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Abstract. A multi-choice game is a generalization of a cooperative game in
which each player has several activity levels. We study the extended Shapley
value as proposed by Derks and Peters (1993). Van den Nouweland (1993)
provided a characterization that is an extension of Young's (1985) character-
ization of the Shapley value. Here we provide several other characterizations,
one of which is the analogue of Shapley's (1953) original characterization. The
three other characterizations are inspired by Myerson's (1980) character-
ization of the Shapley value using balanced contributions.
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1. Introduction

Multi-choice games were introduced by Hsiao and Raghavan (1993). A multi-
choice game is a cooperative game in which each player has a certain number
of activity levels at which he can choose to play. The reward that a group of
players can obtain depends on the e¨orts of the cooperating players.

Hsiao and Raghavan (1993) considered games in which all players have
the same number of activity levels. We allow for di¨erent numbers of activity
levels for di¨erent players. Several concepts from TU-games can be extended
to the setting of multi-choice games in a straightforward way. For instance,
straightforward extensions of convexity and the core solution have been
studied by van den Nouweland et al. (1995). For the Shapley value (see
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Shapley (1953)), however, there exist several more or less natural extensions to
the setting of multi-choice games. Here we study the extended Shapley value
as proposed by Derks and Peters (1993) and give several characterizations
of it.

The work is organized as follows. Section 2 deals with notation, de®nitions,
and the formal description of our model. In section 3 we discuss several ex-
tensions of the Shapley value to multi-choice games. In section 4 we present
the characterizations of the extended Shapley value as proposed by Derks and
Peters (1993).

2. The model

Let N � f1; . . . ; ng be a set of players. Suppose each player i A N has mi levels
at which he can actively participate. Let m � �m1; . . . ;mn� be the vector that
describes the number of activity levels for every player, at which he can ac-
tively participate. We set Mi :� f0; . . . ;mig as the action space of player
i A N, where the action 0 means not participating. Let M :�Qi AN Mi be the
product set of the action spaces. A characteristic function is a function
v : M ! R which assigns to each coalition s � �s1; . . . ; sn� the worth that the
players can obtain when each player i plays at activity level si A Mi with
v�0� � 0. A multi-choice game is given by a triple �N;m; v�. If no confusion
can arise a game �N;m; v� will sometimes be denoted by its characteristic
function v. Let us denote the class of multi-choice games with player set N and
activity level vector m by MC N;m, and the class of all multi-choice games
by MC. Clearly, the class of ordinary TU-games is a subclass of the class of
multi-choice games, because a TU-game can be viewed as a multi-choice game
in which every player has two activity levels, participate and not participate.

3. Multi-choice values

We will now discuss several solutions on MC that are extensions of
the Shapley value. For i A N, let M�

i :�Minf0g. Further, let M� :�
6

i AN
�fig �M�

i �. A solution on MC is a map C assigning to each multi-

choice game �N;m; v� A MC an element C�N;m; v� A RM�
. As is pointed out

in van den Nouweland (1993) there exists more than one reasonable extension
of the de®nition of the Shapley value for TU-games to multi-choice games.
The ®rst extension of the Shapley value was introduced by Hsiao and
Raghavan (1993). They restricted themselves to multi-choice games where all
players have the same number of activity levels and de®ned Shapley values
using weights on the actions, thereby extending ideas of weighted Shapley
values (cf. Kalai and Samet (1988)). Another extension of the Shapley value
was introduced by van den Nouweland et al. (1995). They de®ne the extended
Shapley value as the average of all marginal vectors that correspond to ad-
missible orders for the multi-choice game. Calvo and Santos (1997) study this
value and focus on total payo¨ instead of payo¨ per level. Here we will con-
sider a third extension, the value as proposed by Derks and Peters (1993). For
this, let us start with some additional notation.
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The analogue of unanimity games for multi-choice games are minimal

e¨ort games �N;m; us� A MC N;m, where s A
Q

i AN Mi, de®ned by

us�t� :� 1 if ti V si for all i A N;

0 otherwise

�
for all t A

Q
i AN Mi. One can prove that the minimal e¨ort games form a basis

of the space MC N;m, and that for a multi-choice game �N;m; v� it holds that

v �
X
s AM

Dv�s�us;

where the Dv�s� are the extended dividends de®ned by

Dv�0� :� 0 and

Dv�s� :� v�s� ÿ
X

tUs; t0s

Dv�t� for s0 0:

Now we can go on to the extension of the Shapley value of Derks and Peters
(1993).

For a multi-choice game �N;m; v� A MC N;m the value Y�N;m; v� of Derks
and Peters (1993) is given by

Yij�N;m; v� :�
X

s AM: siVj

Dv�s�P
k AN sk

�1�

for all �i; j� A M�. So, the dividend Dv�s� is divided equally among the
necessary levels.

In fact, this value can be seen as the vector of average marginal con-
tributions of the pairs �i; j� A M�. Let us point this out formally. For this, we
may suppose that M�0q. An order for a multi-choice game �N;m; v� is
a bijection s : M� ! f1; . . . ;

P
i AN mig. The subset sÿ1�f1; . . . ; kg� of M�,

which is present after k steps according to s, is denoted by S s;k. The marginal
vector ws A RM�

corresponding to s is de®ned by

ws
ij :� v�r�S s;s�i; j��� ÿ v�r�S s;s�i; j�ÿ1�� �2�

for all �i; j� A M�. Here r is the map that assigns to every subset S JM� the
maximal feasible coalition r�S� that is a `subset' of S. Formally, for S JM�,

r�S� :� �t1; . . . ; tn�;

where

ti �
maxfk A M�

i : �i; 1�; . . . ; �i; k� A Sg if �i; 1� A S;

0 otherwise.

(
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Now, de®ne

Lij�N;m; v� :� 1

�Pk AN mk�!
X

s

ws
ij �3�

for all �i; j� A M�. The number Lij�N;m; v� is the average marginal contri-
bution of the pair �i; j� A M� to the maximal feasible coalition. In fact,
the number Lij�N;m; v� is equal to the Shapley payo¨ of player �i; j� in the
ordinary TU-game �M�; v�, where the characteristic function v is de®ned by

v�T� :� v�r�T�� for all T JM�:

One can prove that a multi-choice game �N;m; v� is convex1 if and only if the
TU-game �M�; v� is convex.

It is not di½cult to see that for a minimal e¨ort game �N;m; us� we have

Yij�N;m; us� � Lij�N;m; us� �
1P

k AN sk
if j U si;

0 otherwise

8<: �4�

for all �i; j� A M�. Derivation of formula (4) is straightforward for
Yij�N;m; us� by using formula (1). To see the equality for Lij�N;m; us� ®rst
note that for all s and all �i; j� A M� we have ws

ij A f0; 1g. Now, if j > si,
then ws

ij � 0. If j U si, then note that the number of s for which ws
ij � 1, or

equivalently

S s;s�i; j�KS :� f�1; 1�; . . . ; �1; s1�; . . . ; �n; 1�; . . . ; �n; sn�g �5�

does not depend upon �i; j� A S; the number of permutations of M� with �i; j�
last element of S is the same for every �i; j� A S. Hence, the number of per-
mutations for which (5) holds true is the same for all �i; j� A S and is therefore
equal to �Pk AN mk�!=�

P
k AN sk�. This implies that indeed formula (4) holds

true for Lij�N;m; us�.
From formula (4) and the linearity of both L and Y it follows that L � Y.
The following example shows that in some situations the extension of

the Shapley value by Derks and Peters (1993) seems to be more appropriate
than the extension of the Shapley value by van den Nouweland et al. (1995).
Further, it illustrates why the players may be interested in the payo¨ for each
level, not solely the sum of their levels, which is the case in Calvo and Santos
(1997).

Example 3.1: Consider the following cost allocation problem related to air-
lines. Suppose there is an airline with several divisions, where each division
has available a ®nite number of sizes of planes. Suppose further that each
division has to perform a ¯ight schedule, and therefore has to decide which

1 A multi-choice game �N;m; v� is said to be convex if v�s4 t� � v�s5 t�V v�s� � v�t� for all
s; t A

Q
k AN Mk , where �s5 t�i :� minfsi ; tig and �s4 t�i :� maxfsi; tig for all i A N. For ordinary

TU-games this de®nition is equivalent to the usual one.
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sizes of planes it will use. Then the airline builds the smallest runway that
su½ces for the largest planes chosen by the divisions. The costs depend on the
length of the runway. The question now arises how to allocate the forth-
coming costs among the divisions.

For example, consider the situation of an airline with two divisions, a
passenger division (division 1) and a cargo division (division 2). Suppose
further that the company possesses small planes and large planes. The small
planes need a runway of length 1 and are suitable for passengers as well as for
cargo. The large planes need a runway of length 2 and can only carry cargo.
Suppose also that the costs of a runway of length l �l � 1; 2� are l.

We model this situation as a multi-choice game as follows. Let N � f1; 2g
be the set of players, i.e. the divisions. Let m � �1; 2� be the activity levels
from which the players can choose, i.e. the sizes of the available planes. Now,
the game �N;m; c�, where c is the cost function de®ned by c :� u�0;1� � u�1;0� ÿ
u�1;1� � u�0;2�, models the situation above.

The value of Derks and Peters (1993) gives Y1;1�N;m; c� � 1
2, Y2;1�N;m; c�

� 1, and Y2;2�N;m; us� � 1
2, while the value G of van den Nouweland et al.

(1995) gives G1;1�N;m; c� � 1
3 ; G2;1�N;m; c� � 2

3, and G2;2�N;m; c� � 1.

Now suppose that instead of modeling that division 1 has no possibility
to use larger planes, we model the situation by allowing it to use 0 large
planes. So, if they use all their large planes there will be no e¨ect on the
costs. Formally, the cost function c remains unchanged, but the vector of
activity levels changes to m 0 � �2; 2�. Some calculations yield Y1;1�N;m 0; c�
� G1;1�N;m 0; c� � 1

2, Y1;2�N;m 0; c� � G1;2�N;m 0; c� � 0, Y2;1�N;m 0; c� � 1,
G2;1�N;m 0; c� � 1

2, Y2;2�N;m 0; c� � 1
2, and G2;2�N;m 0; c� � 1. We see that the

value of van den Nouweland et al. (1995) has a serious drawback in this ex-
ample, since division 1 has to pay for being allowed to choose larger planes,
although it does not use these planes.

Finally, note that the determination of costs per plane size can be an aid in
cost allocation within the divisions. G

4. Characterizations

In this section we recall one characterization of the extended Shapley value by
Derks and Peters (1993), and provide ®ve other characterizations. Therefore,
consider the following properties of solutions on MC. A solution C on MC
satis®es

� e½ciency (EFF) if for all games �N;m; v� A MC:

X
i AN

Xmi

j�1

C ij�N;m; v� � v�m�:

� strong monotonicity (SMON) if for all games �N;m; v� and �N;m;w� A MC,
whenever �i; j� A M� is such that for all s A

Q
k AN Mk with si � j

v�s� ÿ v�t�Vw�s� ÿ w�t�;
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where t A
Q

k AN Mk is such that tk � sk if k 0 i and ti � si ÿ 1, then

C ij�N;m; v�VC ij�N;m;w�:
� the veto property (VETO) if for all games �N;m; v� A MC, and all i1; i2 A N,

whenever j1 A M�
i1

, and j2 A M�
i2

are veto levels, then

C i1 j1
�N;m; v� � C i2 j2

�N;m; v�:

Here, j A M�
i is a veto level if v�s� � 0 for all s A

Q
k AN Mk with si < j.

Property SMON says that if for two games �N;m; v� and �N;m;w� A MC and
a player i A N it holds that the marginal contribution of level j A M�

i in the
game �N;m; v� is not smaller than the marginal contribution in the game
�N;m;w�, then the payo¨ to level j A M�

i in the game �N;m; v� is not smaller
than the payo¨ in the game �N;m;w�. Property VETO says that for a game
�N;m; v� A MC the payo¨s to all players i A N and levels j A M�

i that have
veto power (i.e. a level of player i less than j yields worth 0, independent of the
levels of the other players) should be equal. The properties EFF and SMON
reduce to the properties with same names given in Young's (1985) character-
ization of the Shapley value for TU-games. Furthermore, VETO restricted to
TU-games is implied be the symmetry property that Young uses, but would be
su½cient to replace symmetry in Young's characterization. The following
theorem can be found in van den Nouweland (1993) and is an extension of
Young's theorem to the multi-choice framework.

Theorem 4.1. A solution C satis®es EFF, SMON, and VETO if and only if
C � Y.

Inspired by Theorem 4.1 we will provide a characterization of Y using the
following properties. A solution C on MC satis®es

� additivity (ADD) if for all games �N;m; v� and �N;m; v� A MC:

C�N;m; v� w� � C�N;m; v� �C�N;m;w�:
� the dummy property (DUM) if for all games �N;m; v� A MC, and all i A N,

whenever j A M�
i is a dummy level, then

C ij�N;m; v� � 0:

Here, j A M�
i is a dummy level if v�sÿi; j ÿ 1� � v�sÿi; l� for all sÿi AQ

k ANnfigMk and all j U l Umi.

Next, we prove that by replacing the property SMON in Theorem 4.1
with ADD and DUM we get another characterization. It is readily veri®ed
that SMON does not imply ADD nor DUM, and that ADD and DUM do
not imply SMON. Theorem 4.2 is the analogue of Shapley's (1953) original
characterization, since VETO restricted to TU-games is implied by the sym-
metry property that Shapley uses, but would be su½cient to replace symmetry
in Shapley's characterization. Furthermore, EFF and DUM restricted to TU-
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games is equivalent with the carrier axiom of Shapley. Finally, ADD re-
stricted to TU-games coincides with Shapley's `law of aggregation'.

Theorem 4.2. A solution C satis®es EFF, ADD, VETO, and DUM if and only if
C � Y.

Proof. First we prove that Y satis®es the properties. Note that EFF and
VETO follow from Theorem 4.1. Property ADD follows readily from (1).
Finally, Y satis®es DUM as is easily seen with formulas (2) and (3).

To prove uniqueness, we note that, by additivity, it is su½cient to show
that C and Y coincide on the class of minimal e¨ort games. Let �N;m; us� be
a minimal e¨ort game. Let i A N. Every level ki A M�

i with ki > si is a dummy
level, and therefore, by DUM, we have C iki

�N;m; us� � 0. All other levels
ki A M�

i are veto levels. Then, by VETO, we have

C iki
�N;m; us� � c E�i; ki� A M�; ki U si

for some constant c A R. By EFF, c � 1=�Pk AN sk�. Now formula (4)

gives C ij�N;m; us� � Yij�N;m; us� for all �i; j� A M�, which proves the
theorem. r

In the next theorem we present the ®rst of our series of three character-
izations of the extended Shapley value based on balanced contributions
properties. For i A N, let ei be the i-th unit vector in Rn. A solution C on MC
satis®es2

� the equal loss property (EL) if for all games �N;m; v� A MC, all �i; k� A M�,
k 0mi:

C ik�N;m; v� ÿC ik�N;mÿ ei; v� � C imi
�N;m; v�:

� the upper balanced contributions property (UBC) if for all games �N;m; v� A
MC, and all �i;mi�; � j;mj� A M�; i0 j:

C imi
�N;m; v� ÿC imi

�N;mÿ e j; v� � C jmj
�N;m; v� ÿC jmj

�N;mÿ ei; v�:
The equal loss property and the upper balanced contributions property are
inspired by the balanced contributions property of Myerson (1980). Property
EL says that whenever a player gets available a higher activity level the payo¨
for all original levels changes with an amount equal to the payo¨ for the
highest level in the new situation. Property UBC says that for every pair i; j of
di¨erent players the change in payo¨ for the highest level of player i when
player j gets available a higher activity level is equal to the change in payo¨
for the highest level of player j when player i gets available a higher activity
level. Note that for TU-games EL is a vacuous property and that the follow-
ing characterization boils down to Myerson's (1980) balanced contributions

2 With a slight abuse of notation we write �N;m 0; v� for the restriction of the game �N;m; v� to
the activity levels m 0 A M.
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characterization of the Shapley value, as will also be the case for the charac-
terizations in Theorem 4.4 and Theorem 4.5.

Theorem 4.3. A solution C satis®es EFF, EL, and UBC if and only if C � Y.

Proof. First we prove that Y satis®es the properties. By linearity of Y and
Theorem 4.1 it is su½cient to prove that Y satis®es EL and UBC on all min-
imal e¨ort games. Let �N;m; us� be a minimal e¨ort game. Let �i; k� A M�.
Then

Yik�N;m; us� �
1P

l AN sl
if k U si;

0 if k > si, and

8><>:
Yik�N;mÿ ei; us� �

1P
l AN sl

if k U si < mi;

0 if mi � si or k > si.

8><>:
Now one easily veri®es that Y indeed satis®es the equalities of EL. Let
�i;mi�; � j;mj� A M�; i 0 j. Then

Yimi
�N;m; us� �

1P
l AN sl

if mi � si;

0 if mi > si, and

8><>:
Yimi
�N;mÿ e j; us� �

1P
l AN sl

if mj > sj and mi � si;

0 otherwise

8<:
Similar expressions hold when we interchange i and j. Again, one can check
that Y satis®es the equalities of UBC.

To prove uniqueness, suppose there are two solutions, denoted F and C ,
that satisfy EFF, EL, and UBC. We will prove that F � C . The proof is
with induction on the total number of levels

P
k AN mk. It is clear that for

all multi-choice games �N;m; v� with
P

k AN mk � 0 we have F�N;m; v� �
C�N;m; v�. Assume that for some pV 1 and for all multi-choice games
�N;m; v� with

P
k AN mk � pÿ 1 it holds that F�N;m; v� � C�N;m; v�. We

will prove that F and C coincide on the class of multi-choice games �N;m; v�
with

P
k AN mk � p. Let �N;m; v� be a multi-choice game with

P
k AN mk � p.

Then, by EL and the induction hypothesis, we have for all �i; k� A M�, k 0mi

that

Fik�N;m; v� ÿFimi
�N;m; v� � Fik�N;mÿ ei; v�

� C ik�N;mÿ ei; v�
� C ik�N;m; v� ÿC imi

�N;m; v�:

528 F. Klijn et al.



So,

Fik�N;m; v� ÿC ik�N;m; v�
� Fimi

�N;m; v� ÿC imi
�N;m; v� E�i; k� A M�: �6�

Furthermore, by UBC and the induction hypothesis, we have for all �i;mi�,
� j;mj� A M�; i0 j that

Fimi
�N;m; v� ÿFjmj

�N;m; v� � Fimi
�N;mÿ e j; v� ÿFjmj

�N;mÿ ei; v�

� C imi
�N;mÿ e j; v� ÿC jmj

�N;mÿ ei; v�

� C imi
�N;m; v� ÿC jmj

�N;m; v�:

So,

Fimi
�N;m; v� ÿC imi

�N;m; v�
� Fjmj

�N;m; v� ÿC jmj
�N;m; v� E�i;mi�; � j;mj� A M�: �7�

Combining (6) and (7) yields

Fik�N;m; v� ÿC ik�N;m; v� � c E�i; k� A M�;

for some constant c A R. Finally, EFF gives c�0, implying that F�N;m; v� �
C�N;m; v�. r

We say that a solution C on MC satis®es

� the lower balanced contributions property (LBC) if for all games �N;m; v� A
MC, and all �i; 1�; � j; 1� A M�; i 0 j:

C i1�N;m; v� ÿC i1�N;mÿmje
j; v� � C j1�N;m; v� ÿC j1�N;mÿmie

i; v�:

One can characterize the Shapley value by replacing property UBC with LBC
in Theorem 4.3. The proof of the characterization using LBC is similar to that
of the characterization using UBC, and is therefore omitted.

Theorem 4.4. A solution C satis®es EFF, EL, and LBC if and only if C � Y.

Consider the following property for a solution C on MC.

� the strong balanced contributions property (SBC): for all games �N;m; v� A
MC, and all �i; ki�; � j; kj� A M�; i0 j:

C iki
�N;m; v� ÿC iki

�N;mÿ �mj ÿ kj � 1�e j; v�

� C jkj
�N;m; v� ÿC j kj

�N;mÿ �mi ÿ ki � 1�ei; v�:
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Property SBC is stronger than UBC and LBC: if we take ki � mi and kj � mj

in SBC we get UBC, if we take ki � kj � 1 in SBC we get LBC. One can
verify similarly as for UBC in the proof of Theorem 4.3 that Y satis®es SBC.

Since SBC is stronger than both UBC and LBC, one might want to char-
acterize Y using only EFF and SBC. This, however, is not possible, as the
following example shows.

Example 4.1: We de®ne the solution � on MC as follows. Let �N;m; us� be
a minimal e¨ort game. If there are i; j A N with i0 j and si; sj V 1 then we
de®ne

��N;m; us� :� Y�N;m; us�:

If there is a i A N with si V 1 and sj � 0 for all j 0 i, then we de®ne

�ik�N;m; us� :�
1

mi
if si V 1 and k A M�

i ;

0 if si � 0 and k A M�
i .

8><>:
Now extend � linearly to the class of multi-choice games. Obviously, �0Y.
One can verify that � satis®es EFF and SBC. Hence, EFF and SBC are not
su½cient to characterize Y. G

Example 4.1 shows that besides EFF and SBC we need a third property,
weaker than EL, to characterize Y. This property is needed to show that a
solution satisfying these three properties coincides with Y on multi-choice
games �N;m; v� with the following property: there exists an i A N such that
mi V 2 and mj � 0 for all j 0 i. Note that this is accomplished in Theorem 4.3
and Theorem 4.4 using EL. For a characterization with SBC we can accom-
plish this by taking the restriction of EL to the class of multi-choice games of
the form �N;mie

i; v�. Formally, a solution C on MC satis®es

� the weak equal loss property (WEL) if for all games �N;m; v� A MC with
m � mie

i for some i A N and all �i; k� A M�; k 0mi:

C ik�N;m; v� ÿC ik�N;mÿ ei; v� � C imi
�N;m; v�:

Theorem 4.5. A solution C on MC satis®es EFF, WEL, and SBC if and only if
C � Y.

Proof. From Theorem 4.1 it follows that Y satis®es EFF. Since Y satis®es EL,
it also satis®es WEL. Furthermore, we already noticed that Y satis®es SBC.
Hence, Y satis®es the properties.

To prove uniqueness, suppose that there are two solutions, denoted F and
C , that satisfy EFF, WEL, and SBC. We will prove that F � C . The proof is
with induction on the total number of levels

P
k AN mk. It is clear that for all

multi-choice games �N;m; v� A MC with
P

k AN mk � 0 we have F�N;m; v� �
C�N;m; v�. Assume that for some pV1 and all multi-choice games �N;m; v� A
MC with

P
k AN mk V pÿ 1 it holds that F�N;m; v� � C�N;m; v�. We will

prove that F and C also coincide on the class of multi-choice games
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�N;m; v� A MC with
P

k AN mk � p. Let �N;m; v� A MC be a multi-choice

game with
P

k AN mk � p. By SBC and the induction hypothesis, we have for

all �i; ki�; � j; kj� A M�; i 0 j that

Fiki
�N;m; v� ÿFjkj

�N;m; v�

� Fiki
�N;mÿ �mj ÿ kj � 1�e j; v� ÿFjkj

�N;mÿ �mi ÿ ki � 1�ei; v�

� C iki
�N;mÿ �mj ÿ kj � 1�e j; v� ÿC jkj

�N;mÿ �mi ÿ ki � 1�ei; v�

� C iki
�N;m; v� ÿC jkj

�N;m; v�:

So,

Fiki
�N;m; v� ÿC iki

�N;m; v� � Fjkj
�N;m; v� ÿC jkj

�N;m; v�

E�i; ki�; � j; kj� A M�; i 0 j: �8�

Let �i;mi� A M� (note that this is possible since
P

k AN mk � pV 1). If there is
an agent j 0 i with mj > 0, then it follows from (8) that for all k; l A M�

i

Fik�N;m; v� ÿC ik�N;m; v� � Fj1�N;m; v� ÿC j1�N;m; v�

� Fil�N;m; v� ÿC il�N;m; v�:

If there is not an agent j 0 i with � j;mj� A M�, then it follows from WEL and
the induction hypothesis, that for all �i; k� A M�

i ; k 0mi we have that

Fik�N;m; v� ÿFimi
�N;m; v� � Fik�N;mÿ ei; v�

� C ik�N;mÿ ei; v�
� C ik�N;m; v� ÿC imi

�N;m; v�:

So,

Fik�N;m; v� ÿC ik�N;m; v��Fimi
�N;m; v� ÿC imi

�N;m; v� E�i; k� A M�:

Hence, in both cases we have that for all k; l A M�
i

Fik�N;m; v� ÿC ik�N;m; v� � Fil�N;m; v� ÿC il�N;m; v�:

Together with (8) this gives

Fik�N;m; v� ÿC ik�N;m; v� � c E�i; k� A M�;

for some constant c AR. Finally, EFF gives c � 0, implying that F�N;m; v� �
C�N;m; v�. r
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