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Abstract. We introduce the concept of a characterization set for the nucleolus
of a cooperative game and develop su½cient conditions for a collection
of coalitions to form a characterization set thereof. Further, we formalize
Kopelowitz's method for computing the nucleolus through the notion of a
sequential LP process, and derive a general relationship between the size of a
characterization set and the complexity of computing the nucleolus.
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1. Introduction

The de®nition of the nucleolus of a cooperative game in characteristic func-
tion form entails comparisons between vectors of exponential length. Thus, if
one attempts to compute the nucleolus by simply following its de®nition, it
would take an exponential time. However, it is well known that one can
compute the nucleolus of many classes of games in polynomial time. Indeed,
let n denote the total number of players in a game. Littlechild [1974] has de-
veloped an O�n2� algorithm for computing the nucleolus of an airport game,
Granot and Granot [1992] have developed a strongly polynomial algorithm
for computing the nucleolus of a ®xed cost spanning forest game, Solymosi
and Raghavan [1994] constructed an O�n4� algorithm for computing the nu-
cleolus of an assignment game, Derks and Kuipers [1992] and Granot, Granot
and Zhu [1994] have developed O�n5� and O�n3� algorithms, respectively, for
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computing the nucleolus of certain routing games, and Megiddo [1978] and
Granot, Maschler, Owen and Zhu [1996] have developed strongly polynomial
algorithms for computing the nucleolus of tree games. Most of the above
e½cient algorithms for computing the nucleolus are based on the observation
that the information needed to completely characterize the nucleolus for some
classes of games is much less than that dictated by its de®nition.

In this paper, we formalize the above approach for general cooperative
games. We provide a uniform scheme, or a general approach, for seeking
e½cient algorithms for computing the nucleolus. The concept of a character-
ization set (see Section 2 for de®nition) embodies the notion of `minimum'
relevant information needed to characterize the nucleolus of a class of games.
The notion of a sequential linear programming (LP) process (see Section 4 for
de®nition), which is a formalization of Kopelowitz's method (Kopelowitz
[1967], Maschler, Peleg and Shapley [1979]), provides a generic algorithm for
computing the nucleolus. The input to the sequential LP process is a charac-
terization set and the values of the cost function for coalitions contained
therein. Its output is the prenucleolus/nucleolus of the corresponding game.
The size of the ®rst LP problem in the sequential LP process is proportional to
the size of the characterization set. Therefore, to develop an e½cient algo-
rithm for computing the nucleolus of a game, one attempts to ®nd the smallest
characterization set for the nucleolus. Additional e½ciency can sometimes be
attained by making use of the structure of the characterization set and/or the
characteristic function. In fact, most of the papers cited above follow this line
of development.

The plan of this paper is as follows. In Section 2 we introduce the concept
of a characterization set for the nucleolus of a game. Therein we provide suf-
®cient conditions for a family of coalitions to form a characterization set. In
Section 3 we prove that the class of irreducible saturated coalitions (see de®-
nition therein) forms a characterization set for the nucleolus of a monotone
game having a nonempty core.

In Section 4 we show that if the nucleolus of a game has a characterization
set of size polynomially bounded in the total number of players, then the
nucleolus of this game can be computed in strongly polynomial time (see def-
inition of strong polynomiality therein). Characterization sets for some classes
of games, previously studied in the literature, are described in Section 5.

2. Characterization sets for the nucleolus

Let G � �N; c� be a cooperative game in characteristic function form, where N
is a ®nite set of players and c is a real valued function de®ned on 2N , with
c�q� � 0. Subsets of N are called coalitions and the characteristic function
could be interpreted as either the cost, or the revenue of forming the various
coalitions. In this paper, we interpret c as a cost function. Thus, in the sequel
we often refer to a cooperative game in characteristic function form as a cost
game. We emphasize, however, that this assumption about the interpretation
of the characteristic function does not induce any loss of generality, since
analogous results are valid also for revenue games.

Let us brie¯y review a few notation. The set of all pre-imputations (resp.,
imputations) of G is denoted by X ��G� (resp., X �G�). Thus, X ��G� �

x:
Pn

i�1 xi � c�N�� 	
and X�G� � x:

Pn
i�1 xi � c�N�; xiUc�fig�; i� 1; . . . ; n

� 	
.
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The excess of coalition S at x A RN is de®ned by e�S; x� � c�S� ÿ x�S�,
where x�S� �Pk AS xk. For a game G � �N; c� and x A RN , let y�x; G� be the
j2N j-dimensional vector whose components are the values of the excess func-
tion e�S; x�, for S A 2N , arranged in a nondecreasing order. Let Vl be the
``lexicographically greater than'' relationship between vectors of the same
dimension, and let X0 JRN . The nucleolus of G with respect to X0 is given by,

N�G;X0� �def fx A X0 : y�x; G�Vl y�y; G�; Ey A X0g:

If X0 � X ��G�, N�G ;X0� is called the prenucleolus of G and is denoted by
PN�G�, and if X0 � X �G�, N�G ;X0� is called the nucleolus of G and is
denoted by N�G�.

It is well known that if X0 is nonempty and compact thenN�G;X0�0q,
and if, furthermore, X0 is convex, thenN�G;X0� consists of a single point (for
proofs see, for example, Schmeidler [1969]). Similarly, if X0 is nonempty,
compact and convex then the prenucleolus also consists of a unique point. In
this paper, we are mainly concerned with the prenucleolus and the nucleolus
of a cost game G . Therefore, unless otherwise speci®ed, X0 is taken to be
either X ��G� or X�G�.

De®ne a cost game with coalition formation restrictions to be a triple

GT �def �N;T; c�, where N is the set of players, T is a family of subsets of N
which consists of all `permissible coalitions' and c is the characteristic func-
tion of GT, which is a real-valued function de®ned on TW ffig; i A Ng. We
assume in the sequel that T contains the grand coalition N. Let X JRN .
De®ne the nucleolus of GTwith respect to X by,

N�GT;X� � fx A X : y�x; c;T�Vl y�y; c;T�; Ey A Xg;

where y�y; c;T� is the jTj-dimensional vector whose components are the ex-
cesses e�S; y�, S AT, arranged in a nondecreasing order.

Using the notion of a cost game with coalition formation restrictions, we
introduce the concept of a characterization set for the nucleolus of a coopera-
tive game.

De®nition 2.1. A subset T of 2N is called a characterization set, or a c-set
for short, for the nucleolus of a game G � �N; c� with respect to X0, if
N�GT;X0� �N�G ;X0�.

Two questions regarding c-sets naturally arise. The ®rst one is how to
verify whether a family of coalitions forms a c-set for the nucleolus of a game
(or for a class of games). The second question is whether a smaller c-set would
lead to a more e½cient algorithm for computing the nucleolus. For the re-
mainder of this section and in the next section, we address the ®rst question.
We provide some su½cient conditions for a collection of coalitions to form a
c-set for the nucleolus. The second question is considered in Section 4.

Games with coalition formation restrictions were studied in Maschler,
Potters and Tijs [1992]. The following theorem is an important special case of
one of their results. It also generalizes Kohlberg's [1971] characterization of
the nucleolus, and Sobolev's [1975] characterization of the prenucleolus. First,
we need to introduce some notation and terminology.
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The characteristic vector, eR, of coalition R is the jNj-tuple vector whose
i-th component is equal to 1 if i A R and is equal to 0, otherwise. A collection
of coalitions, S, is said to be a balanced collection, or, for short, balanced, if
there exist positive coe½cients aS, S AS, such that

P
aS � eS � eN . Finally,

eT A SpanfeS : S ASg denotes that eT can be expressed as a linear combina-
tion of eS, S AS. Let x A RN be an imputation for G , or GT. Denote by b0�x�
the set of singletons:

b0�x� � fi A N : xi � c�fig�g:

Theorem 2.2. (Maschler et al. [1992]) Let GT� �N;T; c� be a game with
coalition formation restrictions. An imputation x belongs to N�GT�, if for
every real number a, for which

fS AT: e�S; x�U ag0q;

there exists a subset ba
0�x� of b0�x� such that

ba
0�x�W fS AT: e�S; x�U ag

is a balanced collection.1
A preimputation x is in PN�GT� if, for every real number a, the collection

fS AT: e�S; x�U ag is balanced whenver it is not empty.2

From Theorem 2.2 we can infer some collections of coalitions that con-
stitute c-sets:

Theorem 2.3. Let G � �N; c� be a cost game and let Tbe a subset of 2N . Let x
be contained 3 in the nucleolus (resp., prenucleolus) of GT. The collection Tis a
c-set for the nucleolus (resp., prenucleolus) of G if for every S in 2N nT there
exists a nonempty subcollection TS of T, such that

(i) e�S; x�V e�T ; x�, whenever T ATS,
(ii) eS A SpanfeT : T ATSg.

The proof requires the following lemma:

Lemma 2.4. Let A, AJ 2N, be a balanced collection and let S, S BA, satisfy
eS A SpanfeT : T AAg. Then AW fSg is also balanced.

Proof. There exist postive constants aT such thatX
T AA

aT eT � eN :

There exist constants kT such that

1 In this case we say that Kohlberg's condition is satis®ed for T, at x.
2 In this case we say that Sobolev's condition is satis®ed for T, at x.
3 In general, the nucleolus (resp., prenucleolus) of a game with coalition formation restrictions
need not consist of a unique point.
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X
T AA

kT eT � eS:

Let e be a small enough positive number such that aT ÿ ekT > 0 for all T AA.
Then

eN �
X

T AA

aT eT � eeS ÿ eeS

�
X

T AA

�aT ÿ ekT�eT � eeS;

which proves thatAW fSg is balanced. 9

Proof of Theorem 2.3. By condition (ii), SpanfeT : T ATg � RN . Therefore,
N�GT;X0� (resp., PN�GT;X0�� is the singleton fxg, if X0 � X�G� (resp.,
X0 � X ��G��. It remains to show that x is also the nucleolus (resp., pre-
nucleolus) of G . Let a be any real number for which the collection B1
fS JN : e�S; x�U ag is not empty. If the coalitions in B which are not in T,
are removed, the resulting set is still not empty. Indeed, by (i), there exist co-
alitions in Twhose excess is smaller than or equal to a. Since x is the nucleo-
lus (resp., prenucleolus) of GT, the collection ba

0�x�W fS JT: e�S; x�U ag
(resp., fS JT: e�S; x�U ag) is balanced. By (ii), and Lemma 2.4 it will
remain balanced if we add to this collection all the coalitions in 2N nT, whose
excess is not greater than a. By Kohlberg's (resp., Sobolev's) theorem, x is the
nucleolus (resp., prenucleolus) point of G. 9

The core of a game G � �N; c� is de®ned as C�G� � fx A RN : x�S�U c�S�;
ES HN; x�N� � c�N�g.

Remark 2.5. A priori, it may appear that Theorem 2.3 does not provide us with
a convenient tool to get c-sets, because we ®rst have to ®nd the nucleolus/
prenucleolus of GT. This need not be the case. Suppose, for example, we know
that the game GT has a nonempty core and we can show that e�S; x�V e�T ; x�
whenever x A C�GT� and T ATS. Then (i) is satis®ed automatically for the
nucleolus, because the core contains the nucleolus. We shall subsequently pro-
vide examples where this reasoning can be employed.

Remark 2.6. A related result to Theorem 2.3 was independently derived by
Reijnierse [1995]. Therein, he characterized coalitions whose removal will not
alter the nucleolus of the original game G. By contrast, Theorem 2.3 above
characterizes coalitions whose addition to the game with coalition restrictions
GTwill not alter the nucleolus of GT.

Let G � �N; c� be a cost game with a nonempty core. A family of coali-
tions, T, is said to induce a representation of the core if

C�G� � fx A RN : x�S�U c�S�; ES AT; x�N� � c�N�g:
In general, a family of coalitions which induces a representation of the core
does not always form a c-set for the nucleolus as demonstrated by the fol-
lowing example, which is essentially due to Maschler et al. [1979].
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Example 2.7. Let G be the game �N; c� with N � f1; 2; 3; 4g and c de®ned by,

c�N� � c�f1; 2; 3g� � c�f1; 2; 4g� � c�f1; 3; 4g� � c�f2; 3; 4g� � 2;

c�f1; 2g� � c�f3; 4g� � c�f1; 4g� � c�f2; 3g� � 1;

c�f1; 3g� � 3=2; c�f2; 4g� � 2;

c�fig� � 1 for all i A N;

c�q� � 0:

Let G 0 � �N; c0� be the same as G, except that c0�f1; 2; 3g� � 15=8. It can be
shown that X�G� � X�G 0� and that C�G� � c�G 0� � fl � �3

4
; 1
4
; 3
4
; 1
4
� � �1ÿ l� �

�0; 1; 0; 1� : 0U lU 1g. Observe that G and G 0 only di¨er by the cost of
coalition f1; 2; 3g, and both hyperplanes x�f1; 2; 3g� � c�f1; 2; 3g� and
x�f1; 2; 3g� � c0�f1; 2; 3g� do not intersect C�G� � C�G 0�. Thus, one could
easily verify that coalition f1; 2; 3g is not contained in any e½cient repre-
sentation for C�G� or C�G 0�, and that any e½cient representation for C�G� is
also an e½cient representation for C�G 0�. Therefore, if every family of coali-
tions which induces a representation of the core forms a c-set for the nucleo-
lus, we should have thatN�G� �N�G 0�. But, it can be veri®ed e.g., by using
Kohlberg's [1971] criterion, that

N�G� � 1

2
;
1

2
;
1

2
;
1

2

� �� �
and N�G 0� � 7

16
;
9

16
;
7

16
;
9

16

� �� �
:

However, by Theorem 2.3 and Remark 2.5, we can claim:

Corollary 2.8. Let �N; c� be a cost game with a nonempty core and suppose that

T, a proper subset of 2N, induces a representation of the core. Then, Tis a c-set
for N�G ;X0� if for every S A 2N nT there exists a TS, TS JT, such that,

(i) e�S; x�V e�T ; x�, ET ATS, Ex A C�GT�;4
(ii) eS A SpanfeT : T ATSg.

Two games G1 � �N; c1� and G2 � �N; c2� are said to be strategically
equivalent if there exist a positive real number a and a constant vector a A RN

such that c2�S� � ac1�S� � a�S� for all S JN, where a�S� �Pk AS ak. It fol-
lows that the concept of a characterization set is covariant under strategic
equivalence, because passing from one game to a strategically equivalent one
causes all excesses to be multiplied by a positive constant.

3. Saturated coalitions for monotone games

In this section, which is restricted to monotone cost games, we introduce the
notion of saturated coalitions, and prove that the class of all irreducible satu-
rated coalitions forms a c-set for the nucleolus of a monotone game having a
non-empty core.

4 Since Tinduces a representation of the core of �N; c�, C�GT� can be equivalently replaced by
C�G�.
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A cost game �N; c� is said to be monotone, if c�S�U c�T�, whenever
S JT . Further,

De®nition 3.1.
(1) A coalition S of G � �N; c� is said to be saturated if i A S whenever5

c�S W i� � c�S�.
(2) A closure of S is a saturated coalition S such that S JS and

c�S� � c�S�.

Lemma 3.2. Any non-saturated coalition has at least one closure.

Proof. This is demonstrated by adding players to a non-saturated coalition S
until any further addition will have to increase c�S�. Since jNj is ®nite, the
process of adding players will stop after at most jNj additions. By de®nition,
the resulting coalition is saturated, hence, is a closure of S. 9

De®nition 3.3. A saturated coalition S is irreducible if there is no partition
fS1; . . . ;Spg of S such that Si are saturated and c�S�V c�S1� � � � � � c�Sp�.

For a cost game G , let IS denote the class of all irreducible saturated
coalitions, and de®ne IS0 �def ISW fN ni : i A NgW fNg.

Lemma 3.4. A saturated coalition S is irreducible if and only if S has no parti-
tion P � fS1; . . . ;Skg such that Si A IS and

Pk
i�1 c�Si�U c�S�:

Proof. The su½ciency follows from the de®nition. To show the necessity,
suppose a saturated coalition S is not irreducible. Then, from the de®nition of
irreducibility, S has a partition P1 � fS1; . . . ;Spg such that Si's are saturated
and

Pp
i�1 c�Si�U c�S�. Since any re®nement of P1 is still a partition of S, the

proof follows by applying inductive arguments to those subsets Si which are
not irreducible. 9

Theorem 3.5. Let G � �N; c� be a monotone cost game with a nonempty core.
Then IS0 induces a representation of C�G�.

Proof. Clearly,

C�G�JC0 �def fx A RN : x�S�U c�S�;S A IS0; x�N� � c�N�g:

To prove the other direction of the inclusion, we need to show that for all
x A C0, x�S�U c�S� for any S A 2N nIS0. Let S A 2N nIS0. Clearly, S is either
unsaturated, or it is saturated but not irreducible. If S is saturated but not
irreducible, then, by Lemma 3.4, S has a partition P � fS1; . . . ;Skg such that
Si A IS and

Pk
i�1 c�Si�U c�S�. Thus, x�S� �Pk

i�1 x�Si�U
Pk

i�1 c�Si�U
c�S� for x A C0. If S is unsaturated, let S be a closure of S. Then,

S JS, c�S� � c�S� and x�S�U c�S�. Now, observe that xV 0 for all x A C0.

5 For simplicity of notation, we omit sometimes curly brackets. Thus, we write c�S W i�, c�i�, and
N ni instead of c�S W fig�, c�fig� and N nfig, respectively.
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Indeed, for any i A N and x A C0, xi � x�N� ÿ x�Nni�V c�N� ÿ c�Nni�V 0.
Thus, x�S�U x�S�U c�S� � c�S�. 9

Theorem 3.6. Suppose G is a monotone cost game and C�G�0q. Then, IS0 is
a c-set for N�G�.

Proof. By Theorem 3.5, IS0 induces a representation of C�G�. Let
S A 2N nIS0.

Case 1. If S is saturated, then S is not irreducible and it follows from
Lemma 3.4 that S has a partition P � fS1; . . . ;Skg such that Si A IS andPk

i�1 c�Si�U c�S�. Let TS � P. Clearly, TS de®ned this way satis®es con-
dition (ii) of Corollary 2.8. Further, for x A C�GIS0 �, e�Si; x�V 0 for all
1U i U k. Thus, for 1U j U k, e�Sj; x�U

Pk
i�1 e�Si; x�U e�S; x�, where the

last inequality follows from
Pk

i�1 c�Si�U c�S�. Hence, TS also satis®es con-
dition (i) of Corollary 2.8.

Case 2. If S is not saturated, let S be a closure of S. De®ne
TS � fNni : i A SnSgW fNgWT

S
, where T

S
� fSg if S A IS and otherwise

T
S
is de®ned as in Case 1. TS de®ned this way satis®es condition (ii) of Cor-

ollary 2.8. To show that TS also satis®es condition (i) of Corollary 2.8, let
x A C�GIS 0 �. If T

S
� fSg, then e�S; x�U e�S; x� is implied by c�S� � c�S�

and xV 0. Else, for T AT
S
, e�T ; x�U e�S; x� follows as shown in Case 1. For

i A SnS,

e�Nni; x� � c�Nni� ÿ x�N ni� � c�Nni� ÿ c�N� � xi

U xi; since G is monotone;

� �x�S W i� ÿ x�S�� � �c�S� ÿ c�S W i��; since c�S W i� � c�S�;
U e�S; x�; since e�S W i; x�V 0:

Finally, 0 � e�N; x�U e�S; x� since x A C�G�. Hence, TS satis®es both con-
ditions of Corollary 2.8, and IS0 is a c-set forN�G� as claimed. 9

A coalition S is said to be essential for a game G � �N; c� if for every
proper partition, P � fS1; . . . ;Spg, of S, c�S� <Pp

i�1 c�Si�. By convention,
single member coalitions are essential. Let E denote the class of all essential
coalitions of G . The following result is essentially proved in Huberman [1980].

Theorem 3.7. If C�G�0q, then E is a c-set for N�G�.

Theorem 3.7 follows trivially from Corollary 2.8. Indeed, E induces a
representation of C�G�, and for S A 2N nE, TS can be chosen to be an arbi-
trary partition P � fS1; . . . ;Spg of S, such that c�S�V Pp

i�1 c�Si�. For such a
partition, Condition (ii) of Corollary 2.8 is trivially satis®ed. Condition (i)
therein is satis®ed by such a partition since, by assumption, C�G�0q.

Remark 3.8 below relates Huberman's essential coalitions to the collection
of irreducible saturated coalitions introduced above.

Remark 3.8.
(1) It follows from the de®nition of irreducibility that a saturated coalition is

irreducible if and only if it is essential among the class of all saturated coalitions.
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(2) Let G � �N; c� be an arbitrary cost game. Then, for an additive game
�N; d�, where d�i� is su½ciently large for all i A N, G 0 � �N; c� d� is a mono-
tone game with every subset of N therein being saturated. For such a game G 0,
the class of all irreducible saturated coalitions coincides with the class of all
essential coalitions.

(3) In general, for an arbitrary game G , it may happen that neither EJIS
nor ISJT.

Finally, we comment that as (2) in Remark 3.8 suggests, monotonicity, as
well as other concepts introduced in this section, are not covariant under the
addition of additive games.

4. Sequential LP processes and polynomial computability of the nucleolus

In this section, we formalize Kopelowitz's method (Kopelowitz [1967],
Maschler, Peleg and Shapley [1979]) for computing the nucleolus of a coop-
erative game through the notion of a sequential LP process. We further study
the relationship between the size of a c-set and the complexity of computing
the nucleolus.

Notation 4.1. Let c be a function de®ned on T, TJ 2N , and let X be a poly-
hedron in RN . Denote by P�T; c;X � the following LP problem:

P�T; c;X�: Maxfr: r� x�S�U c�S�;S AT; x A Xg:

The sequential LP process for P�T; c;X �, denoted by SLP�P�T; c;X��, is the
process of solving a sequence of LP problems, fPk : k V 1g, led by P1 �
P�T; c;X� and terminated with Pk �kV 1� which has a unique optimal solu-
tion or has only equality constraints. For the kth LP problem Pk, let rk be its
optimal value, Xk be the projection of its optimal solution set on RN and
Sk � fS JN : e�S;x� � constantV rk on Xkg. Then Pk�1 is derived from Pk

by converting all constraints induced by subsets S A Sk into equalities of
the form, x�S� � c�S� ÿ e�S; y� where y is an arbitrary vector in Xk. We will
refer to Xk, the projection of the optimal solution for the last LP in

SLP�P�T; c;X�� on RN , as the outcome of SLP�P�T; c;X��, and to r �def
fX ;X1; . . . ;Xkg as the trajectory of SLP�P�T; c;X ��. We also let Sk denote
S1 W � � � WSk.

Remark 4.2. Equivalently, rk, Xk, Sk and Pk�1 for k V 1 can be de®ned as,
(1) r1 � maxx AX minS AT e�S; x� and rk � maxx AXkÿ1 minS ATnSkÿ1 e�S; x�

for k > 1.
(2) Xk � fx A Xkÿ1 : e�S; x�V rk; ES ATnSkÿ1g � fx A Xkÿ1 :

minS ATnSkÿ1 e�S; x� � rkg.
(3) Sk is the set of all coalitions S in T such that e�S; x� is constant for all

x A Xk.
(4) Pk�1 is the LP problem derived from P1 by setting all constraints in-

duced by subsets in Sk into equalities of the form, x�S� � c�S� ÿ e�S; y�, where
y is an arbitrary vector in Xk.
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The sequential LP process depicted in Notation 4.1 is slightly di¨erent
from the process described in Macshler et al. [1979]. Indeed, therein they derive
Pk�1 from Pk by converting into equalities all constraints induced by coali-
tions in fS JN : e�S; x� � rk for all x A Xkg, which is a subset of Sk de®ned
in Notation 4.1. But, as mentioned at Footnote 37 therein, these two processes
have the same outcome. Actually, we can prove the following:

Lemma 4.3. The outcome of the process described in Notation 4.1 will not
change if in the derivation of Pk�1 from Pk at least one but not necessarily all
constraints induced by coalitions in Sk are converted into equalities.

Proof. It is su½cient to prove that any such modi®ed process and
SLP�P�T; c;X�� have the same outcome. Such a proof follows the same line
as the proof of Theorem 6.6 in Maschler et al. [1979]. After proving analogous
results as Lemmas 6.3 and 6.5 therein, we can conclude that the modi®ed
process (in particular, SLP�P�T; c;X��) terminates after a ®nite number of
steps with the following outcome,

fx A X : y�x; c;T�Vl y�y; c;T� for all y A Xg;

where y�x; c;T� is the jTj-dimensional vector consisting of the components
e�S; x�, S AT, arranged in a non-decreasing order. (See also Remark 4.4(2)
below.) For brevity, we omit this part of the proof. 9

For a cost game G � �N; c�, denote by P�T;G ;X0� the LP problem
P�T; c;X0�, where c is taken to be the characteristic function of G and
X0 � X ��G� or X�G�. With the notion of a sequential LP process, Kopelo-
witz's procedure for computing the nucleolus of G with respect to X0 can be
described as SLP�P�2N ;G;X0��, whose outcome isN�G ;X0�.

Remark 4.4.
(1) For a game with a nonempty core, the prenucleolus coincides with the

nucleolus and is contained in its core. For such a game G , the optimal value r1 of
P�T;G;X ��G�� is nonnegative. So the projection of the optimal solution set of
P�T;G;X ��G�� on RN is contained in the core of G , which is contained in
X �G�. Therefore, if G has a nonempty core, the constraint x A X0 can be
replaced by x�N� � c�N�, or by x A C�G� in all LP problems encountered in
Kopelowitz's procedure for computing the prenucleolus/nucleolus of G .

(2) The outcome of SLP�P�T;G ;X0�� is N�GT;X0�, where GT is the game
derived from G by imposing coalition formation restrictions T.

A geometrical interpretation for SLP�P�2N ;G;X �G���, which dubs its
outcome,N�G�, as the lexicographical center of the imputation set X�G�, was
given in Maschler, Peleg and Shapley [1979]. Analogously, a similar geo-
metrical explanation can be produced for SLP�P�T;G;X0�� for any TJ 2N .
For this reason, we refer to the outcome of SLP�P�T;G ;X0��, which is a non-
empty compact convex subset of X0, the lexicographical center of X0 with re-
spect to T.

In general, the outcome of SLP�P�T;G ;X0�� might not be a singleton set.
However, when T� 2N the outcome of SLP�P�T;G ;X0�� is the prenucleolus
or nucleolus of G , and hence is a singleton set. Further:
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Proposition 4.5. The outcome of SLP�P�T;G ;X0�� is a singleton set if and only
if the set of incidence vectors of subsets in Tspans RN .

The proof is immediate, and thus omitted.

An algorithm is said to be strongly polynomial if: (1) it consists of the ele-
mentary operations: additions, comparisons, multiplications and divisions, (2)
the elementary operations are carried out on rationals of size polynomially
bounded in the dimension of the input, and (3) the number of such operations
is polynomially bounded in the dimension of the input. A problem is said to
be solvable in strongly polynomial time if there is a strongly polynomial algo-
rithm for solving the problem. The dimension of a cooperative game is de®ned
to be the total number of players in the game. We prove in this section that if
the nucleolus of a cost game G has a c-set whose size is polynomially bounded
in the number of players, then N�G ;X0� can be computed in strongly poly-
nomial time.

For a cost game G � �N; c�, let Tbe a c-set for N�G;X0�. Recall that in
this case, N�G ;X0� �N�GT;X0� is the outcome of SLP�P�T;G;X0�� (Re-
mark 4.4(2)), where

P�T;G;X0� : Maxfr: r� x�S�U c�S�;S AT; x A X0g:

We develop next an algorithm for computing the outcome of
SLP�P�T;G;X0�� and show that the proposed algorithm is strongly poly-
nomial if T has size polynomially bounded in jNj. For brevity, we assume
that X0 � X�G� in the sequel. The case where X0 � X ��G� is similar. Recall
that when X0 � X�G�, the constraint x A X0 in P�T;G ;X0� can be replaced
by: xi U c�i� for i A N, x�N� � c�N�.

Let fT1;T2g be a partition ofTW fNg with N AT2. Denote by PT1;T2
the

LP problem,

PT1;T2
: Max r

s.t. r� x�S�U c�S�; S AT1;

x�S� � c�S� ÿ rS; S AT2;

xi U c�i�; i A N;

where rS, for S AT2, are constants depending on S, and in particular, rN � 0.
The dual LP problem of PT1;T2

is

DT1;T2
: Min

X
S AT1

c�S�pS �
X

S AT2

�c�S� ÿ rS�pS �
X
i AN

c�i�li

s.t.
X

S AT1

pS � 1;X
S:i A S

pS � li � 0; i A N;

pS V 0; ES AT1; li V 0; Ei A N:

Observe that all coe½cients in the constraints of PT1;T2
and DT1;T2

are zero or
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one. Thus, both problems are combinatorial linear programs6 and by apply-
ing Tardos' [1986] celebrated algorithm for solving combinatorial LP prob-
lems, we conclude that:

Lemma 4.6. If Thas size polynomially bounded in jNj, then there is a strongly
polynomial algorithm which computes the optimal value and an optimal solution
for PT1;T2

or DT1;T2
.

Since a superset of a c-set for the nucleolus of a game is still a c-set
for the nucleolus, without loss of generality, we can assume in the sequel
that TK fNni : i A Ng. Algorithm 4.7 for computing the outcome of
SLP�P�T;G;X0�� can be stated as follows.

Algorithm 4.7.
Input: The c-set T for the nucleolus of a cost game G . Assume TK
fN ni : i A Ng.
Output: fyg �N�G�.
Step 0. Set P1 � P�T;G ;X0�, T1 �TnfNg, T2 � fNg, k � 1 and x �
fN ni : i A Ng.
Step 1. Repeat the following until x �q:

� Solve DT1;T2
by applying Tardos' algorithm. Let rk be its optimal value, p� be

an optimal solution, and let Sk �def fS AT1 : p�S 0 0g. Set T1 �T1nSk,
T2 �T2 WSk, x � xnSk and k � k � 1.

� For each i such that Nni A Sk, set yi � rk � c�N� ÿ c�N ni�.

Step 2. Output7 fyg.

Theorem 4.8. Let G be a class of games and suppose that for every game in this
class one can ®nd in polynomial time a c-set of size polynomially bounded in the
number of players. Then, the nucleolus of each game in this class can be calcu-
lated in strongly polynomial time.

Proof. Let G � �N; c� A G and T be the c-set for G , which can be found in
polynomial time. We start by showing that Algorithm 4.7 computes the out-
come of SLP�P�T;G ;X0��. Indeed, for each Pk �k V 1�, Algorithm 4.7 com-
putes the optimal value and identi®es some inequality constraints which are
binding at all of its optimal solutions by ®nding the optimal value and an
optimal solution for the dual LP problem of Pk. Explicitly, in the ®rst itera-
tion of Step 1, Algorithm 4.7 computes the optimal value and an optimal
solution of the LP problem DTnfNg;fNg, which is the dual LP problem of P1.
Let r1 be its optimal value and p� be an optimal solution. Then, by the duality

6 A linear program is said to be combinatorial if the coe½cients in the constraint matrix are
polynomially bounded in the dimension of the problem. Thus, if, in particular, the coe½cients are
zero or one, as is the case with PT1 ;T2

and DT1 ;T2
, the associated linear program is combinatorial.

7 In Algorithm 4.7 we solve a sequence of dual problems of the general form DT1 ;T2
. Equivalently,

the algorithm could have been described in terms of solving a sequence of primal problems of the
form PT1 ;T2

. However, in the latter case one would need to resort to an optimal dual solution at
each stage in order to characterize the collection Sk (see Step 1). In order to simplify the pre-
sentation, Algorithm 4.7 is described in terms of solving a sequence of dual problems DT1 ;T2

.
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theorem of linear programming, r1 is the optimal value of P1 and subsets in

S1 �def fS AT: p�S 0 0g induce constraints which are binding at all optimal
solutions of P1. Let P2 be the LP problem derived from P1 by converting
some constraints induced by subsets in S1 into equalities as done in Notation
4.1. The dual of P2 is DT1;T2

, whereT1 �Tn�fNgWS1� andT2 � fNgWS1.
In general, in the kth iteration of Step 1, Algorithm 4.7 computes the optimal
value and an optimal solution of the dual LP problem of Pk, which has the
form DT1;T2

for some partition fT1;T2g of TW fNg. Let rk be its optimal
value and p� be an optimal solution. Then rk is the optimal value of Pk and

subsets in Sk �def fS AT1 : p�S 0 0g induce constraints which are binding at all
optimal solutions of Pk. Derive Pk�1 from Pk by converting constraints
induced by subsets in Sk into equalities, and note that the dual of Pk�1 is
DT1 nSk ;T2WSk

.
By the time constraints induced by all coalitions Nni, i A N, have been

converted into equalities, SLP�P�T;G ;X0�� has come to its end. Indeed, when
the latter has occurred the values of all variables xi, i A N, are ®xed and thus
the last LP problem solved must have a unique solution. Algorithm 4.7 tests
this stopping criterion by checking if fN ni : i A NgJT2 at the end of every
iteration of Step 1. Whenever Nni, for some i A N, is moved from T1 to T2,
Algorithm 4.7 sets yi � rk � c�N� ÿ c�N ni�, where k is chosen such that
N ni A Sk. Clearly, y de®ned this way is the outcome of SLP�P�T;G ;X0��.

Algorithm 4.7 stops after ®nitely many iterations since, at each iteration of
Step 1, the optimal solution for DT1;T2

must satisfy
P

S AT1
p�S � 1, so Sk is

nonempty. Hence after every iteration at least one inequality will be converted
into an equality. Therefore, the algorithm will terminate after at most jTj
iterations.

To show that Algorithm 4.7 is strongly polynomial if T has size poly-
nomially bounded in jNj, observe that, at each iteration, computations are
dominated by those needed for solving DT1;T2

. From Lemma 4.6, Tardos' al-
gorithm for solving DT1;T2

is strongly polynomial if jTj is polynomial in jNj.
Since Algorithm 4.7 terminates after at most jTj iterations, which is poly-
nomial in jNj, it follows that the nucleolus is computed in strongly polynomial
time, completing the proof. 9

5. Examples

To illustrate their usefulness and prevalence, we brie¯y describe in this section
c-sets for the classes of minimum cost spanning tree games and assignment
games

5.1. Minimum cost spanning tree games

A minimum cost spanning tree (MCST) game, GG, is de®ned on a simple
complete graph G � �V ;E� with node set V � N W f0g. Node 0 is the sup-
plier node and N � f1; 2; . . . ; ng is the set of customer nodes. Thus, customer i
resides at node i. A nonnegative real number is associated with each edge of G
and is called the edge cost. We use cij to denote the cost of the edge joining
nodes i and j. For S JN, let TS �def �VS;ES� represent a MCST for the induced
subgraph of G with node set VS � S W f0g. In the MCST game, the player set
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is identi®ed with the set of customers N and the cost function is de®ned as
c�q� � 0 and c�S� �Pfcij : �i; j� A ESg for S JN and S 0q. The class of
MCST games has been studied, for example, by Bird [1976], Granot and Hu-
berman [1981, 1984] and Megiddo [1978], and is known to have a nonempty
core (see, e.g. Bird [1976] or Granot and Huberman [1981]).

To describe a c-set for the nucleolus of a MCST game GG, we need some
more notation. Let TN � �VN ;EN� be a MCST for G . A subset S JN will be
called TN -connected if it induces a connected subgraph on TN . That is, if i and
j are in S, then so are all other nodes on the unique path between i and j in TN .
Let L0 denote the class of coalitions S whose complements, N nS, are TN -
connected, and let L �L0W fNg.

Theorem 5.1. (Granot and Huberman [1984])L induces a representation of the
core of a MCST game.

For QHN, let P�Q� �def fQ1;Q2; . . . ;Qr�Q�g be the collection of all max-

imal connected components of NnQ in TN . Thus, if jP�Q�j � 1, then Q AL0.
Further, for Q BL0, let TQ � fNnT : T A P�Q�g. Then, for each Q BL0,
eQ �

P�eN nT : T A P�Q�� ÿ �jP�Q�j ÿ 1� � eN , and condition (ii) of Corollary
2.8 is satis®ed. Moreover, Granot and Huberman's proof of Theorem 5.1, in
fact, establishes that for each Q BL0, e�Q; x�V e�T ; x�, ET ATQ, for each x
in the core of a MCST game. Thus, by Corollary 2.8, we conclude:

Corollary 5.2. L is a c-set for N�GG�.

Corollary 5.2 was explicitly proved by Granot and Huberman [Theorem 5,
1984]. However, as it was shown above, it follows immediately from Corol-
lary 2.8, once conditions (i) and (ii) therein are satis®ed for GG.

For an arbitrary graph G, L consists of an exponential number (in terms
of jNj) of coalitions. Therefore, for general MCST games, the computation of
the nucleolus may still require exponential time. For the special case when TN

is a chain, L consists of n�n� 1�=2 coalitions. Thus, from Theorem 4.8, the
nucleolus of this special class of MCST games can be computed in strongly
polynomial time.

An even more special case is obtained when G itself is restricted to be a
chain. Games associated with such chain graphs were ®rst studied by Little-
child [1974], Littlechild and Owen [1977] and Littlechild and Thompson
[1977]. In Littlechild [1974], the author has identi®ed a class of O�jNj� coali-
tions which were shown to be the only relevant coalitions for calculating the
nucleolus, and has essentially developed therein an O�jNj2� algorithm for
computing the nucleolus. Galil [1980] and lately, Granot, Maschler, Owen
and Zhu [1996] have derived a linear time algorithm for computing the
nucleolus of this class of games. For this special class of games, it was estab-
lished by Littlechild [1974] that the characterization set, T, is given by T�
ff1g; f1; 2g; . . . ; f1; 2; . . . ; nÿ 1ggW ffNnfig; i A NgW fNg.

5.2. Assignment games

Assignment games were introduced by Shapley and Shubik [1972] as a model
for a simple two-sided market. In such a market:
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(1) There are two disjoint sets of agents, say ``producers'' and ``consumers'',
denoted by N1 and N2, respectively.

(2) The agents are constrained to conduct their business under exclusive
bilateral contracts, and for that purpose partnerships are formed.

(3) All transactions are limited to exchanges between partners. For i A N1

and j A N2, there is associated a number aij V 0, representing the potential
pro®t of the partnership between i and j if it is formed.

We denote a simple market by M � �N1;N2;A�, where A � �aij� A
R jN1j�jN2j. The assignment game associated with M is the game GM � �N; v�,
where N � N1 WN2, and for S JN, v�S� is the maximum pro®t that can be
attained by matching producers in S XN1 with consumers in S XN2.

For an assignment game GM � �N; v�, Shapley and Shubik [1972] proved
that:

Proposition 5.3. C�GM�0q, and8

C�GM� � fx A RN : xi � xj V aij for all i A N1; j A N2; xV 0; x�N� � v�N�g:

Let T�def fS : S � fi; jg for some i A N1; j A N2 or S � fkg for some
k A NgW fNg. From Proposition 5.3, it follows that T induces a representa-
tion of the core of GM . Now, for each S BT, let P�S� � ffi1; j1g; fi2; j2g; . . . ;
fik�S�; jk�s�g: il A N1; jl A N2; l � 1; . . . ; k�S�; QS;QS HN1 or QS HN2g be a
partition of S satisfying v�S� �P�ail ;jl : il A N1; jl A N2; l � 1; . . . ; k�S��, and
let JS � ffi1; j1g; fi2; j2g; . . . ; fik�S�; jk�S�gW ff jg: j A QSg. Then eS is simply
the sum of the characteristic vectors of subsets in JS, and condition (ii) in
Corollary 2.8 is satis®ed. Further, for each x A C�GM�, x�S�V v�S� and
therefore,9

x�S� ÿ v�S� �
X

l�1;...;k�S�
�xil � xjl ÿ v�fil ; jlg�� �

X
j AQS

xj

V xil � xjl ÿ v�fil ; jlg�; l � 1; . . . ; k�S�;

and

x�S� ÿ v�S�V xj � xj ÿ v�f jg�; j A QS:

Thus, condition (i) in Corollary 2.8 is also satis®ed, and we conclude:

Proposition 5.4. T is a c-set for N�GM�.

Proposition 5.4 was proved explicitly in Solymosi and Raghavan [1994].
However, again, as it was shown above, it follows immediately from Corol-
lary 2.8, once conditions (i) and (ii) therein are established for GM .

Since there are only jN1j � jN2j � jN1j � jN2j coalitions in T, it follows
from Theorem 4.8 thatN�GM� can be computed in strongly polynomial time.

8 Since assignment games are revenue games, we need to reverse the direction of inequalities in the
de®nition of all solution concepts.
9 Since assignment games are revenue games, we need to reverse the direction of the inequalities
in condition (i) in Theorem 2.3 and Corollary 2.8.
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In fact, an O�jNj4� algorithm to compute N�GM� is developed in Solymosi
and Raghavan [1994].

Acknowledgement. The authors have bene®tted considerably from the perceptive comments made
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