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Abstract. Aumann (1989) argued that the natural partitions on the space of all
maximally consistent sets of formulas in multi-player S5 logic are necessarily
``commonly known'' by the players. We show, however, that there are many
other sets of partitions on this space that conform with the formulas that build
the states ± as many as there are subsets of the continuum! Thus, assuming a
set of partitions on this space is ``common knowledge'' is an informal but
meaningful meta-assumption.
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In 1976 Aumann suggested modeling uncertainty in game theory with parti-
tion spaces. A model of this kind consists of a space of possible states W, to-
gether with a partition P i of W for each player i. The member P i�o� of the
partition P i that contains o is the set of states player i considers as possible
when o prevails. So for every event E JW

K i�E� � fo A W : P i�o�JEg

is the event where player i knows for sure that E occurs. K jK i�E� is the event
where j knows that i knows E, and so forth. Thus, the knowledge operators
enable to unfold the mutual knowledge and uncertainties of the players in the
model.

Aumann was well aware of the fact that while using these models, one as-
sumes that the players may be uncertain about the true state of the world, but
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not about the partitions of their fellows. Justifying this assumption, Aumann
(1976) wrote:

``The implicit assumption that the information partitions . . . are them-
selves common knowledge . . . constitutes no loss of generality. Indeed in the
full description of a state o of the world is the manner in which information is
imparted to the two persons. This implies that the information sets P 1�o� and
P 2�o� . . . are indeed de®ned unambiguously as functions of o, and that these
functions are known to both players.''

In his 1989 notes Aumann elaborated further: ``When we come to inter-
pret the model . . . an inevitable question is, `what do the participants know
about the model itself ?' Does each `know' the information partitions P i of
the others? Are the P i themselves in some sense `common knowledge'? If so,
how does the model re¯ect each individual's information ± or lack of infor-
mation ± about the others' partitions? To do this right, doesn't one need to
superpose another such model over the current one, to deal with knowledge
(or uncertainty about) the P i? But then, wouldn't one need another such
model, without end even in the trans®nite domain?

. . . The most convincing way to remove all these questions and doubts is to
construct W and the P i ± or equivalently, the K i ± in an explicit, canonical
manner, so that it is clear that the knowledge operators are `common knowl-
edge' in the appropriate sense.''

Then, Aumann introduces the canonical model W of all maximally consis-
tent sets of formulas in S5 epistemic logic, that has a knowledge operator ki

for each player i. (In the appendix we recall the details of this construction, as
well as the other logical ingredients we use.) The partitions of the players in
this model are indeed de®ned by the structure of the states:

P i�o� � fo 0 A W : kij A o , k ij A o 0g:

If we denote by �c� the set of states to which the formula c belongs, one can
prove that for every o A W

o A K i�c� , kic A o: �1�

This implies that with the partitions P i each state in W is a model of all the
formulas it contains.

Aumann (1989) continues: ``Thus the question becomes, does each indi-
vidual `know' the operators ki of the others (in addition, of course, to his
own)?

``The answer is `yes'. The operator ki operates on formulas; it takes each
formula f to another formula. Which other formula? What is the result of
operating on f with the operator ki? Well, it is simply the formula ki f .
`Knowing' the operator k i just means knowing this de®nition. Intuitively, for
an individual j to `know' ki means that j knows what it means for i to know
something. It does not imply that j knows any speci®c formula ki f .

``. . . Thus the assertion that each individual `knows' the knowledge oper-
ators of all individuals has no real substance; it is part of the framework. If j
did not `know' the operators k i, he would be unable even to consider formulas
in the language. . . , to say nothing of knowing or not knowing them.''

we are in perfect agreement with Aumann's analysis in the last paragraph,
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but not with the leap forward that immediately follows: ``From this we con-
clude that all individuals indeed `know' . . . the partitions P i.''

True, the partitions P i of the players on the canonical model W are de®ned
very naturally in terms of the formulas of the form kij that constitute every
state. In e¨ect, these partitions are the coarsest possible partitions on W such
that each state models all the formulas that belong to it. (it is easily veri®able
that no state can be added to any partition member without spoiling this
property.) However, there are many ®ner partitions that do the job, as we dem-
onstrate below. This means that it is not trivial at all to assume it is ``common
knowledge'' which of these partitions every player has.

To see there are ®ner partitions on the canonical model that are coherent
with the formulas that build them, consider the space1

V � f0; 1g � �0; 1� � �0; 1�:

The set of players is I � fa; bg. A typical state in V will be of the form

v � �r; 0:a1a2 . . . ; 0:b1b2 . . .�; �2�

where the numbers in �0; 1� are written as binary expansions, and where dyadic
numbers are written in their terminating version (with zeroes from some stage
on). The ®rst of these numbers will be called the type of player a in v, and the
second the type of player b. Let there be a unique atomic formula j in the
language, that holds exactly in those states where r � 1.

Adopt the convention that player j is the opponent of player i. The parti-
tion of a player i A I will be

Pi��r; 0:a1a2 . . . ; 0:b1b2 . . .��
� fi1r; 1ÿ i1�1ÿ r�g � f0:i1i2 . . .g

� 7
y

n�1
6
2nÿ1

k�1

2�k ÿ 1� � in�1 jn

2n
;
2k ÿ in�1�1ÿ jn�

2n

� �
:

This is a closed form but non-transparent way to say, that the equivalence
relation @i that de®nes the partition of player i on V is

�r; 0:a1a2 . . . ; 0:b1b2 . . .�@i �r 0; 0:a 01a 01 . . . ; 0:b 01b
0
2 . . .�

, i 0n � in En A N; i1 � 1) r 0 � r; in�1 � 1) j 0n � jn; n A N:

In words: player i knows his own type; he knows whether j holds i¨ his ®rst
digit is 1; he knows the n-th digit of his opponent i¨ his n� 1-th digit is 1.

For example, when a2 � 1, player a knows whether b1 is 1 or 0. b1 � 1
exactly when player b knows whether r is 1 or 0, i.e. whether j holds or not.
Inductively, an � 1 exactly when player a knows whether b knows whether a

1 The same construction was used for a di¨erent purpose in Hart, Heifetz and Samet (1993), and
a related one in Heifetz and Samet (1993).
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knows . . . (n levels) whether j holds. In any case, player a always knows
whether the above assertion is true or not. Notice that had we added even one
extra state to a partition member of player a, one of the last two sentences
would no longer hold for some n A N, and similarly for player b.

The partition Pi tells us in what states player i knows j. The partition P j

then tells us in what states player j knows, for instance, j5 kij, and so on.
By induction on the structure of formulas in the language, we can tell what
formulas hold in what states. Thus, the observation in the last paragraph im-
plies that had we added even one extra state to a partition member of a player,
this would have a¨ected the formulas that hold at least in some of the states.
Notice further that if the depth of a formula c is n, i.e. the nesting of the
operators k i and k j inside c is of depth n, the truth of c in a state v as in (2)
is determined only by r and by the ®rst n digits in the types of the players (this
is easily veri®able by induction).

From now on, identify each v A V with the maximally consistent set of for-
mulas that hold in it. Not every maximally consistent set of formulas o that is
a state in the canonical model W appears also in V. But di¨erent partition
members of Pi map into di¨erent partition members of P i, since as we saw, in
both spaces we can not add extra states to the members of these partitions
without changing the formulas that obtain in states. Thus, the restriction of
P i to V yields the partition Pi.

Now, we claim that in every v A V , P i�v� can be re®ned without changing
the formulas that hold in the states of W. In the restriction of P i to V there is a
continuum of members (one for each type in �0; 1�), so we can decide in-
dependently whether or not to re®ne each such member. Then we can carry a
similar procedure for player j. This gives us:

Theorem 1. With one atomic formula j and two players a and b, the space W of
S5 maximally consistent sets of formulas admits j2�0;1�j di¨erent pairs of parti-
tions, such that for every formula c and every player i

o A K i�c�()kic A o;

where K i is the knowledge operator of player i in any one of these pairs.

Proof. Fix a player i and a state

v � �r; 0:a1a2 . . . ; 0:b1b2 . . .� A V :

Let fvkgyk�0 A N be the sequence such that ivk�1 � 0 for all k V 0. This means
that player i can not tell in v the coordinates f jvk

gyk�1 of his opponent. Since

we chose terminating expansions, player i has in®nitely many zeroes along his
type. Denote

Cj � fv � �r; 0:a1a2 . . . ; 0:b1b2 . . .� A V : the sequence f jvk
gyk�1 convergesg

(Of course, fjvk
gyk�1 converges when it is eventually constantly 0 or constantly

1).

Now, re®ne P i�v� in W with the event Cj: Reveal to player i whether the
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sequence of digits in the type of j that he can not observe converges or not.
This means splitting P i�v� to

X � P i�v�XCj

and

Y � P i�v�nX :

We will be done once we prove that with the new partition each o A W is
still a model for every formula c it contains. We prove this claim by induction
on the structure of c, verifying for every ®xed c that the claim holds Eo A W.
Without loss of generality we can assume that c is in disjunctive normal form
(i.e., that c is a disjunction of conjunctions, where each conjunct is either the
atomic formula j or its negation, or the formulas k ac 0, k bc 0 or their neg-
ations, where c 0 is also in disjunctive normal form. It is straightforward to
check that every formula c is equivalent to a formula c in disjunctive normal
form, and that c holds in a state if and only if c does).

The claim clearly holds for the atomic formula j and its negation. Assume,
by induction, that the claim holds for c and c 0. Then it clearly holds for
c5c 0 and c4c 0 as well. It also holds for k jc and : k jc for the other
player j, since we did not alter his partition on W. If o B P i�v�, the claim also
holds for k ic and : kic, since we did not change the partition member of
player i in o.

It remains to check the case o A P i�v� � X WY . If kic A o, then c belongs
to every o 0 A P i�o� � P i�v�, so this certainly remains true for every o 0 A X
and o 0 A Y . Finally, if : kic A o, then also : k ic A v. This means that there is
a v 0 A Pi�v� in V such that :c A v 0. If the depth of :c is n then :c belongs
also to all the other

v 00 A Pi�v�

such that in v 0 and v 00 the ®rst coordinate r is the same and the types of the
players have the same ®rst n digits. The question whether v 00 is in Cj is not de-
termined by any ®nite number of digits in the type of player j in v 00; and the type
of player i in v has in®nitely many 0-s, so some of the v 00 he considers as
possible are in Cj , i.e. in X, and some not in Cj, i.e. in Y. Hence, if o is either
in X or in Y, in both cases there is a state v 00 in the new partition member
that contains o to which :c belongs. This completes our proof.

Remark. Under the assumption in the theorem, W has the cardinality of the
continuum (see Aumann (1989), or a simpler proof in Hart, Heifetz and
Samet (1996)), so there are altogether j2�0;1�j di¨erent pairs of partitions on
W. The theorem shows that the cardinality of the partition pairs that are co-
herent with the structure of the states has the very same cardinality, which is
hence the largest possible.

What may we conclude from this state of a¨airs? Could not one construct
a canonical model where the partitions of the players would be uniquely de-
termined by the inner structure of the states? For Harsanyi (1967±68) type
spaces, where the uncertainty of the players takes the form of a s-additive
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probability distribution, such a universal space does exist (Mertens and Zamir
(1985)). Intuitively, the source of the di¨erence between the two cases is that
with s-additive beliefs, the beliefs regarding ``limit'' or ``tail'' events like Cj are
already determined by the beliefs regarding ®nite-order mutual uncertainties.
Partition spaces, on the other hand, lack such a strong connection between the
limit uncertainties and the ®nite-order uncertainties.2

All is not lost, though. Heifetz and Samet (1993) show that every (non-
redundant) partition space may be isomorphically embedded as a subspace in
a suitable canonical space, where the restriction of the players' partitions to
this subspace is indeed uniquely determined by the inner structure of the
states. In this canonical construction one may need to specify inside the states
trans®nite levels of mutual uncertainties of the players. In Heifetz (1994) we
show that this is essentially equivalent to constructing canonical models for
extended S5 logic, that allows for in®nite conjunctions and disjunctions in the
language.

Both approaches show, however, that there is no a priori ordinal bound on
the number of levels of mutual uncertainties that have to be explicitly speci®ed
inside the states, in order to yield unique partitions that agree with that inner
structure. Furthermore, for every given ordinal level of speci®cation, such
uniqueness can only be attained in a subspace of the construction. Partition
spaces are, therefore, complex indeed.

Appendix: A reminder on multi-player S5 logic

The material below is standard in the literature, and may be found e.g. in
Aumann (1989), Halpern and Moses (1992) or Chellas (1980, for the ``one-
player'' case).

In what follows I is a ®xed set of players, and A is a ®xed set of atomic
formulas. The logical language is the least collection that contains A, such
that if j and c are formulas in the language, so are : j, j5c and kij Ei A I .
k i is the knowledge modality of player i, so k ij is the formula ``player i knows
j''. As usual, j4c stands for : �: j5 :c�, and j! c for : j4c.

The depth of formulas, denoted dp�j�, is de®ned inductively by the fol-
lowing rules:

1) dp�j� � 0 for atomic j.
2) dp� : j� � dp�j�
3) dp�j5c� � max�dp�j�; dp�c��
4) dp�kij� � dp�j� � 1

The axioms and inference rules of the logic consist of any axiomatization
of the propositional calculus including Modus Ponens

j; j! c

c
; �MP�

together with the following axiom schemes and inference rule:

2 This was also observed by Fagin, Halpern and Vardi (1991).
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k ij! j �T�

k i�j! c� ! �kij! kic� �K�

k ij! kik ij �4�

: kij! ki : kij �5�
j

k ij
�RN�

A proof of a formula j is a ®nite sequence of formulas that terminates with
j, each of whose elements is either an axiom or inferred from previous
formulas by an inference rule. In such a case we say that j is a theorem and
write ` j.

We say that a formula j is deducible from a set of formulas G, written
G ` j, if there is a ®nite sequence of formulas that terminates with j, each of
whose elements is either a theorem, belongs to G, or inferred from previous
formulas by �MP� (but not by �RN�!). We say that G is consistent if one can
not deduce from it a formula and its negation.

A model for the above described syntax is a space W with a partition P i of
W for every player i A I , together with an interpretation function f from for-
mulas to subsets of W, such that

f � : j� � f �j�c; f �j5c� � f �j�X f �c� �A:1�

and Ei A I

f �kij� � K i� f �j��: �A:2�

Here, K i is the knowledge operator on events E JW

K i�E� � fo A W : P i�o�JEg:

The intuition behind this de®nition is that when o occurs, player i considers as
possible exactly the states in P i�o�. Thus, K i�E� is the event where player i is
sure that the prevailing state belongs to E.

clearly, it is enough to de®ne the interpretation function f for the atomic
formulas. Inductively, (A.1) and (A.2) determine uniquely how f should be
de®ned for every other formula in the language.

We say that a formula j holds or obtains in o A W when o A f �j�. We
write � j when j holds in every state of every model. The S5 logic is deter-
mined by the class of partition space models:

Theorem. For every formula j

� j () ` j:

The standard way to prove the implication from left to right (``complete-
ness'') is by constructing the canonical model W whose states are the maxi-
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mally consistent sets of formulas. Denote

�j� � fo A W : j A og:

The partition of player i on W is de®ned by

P i�o� � fo 0 A W : kij A o) j A o 0g:

One then proves that this is indeed a partition, and that with the map

f �j� � �j�

one gets a model for the language. This means that � j implies in particular
that �j� � W. Hence j is provable from the axioms ± otherwise we could have
built a maximally consistent set of formulas by adjoining to : j consecutively
each formula in the language or its negation.
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