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Abstract. We provide some formulae for the z-value in the case of the assign-
ment game and prove that it coincides with the midpoint between the buyers-
optimal and the sellers-optimal core allocations. As a consequence, the z-value
of an assignment game always lies in the core. Some comparative statics of
this solution is analyzed: the pairwise monotonicity and the effect of new
entrants.
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1. Introduction

Since its definition by Shapley and Shubik (1972), the assignment game has
been studied from a number of perspectives, but above all from the viewpoint
of the core. The aim of this paper is to analyze a point-solution for this class
of games which has interesting properties: the z-value (Tijs, 1981), a well
known solution in the general framework of cooperative TU games. Other
well known solution concepts are the Shapley value (Shapley, 1953) and the
nucleolus (Schmeidler, 1969). The Shapley value of an assignment game may
lie outside the core; this is an important drawback. For its part, the nucleolus
of the assignment game, which is always a core allocation although is not easy
to compute, has been studied in Solymosi and Raghavan (1994), who give an
algorithm to find it.

In section three, an expression for the z-value of an assignment game is
obtained. This expression implies that for the assignment game, unlike games
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in general, the 7-value is a core allocation. In addition to this, for games with
many players, the t-value follows from the solution of a few linear programs.

Finally, in section four, some comparative statics are studied. Although
core selection and coalitional monotonicity are not compatible in the general
framework of cooperative games (Young, 1985), not even in the subclass of
assignment games with at least two agents on each side of the market (Hous-
man and Clark, 1998), there is a more suitable monotonicity property for
the assignment game, which we name pairwise monotonicity; we prove the -
value to be pairwise monotonic. Similarly, although population monotonic
allocations schemes do not exist in assignment games with a 2 x 2 positive
submatrix (Sprumont, 1990), the z-value is proved to be type-monotonic, a
property which better reflects the two-sided structure of the market. Some
definitions, notations and remarks are needed first.

2. Definitions and preliminaries

Assignment games were introduced by Shapley and Shubik as a model for
a two-sided market with transferable utility. The player set consists of the
union of two finite disjoint sets M U M’, where M is the set of buyers and M’
is the set of sellers. We denote by n the cardinality of M U M', n =m + m’,
where m and m' are, respectively, the cardinalities of M and M’. Given a non
negative matrix 4 = (d) ; ;e ar< > Where ay is the joint profit that the mixed

pair coalition {i,j} can obtain if they trade, a cooperative game can be
defined where the worth of coalition {7, j} is w(i, j) = a; = 0. The matrix 4
determines the worth of any other coalition Su T, where S <€ M and
T = M’'. A matching (or assignment) between S and 7 is a subset x of S x T
such that each player belongs at most to one pair in . Then, w(SUT) =
max{}_ yc,aj|ue-M(S,T)}, 4(S,T) being the set of matchings between
S and T. It is assumed as usual that a coalition formed only by sellers or only
by buyers has worth zero. We denote the game as (M u M’ w). We say a
matching u e .#(M,M’) is optimal if for all x' e #(M,M'), >, ;. @ =
>(i.j)ew @y and we denote by .#"(A4) the set of optimal matchings for the
grand coalition. Moreover, we say that a buyer i € M is not assigned by u if
(i,j) ¢ ufor all j € M’ (and similarly for sellers).

Assignment games are examples of cooperative games with transferable
utility (TU). A TU game is a pair (N,v), where N = {1,2,...,n} is its finite
player set and v : 2V — R its characteristic function satisfying v() = 0. The
set of games with the above player set is denoted by GV. A payoff vector is
x € R" and, for every coalition S = N we write x(S) := >, _ X; the payoff to
coalition S (where x(J) = 0). The core of the game (N, v) consists of those
payoff vectors that allocate the worth of the grand coalition (efficient payoffs)
in such a way that every other coalition receives at least its worth by the
characteristic function: C(v) = {x € R" | x(N) = v(N) and x(S) > v(S) for all
S < N}. An interesting class of games with nonempty core is the class of
convex games (Shapley, 1971).

Assignment games are not in general convex. Roughly speaking, an
assignment game is convex when it is defined by a diagonal matrix. However,
Shapley and Shubik prove that the core of the assignment game (M v M’ w)
is nonempty and can be represented in terms of an optimal matching in



The assignment game: the t-value 413

M U M’. Let u be one such optimal matching. Then

u; >0, forallie M;v; >0, forall je M’
ui+ vy =a;if (i,j) e u
Cw) = (u,0) e RMM' |y v > ay if (i, ) ¢ (1)
u; = 0 if i not assigned by u
v; = 0 if j not assigned by .

Moreover, if we denote for all i € M,

;= max u; and u;,= min u;,
(u,v) e C(w) (u,v) e C(w)

and for all j e M’,

= max v; and v;= min v,
(u,v) e C(w) (u,v) e C(w)

it happens that all players on the same side of the market achieve their maxi-
mum core payoff in the same core allocation. As a consequence, there are two
special extreme core allocations: in one of them, (#, v), each buyer achieves his
maximum core payoff and in the other, (u, ), each seller does.

Demange (1982) and Leonard (1983) prove that this maximum payoff of a
player in the core of the assignment game is his marginal contribution,

a=wMOM')—w(MouM\{i}) forallie M (2)

and for all je M', 5; =w(M uM') —w(M U M'\{j}). The minimum core
payoff of a player also follows easily. If i € M is matched with j € M’ by an
optimal matching x4, then wu; + 70 =a; =w(M U M')—w(MuM\{i,;})
and, by replacing 7; by the marginal contribution of player j, we get

uj = w(M o M'\{j}) = w(M o M'\{i, j}). 3)

Similarly, v; = w(M v M'\{i}) —w(M o M'\{i, j}).

A point-solution concept for TU games selects for any game (N,v) an
efficient payoff o(v) € R". In the next section we study the t-value as a point-
solution for the assignment game.

3. The z-value of an assignment game

The z-value was introduced by Tijs (1981) and it is essentially a compromise
value between an upper bound payoff vector and a lower bound payoff vector
for the game. If (N, v) is a cooperative TU game, let M (v) € R” be the vector
whose coordinates are the marginal contribution of each player to the grand
coalition,

M;(v) = v(N) —v(N\{i}), forallieN.

The vector M (v) is called the utopia vector and each M;(v) can be regarded as
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a maximal payoff player i can expect to obtain, as M;(v) is an upper bound
(not always attainable) for player i’s payoff in the core of the cooperative
game.

By using the utopia vector, we can now compute what remains for player
i € N when coalition S forms, i € S, and all other players in S are paid their
utopia payoff. The remainder for player i, R"(S,i) is defined by

RS, ) =v(S)~ 3 My(v),
jeS\{i}

The vector m(v) € R”, defined by

m;(v) = max RY(S,i), forallieN
{S|ieS})

is the minimal rights vector. Notice that player i € N can guarantee himself
the payoff m;(v) by offering the members of a suitable coalition (the one where
the above maximum is achieved) their utopia payoffs.

When the game is balanced, as in the case of the assignment game, it is
straightforward to see that vectors m(v) and M(v) satisfy the following
inequalities

m;(v) < M;(v), forallie N (4)
> mi(v) < v(N) <> My(v). (5)
ieN ieN

The 7-value is then defined as the unique efficient payoff vector on the line
segment between m(v) and M (v). Formally,

7(v) = Am(v) + (1 — )M (v),

where 4 € [0, 1] is unique satisfying Y, _y 7:(v) = v(N).

In some games the z-value does not lie in the core. This is not the case for
the assignment game.

Notice first that, in the case of the assignment game, the utopia payoffs,
Mi(w)=w(M oo M) —wMouM\{i}), are reasonable upper bounds, as
each player attains his utopia payoff at least in one core allocation, either
(@t,v) or (u,0). As a consequence, the minimal rights vector also has full
meaning in this case.

We first prove that the minimal rights payoff for each optimally matched
player is his marginal contribution to the coalition that remains once his
partner has left.

Proposition 1. If (i., j.) € u, where p is an optimal assignment of (M v M’ w),
then

i (9) = w(M O M\LY) = w(M O M\{i., 1.}) = u, (6)

mj. (w) = w(M o M\{i.}) — w(M v M"\{i., j.}) = v; ()
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Proof: From its definition, m;, (w) = maxs|;, csy w(S) = X;e s 1.y Mi(w) and,
taking coalition S = {i., j. }, we obtain

mi, (W) = wis, jo) = Mj.(w) = @i — (w(M 0 M') —w(M v M"\{}.}))

%

=w(MuM\{j.}) - Z ajj
<i,_1(‘§’i)<fffw
=w(M o M\{j.}) —wM o M"\{i, j.}).

Moreover, for all S € M u M’ containing i., and taking into account (2)
and (3), we obtain

W(M U MN[iY) —wM o M\{ie )+ Y M)

jeS\{i}
=u, + Z Mi(w) + Z M;(w) >
ie(S\{i.})nM jeSnM’
=u+ Y wt Y T=wo)(S) = w(s).
ie(S\{i.})nM jeSnM’

Then, w(M U MN\{}.}) — w(M O M\{i., j.}) = w(S) = o510, M(w) and
hence w(M u M'\{j.}) — w(M v M'\{i., j.}) =m; (w), while a similar
argument proves that w(M v M\ {i.}) — w(M v M'\{i., j.}) = m; (w).

Now the z-value can be easily computed.

Theorem 1. Let (M u M',w) be an assignment game and p an optimal
matching.

1. If a player k € M U M’ is not matched by u, then t;(w) = 0.
2. If players i. and j. are matched by u, (i, j.) € u, then

7, (W)

_ wM o M) —wMouM\{i})+wMouM\{j}) —wMouM\{i, j})
2

(8)
7. (w)

_ wMouM)—wMouM\{j})+wMoM\{i}) —wMouM"\{i,j})
2

©)

Proof: 1) If ke M u M’ is not assigned by y, then My(w) =w(M o M') —
w(M U M'\{k}) =0 and my(w) = maxgcs R"(S,k) > w(k) =0. From in-
equality (4), 7x(w) = 0.
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2) Assume (iy, j.) € M x M' are matched by the optimal assignment u of
(M U M’ ;w). To see that the midpoint of the line segment between the utopia
vector M (w) and the minimal rights vector m(w) is the z-value of the assign-
ment game (M v M’ w), we have to prove only that w is an efficient
allocation, which is a direct consequence of proposition 1, since

(m(w) + Mw)(MUM') = > [(mi(w) + Mi(w)) + (m;(w) + M;(w))]
(i,)) ep

= Z 2w(M o M) —w(MouM\{i,j})
(i.))en

=2 gy =2w(MuUM).
(i,j)en

The expression of the z-value given in the above theorem can be rewritten
taking into account that for any pair (i., j.) € &, it holds a; ;, = w(M v M') —
w(M v M'\{i., j.}), and we then obtain:

aij. —w(M v M\{i.}) + w(M v M"\{}.})

7, (W) = > (10)
£ () = 2T O ML+ (M M) )

Moreover, by Demange (1982), M(w) = (4,0) and, by proposition 1
above, m(w) = (u,v), where (&,v) and (u,7) are, respectively, the buyers-
optimal and the sellers-optimal core allocations. In other words, the utopia
payoff vector is defined by the maximum amount each player can obtain in
the core of the assignment game, and the minimum rights vector is based on
the minimum amount each player can get in the core. An interesting expres-
sion of the z-value follows from this remark.

Corollary 1. For any assignment game (M © M’ w), the t-value is the midpoint
between the buyers-optimal and the sellers-optimal core allocation,

t(w) = Llw, (12)

and hence it is a core allocation.

From the above corollary, the z-value of an assignment game coincides
with the fair solution or fair division point, the solution concept defined by
Thompson (1981) for this class of games as the midpoint of the segment
determined by the buyers-optimal and the sellers-optimal core allocations.

To compute the 7 value of an assignment game (M u M’ ,w) we need
only w(M u M) and the marginal contributions of all players on one side of
the market. It is well known that w(M u M') follows from the solution of
a linear program (Shapley and Shubik, 1972). We can also obtain all the
marginal contributions of players on one side of the market, for instance
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wMouM')—w(MouM'\{i}) for all ie M, as the first m variables in the
solution of the linear program

max E X;

ieM

subject to x; +x; > a;;, forallie M andje M’

Zx,-l—ij w(M o M)

ieM jeM’

x;>0,x,>0, forallie M andjeM'

This last fact can be easily justified as all players on the same side of the
market attain their maximum core payoffs, which are their marginal con-
tributions, in the same core allocation, which is (i, v). Therefore, to compute
the z-value of an assignment game, apart from efficiency, we only need to
solve two linear programs, one for each side of the market.

4. Comparative statics

In the general framework of cooperative TU games, a monotonicity property
called coalitional monotonicity is proved to be incompatible with core selection
for games with at least five players (Young, 1985). The above impossibility
result is extended by Housman and Clark (1998) for games with at least four
players, by means of a 2 x 2-assignment game for which no point-solution can
be defined that is a core selection and preserves coalitional monotonicity.

A point-solution « : GV — R”, is coalitionally monotonic if for any two
games v,v’ € GV such that there exists & # T = N with v(T) < v'(T) and
v(S) =0'(S) for all S # T, we have o;(v) < o;(v’) for all i € T. That is to say,
when one coalition increases its worth while the other coalitions remain the
same, the players in this coalition cannot be paid less than in the original
game.

Nevertheless coalitional monotonicity does not seem a sensible require-
ment for assignment games because when the worth of only one coalition is
increased, the resulting game is no longer an assignment game. What is of
interest in an assignment game is to study the behaviour of a solution when
one entry in the assignment matrix increases.

Let o7y, be the set of assignment games with set of buyers M and set
of sellers M’. Given an assignment game we,sz/Mqu defined by matrix
A = (ay); jje mxpr» consider the assignment game w’ defined by matrix

A" = (ay); jye mxy Where there exists a pair (i, j*) € M x M’ such that

ai*j* S a[*/* and
ay =aj; forall (i, j) # (i*, j").

We denote this fact by 4 < j+) A"
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The above movement in the matrix entries has the following effect in
the characteristic function: for all S N=Mu M’ if {i* j*} £, then
w(S) = w'(S), while if {i*, j*} = S, then w(S) < w’'(S). Moreover, the opti-
mal matchings may also change.

Definition 1. Let w,w' € o/y; 0 be defined by matrices A and A’.
A point-solution o in oy, is pairwise monotonic® if and only if whenever
A < j A" we have o;(w) < a;(w') and o;(w) < o;(w').

If the entry aj; increases, ceteris paribus for the rest of entries, then, by the
above remark, the worth of all coalitions containing players /i and j may also
increase and therefore it seems natural to require the solution to be monotonic
in the sense that these two players should not obtain a smaller payoff. Let us
now see that this monotonicity property holds for the buyers-optimal core
allocation and the sellers-optimal core allocation, and thus also for any fixed
convex combination of both.

In theorem 2 which follows, when we prove that the buyers-optimal core
allocation is pairwise monotonic, we use the fact that all marginal contribu-
tions of a player i to a coalition M U M'\{j}, where j belongs to the opposite
side of the market, are attainable in the core of the assignment game. This
proposition is a consequence of the fact that for each ordering 6 in the player
set M U M’, the reduced marginal worth vector rm; is an extreme core allo-
cation of the assignment game (M u M’ ,w) (Nufez and Rafels, 2003). For
the sake of completeness we give the definition of the reduced marginal worth
vectors.

The reduced marginal worth vectors are inspired by the marginal worth
vectors. For each ordering 0 = (kl,kz,... kn—1,k,), the reduced marginal
worth vector rmy’ is a vector in R where each player receives his marginal
contribution to his set of predecessors, and a reduction of the game is per-
formed in each step: (rmy), = w(ki, ka, ..., k) —w(ki, ..., ky-1) and, for all
1 <r<n,

(rmy), = whiknvkv(foy oy o k) — whRe ke (g ey LK),

To complete the definition of these vectors, as in each step only one player
leaves the game, it only rests to say that the game wh which we call k,-
marginal game, is no more that the reduced game a la Davis and Maschler on
coalition M u M'\{k,} and at the payoff w(M u M') —w(M v M'\{k,}).
This means that, for each non empty coalition S = M v M’'\{k,},

wh (8) = max{w(S), w(S U {ky}) — (WM O M') —w(M o M'\{k,})}.

Proposition 2. Let (M v M’ ,w) be an assignment game. For all i € M and all

jeM', the marginal contribution w(M v M'\{j}) —w(M o M'\{i, j}) is

attained by player i in the core of w, i.e. there exists (u,v) € C(w) such that
=w(Mu M"\{j}) —w(M o M"\{i,j}).

! Pairwise monotonicity was already defined in Sasaki (1995), although in his paper attention is
focused on a weaker form of this property. In the present framework of point-solutions, Sasaki’s
weak pairwise monotonicity would demand o;(w) + o;j(w) < a;(w’) + o;;(w”) whenever 4 <(; ; 4’
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Proof: Take 0 = (ky,k», ..., ky_1,k,) an ordering in M U M’ such that k,, =
and k,_; = i. Let us consider the reduced marginal worth vector rm; related
to this ordering. From Nufez and Rafels (2003), rm)’ € C(w). We now prove
that (rmy), = w(M v M'\{j}) — w(M v M'\{i, j}).

By the definition of the reduced marginal worth vectors, (rmy). =
wM oM —wMouM\{j}) and (rm));,=w/(M o M'\{j})—w/(M U
M'\{i, j}), where (M u M'\{j}, w/) is the marginal game corresponding to
player j and is defined by w/(f) = 0 and, for all & # S = M v M'\{,},

w/(S) = max{w(S), w(S U {j}) = (WM v M') —w(M v M"\{j}))}.

From the definition, w/(M U M'\{j}) = w(M U M'\{;}) and

w/ (M M'\{i, j}) = max{w(M v M'\{i, j},w(M v M"\{i})
—w(M U M)+ w(M UMDY,

But, since players i and j are from different sides of the market, we know from
Shapley (1962) that

w(M o M\{i}) —w(M o M'\{i,j}) <wMuM)—wMuM\{j})

and thus w/(M v M'\{i, j}) = w(M v M'\{i, j}).
Once proved that (rmy)); =w(M o M'\{j}) —w(M o M'\{i, j}), this
marginal contribution is attained in C(w).

Theorem 2. The buyers-optimal core allocation and the sellers-optimal core
allocation are pairwise monotonic.

Proof: We prove pairwise monotonicity only for the buyers-optimal core
allocation, as the proof for the sellers-optimal core allocation is analogous and
is left to the reader.

Take (M U M',w) and (M U M’ ,w') two assignment games respectively
defined by matrices 4 and 4’. Assume there exists one pair (i, j) e M x M’
such that a; < a;; while the rest of entries coincide for both matrices. Then,

w(M O M\{i}) = /(M U M\{i}) (13)
w(M o M\{j}) =w'(MuM\{j}) (14)
w(M U M\{i, j}) = w'(M v M'\{i, j}) (15)
w(M O M\{kY) <w' (Mo M\{k}) forallk#i,;j (16)

Let (@”,v") and (@",v"") be the buyers-optimal core allocation of the
games w and w’. When proving that &} < @" and v < v}, we consider three
cases.

Case 1: Assume (i, j) € u, where p is an optimal assignment for 4. Then u is
an optimal assignment for 4’ and w(M v M') < w'(M u M’). From equa-
tions (13) to (16) above,



420 M. Nuiiez, C. Rafels

' = w(M M) —wMoM\{i}) <w(MoM)—w(MoM\{i})

’
o
= i}

=w(M o M\{j}) —w(M o M\{i,j})
= w/(M O M\{j}) —w' (ML M\{i,j}) =0

Case 2: Assume (i, j) ¢ u, for any optimal assignment of 4, but (i, j) € ¢’ for
some optimal assignment x4’ of A’. Then, on one side, from w(M U M') <

w'(M u M’), and taking into account equation (13),

' =wMouM)—wMoM\{i}) <w(MoM')—w(MouM\{i})

N

-
.

Moreover, if j was not assigned by some optimal matching of A, then it
follows that v’ =0 < vj” On the other hand if j is assigned to j; for some
optimal matching x of A4, to prove v}’ < v” it is enough to prove that

w(M o M\ {i}) = w(M v M\{ij, j})
< w(M U M\{i}) = w(M U M\{i, j}), (17)
since, from (13) and (15),
w' (M o M"\{i}) —w'(M o M"\{i, j})
— (M U M\{i}) = w(M UM\, j}).

Now, (17) follows because w(M v M'\{i;}) —w(M o M"\{i;, j}) is the
minimal payoff to player jin C(w) and w(M v M"\{i}) — w(M v M'\{i, j}),
by proposmon 2, is attained by player j in C(w). Then, also in this second
case v} < vy
Case 3: If (i, j) does not belong to an optimal matching in 4 nor in 4’, then
w(MuM')=w'(MuM') and an optimal matching u of 4 is also optimal
for A'. Then

@' =wMoM)—wMoM\{i})=w(MoM)—w(MuM\{i})

As in the above case, if j is not assigned by x, then v}’ = 0 and the claim
follows. Otherwise, let (i, j) € p. It follows that v} < v” 1f and only if

w(M o M\{if}) —w(M o M"\{j;, j})

</ (M U M\(}) = w' (M 0 M\ (i, ),
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since u is an optimal matching in both 4 and A’. Last inequality holds as it is
straightforward to see that w(M v M'\{i;, j}) = w'(M v M'\{j;, j}), while
w(M o M"\{i;}) <w'(M v M'\{i;}) from inequality (16).

We have thus proved that there exist point-solutions in the class of
assignment games that are core selection and pairwise monotonic. In fact
there is an infinity of them. As a result of the above theorem, all point-
solutions defined as a fixed convex combination of the buyers-optimal and the
sellers-optimal core allocations are pairwise monotonic and thus the z-value is
pairwise monotonic.

Corollary 2. Let A€[0,1] and o; : Lypom — R be the point-solution in
Aoy defined by

o, (w) =A@", ")+ (1 = )", 8") for all w e pyrom-
Then o, is a pairwise monotonic core selection.

However, not all solutions that are core selections are also pairwise mon-
otonic.

Another monotonicity property is incompatible with core selections for the
assignment game. Sprumont (1990) defines population monotonic allocation
schemes and proves that no assignment game with at least a 2 x 2 submatrix
with positive entries has a population monotonic allocation scheme.

An allocation scheme for a game (N, v) is a payoff vector (x; s),. ¢ for each
nonempty coalition S = N. It is said to be population monotonic if
Zlesx, s = v(S) for all S < N and, whenever S < 7, it holds x; 5 < x; 7 for
all i € S. That is to say, in a populatlon monotonic allocatlon scheme, when-
ever there is a new entrant, all existing agents are better off.

However, in an assignment game there are two types of agents and the
possibilities of trading of an agent can decrease when there is a new entrant on
his side of the market.

Let us now consider the class .o/ of assignment games with any (finite)
set of buyers and sellers. Take the assignment game (M u M’ w) defined
by a matrix A = (aj); jjcyxy and assume, without loss of generality, that
a new buyer, i*e€ M joins the market. Let (M u{i*})uM',w') be a
new assignment game defined by 4’ = (a}); je (o (- )’ where aj; = aj; if
(i,j) € M x M'. From Mo (1988), if (#",v") and (@"',v"") are, respectively,
the buyers- optlmal core allocation of the games w and w’, then u” < u“ for
all i € M, while v”’ > v}/ for all j € M'. Similarly, if (u", ”) and ( W U” ) are
the sellers-optlmal core allocatlon of the games w and w’, then u‘” < u)” while
UH/ > UH

We]then say that such a solution defined in .« is type monotonic (see
Branzei et al, 2001).

Definition 2. A point-solution o in </ is type monotonic if whenever there is a
new entrant k:

1. If k is a buyer then o;(w) > o;(w') for all i € M and o;(w) < o;(w') for all

jeM'.
2. If'kis a seller, a;(w) < o;(w') for all i € M and o;(w) = o;j(w') forall je M.
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The same qualitative effects are found for all point-solutions defined as a
fixed convex combination of the buyers-optimal and the sellers-optimal core
allocations: for any agent i e M U M’, when an agent of the same side enters
the market, player i’s payoff does not increase and if an agent of the opposite
side enters the market, player i’s payoff does not decrease.

Proposition 3. Let 4 € [0, 1] and o, be the point-solution in </ defined by
o, (w) =A@", ")+ (1 = )@",8"%) forallwe o.
Then o, is type monotonic.

The proof is straightforward from Mo (1988) and is left to the reader. Notice
that as an immediate consequence the t-value is type monotonic.
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