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Abstract. We provide some formulae for the t-value in the case of the assign-
ment game and prove that it coincides with the midpoint between the buyers-
optimal and the sellers-optimal core allocations. As a consequence, the t-value
of an assignment game always lies in the core. Some comparative statics of
this solution is analyzed: the pairwise monotonicity and the e¤ect of new
entrants.
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1. Introduction

Since its definition by Shapley and Shubik (1972), the assignment game has
been studied from a number of perspectives, but above all from the viewpoint
of the core. The aim of this paper is to analyze a point-solution for this class
of games which has interesting properties: the t-value (Tijs, 1981), a well
known solution in the general framework of cooperative TU games. Other
well known solution concepts are the Shapley value (Shapley, 1953) and the
nucleolus (Schmeidler, 1969). The Shapley value of an assignment game may
lie outside the core; this is an important drawback. For its part, the nucleolus
of the assignment game, which is always a core allocation although is not easy
to compute, has been studied in Solymosi and Raghavan (1994), who give an
algorithm to find it.

In section three, an expression for the t-value of an assignment game is
obtained. This expression implies that for the assignment game, unlike games
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in general, the t-value is a core allocation. In addition to this, for games with
many players, the t-value follows from the solution of a few linear programs.

Finally, in section four, some comparative statics are studied. Although
core selection and coalitional monotonicity are not compatible in the general
framework of cooperative games (Young, 1985), not even in the subclass of
assignment games with at least two agents on each side of the market (Hous-
man and Clark, 1998), there is a more suitable monotonicity property for
the assignment game, which we name pairwise monotonicity; we prove the t-
value to be pairwise monotonic. Similarly, although population monotonic
allocations schemes do not exist in assignment games with a 2� 2 positive
submatrix (Sprumont, 1990), the t-value is proved to be type-monotonic, a
property which better reflects the two-sided structure of the market. Some
definitions, notations and remarks are needed first.

2. Definitions and preliminaries

Assignment games were introduced by Shapley and Shubik as a model for
a two-sided market with transferable utility. The player set consists of the
union of two finite disjoint sets M WM 0, where M is the set of buyers and M 0

is the set of sellers. We denote by n the cardinality of M WM 0, n ¼ mþm 0,
where m and m 0 are, respectively, the cardinalities of M and M 0. Given a non
negative matrix A ¼ ðaijÞði; jÞ AM�M 0 , where aij is the joint profit that the mixed

pair coalition fi; jg can obtain if they trade, a cooperative game can be
defined where the worth of coalition fi; jg is wði; jÞ ¼ aij b 0. The matrix A
determines the worth of any other coalition S WT , where S JM and
T JM 0. A matching (or assignment) between S and T is a subset m of S � T
such that each player belongs at most to one pair in m. Then, wðS WTÞ ¼
maxf

P
ði; jÞ A m aij j m A MðS;TÞg, MðS;TÞ being the set of matchings between

S and T. It is assumed as usual that a coalition formed only by sellers or only
by buyers has worth zero. We denote the game as ðM WM 0;wÞ. We say a
matching m A MðM;M 0Þ is optimal if for all m 0 A MðM;M 0Þ,

P
ði; jÞ A m aij bP

ði; jÞ A m 0 aij and we denote by M�ðAÞ the set of optimal matchings for the
grand coalition. Moreover, we say that a buyer i A M is not assigned by m if
ði; jÞ B m for all j A M 0 (and similarly for sellers).

Assignment games are examples of cooperative games with transferable
utility (TU). A TU game is a pair ðN; vÞ, where N ¼ f1; 2; . . . ; ng is its finite
player set and v : 2N ! R its characteristic function satisfying vðqÞ ¼ 0. The
set of games with the above player set is denoted by G N . A payo¤ vector is
x A Rn and, for every coalition S JN we write xðSÞ :¼

P
i AS xi the payo¤ to

coalition S (where xðqÞ ¼ 0). The core of the game ðN; vÞ consists of those
payo¤ vectors that allocate the worth of the grand coalition (e‰cient payo¤s)
in such a way that every other coalition receives at least its worth by the
characteristic function: CðvÞ ¼ fx A Rn j xðNÞ ¼ vðNÞ and xðSÞb vðSÞ for all
S HNg. An interesting class of games with nonempty core is the class of
convex games (Shapley, 1971).

Assignment games are not in general convex. Roughly speaking, an
assignment game is convex when it is defined by a diagonal matrix. However,
Shapley and Shubik prove that the core of the assignment game ðM WM 0;wÞ
is nonempty and can be represented in terms of an optimal matching in
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M WM 0. Let m be one such optimal matching. Then

CðwÞ ¼

8
>>>>>><

>>>>>>:

ðu; vÞ A RM�M 0

�
�
�
�
�
�
�
�
�
�
�
�

ui b 0; for all i A M; vj b 0; for all j A M 0

ui þ vj ¼ aij if ði; jÞ A m

ui þ vj b aij if ði; jÞ B m

ui ¼ 0 if i not assigned by m

vj ¼ 0 if j not assigned by m:

9
>>>>>>=

>>>>>>;

ð1Þ

Moreover, if we denote for all i A M,

ui ¼ max
ðu; vÞ ACðwÞ

ui and ui ¼ min
ðu; vÞ ACðwÞ

ui;

and for all j A M 0,

vj ¼ max
ðu; vÞ ACðwÞ

vj and v j ¼ min
ðu; vÞ ACðwÞ

vj ;

it happens that all players on the same side of the market achieve their maxi-
mum core payo¤ in the same core allocation. As a consequence, there are two
special extreme core allocations: in one of them, ðu; vÞ, each buyer achieves his
maximum core payo¤ and in the other, ðu; vÞ, each seller does.

Demange (1982) and Leonard (1983) prove that this maximum payo¤ of a
player in the core of the assignment game is his marginal contribution,

ui ¼ wðM WM 0Þ � wðM WM 0nfigÞ for all i A M ð2Þ

and for all j A M 0, vj ¼ wðM WM 0Þ � wðM WM 0nf jgÞ. The minimum core
payo¤ of a player also follows easily. If i A M is matched with j A M 0 by an
optimal matching m, then ui þ vj ¼ aij ¼ wðM WM 0Þ � wðM WM 0nfi; jgÞ
and, by replacing vj by the marginal contribution of player j, we get

ui ¼ wðM WM 0nf jgÞ � wðM WM 0nfi; jgÞ: ð3Þ

Similarly, v j ¼ wðM WM 0nfigÞ � wðM WM 0nfi; jgÞ.
A point-solution concept for TU games selects for any game ðN; vÞ an

e‰cient payo¤ aðvÞ A Rn. In the next section we study the t-value as a point-
solution for the assignment game.

3. The t-value of an assignment game

The t-value was introduced by Tijs (1981) and it is essentially a compromise
value between an upper bound payo¤ vector and a lower bound payo¤ vector
for the game. If ðN; vÞ is a cooperative TU game, let MðvÞ A Rn be the vector
whose coordinates are the marginal contribution of each player to the grand
coalition,

MiðvÞ ¼ vðNÞ � vðNnfigÞ; for all i A N:

The vector MðvÞ is called the utopia vector and each MiðvÞ can be regarded as
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a maximal payo¤ player i can expect to obtain, as MiðvÞ is an upper bound
(not always attainable) for player i ’s payo¤ in the core of the cooperative
game.

By using the utopia vector, we can now compute what remains for player
i A N when coalition S forms, i A S, and all other players in S are paid their
utopia payo¤. The remainder for player i, RvðS; iÞ is defined by

RvðS; iÞ ¼ vðSÞ �
X

j ASnfig
MjðvÞ:

The vector mðvÞ A Rn, defined by

miðvÞ ¼ max
fS j i ASg

RvðS; iÞ; for all i A N

is the minimal rights vector. Notice that player i A N can guarantee himself
the payo¤ miðvÞ by o¤ering the members of a suitable coalition (the one where
the above maximum is achieved) their utopia payo¤s.

When the game is balanced, as in the case of the assignment game, it is
straightforward to see that vectors mðvÞ and MðvÞ satisfy the following
inequalities

miðvÞa MiðvÞ; for all i A N ð4Þ

X

i AN

miðvÞa vðNÞa
X

i AN

MiðvÞ: ð5Þ

The t-value is then defined as the unique e‰cient payo¤ vector on the line
segment between mðvÞ and MðvÞ. Formally,

tðvÞ ¼ lmðvÞ þ ð1� lÞMðvÞ;

where l A ½0; 1� is unique satisfying
P

i AN tiðvÞ ¼ vðNÞ.
In some games the t-value does not lie in the core. This is not the case for

the assignment game.
Notice first that, in the case of the assignment game, the utopia payo¤s,

MiðwÞ ¼ wðM WM 0Þ � wðM WM 0nfigÞ, are reasonable upper bounds, as
each player attains his utopia payo¤ at least in one core allocation, either
ðu; vÞ or ðu; vÞ. As a consequence, the minimal rights vector also has full
meaning in this case.

We first prove that the minimal rights payo¤ for each optimally matched
player is his marginal contribution to the coalition that remains once his
partner has left.

Proposition 1. If ði�; j�Þ A m, where m is an optimal assignment of ðM WM 0;wÞ,
then

mi� ðwÞ ¼ wðM WM 0nf j�gÞ � wðM WM 0nfi�; j�gÞ ¼ ui� ð6Þ

mj� ðwÞ ¼ wðM WM 0nfi�gÞ � wðM WM 0nfi�; j�gÞ ¼ vj� ð7Þ
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Proof: From its definition, mi� ðwÞ ¼ maxfS j i� ASg wðSÞ �
P

i ASnfi�gMiðwÞ and,
taking coalition S ¼ fi�; j�g, we obtain

mi� ðwÞb wði�; j�Þ �Mj� ðwÞ ¼ ai� j� � ðwðM WM 0Þ � wðM WM 0nf j�gÞÞ

¼ wðM WM 0nf j�gÞ �
X

ði; jÞ A m
ði; jÞ0ði�; j�Þ

aij

¼ wðM WM 0nf j�gÞ � wðM WM 0nfi�; j�gÞ:

Moreover, for all S JM WM 0 containing i�, and taking into account (2)
and (3), we obtain

wðM WM 0nf j�gÞ � wðM WM 0nfi�; j�gÞ þ
X

j ASnfi�g
MjðwÞ

¼ ui� þ
X

i A ðSnfi�gÞXM

MiðwÞ þ
X

j ASXM 0
MjðwÞb

¼ ui� þ
X

i A ðSnfi�gÞXM

ui þ
X

j ASXM 0
vj ¼ ðu; vÞðSÞb wðSÞ:

Then, wðM WM 0nf j�gÞ � wðM WM 0nfi�; j�gÞb wðSÞ �
P

j ASnfi�gMjðwÞ and

hence wðM WM 0nf j�gÞ � wðM WM 0nfi�; j�gÞ ¼ mi� ðwÞ, while a similar
argument proves that wðM WM 0nfi�gÞ � wðM WM 0nfi�; j�gÞ ¼ mj� ðwÞ.

Now the t-value can be easily computed.

Theorem 1. Let ðM WM 0;wÞ be an assignment game and m an optimal
matching.

1. If a player k A M WM 0 is not matched by m, then tkðwÞ ¼ 0.
2. If players i� and j� are matched by m, ði�; j�Þ A m, then

ti� ðwÞ

¼ wðM WM 0Þ � wðM WM 0nfi�gÞ þ wðM WM 0nf j�gÞ � wðM WM 0nfi�; j�gÞ
2

ð8Þ

tj� ðwÞ

¼ wðM WM 0Þ � wðM WM 0nf j�gÞ þ wðM WM 0nfi�gÞ � wðM WM 0nfi�; j�gÞ
2

ð9Þ

Proof: 1) If k A M WM 0 is not assigned by m, then MkðwÞ ¼ wðM WM 0Þ �
wðM WM 0nfkgÞ ¼ 0 and mkðwÞ ¼ maxk AS RwðS; kÞb wðkÞ ¼ 0. From in-
equality (4), tkðwÞ ¼ 0.
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2) Assume ði�; j�Þ A M �M 0 are matched by the optimal assignment m of
ðM WM 0;wÞ. To see that the midpoint of the line segment between the utopia
vector MðwÞ and the minimal rights vector mðwÞ is the t-value of the assign-
ment game ðM WM 0;wÞ, we have to prove only that

mðwÞþMðwÞ
2 is an e‰cient

allocation, which is a direct consequence of proposition 1, since

ðmðwÞ þMðwÞÞðM WM 0Þ ¼
X

ði; jÞ A m

½ðmiðwÞ þMiðwÞÞ þ ðmjðwÞ þMjðwÞÞ�

¼
X

ði; jÞ A m

2ðwðM WM 0Þ � wðM WM 0nfi; jgÞ

¼ 2
X

ði; jÞ A m

aij ¼ 2wðM WM 0Þ:

The expression of the t-value given in the above theorem can be rewritten
taking into account that for any pair ði�; j�Þ A m, it holds ai� j� ¼ wðM WM 0Þ �
wðM WM 0nfi�; j�gÞ, and we then obtain:

ti� ðwÞ ¼
ai� j� � wðM WM 0nfi�gÞ þ wðM WM 0nf j�gÞ

2
ð10Þ

tj� ðwÞ ¼
ai� j� � wðM WM 0nf j�gÞ þ wðM WM 0nfi�gÞ

2
ð11Þ

Moreover, by Demange (1982), MðwÞ ¼ ðu; vÞ and, by proposition 1
above, mðwÞ ¼ ðu; vÞ, where ðu; vÞ and ðu; vÞ are, respectively, the buyers-
optimal and the sellers-optimal core allocations. In other words, the utopia
payo¤ vector is defined by the maximum amount each player can obtain in
the core of the assignment game, and the minimum rights vector is based on
the minimum amount each player can get in the core. An interesting expres-
sion of the t-value follows from this remark.

Corollary 1. For any assignment game ðM WM 0;wÞ, the t-value is the midpoint
between the buyers-optimal and the sellers-optimal core allocation,

tðwÞ ¼ ðu; vÞ þ ðu; vÞ
2

; ð12Þ

and hence it is a core allocation.

From the above corollary, the t-value of an assignment game coincides
with the fair solution or fair division point, the solution concept defined by
Thompson (1981) for this class of games as the midpoint of the segment
determined by the buyers-optimal and the sellers-optimal core allocations.

To compute the t value of an assignment game ðM WM 0;wÞ we need
only wðM WM 0Þ and the marginal contributions of all players on one side of
the market. It is well known that wðM WM 0Þ follows from the solution of
a linear program (Shapley and Shubik, 1972). We can also obtain all the
marginal contributions of players on one side of the market, for instance
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wðM WM 0Þ � wðM WM 0nfigÞ for all i A M, as the first m variables in the
solution of the linear program

max
X

i AM

xi

subject to xi þ xj b aij; for all i A M and j A M 0

X

i AM

xi þ
X

j AM 0
xj ¼ wðM WM 0Þ

xi b 0; xj b 0; for all i A M and j A M 0:

This last fact can be easily justified as all players on the same side of the
market attain their maximum core payo¤s, which are their marginal con-
tributions, in the same core allocation, which is ðu; vÞ. Therefore, to compute
the t-value of an assignment game, apart from e‰ciency, we only need to
solve two linear programs, one for each side of the market.

4. Comparative statics

In the general framework of cooperative TU games, a monotonicity property
called coalitional monotonicity is proved to be incompatible with core selection
for games with at least five players (Young, 1985). The above impossibility
result is extended by Housman and Clark (1998) for games with at least four
players, by means of a 2� 2-assignment game for which no point-solution can
be defined that is a core selection and preserves coalitional monotonicity.

A point-solution a : G N ! Rn, is coalitionally monotonic if for any two
games v; v 0 A G N such that there exists q0T JN with vðTÞa v 0ðTÞ and
vðSÞ ¼ v 0ðSÞ for all S 0T , we have aiðvÞa aiðv 0Þ for all i A T . That is to say,
when one coalition increases its worth while the other coalitions remain the
same, the players in this coalition cannot be paid less than in the original
game.

Nevertheless coalitional monotonicity does not seem a sensible require-
ment for assignment games because when the worth of only one coalition is
increased, the resulting game is no longer an assignment game. What is of
interest in an assignment game is to study the behaviour of a solution when
one entry in the assignment matrix increases.

Let AMWM 0 be the set of assignment games with set of buyers M and set
of sellers M 0. Given an assignment game w A AMWM 0 defined by matrix
A ¼ ðaijÞði; jÞ AM�M 0 , consider the assignment game w 0 defined by matrix
A 0 ¼ ða 0ijÞði; jÞ AM�M 0 where there exists a pair ði�; j �Þ A M �M 0 such that

ai �j � a a 0i �j � and

aij ¼ a 0ij for all ði; jÞ0 ði�; j �Þ:

We denote this fact by A aði �; j �Þ A 0.
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The above movement in the matrix entries has the following e¤ect in
the characteristic function: for all S JN ¼M WM 0, if fi�; j �gUS, then
wðSÞ ¼ w 0ðSÞ, while if fi�; j �gJS, then wðSÞa w 0ðSÞ. Moreover, the opti-
mal matchings may also change.

Definition 1. Let w;w 0 A AMWM 0 be defined by matrices A and A 0.
A point-solution a in AMWM 0 is pairwise monotonic1 if and only if whenever

A aði; jÞ A 0 we have aiðwÞa aiðw 0Þ and ajðwÞa ajðw 0Þ.

If the entry aij increases, ceteris paribus for the rest of entries, then, by the
above remark, the worth of all coalitions containing players i and j may also
increase and therefore it seems natural to require the solution to be monotonic
in the sense that these two players should not obtain a smaller payo¤. Let us
now see that this monotonicity property holds for the buyers-optimal core
allocation and the sellers-optimal core allocation, and thus also for any fixed
convex combination of both.

In theorem 2 which follows, when we prove that the buyers-optimal core
allocation is pairwise monotonic, we use the fact that all marginal contribu-
tions of a player i to a coalition M WM 0nf jg, where j belongs to the opposite
side of the market, are attainable in the core of the assignment game. This
proposition is a consequence of the fact that for each ordering y in the player
set M WM 0, the reduced marginal worth vector rmw

y is an extreme core allo-
cation of the assignment game ðM WM 0;wÞ (Núñez and Rafels, 2003). For
the sake of completeness we give the definition of the reduced marginal worth
vectors.

The reduced marginal worth vectors are inspired by the marginal worth
vectors. For each ordering y ¼ ðk1; k2; . . . ; kn�1; knÞ, the reduced marginal
worth vector rmw

y is a vector in Rmþm 0 where each player receives his marginal
contribution to his set of predecessors, and a reduction of the game is per-
formed in each step: ðrmw

y Þkn
¼ wðk1; k2; . . . ; knÞ � wðk1; . . . ; kn�1Þ and, for all

1 a r < n,

ðrmw
y Þkr
¼ wknkn�1...kr�1ðk1; k2; . . . ; krÞ � wknkn�1...kr�1ðk1; k2; . . . ; kr�1Þ:

To complete the definition of these vectors, as in each step only one player
leaves the game, it only rests to say that the game wkn , which we call kn-
marginal game, is no more that the reduced game à la Davis and Maschler on
coalition M WM 0nfkng and at the payo¤ wðM WM 0Þ � wðM WM 0nfkngÞ.
This means that, for each non empty coalition S JM WM 0nfkng,

wknðSÞ ¼ maxfwðSÞ;wðS W fkngÞ � ðwðM WM 0Þ � wðM WM 0nfkngÞg:

Proposition 2. Let ðM WM 0;wÞ be an assignment game. For all i A M and all
j A M 0, the marginal contribution wðM WM 0nf jgÞ � wðM WM 0nfi; jgÞ is
attained by player i in the core of w, i.e. there exists ðu; vÞ A CðwÞ such that
ui ¼ wðM WM 0nf jgÞ � wðM WM 0nfi; jgÞ.

1 Pairwise monotonicity was already defined in Sasaki (1995), although in his paper attention is
focused on a weaker form of this property. In the present framework of point-solutions, Sasaki’s
weak pairwise monotonicity would demand aiðwÞ þ ajðwÞa aiðw 0Þ þ ajðw 0Þ whenever A aði; jÞ A 0.
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Proof: Take y ¼ ðk1; k2; . . . ; kn�1; knÞ an ordering in M WM 0 such that kn ¼ j
and kn�1 ¼ i. Let us consider the reduced marginal worth vector rmw

y related
to this ordering. From Núñez and Rafels (2003), rmw

y A CðwÞ. We now prove
that ðrmw

y Þi ¼ wðM WM 0nf jgÞ � wðM WM 0nfi; jgÞ.
By the definition of the reduced marginal worth vectors, ðrmw

y Þj ¼
wðM WM 0Þ � wðM WM 0nf jgÞ and ðrmw

y Þi ¼ w jðM WM 0nf jgÞ � w jðM W
M 0nfi; jgÞ, where ðM WM 0nf jg;w jÞ is the marginal game corresponding to
player j and is defined by w jðqÞ ¼ 0 and, for all q0S JM WM 0nf jg,

w jðSÞ ¼ maxfwðSÞ;wðS W f jgÞ � ðwðM WM 0Þ � wðM WM 0nf jgÞÞg:

From the definition, w jðM WM 0nf jgÞ ¼ wðM WM 0nf jgÞ and

w jðM WM 0nfi; jgÞ ¼ maxfwðM WM 0nfi; jg;wðM WM 0nfigÞ

�wðM WM 0Þ þ wðM WM 0nf jgÞg:

But, since players i and j are from di¤erent sides of the market, we know from
Shapley (1962) that

wðM WM 0nfigÞ � wðM WM 0nfi; jgÞa wðM WM 0Þ � wðM WM 0nf jgÞ

and thus w jðM WM 0nfi; jgÞ ¼ wðM WM 0nfi; jgÞ.
Once proved that ðrmw

y Þi ¼ wðM WM 0nf jgÞ � wðM WM 0nfi; jgÞ, this
marginal contribution is attained in CðwÞ.

Theorem 2. The buyers-optimal core allocation and the sellers-optimal core
allocation are pairwise monotonic.

Proof: We prove pairwise monotonicity only for the buyers-optimal core
allocation, as the proof for the sellers-optimal core allocation is analogous and
is left to the reader.

Take ðM WM 0;wÞ and ðM WM 0;w 0Þ two assignment games respectively
defined by matrices A and A 0. Assume there exists one pair ði; jÞ A M �M 0

such that aij < a 0ij while the rest of entries coincide for both matrices. Then,

wðM WM 0nfigÞ ¼ w 0ðM WM 0nfigÞ ð13Þ

wðM WM 0nf jgÞ ¼ w 0ðM WM 0nf jgÞ ð14Þ

wðM WM 0nfi; jgÞ ¼ w 0ðM WM 0nfi; jgÞ ð15Þ

wðM WM 0nfkgÞa w 0ðM WM 0nfkgÞ for all k 0 i; j ð16Þ

Let ðuw; vwÞ and ðuw 0 ; vw 0 Þ be the buyers-optimal core allocation of the
games w and w 0. When proving that uw

i a uw 0
i and vw

j a vw 0
j , we consider three

cases.

Case 1: Assume ði; jÞ A m, where m is an optimal assignment for A. Then m is
an optimal assignment for A 0 and wðM WM 0Þa w 0ðM WM 0Þ. From equa-
tions (13) to (16) above,
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uw
i ¼ wðM WM 0Þ � wðM WM 0nfigÞa w 0ðM WM 0Þ � w 0ðM WM 0nfigÞ

¼ uw 0

i

vw
j ¼ wðM WM 0nf jgÞ � wðM WM 0nfi; jgÞ

¼ w 0ðM WM 0nf jgÞ � w 0ðM WM 0nfi; jgÞ ¼ vw 0

j :

Case 2: Assume ði; jÞ B m, for any optimal assignment of A, but ði; jÞ A m 0 for
some optimal assignment m 0 of A 0. Then, on one side, from wðM WM 0Þa
w 0ðM WM 0Þ, and taking into account equation (13),

uw
i ¼ wðM WM 0Þ � wðM WM 0nfigÞa w 0ðM WM 0Þ � w 0ðM WM 0nfigÞ

¼ uw 0

i :

Moreover, if j was not assigned by some optimal matching of A, then it
follows that vw

j ¼ 0 a vw 0
j . On the other hand, if j is assigned to ij for some

optimal matching m of A, to prove vw
j a vw 0

j it is enough to prove that

wðM WM 0nfijgÞ � wðM WM 0nfij; jgÞ

a wðM WM 0nfigÞ � wðM WM 0nfi; jgÞ; ð17Þ

since, from (13) and (15),

w 0ðM WM 0nfigÞ � w 0ðM WM 0nfi; jgÞ

¼ wðM WM 0nfigÞ � wðM WM 0nfi; jgÞ:

Now, (17) follows because wðM WM 0nfijgÞ � wðM WM 0nfij; jgÞ is the
minimal payo¤ to player j in CðwÞ and wðM WM 0nfigÞ � wðM WM 0nfi; jgÞ,
by proposition 2, is attained by player j in CðwÞ. Then, also in this second
case vw

j a vw 0

j .

Case 3: If ði; jÞ does not belong to an optimal matching in A nor in A 0, then
wðM WM 0Þ ¼ w 0ðM WM 0Þ and an optimal matching m of A is also optimal
for A 0. Then

uw
i ¼ wðM WM 0Þ � wðM WM 0nfigÞ ¼ w 0ðM WM 0Þ � w 0ðM WM 0nfigÞ

¼ uw 0

i :

As in the above case, if j is not assigned by m, then vw
j ¼ 0 and the claim

follows. Otherwise, let ðij; jÞ A m. It follows that vw
j a vw 0

j if and only if

wðM WM 0nfijgÞ � wðM WM 0nfij; jgÞ

a w 0ðM WM 0nfijgÞ � w 0ðM WM 0nfij ; jgÞ;
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since m is an optimal matching in both A and A 0. Last inequality holds as it is
straightforward to see that wðM WM 0nfij; jgÞ ¼ w 0ðM WM 0nfij; jgÞ, while
wðM WM 0nfijgÞa w 0ðM WM 0nfijgÞ from inequality (16).

We have thus proved that there exist point-solutions in the class of
assignment games that are core selection and pairwise monotonic. In fact
there is an infinity of them. As a result of the above theorem, all point-
solutions defined as a fixed convex combination of the buyers-optimal and the
sellers-optimal core allocations are pairwise monotonic and thus the t-value is
pairwise monotonic.

Corollary 2. Let l A ½0; 1� and al : AMWM 0 ! Rmþm 0 be the point-solution in
AMWM 0 defined by

alðwÞ ¼ lðuw; vwÞ þ ð1� lÞðuw; vwÞ for all w A AMWM 0 :

Then al is a pairwise monotonic core selection.

However, not all solutions that are core selections are also pairwise mon-
otonic.

Another monotonicity property is incompatible with core selections for the
assignment game. Sprumont (1990) defines population monotonic allocation
schemes and proves that no assignment game with at least a 2� 2 submatrix
with positive entries has a population monotonic allocation scheme.

An allocation scheme for a game ðN; vÞ is a payo¤ vector ðxi;SÞi AS for each
nonempty coalition S JN. It is said to be population monotonic ifP

i AS xi;S ¼ vðSÞ for all S JN and, whenever S JT , it holds xi;S a xi;T for
all i A S. That is to say, in a population monotonic allocation scheme, when-
ever there is a new entrant, all existing agents are better o¤.

However, in an assignment game there are two types of agents and the
possibilities of trading of an agent can decrease when there is a new entrant on
his side of the market.

Let us now consider the class A of assignment games with any (finite)
set of buyers and sellers. Take the assignment game ðM WM 0;wÞ defined
by a matrix A ¼ ðaijÞði; jÞ AM�M 0 and assume, without loss of generality, that

a new buyer, i� A M joins the market. Let ððM W fi�gÞWM 0;w 0Þ be a
new assignment game defined by A 0 ¼ ða 0ijÞði; jÞ A ðM W fi �gÞ�M 0 where a 0ij ¼ aij if

ði; jÞ A M �M 0. From Mo (1988), if ðuw; vwÞ and ðuw 0 ; vw 0 Þ are, respectively,
the buyers-optimal core allocation of the games w and w 0, then uw 0

i a uw
i , for

all i A M, while vw 0
j b vw

j for all j A M 0. Similarly, if ðuw; vwÞ and ðuw 0 ; vw 0 Þ are

the sellers-optimal core allocation of the games w and w 0, then uw 0
i a uw

i while
vw 0

j b vw
j .

We then say that such a solution defined in A is type monotonic (see
Brânzei et al, 2001).

Definition 2. A point-solution a in A is type monotonic if whenever there is a
new entrant k:

1. If k is a buyer then aiðwÞb aiðw 0Þ for all i A M and ajðwÞa ajðw 0Þ for all
j A M 0.

2. If k is a seller, aiðwÞa aiðw 0Þ for all i A M and ajðwÞb ajðw 0Þ for all j A M 0.
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The same qualitative e¤ects are found for all point-solutions defined as a
fixed convex combination of the buyers-optimal and the sellers-optimal core
allocations: for any agent i A M WM 0, when an agent of the same side enters
the market, player i ’s payo¤ does not increase and if an agent of the opposite
side enters the market, player i ’s payo¤ does not decrease.

Proposition 3. Let l A ½0; 1� and al be the point-solution in A defined by

alðwÞ ¼ lðuw; vwÞ þ ð1� lÞðuw; vwÞ for all w A A:

Then al is type monotonic.

The proof is straightforward from Mo (1988) and is left to the reader. Notice
that as an immediate consequence the t-value is type monotonic.
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