtÞ ¼ ri � 2ðT � tÞ
– if g1 is non decreasing and g2ðr�i Þ > g2ðrþi Þ, then rþi ðtÞ ¼ r�i ðtÞ ¼ ri - if

g1 is non increasing, it is the converse
	 Case II–II: r�i ðtÞ ¼ ri � 2ðT � tÞ and rþi ðtÞ ¼ ri þ 2ðT � tÞ.
	 Case II–III: r�i ðtÞ ¼ rþi ðtÞ ¼ ri.
	 Case III–III: For j ¼ 1; 2, let us denote by yjðtÞ the unique point

x 2 ðri � 2ðT � tÞ; ri þ 2ðT � tÞÞ such that
gjðx� 2ðT � tÞÞ ¼ gjðxþ 2ðT � tÞÞ. Then rþi ðtÞ ¼ r�i ðtÞ ¼ riðtÞ where
xð�Þ ¼ riðT � �Þ is the unique absolutely continuous solution to:

x0ðsÞ 2 �@1IðsÞðxðsÞÞ a.e.
xð0Þ ¼ ri

�

ð7Þ

where IðsÞ ¼ ½minfy1ðT � sÞ; y2ðT � sÞg;maxfy1ðT � sÞ; y2ðT � sÞg�,

1IðsÞðxÞ ¼ 0 if x 2 IðsÞ
þ1 otherwise

�

8s � 0; 8x 2 R;

and @1IðsÞðxÞ denotes the subdifferential of the convex function 1IðsÞð�Þ.
	 Case III–IV:

– if g2ðr�i Þ < g2ðrþi Þ, then rþi ðtÞ ¼ r�i ðtÞ ¼ riðtÞ where riðtÞ ¼ minf0; xðtÞg,
xðtÞ being the unique solution in ðri � 2ðT � tÞ; riÞ of the equation
g2ðxÞ ¼ g2ðxþ 2ðT � tÞÞ

– if g2ðr�i Þ > g2ðrþi Þ, then rþi ðtÞ ¼ r�i ðtÞ ¼ riðtÞ where riðtÞ ¼ maxf0; xðtÞg,
xðtÞ being the unique solution in ðri � 2ðT � tÞ; riÞ of the equation
g2ðxÞ ¼ g2ðxþ 2ðT � tÞÞ

	 Case IV–IV:
– if g1ðr�i Þ < g1ðrþi Þ and g2ðr�i Þ < g2ðrþi Þ, then r�i ðtÞ ¼ rþi ðtÞ ¼ ri � 2
ðT � tÞ.
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– if g1ðr�i Þ > g1ðrþi Þ and g2ðr�i Þ > g2ðrþi Þ, then r�i ðtÞ ¼ rþi ðtÞ ¼ ri þ 2
ðT � tÞ.

– otherwise, r�i ðtÞ ¼ rþi ðtÞ ¼ ri.

Remarks.

1. Let us first point out that the above cases distinction covers all the possi-
bilities because g belongs to G.

2. For the cases (I–III) and (III–III), we prove below that the map rið�Þ is
indeed well defined.

3. Let us notice that r�i ðtÞ ¼ rþi ðtÞ unless we are in case (I-II) or (II, II). In
particular, if g 2 eGG, then we always have r�i ðtÞ ¼ rþi ðtÞ.

4. In order to simplify the notations, we set

rþ0 ðtÞ ¼ r�0 ðtÞ ¼ �1 and rþkþ1ðtÞ ¼ r�kþ1ðtÞ ¼ þ1:

Definition of s: We choose s > 0 such that

8i ¼ 1; . . . ; k; s � ðriþ1 � riÞ=24 ð8Þ
and such that, if gj is discontinuous at ri (for j 2 f1; 2g, i 2 f1; . . . ; kg) with,
for instance, gjðr�i Þ < gjðrþi Þ, then

sup
x2½ri�2s;riÞ

gjðxÞ < inf
x2ðri;riþ2s�

gjðxÞ: ð9Þ

Proposition 3.2.The maps rþi ð�Þ and r�i ð�Þ defined above are well defined and
Lispchitz continuous with a Lipschitz constant not larger than 2 on ½T � s; T �.

Remark. This proves assertion (A-iv) of Proposition 3.1.

Proof: We only do the proof for the cases (I–III) and (III–III), since the result
is either obvious, or can be obtained in a similar way for the other cases.
For the case I–III, let us assume, for instance, that g1 is increasing. Then
rþi ðtÞ ¼ r�i ðtÞ ¼ riðtÞ where riðtÞ is the unique solution
x 2 ðri � 2ðT � tÞ; riÞ of the equation g2ðxÞ ¼ g2ðxþ 2ðT � tÞÞ. There is in-
deed a unique solution to this equation in the interval ðri � 2ðT � tÞ; riÞ
because the map /t : x! g2ðxþ 2ðT � tÞÞ � g2ðxÞ is increasing on this
interval, and satisfies

/tðri � 2ðT � tÞÞ ¼ g2ðriÞ � g2ðri � 2ðT � tÞÞ < 0

and

/tðriÞ ¼ g2ðri þ 2ðT � tÞÞ � g2ðriÞ > 0

since g2 has a minimum on the interval ðri�1; riþ1Þ at ri.
For proving that the map rið�Þ is 2-Lipschitz continuous, let us show that

rið�Þ is increasing and satisfies riðsÞ � riðtÞ � 2ðt � sÞ if t > s. Indeed, the map
/sð�Þ defined above is increasing on ðri � 2ðT � sÞ;riÞ and satisfies
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/sðriðtÞÞ ¼ g2ðriðtÞ þ 2ðT � sÞÞ � g2ðriðtÞÞ
¼ g2ðriðtÞ þ 2ðT � sÞÞ � g2ðriðtÞ þ 2ðT � tÞÞ > 0

because g2 is increasing on ðri; riþ1Þ, and
/sðriðtÞ � 2ðt � sÞÞ ¼ g2ðriðtÞ þ 2ðT � tÞÞ � g2ðriðtÞ � 2ðt � sÞÞ

¼ g2ðriðtÞÞ � g2ðriðtÞ � 2ðt � sÞÞ < 0

because g2 is decreasing on ðri�1; riÞ. Therefore riðsÞ belongs to the interval
ðriðtÞ � 2ðt � sÞ; riðtÞÞ, which is the desired result.
Case III–III: Following the proof above, it is not difficult to check that the
maps yjð�Þ (j ¼ 1; 2) are 2-Lipschitz continuous. Let us set
z1ðsÞ ¼ minfy1ðT � sÞ; y2ðT � sÞg and z2ðsÞ ¼ maxfy1ðT � sÞ; y2ðT � sÞg. We
prove in the same time that a solution xð�Þ to (7) exists and is 2-Lipschitz
continuous. For this, we use the so-called viability Theorem (see for instance
[1]) applied to the set-valued map F and to the locally compact set K defined
as follows:

K ¼ fðs; xÞ 2 ½0; sÞ � R j z1ðsÞ � x � z2ðsÞg

F ðs; xÞ ¼

f1g � f0g if z1ðsÞ < x < z2ðsÞ
f1g � ½0; 2� if z1ðsÞ ¼ x < z2ðsÞ
f1g � ½�2; 0� if z1ðsÞ < x ¼ z2ðsÞ
f1g � ½�2; 2� if z1ðsÞ ¼ x ¼ z2ðsÞ

8

>><

>>:

It is easy to check that F is usc with convex compact values and that K is a
locally compact viability domain for F , because z1 and z2 are 2-Lipschitz
continuous. Accordingly for the initial condition ð0; riÞ there exists (locally) a
solution ðtð�Þ; xð�ÞÞ to the differential inclusion

ðt0ðsÞ; x0ðsÞÞ 2 F ðtðsÞ; xðsÞÞ
ðtð0Þ; xð0ÞÞ ¼ ð0; riÞ

�

which remains in K. Obviously tðsÞ ¼ s and it is easily seen that the solution
can be extended to the interval ½0; sÞ. Since F ðs; xÞ � �@1IðsÞðxÞ for any ðs; xÞ,
xð�Þ is also a solution to (7). Moreover, from its construction, xð�Þ is 2-Lips-
chitz continuous.

Let us now prove that the solution of (7) is unique. Let x1ð�Þ and x2ð�Þ be
two solutions of (7). Then, for almost every s,

d
ds
ðx1ðsÞ � x2ðsÞÞ2 ¼ 2ðx1ðsÞ � x2ðsÞÞðx01ðsÞ � x02ðsÞÞ � 0

because x0jðsÞ 2 �@1IðsÞðxjðsÞÞ for j ¼ 1; 2, and because of the well-known
monotonicity property of the subdifferential of convex functions. Therefore

ðx1ðsÞ � x2ðsÞÞ2 � ðx1ð0Þ � x2ð0ÞÞ2 ¼ 0. u

Definition of the completely maximal equilibrium feedback: Let ðu�; v�Þ 2
U�V be the pair of strategies defined by: for i ¼ 0; . . . ; k and t 2 ½T � s; T �,

8x 2 ½rþi ðtÞ; r�iþ1ðtÞ�; u�ðt; xÞ ¼ 1 if g1 is increasing on ðri; riþ1Þ
�1 if g1 is decreasing on ðri; riþ1)

�

and
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8x 2 ½rþi ðtÞ; r�iþ1ðtÞ�; v�ðt; xÞ ¼ 1 if g2 is increasing on ðri; riþ1)
�1 if g2 is decreasing on ðri; riþ1)

�

and

8x 2 ðr�i ðtÞ; rþi ðtÞÞ; u�ðt; xÞ ¼ v�ðt; xÞ 1 if x � ðr�i ðtÞ þ rþi ðtÞÞ=2
�1 otherwise

�

When g1 and g2 are constant on the interval ðri; riþ1Þ, we have to be more
carefull. Let x 2 ½rþi ðtÞ; r�iþ1ðtÞ� and let us assume that g1 and g2 are constant
on the interval ðri; riþ1Þ. Then we define u�ðt; xÞ and v�ðt; xÞ in the following
way: Let us set aiðtÞ ¼ 2

3 ri þ 1
3 riþ1 � 2ðT � tÞ and biðtÞ ¼ 1

3 ri þ 2
3 riþ1

þ2ðT � tÞ. Then

u�ðt; xÞ ¼ v�ðt; xÞ ¼
1 if x � aiðtÞ
�1 if x � biðtÞ
0 otherwise

(

Remark. From assumption (8) on s and since r�i ð�Þ and rþi ð�Þ are 2-Lipschitz,
we have

r0ðtÞ ¼ �1 < r�1 ðtÞ � rþ1 ðtÞ < . . . < r�k ðtÞ � rþk ðtÞ < rkþ1 ¼ þ1

and aiðtÞ < biðtÞ on ½T � s; T �. Hence ðu�; v�Þ is well defined.

Lemma 3.3. Let us set

8t 2 ½T � s; T �; St ¼ fr�i ðtÞ; i ¼ 1; . . . ; kg [ frþi ðtÞ; i ¼ 1; . . . ; kg:

1) Then for any t0 2 ½T � s; T Þ, for any x0 =2 St0 , there is a unique solution
x�ð�Þ 2 Xðt0; x0; u�; v�Þ. This solution satisfies

8t 2 ½t0; T Þ; x�ðtÞ =2 St:

2) If moreover, g 2 eGG, then
x�ðT Þ =2R:

Remark: In the terminology introduced in Proposition 3.1, the first statement
says that ðu�; v�Þ is proper with respect to the set ðStÞ—which proves (A-v) of
Proposition 3.1—, while the second statement says that ðu�; v�Þ is proper with
respect to the terminal set R—hence (A-vi) of Proposition 3.1 holds.

Proof: The proof is a straightforward (but quite tedious !) verification by
listing the various cases. u

3.3 The pair of strategies ðu�; v�Þ is a maximal Nash equilibrium feedback

We prove here that the feedback ðu�; v�Þ constructed above is a maximal Nash
equilibrium feedback and that its associated payoff coincides with the payoff
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of any completely maximal Nash equilibrium feedback. In doing so, we prove
in particular parts (A-iii) and (B) of Proposition 3.1. Let us recall that

8t 2 ½T � s; T �; St ¼ fr�i ðtÞ; i ¼ 1; . . . ; kg [ frþi ðtÞ; i ¼ 1; . . . ; kg:
Let ðt0; x0Þ belong to ½T � s; T � � R. For any feedback ðu; vÞ 2 U�V, for any
solution xð�Þ 2 Xðt0; x0; u; vÞ, we have

8t 2 ½t0; T �; xðtÞ 2 ½x0 � 2ðt � t0Þ; x0 þ 2ðt � t0Þ�:
Therefore the upper- and lower-values of a feedback ðu; vÞ at ðt0; x0Þ only
depend on the restriction of this feedback to a neighbourhood of the set
Rðt0; x0Þ defined by

Rðt0; x0Þ ¼
[

t2½t0;T �
ftg � ½x0 � 2ðt � t0Þ; x0 þ 2ðt � t0Þ�:

From the definition of s (see (8)), the interval I ¼ ½x0 � 2ðT � t0Þ;
x0 þ 2ðT � t0Þ� contains at most one ri. If the interval I does not contain any
ri, arguing as in Example 2.16 and 2.17, we can show that the restriction to a
neighbourhood of Rðt0; x0Þ of the feedback ðu�; v�Þ is a maximal Nash equi-
librium feedback and that its associated payoff coincides with the payoff of
any completely maximal Nash equilibrium feedback on this neighbourhood.

If the interval I contains ri for some i ¼ 1; . . . ; k, we have to discuss
according to the type of ri. In order to avoid lengthy cases discussions, we
only give a complete proof for the case III-III which is more delicate and leave
the other cases to the reader.

From now on, we assume that ri of type III–III. Namely, g1 and g2 are
continuous, are decreasing on ðri�1; riÞ and increasing on ðri; riþ1Þ. Let us set
R ¼ fðt; xÞ 2 ½T � s; T � � R j x 2 ½ri � 2ðT � t0Þ; ri þ 2ðT � t0Þ�g and let us
notice that, if ðt0; x0Þ 2 R, then Rðt0; x0Þ � R. We are going to show that the
restriction of ðu�; v�Þ to the set R is a maximal Nash equilibrium feedback and
that its associated payoff coincides with the payoff of any completely maximal
Nash equilibrium feedback on this set.

Let us now recall the definition of ðu�; v�Þ in R: For j ¼ 1; 2, let us denote
by yjðtÞ the unique point x 2 ðri � 2ðT � tÞ; ri þ 2ðT � tÞÞ such that
gjðx� 2ðT � tÞÞ ¼ gjðxþ 2ðT � tÞÞ. Let rþi ðtÞ ¼ r�i ðtÞ ¼ riðtÞ where
xð�Þ ¼ riðT � �Þ is the unique absolutely continuous solution to:

x0ðsÞ 2 �@1IðsÞðxðsÞÞ a.e.
xð0Þ ¼ ri

�

Then

u�ðt; x; Þ ¼ v�ðt; xÞ ¼ 1 if x � rðtÞ
�1 otherwise

�

Let us notice that the map rið�Þ is non decreasing on frið�Þ > minfy1ð�Þ;
y2ð�Þgg and non increasing on frið�Þ < maxfy1ð�Þ; y2ð�Þgg.

We first prove that ðu�; v�Þ is a Nash equilibrium feedback : For this let us
fix t0 2 ½T � s; T Þ and x0 2 ½ri � 2ðT � t0Þ; ri þ 2ðT � t0Þ�. We also fix some
ðu; vÞ 2 U�V.

If x0 < minfy1ðt0Þ; y2ðt0Þg, then gðx0 � 2ðT � t0ÞÞ is a maximal payoff at
ðt0; x0Þ. Since the unique solution x�ð�Þ 2 Xðt; x0; u�; v�Þ is x�ð�Þ ¼
x0 � 2ð� � t0Þ, this proves that
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g1ðx0 � 2ðT � t0ÞÞ ¼ J1ðt0; x0; u�; v�Þ � J ]1ðt0; x0; u; v�Þ
and

g2ðx0 � 2ðT � t0ÞÞ ¼ J2ðt0; x0; u�; v�Þ � J ]2ðt0; x0; u�; vÞ:
If x0 > maxfy1ðt0Þ; y2ðt0Þg, we can argue in a symmetric way because
gðx0 þ 2ðT � t0ÞÞ is a maximal payoff at ðt0; x0Þ.

Let us now assume that x0 2 ½minfy1ðtÞ; y2ðtÞg;maxfy1ðtÞ; y2ðtÞg� and
x0 6¼ riðtÞ. To fix the ideas, we consider the case y1ðt0Þ < y2ðt0Þ and x0 < riðt0Þ.
In particular, these assumptions imply that riðt0Þ > y1ðt0Þ. Let us start by
proving that

J2ðt0; x0; u�; v�Þ � J ]2ðt0; x0; u�; vÞ: ð10Þ
Let x�ð�Þ ¼ x0 � 2ðT � �Þ be the unique solution in Xðt0; x0; u�; v�Þ and let us
fix some xð�Þ 2 Xðt0; x0; u�; vÞ. If on the one hand, xðT Þ � ri, then

g2ðxðT ÞÞ � g2ðx0 þ 2ðT � t0ÞÞ < g2ðx0 � 2ðT � t0ÞÞ ¼ g2ðx�ðT ÞÞ
because g2 is increasing on ðri; riþ1Þ and x0 < y2ðt0Þ. If, on another hand,
xðT Þ < ri, then

g2ðxðT ÞÞ � g2ðx0 � 2ðT � t0ÞÞ ¼ g2ðx�ðT ÞÞ
because g2 is decreasing on ðri�1; riÞ. Therefore we have proved that
g2ðxðT ÞÞ � g2ðx�ðT ÞÞ, which entails (10).

Let us now prove that

J1ðt0; x0; u�; v�Þ � J ]1ðt0; x0; u; v�Þ: ð11Þ
Let xð�Þ belong to Xðt0; x0; u; v�Þ. Since g1 is decreasing on ðri�1; riÞ and since
xðT Þ � x0 � 2ðT � t0Þ ¼ x�ðT Þ, if xðT Þ � ri then we have
g1ðxðT ÞÞ � g1ðx�ðT ÞÞ. We assume from now on that xðT Þ > ri. In particular,
there is some t 2 ðt0; T Þ such that xðtÞ ¼ riðtÞ. Let us set

h ¼ minft � t0 j xðtÞ � riðtÞg:
Since v� ¼ �1 in a neighbourhood of xðtÞ for t 2 ½t0; hÞ, xð�Þ is non increasing
on this interval.

We claim that there is some h0 2 ½t0; h� such that xðh0Þ ¼ y1ðh0Þ. Indeed, let
us assume on the contrary that xðtÞ > y1ðtÞ on ½t0; h�. This implies that
riðtÞ > y1ðtÞ on ½t0; h�. Therefore, the map s! riðh� sÞ is non increasing on
the interval ½0; h� t0� while s! xðh� sÞ is non decreasing. This implies that

riðhÞ � xðhÞ � riðt0Þ � xðt0Þ > 0;

which is in contradiction with the definition of h. Therefore we have proved
the existence of some h0 2 ½t0; h� such that xðh0Þ ¼ y1ðh0Þ.

Since g1 is increasing on ðri; riþ1Þ and since
xðT Þ � xðh0Þ þ 2ðT � h0Þ ¼ y1ðh0Þ þ 2ðT � h0Þ, we have that

g1ðxðT ÞÞ � g1ðy1ðh0Þ þ 2ðT � h0ÞÞ ¼ g1ðy1ðh0Þ � 2ðT � h0ÞÞ
from the very definition of y1ð�Þ. Moreover, we have

y1ðh0Þ ¼ xðh0Þ � x0 � 2ðh0 � t0Þ;
which entails that
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g1ðy1ðh0Þ � 2ðT � h0ÞÞ � g1ðx0 � 2ðT � t0ÞÞ ¼ g1ðx�ðT ÞÞ
since g1 is decreasing on ðri�1; riÞ. Thus g1ðxðT ÞÞ � g1ðx�ðT ÞÞ and (11) holds.
So we have proved that ðu�; v�Þ is a Nash equilibrium feedback.

We now prove that ðu�; v�Þ is maximal. Let us fix t0 2 ½T � s; T Þ and
x0 2 ðri � 2ðT � t0Þ; ri þ 2ðT � t0ÞÞ. Assume first that y1ðt0Þ 6¼ y2ðt0Þ. Then
there is a maximal payoff at ðt0; x0Þ if and only if, either
x0 < minfy1ðt0Þ; y2ðt0Þg—in which case gðx0 � 2ðT � t0ÞÞ is this maximal
payoff and we have already proved that J ]ðt0; x0; u�; v�Þ ¼ gðx0 � 2ðT � t0ÞÞ—,
or x0 > maxfy1ðt0Þ; y2ðt0Þg—in which case gðx0 þ 2ðT � t0ÞÞ is this maximal
payoff and we know that J ]ðt0; x0; u�; v�Þ ¼ gðx0 þ 2ðT � t0ÞÞ. If
y1ðt0Þ ¼ y2ðt0Þ, then riðt0Þ ¼ y1ðt0Þ ¼ y2ðt0Þ and there is also a maximal payoff
at the point ðt0; riðt0ÞÞ. Since the trajectories xþð�Þ ¼ riðt0Þ þ 2ð� � t0Þ and
x�ð�Þ ¼ riðt0Þ � 2ð� � t0Þ belong to Xðt0; riðt0Þ; u�; v�Þ, we have
J ]ðt0; riðt0Þ; u�; v�Þ ¼ gðriðt0Þ þ 2ðT � t0ÞÞ ¼ gðriðt0Þ � 2ðT � t0ÞÞ, which is the
maximal payoff at ðt0; riðt0ÞÞ.

We finally prove that any completely maximal equilibrium feedback has the
same payoff as ðu�; v�Þ. For this, let ðu�1; v�1Þ be some completely maximal Nash
equilibrium feedback and ðRtÞt2½0;T � its associated set of zero measure. Let us
now define, for t 2 ½T � s; T �,

aðtÞ ¼ inffx 2 ½ri � 2ðT � tÞ; ri þ 2ðT � tÞ�j
8xð�Þ 2 Xðt; x; u�1; v�1Þ; xðT Þ > x� 2ðT � tÞg:

and

bðtÞ ¼ supfx 2 ½ri � 2ðT � tÞ;ri þ 2ðT � tÞ�j
8xð�Þ 2 Xðt; x; u�1; v�1Þ; xðT Þ < xþ 2ðT � tÞg:

The main part of the proof amounts to establish that aðtÞ ¼ bðtÞ ¼ riðtÞ for
t 2 ½T � s; T �. We split the proof of this into several claims.

Claim 1: We first prove that

8t 2 ½T � s; T �;minfy1ðtÞ; y2ðtÞg � aðtÞ � bðtÞ � maxfy1ðtÞ; y2ðtÞg:

Proof of claim 1: Assume first that minfy1ðtÞ; y2ðtÞg > aðtÞ. Then there is
some x < minfy1ðtÞ; y2ðtÞg such that, any solution xð�Þ 2 Xðt; x; u�1; v�1Þ satisfies
xðT Þ > x� 2ðT � tÞ. From the definition of y1ðtÞ and y2ðtÞ, the payoff
gðx� 2ðT � tÞÞ is the maximal payoff at the point ðt; xÞ and this payoff can
only be attained by the trajectory xð�Þ ¼ x� 2ð� � tÞ, which does not belong to
Xðt; x; u�1; v�1Þ. Since Xðt; x; u�1; v�1Þ is compact, this implies that
J ]ðt; x; u�1; v�1Þ < gðx� 2ðT � tÞÞ, which is in contradiction with the fact that
ðu�1; v�1Þ is maximal. Hence we have proved that minfy1ðtÞ; y2ðtÞg � aðtÞ.

We can prove in a similar way that bðtÞ � maxfy1ðtÞ; y2ðtÞg.
Let us now show that aðtÞ � bðtÞ holds for all t. Indeed, if, on the contrary,

we had bðtÞ < aðtÞ for some t, then, for any x 2 ðbðtÞ; aðtÞÞ, there would exist
x1ð�Þ 2 Xðt; x; u�1; v�1Þ with x1ðtÞ ¼ xþ 2ðT � tÞ and x2ð�Þ 2 Xðt; x; u�1; v�1Þ with
x2ðtÞ ¼ x� 2ðT � tÞ. Since gðx1ðT ÞÞ 6¼ gðx2ðT ÞÞ (unless x ¼ y1ðtÞ ¼ y2ðtÞ),
there is a contradiction with the fact that

J ]ðt; x; u�1; v�1Þ ¼ J [ðt; x; u�1; v�1Þ for almost all x 2 ðbðtÞ; aðtÞÞ:
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So we have proved the inequality aðtÞ � bðtÞ for all t and the proof of claim 1
is complete.

Claim 2: að�Þ is usc while bð�Þ is lsc, and

8s < t; aðsÞ � aðtÞ � 2ðt � sÞ; while bðsÞ � bðtÞ þ 2ðt � sÞ: ð12Þ
In particular, að�Þ and bð�Þ are left continuous.

Proof of claim 2: We only do the proof for að�Þ, the proof for bð�Þ being
symmetric. Since the set-valued map ðt; xÞ ! Xðt; x; u�1; v�1Þ is upper-semi
continuous with compact values, the map að�Þ is clearly ucs.

Let us now prove (12). For this, we consider the game with terminal time t
and terminal payoff J ]ðt; �; u�1; v�1Þ. Since ðu�1; v�1Þ is completely maximal, ðu�1; v�1Þ
is a maximal Nash equilibrium strategy for this game. Since both g1 and g2

are decreasing on ðri�1; riÞ, the functions Jjðt; �; u�1; v�1Þ are decreasing on
ðri � 2ðT � tÞ; aðtÞ� because they coincide with gjð� � 2ðT � tÞÞ on this inter-
val. Therefore, for any s < t and any x < aðtÞ � 2ðt � sÞ the payoff
Jjðt; x� 2ðt � sÞ; u�1; v�1Þ is maximal for the game with terminal time t and

terminal payoff J ]ðt; �; u�1; v�1Þ and is only attained at the point x� 2ðt � sÞ.
This implies that any solution xð�Þ 2 Xðs; x; u�1; v�1Þ satisfies xðtÞ ¼ x� 2ðt � sÞ.
From this one derives easily the desired inequality (12). Hence the proof of
claim 2 is complete.

Let us keep in mind that the previous proof shows that the maps
J ]j ðt; �; u�1; v�1Þ are decreasing on ðri � 2ðT � tÞ; aðtÞÞ for any t.

Claim 3: Let us now assume that, for some t0, we have
aðt0Þ < maxfy1ðt0Þ; y2ðt0Þg. We claim that there is some positive � such that
aðtÞ � aðt0Þ for t 2 ½t0 � �; t0�.

In particular this implies that að�Þ is non increasing on the intervals where
að�Þ < maxfy1ð�Þ; y2ð�Þg.

Proof of claim 3: To fix the ideas, we assume that aðt0Þ < y2ðt0Þ. Then
aðt0Þ � 2ðT � t0Þ is the unique point of maximum of g2 on the interval
½aðt0Þ � 2ðT � t0Þ; aðt0Þ þ 2ðT � t0Þ�. Since the map x�ð�Þ ¼ aðt0Þ � 2ð� � t0Þ
belongs to Xðt0; aðt0Þ; u�1; v�1Þ, we have

J ]2ðt0; aðt0Þ; u�1; v�1Þ ¼ g2ðaðt0Þ � 2ðT � t0ÞÞ;
and there is some c > 0 such that

8x 2 ðaðt0Þ; aðt0Þ þ cÞ; J ]2ðt0; x; u�1; v�1Þ < J ]2ðt0; aðt0Þ; u�1; v�1Þ:
We set � ¼ c=2. Let us now prove the intermediate result: 8t 2 ½t0 � �; t0�,
8x < aðt0Þ with x =2Rt; 8xð�Þ 2 Xðt; x; u�1; v�1Þ; xðt0Þ � aðt0Þ: ð13Þ

Indeed, if on the contrary we had xðt0Þ > aðt0Þ, then

J2ðt; x; u�1; v�1Þ ¼ J2ðt0; xðt0Þ; u�1; v�1Þ < J ]2ðt0; aðt0Þ; u�1; v�1Þ < J ]2ðt0; x; u�1; v�1Þ;
because xðt0Þ < aðt0Þ þ c. This leads to a contradiction with the fact that
ðu�1; v�1Þ is Nash since the strategy

vðs; yÞ ¼ �u�1ðs; yÞ if s < t0
v�1ðs; yÞ otherwise

�
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gives

J ]2ðt; x; u�1; vÞ ¼ J ]2ðt0; x; u�1; v�1Þ > J ]2ðt; x; u�1; v�1Þ:
Thus we have proved (13).

Since the minimum of two solutions is still a solution and since the
functions J ]j ðt0; �; u�1; v�1Þ are decreasing on ðri � 2ðT � t0Þ; aðt0ÞÞ, one easily
derive from (13) that, for any t 2 ½t0 � �; t0�, the functions J ]j ðt; �; u�1; v�1Þ are
non increasing on the interval ½ri � 2ðT � tÞ; aðt0Þ�.

For completing the proof of the claim, we argue by contradiction by
assuming that there is some t1 2 ðt0 � �; t0Þ such that aðt1Þ < aðt0Þ. Then for
any t < t1 such that aðt1Þ þ 2ðt1 � tÞ � aðt0Þ, and for any x < aðt1Þ, the payoff
J ]ðt1; x� 2ðt1 � tÞ; u�1; v�1Þ is the unique maximal payoff at the point ðt; xÞ for
the game with terminal time t1 and terminal payoff J ]ðt1; �; u�1; v�1Þ, because the
function J ]j ðt1; �; u�1; v�1Þ are non increasing on the interval
ðri � 2ðT � t1Þ; aðt0ÞÞ and strictly decreasing on ðri � 2ðT � t1Þ; aðt1ÞÞ.
Therefore, for any xð�Þ 2 Xðt; x; u�1; v�1Þ, we have xðt1Þ ¼ x� 2ðt1 � tÞ. Hence,
since xðt1Þ < aðt1Þ, we have xðT Þ ¼ x� 2ðT � tÞ. Thus aðtÞ � aðt1Þ for any t
such that aðt1Þ þ 2ðt1 � tÞ � aðt0Þ. Since að�Þ is usc and left continuous, one
derives easily a contradiction. So claim 3 is proved.

Claim 4: The next step consists in proving that aðtÞ � riðtÞ and that
bðtÞ � riðtÞ for any t 2 ½T � s; T �.

Proof of claim 4: We only do the proof for að�Þ. Let us assume on the con-
trary that there is some maximal interval ðt0; t1Þ on which inequality
aðtÞ < riðtÞ hold. Since að�Þ is left continuous, we have aðt1Þ ¼ riðt1Þ. Since, on
the one hand, aðtÞ < riðtÞ � maxfy1ðtÞ; y2ðtÞg, we deduce from the previous
step that að�Þ is non increasing on ðt0; t1Þ. On the other hand, since
minfy1ðtÞ; y2ðtÞg � aðtÞ < riðtÞ on ðt0; t1Þ, the map rið�Þ is non decreasing on
ðt0; t1Þ from its construction. Therefore the map rið�Þ � að�Þ is non decreasing
on ðt0; t1Þ. Since it is positive, vanishes at t1 and is left-continuous at this
point, we have found a contradiction. So claim 4 is proved.

Combining claim 4 and claim 1, we get the desired result:
að�Þ ¼ bð�Þ ¼ rið�Þ on ½T � s; T �. From this one can prove without difficulty
that the payoff for ðu�; v�Þ is the same as for ðu�1; v�1Þ. Therefore the proof of
the uniqueness is complete.

3.4 The payoff belongs to the class eGG on ½T � s; T Þ

The aim of this subsection is to prove part (ii) of Proposition 3.1. Namely, we
want to show that, for any t 2 ½T � s; T Þ, the map J ]ðt; �; u�; v�Þ belongs to eGG.

A straightforward computation shows that, for any t 2 ½T � s; T � and any
x =2 St,

for j ¼ 1; 2; Jjðt; x; u�; v�Þ ¼ gjðyðxÞÞ
where, if x 2 ðrþi ðtÞ; r�iþ1ðtÞÞ, for some i ¼ 0; . . . ; k,

yðxÞ ¼
xþ 2ðT � tÞ if g1 and g2 are increasing on ðri; riþ1Þ
x� 2ðT � tÞ if g1and g2 are decreasing on ðri; riþ1Þ
minfmaxfx; rig; riþ1g otherwise

8

<

:
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and, if x 2 ðr�i ðtÞ; rþi ðtÞÞ for some i ¼ 1; . . . ; k,

yðxÞ ¼ ri:

Let us point out that yðxÞ 6¼ x�ðT Þ (where x�ð�Þ 2 Xðt; x; u�; v�Þ) only in the
case g1 and g2 constant on the interval ðri; riþ1Þ.

Therefore, for any i ¼ 0; . . . ; k, for t 2 ½T � s; T �,
– either J ]1ðt; �; u�; v�Þ (resp. J ]2ðt; �; u�; v�Þ) is continuous and strictly increas-

ing or decreasing on ðrþi ðtÞ; r�iþ1ðtÞÞ,
– or J ]1ðt; �; u�; v�Þ and J ]2ðt; �; u�; v�Þ are simultaneously constant on the

interval ðriðtÞþ; r�iþ1ðtÞÞ or on the interval ðriðtÞ�; rþi ðtÞÞ.
Moreover J ]1ðt; �; u�; v�Þ and J ]2ðt; �; u�; v�Þ are usc on R and left- or right-

continuous at each point. Finally, if for instance J ]1ðt; �; u�; v�Þ has a strict
local maximum at the point r�i ðtÞ, then we are necessarily in case (II-III),
which implies that J ]1ðt; �; u�; v�Þ and J ]2ðt; �; u�; v�Þ are continuous at r�i ðtÞ and
that J ]2ðt; �; u�; v�Þ has a strict local minimum. Therefore J ]ðt; �; u�; v�Þ belongs
to eGG. u

3.5 The feedback ðu�; v�Þ is completely maximal

In order to complete the proof of part (A-i) of Proposition 3.1, it only re-
mains to prove that the feedback ðu�; v�Þ is also completely maximal. To this
end, let us fix T1 2 ðT � s; T �. Let ðu�1; v�Þ be the Nash equilibrium feedback
constructed as above for the game with horizon T1 and terminal payoff
J ]ðt; �; u�; v�Þ. It is defined (at least) on ½T � s; T1�. A straightforward (but
again tedious) proof shows that we have, for any ðt; xÞ 2 ½T � s; T1� � R,

sup
xð�Þ2Xðt;x;u�

1
;v�
1
Þ
J ]ðt; xðT1Þ; u�; v�Þ ¼ J ]ðt; x; u�; v�Þ ð14Þ

(the left-hand side of the equality is nothing but the upper payoff of the
feedback ðu�1; v�1Þ). We have already proved that ðu�1; v�1Þ is maximal. There-
fore, for any point ðt0; x0Þ 2 ½T � s; T1Þ at which a maximal payoff e 2 R2 for
the game with horizon T1 and terminal payoff J ]ðt; �; u�; v�Þ exists, we have

e ¼ sup
xð�Þ2Xðt;x;u�

1
;v�
1
Þ
J ]ðt; xðT1Þ; u�; v�Þ

Using (14) gives e ¼ J ]ðt; x; u�; v�Þ, which proves that ðu�; v�Þ is completely
maximal.

This completes the proof of Proposition 3.1. u

4 Global existence and uniqueness

In the previous section, we have obtained short time existence and
uniqueness of a completely maximal Nash equilibrium feedback. We now
complete the proof of Theorem 2.11 by showing that that it is possible to
concatenate Nash equilibrium feedbacks (Proposition 4.5), and that a Nash
equilibrium feedback defined on intervals ½t; T � for any t > T0, can naturally
be extented to the closed interval ½T0; T � (Proposition 4.6). Then we finally
prove Theorem 2.15.
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4.1 Some preliminary results

Let us first give in this part a list of technical results which are needed later on.

Lemma 4.1. Let ðu; vÞ 2 U�V; ðt0; x0Þ 2 ½0; T Þ � R. For any xð�Þ 2 X
ðt0; x0; u; vÞ; h > 0, there exists some strategy uh 2 U, some trajectories
xþh ð�Þ 2 Xðt0; x0 þ h; uh; vÞ and x�h ð�Þ 2 Xðt0; x0 � h; uh; vÞ such that

	 either xþh ðT Þ ¼ xðT Þ or x�h ðT Þ ¼ xðT Þ
	 or jxþh ðT Þ � xðT Þ j þ j x�h ðT Þ � xðT Þ j � 2h.

Proof of Lemma 4.1: Let u1
h 2 U be the strategy defined by

u1
hðt; xÞ ¼

�1 if x > xðtÞ
1 otherwise

�

Let us fix yþh ð�Þ 2 Xðt0; x0 þ h; u1
h; vÞ and y�h ð�Þ 2 Xðt0; x0 � h; u1

h; vÞ. We set

sh ¼ infft > t0 j yþh ðtÞ ¼ xðtÞ or y�h ðtÞ ¼ xðtÞg;
with the convention sh ¼ T if the set in the right-hand side is empty.

Let us notice that, from the definition of u1
h, yþh ð�Þ is non increasing on ½t0; sh�

while y�h ð�Þ is non decreasing on this interval. We consider now two cases:
First case: sh ¼ T . Then

8t 2 ½t0; T �; x0 � h � y�h ðtÞ � xðtÞ � yþh ðtÞ � x0 þ h:

Hence, for t ¼ T , the second inequality of the Lemma holds true if we set
uh ¼ u1

h, xþh ð�Þ ¼ yþh ð�Þ and x�h ð�Þ ¼ y�h ð�Þ.
Second case: If, on the contrary, sh < T , let us assume for instance that

xþh ðshÞ ¼ xðshÞ. Then we define a new strategy uh 2 U and a new solution xþh ð�Þ
by setting

uhðt; xÞ ¼ u1
hðt; xÞ if t � sh

u�ðt; xÞ otherwise

�

and

xþh ðtÞ ¼
yþh ðtÞ if t � sh

xðtÞ otherwise

�

It is clear that xþh ð�Þ belongs to Xðt0; x0; uh; vÞ and that xþh ðT Þ ¼ xðT Þ. There-
fore the proof is complete. u

Corollary 4.2. Let g ¼ ðg1; g2Þ : R! R2 be such that g1 (resp. g2) is, at each
point, either right- or left-continuous. Let ð�uu; �vvÞ 2 U�V some Nash equilib-
rium feedback on the interval ½T � s; T � for the terminal payoff g and let ðRtÞ be
its associated set of zero measure. Then for any ðu; vÞ 2 U�V, for any
t0 2 ½T � s; T � and any x0 2 R, we have

J�1 ðt0; x0; �uu; �vvÞ ¼ J ]1ðt0; x0; �uu; �vvÞ � J ]1ðt0; x0; u; �vvÞ
and

J�2 ðt0; x0; �uu; �vvÞ ¼ J ]2ðt0; x0; �uu; �vvÞ � J ]2ðt0; x0; �uu; vÞ:
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where J�1 ðt; �; �uu; �vvÞ and J�2 ðt; �; �uu; �vvÞ are the upper semi-continuous envelopes of the
functions J1ðt; �; �uu; �vvÞ and J2ðt; �; �uu; �vvÞ (defined as functions on RnRt).

Remark If g 2 G, then g satisfies the regularity conditions of the Corollary.

Proof of Corollary 4.2: Let us start with proving that

J�1 ðt0; x0; �uu; �vvÞ � J ]1ðt0; x0; u; �vvÞ:
This inequality is obvious for x0 =2 St0 , from the definition of a Nash equilib-
rium since at such a point, J ] ¼ J is continuous. Let now x0 2 St0 and
xð�Þ 2 Xðt0; x0; u; �vvÞ be such that

g1ðxðT ÞÞ ¼ J ]1ðt0; x0; u; �vvÞ:
Since St0 is of zero measure, we can find hn ! 0þ such that x0 þ hn =2 St0 and
x0 � hn =2 St0 . We apply Lemma 4.1 to hn, to the feedback ðu; �vvÞ and to the
trajectory xð�Þ. Let uhn 2 U, xþhn

ð�Þ and x�hn
ð�Þ satisfying the conclusions of

Lemma 4.1. Since g1 is either left continuous or right continuous at the point
xðT Þ, we have clearly, up to a subsequence,

either lim
n

g1ðx�hn
ðT ÞÞ ¼ g1ðxðT ÞÞ or lim

n
g1ðxþhn

ðT ÞÞ ¼ g1ðxðT ÞÞ:

Let us assume for instance that limn g1ðx�hn
ðT ÞÞ ¼ g1ðxðT ÞÞ. Then, since

x0 � hn =2 St0 , we have

J1ðt0; x0 � hn; �uu; �vvÞ � J ]1ðt0; x0 � hn; uhn ; �vvÞ � g1ðx�hn
ðT ÞÞ:

Taking the lim sup in this inequalities gives the desired result:

J�1 ðt0; x0; �uu; �vvÞ � g1ðxðT ÞÞ ¼ J ]1ðt0; x0; u; �vvÞ:
The symmetric inequality for the second Player can be proven in a similar
way.

This implies in particular that J�j � J ]j for j ¼ 1; 2 (just set ðu; vÞ ¼ ð�uu; �vvÞ).
The reverse inequality J�j � J ]j is also clear since the map x0 ! J ]j ðt0; x0; �uu; �vvÞ is
usc and coincides with J�j ouside of the set St0 which has a zero measure. u

Lemma 4.3. Let g ¼ ðg1; g2Þ : R! R2 be such that g1 (resp. g2) is usc and is, at
each point, either right- or left-continuous. If ð�uu; �vvÞ is a Nash equilibrium
feedback on the time interval ½T � s; T � for some s > 0, then, for j ¼ 1; 2, for
any x 2 R, the map t! J ]j ðt; x; �uu; �vvÞ is non increasing.

Proof of the Lemma 4.3: We only do the proof for j ¼ 1. Let us fix t0 and t1
such that T � s � t0 < t1 � T . From Proposition 2.7, ð�uu; �vvÞ is a Nash equi-
librium feedback for the time horizon t1 and the terminal payoff J ]ðt1; �; �uu; �vvÞ.
Hence for any x0 2 R, Corollary 4.2 states that the upper payoff for the
feedback ð�uu; �vvÞ at ðt0; x0Þ—for the game with time horizon t1 and terminal
payoff J ]ðt1; �; �uu; �vvÞ—is not smaller than the upper payoff for the feedback
ð��vv; �vvÞ for this game: Namely, there is some x�ð�Þ 2 Xðt0; x0; �uu; �vvÞ such that,
for any xð�Þ 2 Xðt0; x0;��vv; �vvÞ, we have:

J ]1ðt1; x�ðt1Þ; �uu; �vvÞ � J ]1ðt1; xðt1Þ; �uu; �vvÞ:
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Since the set Xðt0; x0;��vv; �vvÞ only contains the constant solution xð�Þ ¼ x0, the
previous inequality becomes:

J ]1ðt1; x�ðt1Þ; �uu; �vvÞ � J ]1ðt1; x0; �uu; �vvÞ:
Since

J ]1ðt1; x�ðt1Þ; �uu; �vvÞ � J ]1ðt0; x0; �uu; �vvÞ;
the two previous inequalities give the desired result:

J ]1ðt0; x0; �uu; �vvÞ � J ]1ðt1; x0; �uu; �vvÞ:
u

4.2 Concatenation

Let us recall some terminology introduced in Proposition 3.1:

Definition 4.4. Let g 2 G and R ¼ fr0 ¼ �1; r1; . . . ; rk; rkþ1 ¼ þ1g be an
associated partition. Let ðu�; v�Þ be a Nash equilibrium feedback defined on
some time interval ½T � s; T � for some s > 0 and for the terminal payoff g, and
let ðStÞ be its associated set of zero-measure.

1. We say that ðu�; v�Þ is proper with respect to the terminal set R if

8t 2 ½T � s; T �; 8x =2 St; 8x�ð�Þ 2 Xðt; x; u�; v�Þ; x�ðT Þ =2R:

2. We say that ðu�; v�Þ is proper with respect to the set ðStÞ if, for any
t 2 ½T � s; T � and any x =2 St, we have:

8x�ð�Þ 2 Xðt; x; u�; v�Þ; 8s 2 ½t; T �; x�ðsÞ =2 Ss:

Remark. From Proposition 3.1, if g 2 G, then there exists a completely max-
imal Nash equilibrium feedback which is proper with respect to its associated set
of zero measure ðStÞ.Moreover, if g 2 eGG and if R is an associated partition, then
this feedback is also proper with respect to the terminal time R.

Proposition 4.5. Let g 2 G. Let us assume that:

	 ðu�1; v�1Þ is a Nash equilibrium feedback on the time interval ½T � s1; T � (for
some s1 > 0),

	 J ]ðT � s1; �; u�1; v�1Þ belongs to eGG and there is an associated partition R such
that, for x =2R,
J ]ðT � s1; x; u�1; v

�
1Þ ¼ J [ðT � s1; x; u�1; v

�
1Þ;

	 ðu�2; v�2Þ is a Nash equilibrium feedback on the interval ½T � s2; T � s1� (for
some s2 > s1) for the terminal time T � s1 and the terminal payoff
J ]ðT � s1; �; u�1; v�1Þ, proper with respect to the terminal set R.

Then

A) the feedback ðu�; v�Þ defined by
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ðu�; v�Þðt; xÞ ¼ ðu�1; v�1Þðt; xÞ if t 2 ðT � s1; T �
ðu�2; v�2Þðt; xÞ if t 2 ½T � s2; T � s1�

�

ð15Þ

is a Nash equilibrium feedback on the time interval ½T � s2; T � for the terminal
time T and the terminal payoff g.

B) if moreover ðu�1; v�1Þ and ðu�2; v�2Þ are proper with respect to their associated set
of zero-measure, then so is ðu�; v�Þ.

C) if ðu�1; v�1Þ and ðu�2; v�2Þ are completely maximal, then so is ðu�; v�Þ

Proof of Proposition 4.5: A) For any t 2 ½T � s2; T � s1Þ, let St be the set of
zero measure associated with ðu�2; v�2Þ. We only prove that, if u 2 U, if
t0 2 ½T � s2; T � s1Þ and x0 =2 St0 , then

J [1ðt0; x0; u�; v�Þ � J ]1ðt0; x0; u; v�Þ:
Indeed the corresponding inequality for t0 2 ½T � s1; T � is clear and the cor-
responding inequality for J2 can be proved in a similar way.

Let x�ð�Þ 2 Xðt0; x0; u�; v�Þ and xð�Þ 2 Xðt0; x0; u; v�Þ. Since ðu�; v�Þ ¼
ðu�2; v�2Þ on ½T � s2; T � s1Þ and since ðu�2; v�2Þ is a Nash equilibrium feedback
for the terminal time T � s1 and the terminal payoff J ]ðT � s1; �; u�1; v�1Þ on this
interval, we have

J ]1ðT � s1; x�ðT � s1Þ; u�1; v�1Þ � J ]1ðT � s1; xðT � s1Þ; u�1; v�1Þ:
Since, from the assumption, ðu�2; v�2Þ is proper with respect to the set R, the
point x�ðT � s1Þ does not belong to R. Therefore, from the definition of R, we
have

J ]1ðT � s1; x�ðT � s1Þ; u�1; v�1Þ ¼ J1ðT � s1; x�ðT � s1Þ; u�1; v�1Þ ¼ g1ðx�ðT ÞÞ
¼ ðg1Þ�ðx�ðT ÞÞ:

Since ðu�1; v�1Þ is a Nash equilibrium feedback on ½T � s1; T � and since, from
the construction of ðu�; v�Þ, the solution xð�Þ belongs to
XðT � s1; xðT � s1Þ; u; v�1Þ, we have, from Corollary 4.2,

J ]1ðT � s1; xðT � s1Þ; u�1; v�1Þ � J ]1ðT � s1; xðT � s1Þ; u; v�1Þ � g1ðxðT ÞÞ:
Therefore we have proved that ðg1Þ�ðx�ðT ÞÞ � g1ðxðT ÞÞ, which is the desired
result.

B) If ðu�1; v�1Þ and ðu�2; v�2Þ are proper with respect to their associated set of
zero-measure, then it is clear that so is ðu�; v�Þ.

C) Let us now assume that ðu�1; v�1Þ and ðu�2; v�2Þ are completely maximal.
We have to prove that ðu�; v�Þ is also completely maximal, i.e., that, for any
T0 2 ðT � s2; T �, if the pair ðe1; e2Þ is a maximal payoff for some point
ðt0; x0Þ 2 ½T � s2; T0Þ for the game with terminal time T0 and terminal payoff
J ]ðT0; �; u�; v�Þ, then we have

J ]ðt0; x0; u�; v�Þ ¼ ðe1; e2Þ: ð16Þ
Without loss of generality, we can assume that T0 2 ðT � s1; T � and
t0 2 ½T � s2; T � s1Þ since otherwise the result is a straightforward conse-
quence of the fact that ðu�1; v�1Þ and ðu�2; v�2Þ are completely maximal. By using
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Proposition 2.7 and again the fact that ðu�1; v�1Þ is completely maximal, we can
also assume, in order to simplify the notation, that T0 ¼ T .

In order to apply the assumption that ðu�2; v�2Þ is completely maximal, we
are going to prove that ðe1; e2Þ is a maximal payoff at the point ðt0; x0Þ for the
differential game with terminal time T � s1 and terminal payoff
J ]ðT � s1; �; u�; v�Þ.

From the definition of a maximal equilibrium, there is some solution
�xxð�Þ 2 Xðt0; x0Þ such that ðe1; e2Þ 2 ess� lim supx0!�xxðT Þ gðx0Þ and, for any
xð�Þ 2 Xðt0; x0Þ, we have

for j ¼ 1; 2; gjðxðT ÞÞ � ej:

Lemma 2.5 states that ðe1; e2Þ is the maximal equilibrium at any point
ðt;�xxðtÞÞ. In particular, for t ¼ T � s1, we have, since ðu�1; v�1Þ is maximal:

ðe1; e2Þ ¼ J ]ðT � s1;�xxðT � s1Þ; u�1; v�1Þ: ð17Þ
For simplicity, we set �yy ¼ �xxðT � s1Þ. Let us now prove that

ðe1; e2Þ belongs to ess� lim sup
x0!�yy

J ]ðT � s1; x0; u�1; v
�
1Þ: ð18Þ

Proof of (18): We consider two cases.
Case 1: Let us first assume that, for any t 2 ½T � s1; T �, �yy ¼ �xxðtÞ ¼ �xxðT Þ.

From Lemma 4.3, we have

8x 2 R; J ]j ðT � s1; x; u�1; v
�
1Þ � J ]j ðT ; x; u�1; v�1Þ ¼ gjðxÞ

for j ¼ 1; 2. Since ðe1; e2Þ 2 ess� lim supx0!�xxðT Þ gðx0Þ and since
J ]j ðT � s1; �; u�1; v�1Þ is usc for j ¼ 1; 2, one concludes easily from (17) that (18)
holds true in this case.

Case 2: Let us now assume that there is some t 2 ½T � s1; T � with
�xxðtÞ 6¼ �xxðT Þ. We can assume for instance that there is some � > 0 with:

½�yy � �; �yy� � �xxð½T � s1; T �Þ: ð19Þ
Since, from Lemma 2.5, ðe1; e2Þ is a maximal payoff at the point ðt;�xxðtÞÞ for
any t 2 ½T � s1; T � and since ðu�1; v�1Þ is maximal, we have

8t 2 ½T � s1; T �; J ]ðt;�xxðtÞ; u�1; v�1Þ ¼ ðe1; e2Þ:
Combining Lemma 4.3, the previous equality and inclusion (19) gives:

8x 2 ½�yy � �; �yy�; J ]j ðT � s1; x; u�1; v
�
1Þ � J ]ðt; x; u�1; v�1Þ ¼ ej;

for j ¼ 1; 2, where t 2 ½T � s1; T � is such that �xxðtÞ ¼ x. This inequality together
with (17) and the fact that J ]j ðt; �; u�1; v�1Þ is usc, leads to (18). Therefore (18)
holds in any case.
Let xð�Þ 2 Xðt0; x0Þ. We now prove that J ]j ðT � s1; xðT � s1Þ; u�1; v�1Þ � ej for
any j ¼ 1; 2. We do the proof for j ¼ 1 for instance. From Corollary 4.2,
there is x1ð�Þ belonging to XðT � s1; xðT � s1Þ; u�1; v�1Þ such that

g1ðx1ðT ÞÞ ¼ J ]1ðT � s1; xðT � s1Þ; u�1; v�1Þ:
The trajectory x2ð�Þ defined by
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x2ðtÞ ¼
xðtÞ if t 2 ½t0; T � s1�
x1ðtÞ if t 2 ½T � s1; T �

�

belongs to Xðt0; x0Þ. Since ðe1; e2Þ is the maximal payoff at ðt0; x0Þ, we have

e1 � g1ðx2ðT ÞÞ ¼ g1ðx1ðT ÞÞ ¼ J ]1ðT � s1; xðT � s1Þ; u�1; v�1Þ:
Thus we have proved that ðe1; e2Þ is the maximal payoff at the point ðt0; x0Þ
for the game with terminal time T � s1 and terminal payoff
J ]ðT � s1; �; u�1; v�1Þ.

Then equality (16) holds true because ðu�2; v�2Þ is a maximal equilibrium
feedback for this game.

4.3 Extension

We now prove that, if ðu�; v�Þ is a completely maximal Nash equilibrium
feedback on any interval ½t; T � for t 2 ðT0; T � (where T0 < T ), then ðu�; v�Þ is
still a completely maximal Nash equilibrium feedback on the interval ½T0; T �.
More precisely:

Proposition 4.6. Let us assume that the terminal payoff g belongs to G and that
there are some ðu�; v�Þ 2 U�V and some time T0 2 ½0; T Þ such that

i) 8t 2 ðT0; T Þ; ðu�; v�Þ is a completely maximal Nash equilibrium feedback on
½t; T �,

ii) for any t 2 ðT0; T Þ; J ]ðt; �; u�; v�Þ belongs to eGG,
iii) for any t 2 ðT0; T Þ, there is some partition St associated with J ]ðt; �; u�; v�Þ

such that

8x =2 St; J ]ðt; x; u�; v�Þ ¼ J [ðt; x; u�; v�Þ;

iv) the set-valued map t! St is 2-Lipschitz continuous and there is some M
such that the cardinal of St is not larger than M,

v) ðu�; v�Þ is proper with respect to ðStÞt2ðT0;T �, i.e., for any t0 2 ðT0; T Þ, for any
x0 =2 St0 , for any x�ð�Þ 2 Xðt0; x0; u�; v�Þ, we have

8t 2 ½t0; T �; x�ðtÞ =2 St:

Then

a) ðu�; v�Þ is still a completely maximal Nash equilibrium feedback on ½T0; T �,
b) J ]ðT0; �; u�; v�Þ belongs to eGG,
c) the limit ST0

of St when t! T0 exists and the cardinal of ST0
is not larger than

M,
d) 8x =2 ST0

; J ]ðT0; x; u�; v�Þ ¼ J [ðT0; x; u�; v�Þ;
e) ðu�; v�Þ is proper with respect to ðStÞt2½T0;T � up to time T0.

Remark. We have proved in Proposition 3.1 that, if g belongs to G, then there is
some T0 < T and some feedback ðu�; v�Þ for which (i), . . ., (v) hold.
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Proof of Proposition 4.6: We divide the proof in two steps. In the first step,
we prove that (a), (c), (d) and (e) hold. We complete the proof by establishing
the more delicate point (b).

First step: Let us first notice that point (c) is immediate. We now want to
prove that ðu�; v�Þ is a Nash equilibrium feedback which is proper with re-
spect to ðStÞ (property (e)) and which satisfies (d).

For this, let x0 =2 ST0
be fixed. We claim that Jð�; �; u�; v�Þ is uniformly

continuous on the set ðT0; t0� � ðx0 � �=2; x0 þ �=2Þ for some t0 2 ðT0; T Þ and
� > 0.

Proof of the claim: From the definition of ST0
we can find some positive � such

that

8x 2 ½x0 � �; x0 þ ��; 8t 2 ½T0; T0 þ ��; x =2 St:

Let us set t0 ¼ T0 þ �=4. Since J ]ðt0; �; u�; v�Þ belongs to eGG and since the set St0
has an empty intersection with the interval ½x0 � �; x0 þ ��, the function
J ]ðt0; �; u�; v�Þ can only have two types of behaviour on ½x0 � �; x0 þ ��:
– either J ]1ðt0; �; u�; v�Þ (resp. J ]2ðt0; �; u�; v�Þ) is continuous and strictly

increasing or decreasing on ½x0 � �; x0 þ ��,
– or J ]1ðt0; �; u�; v�Þ and J ]2ðt0; �; u�; v�Þ are constant on ½x0 � �; x0 þ ��.

From Proposition 2.7, we know that ðu�; v�Þ is a completely maximal
Nash equilibrium feedback for the terminal time t0 and the terminal payoff
J ]ðt0; �; u�; v�Þ. Therefore we necessarilly have, for any t 2 ðT0; t0Þ and any
x 2 I� ¼ ½x0 � �=2; x0 þ �=2�,

J ]ðt; x; u�; v�Þ ¼ J ]ðt0; xþ 2cðt0 � tÞ; u�; v�Þ
where

c ¼
1 if J ]1ðt0; �; u�; v�Þ and J ]2ðt0; �; u�; v�Þ are increasing on I�
�1 if J ]1ðt0; �; u�; v�Þ and J ]2ðt0; �; u�; v�Þ are decreasing on I�
0 otherwise

8

<

:

This proves that the map ðt; xÞ ! J ]ðt; x; u�; v�Þ is uniformly continuous on
ðT0; t0� � I� because J ]ðt0; �; u�; v�Þ is continuous in ðx0 � �; x0 þ �Þ.

In order to prove that ðu�; v�Þ is a Nash equilibrium feedback, let us now
fix u 2 U, x�ð�Þ 2 XðT0; x0; u�; v�Þ and xð�Þ 2 XðT0; x0; u; v�Þ. Our aim is to
prove that g1ðxðT ÞÞ � ðg1Þ�ðx�ðT ÞÞ.

Let us first notice that

8t 2 ½T0; T �; x�ðtÞ =2 St: ð20Þ
Indeed, the point x�ðtÞ does not belong to St0 for any t 2 ½T0; t0� from the
definition of �. Since, moreover, the restriction of x�ð�Þ to ½t0; T � belongs to
Xðt; x�ðtÞ; u�; v�Þ, and since the feedback ðu�; v�Þ is proper, we have (20).
Hence (e) is proved.

Let us now fix g > 0. Since the map ðt; xÞ ! J ]ðt; x; u�; v�Þ is uniformly
continuous on ðt0; T0� � ½x0 � �=2; x0 þ �=2�, we can choose t sufficiently close
to T0 such that

ðg1Þ�ðx�ðT ÞÞ ¼ g1ðx�ðT ÞÞ ¼ J1ðt; x�ðtÞ; u�; v�Þ � J1ðt; xðtÞ; u�; v�Þ � g:

Moreover, since ðu�; v�Þ is a Nash equilibrium feedback, we also have
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J1ðt; xðtÞ; u�; v�Þ � J ]1ðt; xðtÞ; u; v�Þ � g1ðxðT ÞÞ:
Hence inequality ðg1Þ�ðx�ðT ÞÞ � g1ðxðT ÞÞ � g holds true for any g > 0 and
thus: ðg1Þ�ðx�ðT ÞÞ � g1ðxðT ÞÞ. This implies that:

8x0 =2 ST0
; J [1ðT0; x0; u�; v�Þ � J ]1ðT0; x0; u; v�Þ:

We can prove in a similar way that, for any v 2V,

8x0 =2 ST0
; J [2ðT0; x0; u�; v�Þ � J ]2ðT0; x0; u�; vÞ:

Thus ðu�; v�Þ is a Nash equilibrium feedback on ½T0; T � and (d) is proved by
setting ðu; vÞ ¼ ðu�; v�Þ in the two previous inequalities.

Let us finally prove that ðu�; v�Þ is completely maximal on ½T0; T �. For
simplicity we only prove that ðu�; v�Þ is maximal on ½T0; T �, the proof for the
complete maximality being the same.

Let ðT0; x0Þ be a fixed point for which there is some maximal payoff
ðe1; e2Þ 2 R2. There is some solution �xxð�Þ 2 XðT0; x0Þ such that ðe1; e2Þ belongs
to ess� lim supx!�xxðT Þ gðxÞ and for any xð�Þ 2 XðT0; x0Þ,

for j ¼ 1; 2; gjðxðT ÞÞ � ej:

Since ðu�; v�Þ is completely maximal on ½t; T � for any t > T0, and since ðe1; e2Þ
is a maximal payoff at the point ðt;�xxðtÞÞ from Lemma 2.5, we have

8t 2 ðT0; T Þ; J ]ðt;�xxðtÞ; u�; v�Þ ¼ ðe1; e2Þ:
Hence we have

for j ¼ 1; 2; J ]j ðT0; x0; u�; v�Þ � lim sup
t!Tþ

0

J ]j ðt;�xxðtÞ; u�; v�Þ ¼ ej:

Since obviously, for j ¼ 1; 2, we have J ]j ðT0; x0; u�; v�Þ � ej, the desired
equality is proved: J ]ðT0; x0; u�; v�Þ ¼ ðe1; e2Þ.

Second step: Let us finally prove that (b) holds true, i.e., that J ]ðT0; �; u�; v�Þ
belongs to eGG. Let us set as usual

ST0
¼ fr0 ¼ �1; r1; . . . ; rk; rkþ1 ¼ þ1g

From the first step, it is immediate that, on the interval ðri; riþ1Þ for
i ¼ 1; . . . ; k, we have

– either J ]1ðT0; �; u�; v�Þ (resp. J ]2ðT0; �; u�; v�Þ) is strictly increasing or strictly
decreasing,

– or J ]1ðT0; �; u�; v�Þ and J ]2ðT0; �; u�; v�Þ are constant.

From Corollary 4.2, it is also clear that J ]ðT0; �; u�; v�Þ is usc and left or
right continuous at each point ri. It now remains to prove that, if ri is a strict
local maximum of (say) J ]1ðT0; �; u�; v�Þ, then J ]1ðT0; �; u�; v�Þ is continuous at ri
and J ]2ðT0; �; u�; v�Þ has a strict local minimum and is continuous at this point.

From Corollary 4.2, there is some sequence ðxnÞ which converges to ri,
with xn =2 ST0

and such that the sequence ðJ1ðT0; xn; u�; v�ÞÞ converges to
J ]1ðT0; ri; u�; v�Þ. Let xnð�Þ 2 XðT0; xn; u�; v�Þ.

From standard arguments, the sequence ðxnð�ÞÞ converges, up to some
subsequence, to some solution xð�Þ 2 XðT0; ri; u�; v�Þ uniformly on ½T0; T �.
Since xn =2 ST0 , Lemma 2.3 states that
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8t 2 ½T0; T �; J ]1ðt; xnðtÞ; u�; v�Þ ¼ J ]1ðT0; xn; u�; v�Þ:
Taking the lim sup in this equality and using Lemma 4.3 gives

8t 2 ½T0; T �; J ]1ðT0; ri; u�; v�Þ � J ]1ðt; xðtÞ; u�; v�Þ � J ]1ðT0; xðtÞ; u�; v�Þ:
Since J ]1ðT0; �; u�; v�Þ has a strict local maximum at ri, this yields to

8t 2 ½T0; T �; xðtÞ ¼ ri and J ]1ðt; ri; u�; v�Þ ¼ J ]1ðT0; ri; u�; v�Þ: ð21Þ
Using again Lemma 4.3 gives that, for any x 6¼ ri sufficiently close to ri,

J ]1ðT0; ri; u�; v�Þ ¼ J ]1ðt; ri; u�; v�Þ
> J ]1ðT0; x; u�; v�Þ � J ]1ðt; x; u�; v�Þ: ð22Þ

Therefore, for any t 2 ½T0; T �, the map J ]1ðt; �; u�; v�Þ has a strict local maxi-
mum at ri.

Fix some t0 2 ðT0; T Þ. Since the map J ]1ðt0; �; u�; v�Þ belongs to eGG and has a
strict local maximum at ri, it is continuous at this point. Hence, for any
positive �, there is some g > 0 with

J ]1ðt0;ri;u�;v�Þ� �� J ]1ðt0;x;u�;v�Þ� J ]1ðt0;ri;u�;v�Þ; 8x2 ðri�g;riþgÞ:
Therefore, since J ]1ðt0;ri; u�; v�Þ ¼ J ]1ðT0; ri; u�; v�Þ and J ]1ðt0; �; u�; v�Þ � J ]1
ðT0; �; u�; v�Þ,

J ]1ðT0;ri;u�;v�Þ� �� J ]1ðT0;x;u�;v�Þ� J ]1ðT0;ri;u�;v�Þ; 8x2 ðri�g;riþgÞ:

This proves that J ]1ðT0; ri; u�; v�Þ is continuous at ri.
Let us finally establish that J ]2ðT0; �; u�; v�Þ is continuous at ri and has a

strict local minimum at this point. For that purpose, let us fix some
t0 2 ðT0; T Þ. Since J ]ðt0; �; u�; v�Þ belongs to eGG and since J ]1ðt0; �; u�; v�Þ has a
strict local maximum at ri, J ]2ðt0; �; u�; v�Þ has a strict local minimum at ri and
it is continuous at this point.

Let xn ! ri, with, for instance, xn < ri. Then, for n sufficiently large, the
point xn does not belong to ST0

. Let xnð�Þ be some solution in XðT0; xn; u�; v�Þ.
Since ðu�; v�Þ is proper, and since the point ri belongs to St for any t (because
ri is a strict local maximum of J ]1ðt; �; u�; v�Þ) we always have xnðtÞ < ri. Since
xn =2 ST0

, we have, for j ¼ 1; 2

8t 2 ½T0; T �; J ]j ðT0; xn; u�; v�Þ ¼ J ]j ðt; xnðtÞ; u�; v�Þ:
Moreover, from Lemma 4.3, we have

8t 2 ½T0; T �; J ]j ðt; xn; u�; v�Þ � J ]j ðT0; xn; u�; v�Þ:
Hence, for t ¼ t0, we have:

for j ¼ 1; 2; J ]j ðt0; xn; u�; v�Þ � J ]j ðt0; xnðt0Þ; u�; v�Þ: ð23Þ
Using arguments already developed above and the fact that J ]1ðt0; �; u�; v�Þ is
continuous at ri, we can prove that the sequence xnð�Þ converges uniformly to
the constant solution xðtÞ ¼ ri. Therefore the point xnðt0Þ belongs to some
interval ðri � g; riÞ for n large enough. We choose g > 0 such that
J ]1ðt0; �; u�; v�Þ is strictly decreasing and J ]2ðt0; �; u�; v�Þ is strictly increasing on
ðri � g; riÞ. Then inequality (23) imply that xnðt0Þ ¼ xn. Hence we have:
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J ]2ðT0; xn; u�; v�Þ ¼ J ]2ðt0; xn; u�; v�Þ
> J ]2ðt0; ri; u�; v�Þ ¼ J ]2ðT0; ri; u�; v�Þ

and

lim
n

J ]2ðT0; xn; u�; v�Þ ¼ lim
n

J ]2ðt0; xn; u�; v�Þ

¼ J ]2ðt0; ri; u�; v�Þ ¼ J ]2ðT0; ri; u�; v�Þ
because J ]2ðt0; �; u�; v�Þ has a strict local minimum at ri and is continuous at
this point. Therefore we have proved that J ]2ðT0; �; u�; v�Þ has a strict local
minimum at ri and is continuous at this point.

This completes the proof of Proposition 4.6. u

4.4 Proof of the main Theorem

We are now ready to prove Theorem 2.11. Using Proposition 3.1 and Zorn
Lemma shows that there is some maximal interval ðT0; T �, some feedback
ðu�; v�Þ and some associated set of zero measure ðStÞt2ðT0;T � such that condi-
tions (i), . . ., (v) of Proposition 4.6 are satisfied on any interval ½t; T � for
t > T0. Then the conclusion of Proposition 4.6 holds, which implies that the
map J ]ðT0; �; u�; v�Þ belongs to eGG.

Let us now assume that T0 > 0. Then using again Proposition 3.1 shows
that there is some s > 0 and some feedback ðu�1; v�1Þ, and some sets of zero
measure ðStÞt2½T0�s;T0� satisfying the conditions (i), . . ., (vi) of Proposition 3.1
for the terminal time T0 and the terminal payoff J ]ðT0; �; u�; v�Þ on the time
interval ½T0 � s; T0�. Then Proposition 4.5 implies that the new feedback

ðu�2; v�2Þðt; xÞ ¼
ðu�; v�Þðt; xÞ if t 2 ðT0; T �
ðu�1; v�1Þðt; xÞ if t 2 ½T0 � s; T0�

�

is a completely maximal Nash equilibrium feedback, satisfying conditions (i),
. . ., (v) of Proposition 4.6, on the time interval ½T0 � s; T �. This is in contra-
diction with the maximality of the interval ðT0; T �.

Hence we have proved that there is at least one completely maximal Nash
equilibrium feedback ðu�; v�Þ defined on ½0; T �.

The fact that the payoff of any other completely maximal Nash equilib-
rium feedback coincides with the payoff of ðu�; v�Þ is a straightforward
application of the uniqueness result of Proposition 3.1 and of the fact that the
map J ]ðt; �; u�; v�Þ belongs to eGG for t 2 ½0; T Þ. u

4.5 Proof of Proposition 2.14 and of Theorem 2.15

We complete this paper by the proof of the results on the link between Nash
equilibrium feedbacks and Nash equilibrium payoffs in the sense of [6], [7],
[10].

Proof of Proposition 2.14: Let t, x, and x�ð�Þ be as in the Proposition. We have
on the one hand that

8s 2 ½t; T �; Jðs; x�ðsÞ; u�; v�Þ ¼ gðx�ðT ÞÞ ¼ Jðt; x; u�; v�Þ
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and, on the other hand,

8s 2 ½t; T �; forj ¼ 1; 2; Jjðs; x�ðsÞ; u�; v�Þ � J ]j ðT ; x�ðsÞ; u�; v�Þ ¼ gjðx�ðsÞÞ;

thanks to Lemma 4.3 applied at the times s and T . Whence the result. u

Proof of Theorem 2.15: Let t0 2 ½0; T Þ and x0 =2 St0 be fixed. Let us assume that
ðe1; e2Þ is a Nash equilibrium payoff at ðt0; x0Þ such that

for j ¼ 1; 2; ej � Jjðt0; x0; u�; v�Þ:
We have to prove that Jðt0; x0; u�; v�Þ ¼ ðe1; e2Þ.

From the characterization of Nash equilibrium payoffs, there is some
xð�Þ 2 Xðt0; x0; u�; v�Þ such that

8t 2 ½t0; T �; forj ¼ 1; 2; gjðxðtÞÞ � ej ¼ gjðxðT ÞÞ:
In order to fix the ideas, we assume that xðT Þ � x0. It is easy to see that one
can choose xð�Þ such that x0ð�Þ ¼ 0 on ½t0; h1Þ and x0ð�Þ ¼ 2 on ½h1; T �, where
h1 ¼ T � ðxðT Þ � x0Þ=2.

Let x�ð�Þ 2 Xðt0; x0; u�; v�Þ. We know, from Proposition 2.14, that x�ð�Þ is a
Nash trajectory and, from Proposition 2.3, that

8t 2 ½t0; T �; Jðt; x�ðtÞ; u�; v�Þ ¼ Jðt0; x0; u�; v�Þ ¼ gðx�ðT ÞÞ:
Hence, if x�ðT Þ � xðT Þ, there exists some t 2 ½t0; T � such that x�ðtÞ ¼ xðT Þ, and
thus

Jðt0; x0; u�; v�Þ ¼ Jðt; x�ðtÞ; u�; v�Þ � gðx�ðtÞÞ ¼ gðxðT ÞÞ ¼ ðe1; e2Þ
because x�ð�Þ is a Nash trajectory (here and throughout the proof we endow
R2 with the usual partial ordering). Therefore, if x�ðT Þ � xðT Þ, the result is
proved.

Let us assume from now on that x�ðT Þ < xðT Þ. Let us set
h2 ¼ maxft 2 ½h1; T � j x�ðtÞ ¼ xðtÞg;

with h2 ¼ h1 if there is no t 2 ½h1; T � with x�ðtÞ ¼ xðtÞ. Let us point out that
8t 2 ðh2; T �; x�ðtÞ < xðtÞ. We claim that

8t 2 ðh2; T �; 8y 2 ½x�ðtÞ; xðtÞ�; J ]ðt; y; u�; v�Þ � ðe1; e2Þ: ð24Þ

Proof of (24): Let us first prove that

8t 2 ðh2; T �; 8y 2 ðx�ðtÞ; xðtÞÞ with y =2 St; Jðt; y; u�; v�Þ � ðe1; e2Þ: ð25Þ
Let t and y be as above, and let yð�Þ 2 Xðt; y; u�; v�Þ. Then y1ð�Þ ¼
maxfyð�Þ; x�ð�Þg also belongs to Xðt; y; u�; v�Þ and y1ðT Þ 2 ½x�ðT Þ; xðT Þ�. Using
now the fact that xð�Þ and x�ð�Þ are Nash trajectories with xðt0Þ ¼ x�ðt0Þ ¼ x0,
and that gðx�ðT ÞÞ � ðe1; e2Þ, it is easy to see that, for any z 2 ½x�ðT Þ; xðT Þ�,
gðzÞ � ðe1; e2Þ. Therefore

Jðt; y; u�; v�Þ ¼ gðy1ðT ÞÞ � ðe1; e2Þ;
so that (25) is proved.

Thanks to Corollary 4.2, inequality (25) implies inequality (24) for
y 2 ðx�ðtÞ; xðtÞÞ. Inequality (24) also holds for y ¼ x�ðtÞ since
Jðt; x�ðtÞ; u�; v�Þ ¼ Jðt0; x0; u�; v�Þ � ðe1; e2Þ from the assumption. Let us
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finally prove the result for xðtÞ. Corollary 4.2 states that there are two
sequences ðxj

kÞk (for j ¼ 1; 2) converging to xðtÞ, with xj
k =2 St, such that

lim
k

Jjðt; xj
k; u
�; v�Þ ¼ J ]j ðt; xðtÞ; u�; v�Þ:

If xj
k � xðtÞ for infinitely many k, then, since for such a k we already know that

Jjðt; xj
k; u
�; v�Þ � ej, we have J ]j ðt; xðtÞ; u�; v�Þ � ej. If on the contrary, xj

k > xðtÞ
for any k sufficiently large, let us consider some solutions
xj

kð�Þ 2 Xðt; xj
k; u
�; v�Þ. If xj

kðT Þ � xðT Þ, then we can complete the proof as
above. If xj

kðT Þ � xðT Þ, then limk xj
kðT Þ ¼ xðT Þ because xðT Þ ¼ xðtÞ þ 2ðT � tÞ

and the xj
kð�Þ are 2-Lipschitz continuous. Then the result follows from the

continuity of g. Therefore, (24) holds in any case.
Let us now set

h3 ¼ infft 2 ½h2; T � j 8s 2 ½t; T �; J ]ðs; xðsÞ; u�; v�Þ ¼ ðe1; e2Þg;
with h3 ¼ T if there is no such a t. Our aim is to prove that h3 ¼ h2.

For doing so, we argue by contradiction by assuming that h3 > h2. Let us
prove that in this case, for any � > 0 sufficiently small, ðe1; e2Þ is a maximal
payoff at the point ðh3 � �; xðh3 � �ÞÞ for the game with horizon h3 and ter-
minal payoff J ]ðh3; �; u�; v�Þ (let us notice that xðh3 � �Þ ¼ xðh3Þ � 2�).

Indeed, we have, thanks to (24) and the fact that the J ]j are usc, that:

8z2½xðh3Þ�4�;xðh3ÞÞ;J ]ðh3;z;u�;v�Þ�ðe1;e2ÞandJ ]ðh3;xðh3Þ;u�;v�Þ¼ðe1;e2Þ:

If h3 < T , Lemma 4.3 shows that

8s 2 ½h3; T �; J ]ðh3; xðsÞ; u�; v�Þ � J ]ðs; xðsÞ; u�; v�Þ ¼ ðe1; e2Þ;
with xðsÞ ¼ xðh3Þ þ 2ðs� h3Þ. Using the fact that the maps J ]j ðh3; �; u�; v�Þ (for
j ¼ 1; 2Þ are usc then gives that

ðe1; e2Þ 2 ess� lim sup
x0!xðh3Þ

J ]ðh3; x0; u�; v�Þ:

If h3 ¼ T , the above formula is also clear because g is continuous.
Hence we have proved that ðe1; e2Þ is a maximal payoff at the point

ðh3 � �; xðh3 � �ÞÞ for the game with horizon h3 and terminal payoff
J ]ðh3; �; u�; v�Þ. Since ðu�; v�Þ is completely maximal, this implies that

J ]ðh3; xðh3 � �Þ; u�; v�Þ ¼ ðe1; e2Þ
for any � > 0 sufficiently small, which is in contradiction with the definition of
h3. Therefore we have proved that h3 ¼ h2.

Hence

J ]ðh2; xðh2Þ; u�; v�Þ � ðe1; e2Þ;
because the maps J ]j are usc. So, if h2 > h1, we have x�ðh2Þ ¼ xðh2Þ, and thus

Jðt0; x0; u�; v�Þ ¼ Jðh2; x�ðh2Þ; u�; v�Þ � ðe1; e2Þ;
and equality Jðt0; x0; u�; v�Þ ¼ ðe1; e2Þ is proved. If, on the contrary, h2 ¼ h1,
then xðh2Þ ¼ x0, and Lemma 4.3 implies that

Jðt0; x0; u�; v�Þ � J ]ðh1; x0; u�; v�Þ � ðe1; e2Þ:
This completes the proof of Theorem 2.15. u
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[2] Basar T, Olsder GJ (1999) Dynamic noncooperative game theory. 2nd ed. Classics in Applied

Mathematics. 23. Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics
[3] Evans LC, Souganidis PE (1984) Differential games and representation formulas for

solutions of Hamilton-Jacobi Equations. Indiana Univ. Math. J. 33:773–797
[4] Fleming WH (1967) The convergence problem for differential games. J. Math. Anal. and

Appl., Vol. 3, pp. 102–116
[5] Friedman A (1971) Differential Games Wiley, New York
[6] Kleimenov AF (1993) Nonantagonist differential games (in russian) ‘‘Nauka’’ Uralprime

skoe Otdelenie, Ekaterinburg
[7] Kononenko AF (1976) On equilibrium positional strategies in nonantagonistic differential

games. Dokl. Akad. Nauk SSSR 231:285–288
[8] Krasovskii NN, Subbotin AI (1988) Game-Theorical Control Problems Springer-Verlag,

New-York
[9] Olsder GJ (2001) On Open- and Closed-Loop Bang-Bang Control in Nonzero-Sum

Differential Games. SIAM J. Control Optim. 40(4):1087–1106
[10] Tolwinski B, Haurie A, Leitmann G (1986) Cooperative equilibria in differential games.

J. Math. Anal. Appl. 119:182–202

Existence and uniqueness of a Nash equilibrium feedback 71


