Int J Game Theory (2001) 30:177-185

International
Journal of

© Springer Verlag 2001

Assignment games with stable core*

Tamas Solymosi' and T. E. S. Raghavan?

! Department of Operations Research, Budapest University of Economic Sciences and Public
Administration, 1828 Budapest, Pf. 489, Hungary (e-mail: tamas.solymosi@opkut.bke.hu.)
Supported by OTKA Grant T030945.

2 Department of Mathematics, Statistics and Computer Science, University of Illinois at
Chicago, 851 S. Morgan, Chicago, IL 60607, USA (e-mail: ter@uic.edu.) Partially funded by
NSF Grant DMS 970-4951.

Final version: April 1, 2001

Abstract. We prove that the core of an assignment game (a two-sided matching
game with transferable utility as introduced by Shapley and Shubik, 1972) is
stable (i.e., it is the unique von Neumann-Morgenstern solution) if and only if
there is a matching between the two types of players such that the correspond-
ing entries in the underlying matrix are all row and column maximums. We
identify other easily verifiable matrix properties and show their equivalence to
various known sufficient conditions for core-stability. By these matrix charac-
terizations we found that on the class of assignment games, largeness of the
core, extendability and exactness of the game are all equivalent conditions, and
strictly imply the stability of the core. In turn, convexity and subconvexity are
equivalent, and strictly imply all aformentioned conditions.
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1. Introduction

Assignment games (Shapley and Shubik, 1972) are models of two-sided match-
ing markets with transferable utilities where the aim of each player on one side is
to form a profitable coalition with a player on the other side. Since only such
bilateral cooperations are worthy, these games are completely defined by the
matrix containing the cooperative worths of all possible pairings of players from
the two sides.

Shapley and Shubik (1972) showed that the core of an assignment game is
precisely the set of dual optimal solutions to the assignment optimization prob-
lem on the underlying matrix of mixed-pair profits. This result not only implies

* The authors thank the referees for their comments and suggestions.
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that all assigment games have non-empty core but also that the core can be
determined without explicitly generating the entire coalitional function of the
game. The algorithm of Solymosi and Raghavan (1994) demonstrates that for
assignment games the nucleolus can also be directly computed from the data
that induces the game. The bargaining set .# <1'> (Aumann and Maschler, 1964;
Davis and Maschler, 1967) is another solution which is completely known and
easily computable for assignment games, since for these games it coincides with
the core (Solymosi, 1999).

The stable set, the classical solution suggested by von Neumann and Mor-
genstern (1944), need not exist for all TU-games (Lucas, 1968). Besides, it need
not be unique. Indeed, if a game has a stable set then it typically has a multitude
of stable sets. On the other hand, there are classes of special games on which the
stable set exists and is unique. Perhaps the best known such class is that of
convex games for which Shapley (1971) proved that the core is the unique stable
set.

The main purpose of this paper is to identify those assignment games whose
core is stable, hence it is the unique stable set. Since assignment games induced
by diagonal matrices are convex (cf. Theorem 3), there are such games. A sec-
ondary goal is to give the characterization in terms of properties of the under-
lying matrix so that its verification does not require the explicit knowledge of
the entire coalitional function. We achieve both goals by proving that the core
of an assignment game is stable if and only if the entries in an optimal assign-
ment for the grand coalition are row and column maximums in the underlying
matrix (Theorem 1). In other words, to have core-stability it is necessary and
sufficient that there is a matching between the two types of players in which
each player is paired with whom his/her profitability is the highest. This implies
that assignment games with a different number of players on the two sides
cannot have a stable core. It remains an open problem whether or not all as-
signment games have a stable set.

Several sufficient conditions for stability of the core have been discussed in
the literature. Convexity of the game (Shapley, 1971) is a well-known one. Sub-
convexity of the game and largeness of the core were introduced by Sharkey
(1982) who showed that convexity implies subconvexity; subconvexity implies
largeness of the core; which in turn implies stableness of the core. In an un-
published paper Kikuta and Shapley (1986) investigated another condition,
baptized to extendability of the game in (Gellekom et al., 1999), and proved that
it is necessary for core-largeness and still sufficient for core-stability. A unified
proof of all these relations was given by Gellekom et al. (1999). Their valid
counter-examples demonstrate that these conditions are indeed all different.

Shapley (1971) proved that in a convex game, for each coalition there is
a core allocation which gives exactly its worth to the coalition. This condi-
tion, baptized to exactness of the game in (Schmeidler, 1972), typically neither
implies nor is implied by core-stability (Biswas et al., 1999; Gellekom et al.,
1999). On the other hand, for totally balanced games, exactness is implied by
largeness of the core (Sharkey, 1982) and even by extendability (Biswas et al.,
1999). It follows from the results of Biswas et al. (1999 and 2000) that for totally
balanced symmetric games and for totally balanced games with no more than
four players, core-largeness, extendability, exactness, and core-stability are all
equivalent conditions.

We provide matrix characterizations also for these sufficient conditions
(Theorem 2 and Theorem 3). It turns out that on the class of assignment games,
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largeness of the core, extendability and exactness of the game are all equivalent
conditions, but are strictly stronger than stability of the core. Convexity and
subconvexity are also equivalent, and are strictly stronger than all the other
conditions.

2. Definitions and preliminaries

A transferable utility cooperative game on the nonempty finite set P of players
is defined by a coalitional function V :2¥ — R satisfying V() = 0. The
function V specifies the worth of every coalition S < P.

Given a game (P, V), a payoff allocation x € R is called efficient, if x(P) =
V(P); individually rational, if x; = x({i}) = V({i}) for all i € P; coalitionally
rational, if x(S) > V(S) for all S = P; where, by the standard notation, x(S) =
Dies Xilf S # &, and x() = 0. We denote by # (P, V) the imputation set (i.e.,
the set of efficient and individually rational payoffs), and by € (P, V) the core
(i.e., the set of efficient and coalitionally rational payoffs) of the game (P, V).

The game (P, V) is called superadditive, if SN T = ¢ implies V(Su T) >
V(S)+ V(T) for all S, T < P; balanced, if its core € (P, V') is not empty; and
totally balanced, if every subgame (i.e., the game obtained by restricting the
player set to a coalition and the coalitional function to the power set of that
coalition) is balanced. Note that totally balanced games are superadditive.

Given a game (P, V), the excess e(S, x) := V(S) — x(S) is the usual mea-
sure of gain (or loss if negative) to coalition S < P if its members depart from
allocation x € R” in order to form their own coalition. Note that e(Z, x) = 0
for all x e R?, and

G(P,V)={xeR":e(P,x)=0,e(S,x) <0VS c P},

i.e., the core is the set of allocations which yield nonpositive excess for all
coalitions.

We say that allocation y dominates allocation x via coalition Sif y(S) <V (S)
and y; > x; Yk € S. Note that an allocation can be dominated only via co-
alitions having positive excess at that allocation. The (nonempty) core % of a
game is called stable if for every imputation x € #\% there exists a core allo-
cation y € ¥ and a coalition S such that y dominates x via S.

Given two finite sets S and 7, we call © = S x T an (S, T)-assignment, if
it is a bijection from some S’ = S to some 7' = T such that |S'| =|T'| =
min(|S], |T]). Trivially, u = & if S= & or T = . We shall write (i, j) e u
as well as u(i) = j. We denote by II(s 7y the set of all (S, T)-assignments.
Obviously, IT(s.7) = {J}if S= For T = .

A game (P, V) is called an assignment game if there exists a partition P =
IuJ, InJ =, of the player set and a nonnegative matrix 4 = [a;ics jes
such that

V(S)=Ti(S):= max > a; YSSP.

elicy
H (SnI,SnJ) (i,))eu

By adding dummy player(s) (i.e. zero rows/columns to the matrix), we can
assume without loss of generality that there are the same number of players of
both types (i.e. the underlying matrix is square). It will be convenient to identify
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the players with the row/column indices. So we shall use N = {1,2,...,n} for
the set of indices, while 7 = {1,2,...,n} and J = {1’,2/,...,n'} for the set of
row and column players, respectively. In other words, we put a prime (') on the
index j to distinguish the j-th column player ;' € J from the j-th row player
j € I. Coalitions of the type {i, j'} are called mixed-pair coalitions.

Throughout the paper we assume that the rows and columns of the under-
lying matrix A are arranged such that the diagonal assignment {(i,7) : i € N} is
maximal in 4, i.e., Vi(IuJ) =31, a;.

To emphasize the bipartite nature of assignment games, we shall write the
payoff allocations as (u,v) € R” x R". Let us introduce the notation

ej(u,v) ==ay—u;—v; i,jeN

for the excess of coalition {i, j'} at allocation (u, v). We associate with (u,v) €
R" x R" the n x n excess matrix E(u,v) = [e;(u,v)]; jen-

The (total) balancedness of assignment games was proved by Shapley and
Shubik (1972). One key point in their characterization of the core of assign-
ment games is that, besides efficiency, it suffices to require rationality only for
single-player and mixed-pair coalitions. Formally,

C(Va) = {(u,v) € #(Vq) : eii(u,v) = 0,e;(u,v) <0 Vi,je N},

where for the imputation set we clearly have

J(V) = {(u,v)eR" x R": Zekk(u,v) :O;uiZO,viZOVieN}.

3. Assignment games with stable core

We say that a matrix 4 has dominant diagonal if all of its diagonal entries are
row and column maximums, i.e., a; > a; and a;; > a;; for all i, j € N. Note that
A has dominant diagonal if and only if in the assignment game ¥} the special
imputations

(g,ﬁ)::(y,zo,f)i:aii:ieN) (ﬁ,l_)):z(fl[:a[i,inOZiEN) (1)

are both core allocations.
Now we are ready to prove our main result.

Theorem 1. Let A be a nonnegative n X n-matrix such that its main diagonal is
an optimal assignment, and let Vj be the (n + n)-player assignment game induced
by A. Then the following are equivalent:

(i) €(V4) is stable;
(i) A4 has dominant diagonal.

Proof: (i) = (ii) Consider the imputation (u, 7) defined in (1). If (u,?) ¢ € (V)
then, by the stability of the core, there exists an allocation (u’,v") € €(¥}) such
that (u',v") dominates (u,7) via some coalition S. Since then V4(S) must be
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positive, S contains at least one column player, say the j-th one. Then v} >
0j = aj;, a contradiction to v < a;; that holds in any core allocation (u',v").
We get that (u, ) € (V). Interchanging the roles of rows and columns and
repeating the above argument with the other special imputation (i, v), we sim-
ilarly get that (@,v) € €(¥}). It follows that 4 has dominant diagonal.

(i) = (i) Let (u,v) € #(V4)\€(Vs). We show that if 4 has dominant diag-
onal then there exists (u',v') € €(¥}) such that (', v") dominates (u, v) via some
coalition S. Actually, we show domination via a mixed-pair coalition.

Case 1: e;(u,v) # 0 for some i € N.

Since the sum of the diagonal entries in E(u,v) is 0, there exists an i € N such
that e;(u,v) > 0, i.e., u; + v; < a;. Since (u,v) is an imputation, a; > 0. Then
clearly there is a A € (0,1) such that u; < (1 — A)a; and v; < Aa;. (Take, e.g.,
g o i Ui + v

o 2(1,','
(#1,v) dominates (u,v) via the diagonal mixed-pair coalition {i,i’}. Since ob-
viously (u',v") € €(V4), the claim follows.

.) This implies that the allocation (u',v") := A(u, ) + (1 — 1) -

Case 2: e;;j(u,v) =0 forall i e N.

With such an imputation (u, v) we associate a directed graph G(u, v) with node
set N such that there is an arc (i, j) of “length” e¢;; := e;;(u, v) from any node i
to any node j # i. Note that the arc lengths can be positive, negative or zero.

Let us recall some graph terminology. In a directed graph a path from node
s to node ¢, or an (s, ¢)-path for short, is a sequence (s, i), (i1,%), ..., (i, t) of
arcs. The path is called simple if the visited nodes s, 71, .. ., i, ¢ are all distinct.
A cycle is a set of arcs such that exactly one arc goes in and exactly one arc
goes out from each visited node.

Since the diagonal is a maximal assignment in A4, the graph G(u, v) does not
contain a cycle of positive length. Suppose not, and the cycle (i}, i), . . ., (i, i1)
is of positive length. Then, with i =i, we get Y €., = Z;f:l ipipsy —
Z,]le uj, — 211;:1 Vi) = Z,lle iy — Z,]le a;,i, > 0, a contradiction to the op-
timality of the diagonal assignment. (Notice that the graph G(u, v) contains a
cycle of zero length if and only if the diagonal is not the only maximal assign-
ment in 4.) It follows that for any node k € N, the numbers

;. := the length of the longest path ending in k, dj := max{0,/;}

are both well defined. Moreover, dj is nonnegative.
Since A has dominant diagonal, from

Ui+ 0 =i 2 aj =i+ U +ey; U0 = =a; = Ui+ v+ e
we get for any i # J,
U — Uj > eij; Mj — U; > eij. (2)

It follows from the telescopic nature of these inequalities that for any two
nodes s and ¢ in G(u,v),
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min{u, — uy, vy — v;} > the length of the longest (s, 7)-path. (3)

Let us define the allocation (u',v’) by u! = u; — d; and v] = v; + d; for all
i € N. We claim that (u’,v’) is in the core. Obviously, u! 4+ v/ = a; and v/ > 0
for all ie N. To see u; > 0 in case d; > 0, let k be a node such that there is

a (k,i)-path of length d,. Then from (3) we get u; — ux > d;, hence ul =u; —
d > u, > 0. Obviously, u; >0 1n case d; = 0. It remains to see u] + v > aj
foralli#jeN. Bydeﬁnltlons uj +v; = u; +v;+d; — d; and a;; = u,—l—v]—i—eu,
so we only need to show d; > d; + ejj. ‘1t d; = 0, we are done by noting that arc
(i, ) is itself a path ending in node j, so d; > / > ey. If d; > 0, take a longest
path ending in node i. Its length is d; = ;. Adding to this path arc (i, j) gives a
(not necessarily simple) path ending in j of length d; + ¢;, so d; > /; > d; + e;;.
Therefore, (u',v") is indeed a core allocation.

Since (u,v) is not in the core, there is at least one positive arc in the graph
G(u,v). Thus, d; > 0 for at least one node i. We claim that there exists an arc
(p,q) of positive length such that d, = e,,. Let r be a node for which d, > 0,
and let us consider a path of length d, that ends in r. Suppose this path starts
from node p. We can assume without loss of generality that the path is simple
(just leave out the cycles of zero length, if any) and minimal with respect to
inclusion (i.e., there are no paths of zero length ending in p). Clearly, d, = 0
for the starting node p, and our path is a longest (p, r)-path. It follows that for
any node ¢ on this path the length of the subpath from p to ¢ is positive. In
particular, the first arc in this path, ending in node ¢, has positive length.
Therefore, we indeed have an arc (p, ¢) such that d, = 0 and d, = e,; > 0.

We finish the proof by constructing a core allocation (1", ”) which domi-
nates (u,v) via this particular mixed-pair coalition {p, ¢'}. To this end, let

1 . .
&= imln{epq,mln{v_; v) > 0}}.

Clearly, ¢ > 0. Define (u”,v") by

u :==u/+¢ and v :=v/—¢ ifv]>0
"ne.__ (. "o, ./ . I __
u'==u; (=a;) and v/ :=v; ifv,=0
forallie N.

We claim that (x”,v") is in the core. Since (¢',v’) € €, we obviously have
u” > 0 v/ >0 and u,-”+u{’ =a; for all ie N. It remains to check that
u + v/ > a; for all i # j. When both v/ and v/ are positive or when both are
zero, we have w/ + v/ =uj +v; > a; If v; >0 and v; =0 then v+ v/ =
uit+etuv =a;+e> @, On the other hand, if v/ =0 and vj > 0 then u” =
ul = aj and u”—i—v” =u] +v — &> a; > aj. Thus (u”,v") 1s indeed a core
allocation.

Finally, we show that (¢”,v") dominates (u, v) via the mixed-pair coalition
{p,q'}. F1rstly, since ey, > 0 ( ) implies v, > v, >0, so v} (=v,) > 0. Then
dy =0 givesu, = u, +&=u, —d, + € > Uy Secondly, it follows from dy = ey,
that vy =v, +d,; > 0. Then g< epq gives v =v, —&e>v,+5 epq> Vg
Thirdly, by definitions, u, + v, = u,, + Uy = Up + g + €y = apg. Thus, (u v") e

% indeed dominates (u, v) via the mixed—pair coalition {p,q'}.

/l
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4. Assignment games with large core

A (balanced) game (P, V) is said to have a large core if for every coalitionally
rational allocation y there is a core allocation x € €(P, V') such that x; < yy for
all k € P. Sharkey (1982) proved that largeness implies stableness of the core.
He also proved that if a game has a large core then the totally balanced cover
of the game is exact. For assignment games this means that largeness of the
core implies exactness of the game. This latter property is defined as follows. A
(balanced) game (P, V) is said to be exact if for every coalition S there is a core
allocation x € €(P, V) such that x(S) = V(). A related property, weaker than
largeness of the core but (for totally balanced games) stronger than exactness,
was investigated by Kikuta and Shapley (1986). They showed that this prop-
erty is also sufficient for stability of the core. A (balanced) game (P, V) is said
to be extendable if any core allocation of any subgame can be extended to a
core element of (P, V).

We say that matrix 4 has doubly dominant diagonal if a;; + aj. > ay + aj;
for all i, j, k € N. Notice that this property is restrictive only if i is distinct from
j and k. Also note that having a dominant diagonal and having a doubly dom-
inant diagonal are independent properties, i.e., a matrix can have a dominant
but not a doubly dominant diagonal and vice versa.

Now we are ready to prove the main result in this section.

Theorem 2. Let A be a nonnegative n X n-matrix such that its main diagonal is
an optimal assignment, and let Vj be the (n + n)-player assignment game induced
by A. Then the following are equivalent:

) €(V;) is large;

i) V; is extendable;
i) V; is exact;

)

Proof: (i) = (ii) It holds for any TU-game, see (Kikuta and Shapley, 1986) or
the proof of Proposition 1 in (Biswas et al., 1999).

(ii) = (iii) It is straightforward to establish for totally balanced games, see
the proof of Proposition 2 in (Biswas et al., 1999).

(iii) = (iv) Let 7} be exact.

Take the coalition J of all column players. Then there is a (u,v) € (V)
such that (u,v)(J) = v(J) = V4(J) =0, thus v; = 0 for all j € J. It follows that
u; = a;; for every row player i, i.e., (u,v) = (&,v). Thus, the core contains one
of the special imputations in (1). The mirror argument gives that the core con-
tains the other special imputation in (1). Therefore, the underlying matrix 4 has
dominant diagonal.

As we remarked above, when we check that our matrix 4 has a doubly
dominant diagonal we can assume without loss of generality that i # j and
i # k. Take coalition {, k'}. Then there is a (u,v) € €(V;) such that u; + v =
aj. Adding it to u; + v; = a; and using coalitional rationality of (u,v) give
aji + aj = u; + v +u; + v; = ag +a;. Thus, 4 has doubly dominant diagonal.

(iv) = (i) Let 4 have dominant and doubly dominant diagonal.

Take an allocation (u#”,v") that is coalitionally rational in V3. Then u! > 0,
v/ >0 and e/ := e;(u”,v") <0 for all i, j € N. Let us define (u',v’) by u/ :=
;" — min{y;", min;(—e[)} and vf := v/ for all i e N. Clearly, («',v') is coali-



184 T. Solymosi, T. E. S. Raghavan

tionally rational, and u; < u! for all i e N Moreover, for each row player i,
either u/ = 0 or min;(— e,-]) = 0, where ¢;; := ¢;;(u’,v"). Now, let us decrease
the payoff of each column player as much as possible w1th0ut loosing coah-
tional ratlonahty, i.e., let us define allocation (u,v) by u; :== u and v; := v} —
min{v min;(—e;) } for all ieN. As before, (u,v) is coalitionally rational,
v; < v/ for all ie N, moreover, for each column player i’, either v; =0 or
min;(—e;) = 0.

We claim that this (u, v) is a core allocation. Since it is coalitionally rational,
we are done in case e; = 0 foralli € N. Suppose e¢; < 0 for some i € N. Then at
least one of #; and v; is positive, because A4 is nonnegative. Let us suppose that
u; = 0. Then for column player i/, v; > 0 and e; < 0, so there is a row player
J # isuchthate; = 0,i.e., u; + v; = a;. Subtracting this from u; 4 v; > a; gives
0 > —u; > a; — aj;, a contradiction to 4 having dominant diagonal. We obtain
that if e; < 0 for some i € N then both u; and v; are positive. Then however,
there must be indices j # i and k # i such thate; = 0 and ey = 0. Since (u,v) is
coalitionally rational, ey < 0. It follows that e; + ey < 0 = e + ¢j;, a contra-
diction to 4 having doubly dominant diagonal. Therefore, we must have e;; = 0
for all i € N, so (u,v) is indeed a core allocation that is componentwise less
than or equal to the arbitrarily chosen coalitionally rational allocation (", v").
Hence, €(V;) is large.

5. Convex and subconvex assignment games

A game (P, V) is called convex if for all S,7 < P the coalitional function
satisfies V(S)+ V(T) < V(SuT)+ V(S T). Sharkey (1982) proved that
subconvexity, a weaker version of convexity, also implies largeness and hence
stability of the core. Here we use the following alternative definition of sub-
convexity that was given by Gellekom et al. (1999).

Given a game (P, V), a bijective map 7 : P — {1,2,...,|P|} will be called
an enumeration of P. The set of predecessors of i € P is defined by Pred, (i) =
{j e P:n(j) < =n(i)}. Given an enumeration 7 of P, let the payoff vector y”
be given by

yF=max{V(Qui)—V(Q): 0 < Pred,(i), Qui# P}.

Namely, y7 is the maximal marginal contribution of player i with respect to
a subset of his predecessors. The game (P, V) is called subconvex if y™(P) <
V' (P) for all enumeration 7z of the player set P.

Now we are ready to prove the main result in this section.

Theorem 3. Let A be a nonnegative n x n-matrix such that its main diagonal is
an optimal assignment, and let Vj be the (n + n)-player assignment game induced
by A. Then the following are equivalent:

(i) ¥ is convex;
(ii) ¥; is subconvex;
(iii) A is a diagonal matrix (i.e., a; =0 if i #j).

Proof: (i) = (ii) Straightforward (cf. Sharkey, 1982).
(ii) = (iii) Suppose 4 is not diagonal and a;, > 0. Consider an enumeration
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7 which specifies the following order of the players: (1,2/,2,1/,...). Clearly,
»I =0and yj, = a,. Since 2’ is a predecessor of his optimally matched partner
2, we get y} > ay. Similarly, column player 1’ can secure for himself at least
ay; by joining his optimally matched partner 1 who is his predecessor. The same
reasoning and the nonnegativity of y” give that for any pair {j, j'} of players
on the diagonal, y7 + y/ > aj; holds. It follows that y™(P) > ai> + Va(P) >
Vi(P), a contradiction to subconvexity.

(iii) = (i) If 4 is a diagonal matrix, the value of a coalition S is simply the
sum of the diagonal entries in S, i.e., 74(S) = (iiryes dii- Therefore, ¥} is an
additive set function and so the game is convex.
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