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Abstract. The selectope of a cooperative transferable utility game is the
convex hull of the payo¨ vectors obtained by assigning the Harsanyi
dividends of the coalitions to members determined by so-called selectors. The
selectope is studied from a set-theoretic point of view, as superset of the core
and of the Weber set; and from a value-theoretic point of view, as containing
weighted Shapley values, random order values, and sharing values.
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1. Introduction

A (transferable utility) game is a pair �N; v� (often simply denoted by v) where
N � f1; 2; . . . ; ng is the set of players and v : 2N ! R is the characteristic
function assigning to each coalition S the worth v�S�, with the convention that
v�q� � 0. A central question concerning such a game v is: Assuming that the
grand coalition N forms, how to distribute its worth v�N� among the players?
One way to answer this question is to specify a value, i.e., a map GN ! RN ,
where GN denotes the set of all games with player set N.

For a game v and coalitions S the dividends (Harsanyi, 1963) are de®ned,
recursively, by

Dv�S� :�
0 if S �q

v�S� ÿPTJS;T0S Dv�T� otherwise.

(
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Note that for every v A GN and S JN:

v�S� �
X
TJS

Dv�T�: �1�

A selector is a function a : 2Nnfqg ! N with a�S� A S for every nonempty
coalition S. The set of all selectors on 2Nnfqg is denoted by AN . The selector
value corresponding to a is the value ma de®ned by

ma
i �v� :�

X
S:i�a�S�

Dv�S�

for every i A N and v A GN . In Hammer et al. (1977) the selectope for a game v
was introduced, which is de®ned by

S�v� :� convfma�v� A RN : a A ANg:

The selectope can be viewed as containing all possible reasonable ways to
distribute the dividends of a game among the players. Therefore it is interest-
ing to investigate its relation to other solution concepts that were proposed in
the literature. Speci®cally, the purpose of this paper is to study the selectope
from two points of view.

In Section 2 the selectope is considered in relation to other set-theoretic
solution concepts, in particular the imputation set, Weber set, and core. The
main results are as follows. The Weber set (the convex hull of the so-called
marginal values) is a subset of the selectope and, consequently, the core
(which is a subset of the Weber set) is a subset of the selectope. The core and
the selectope coincide if, and only if, the selectope is a subset of the imputation
set, and this holds for the class of almost positive games, i.e., games where the
dividends of all non-singleton coalitions are non-negative. Coincidence of the
Weber set and the selectope is also characterized, by considering so-called
greedy allocations. Moreover, it is shown that the selectope of a game is equal
to the core of a corresponding convex game of which the core and the Weber
set are determined by these greedy allocations. A consequence is a new char-
acterization of the Shapley value in terms of these greedy allocations.

In Section 3 the selectope is considered from a value-theoretic, axiomatic
point of view; in particular, it contains sharing values, random order values,
and weighted Shapley values. We present a coherent system of axioms
characterizing these classes of values and also give the relation with Hart-
Mas-Colell consistency.

Section 4 contains a few concluding remarks and further research questions.

2. Set-theoretic approach

The imputation set of a game v is the set of all individually rational and e½-
cient payo¨ vectors:

I�v� :� fx A RN : x�N� � v�N� and xi V v�fig� for all i A Ng:
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Here x�S� :�Pi AS xi for every S JN and x A RN . The core is the set of all
imputations that are also coalitionally rational:

C�v� :� fx A RN : x�N� � v�N� and x�S�V v�S� for all S JNg:

For a permutation p of N and a player i, let Pp�i� denote the set of pre-
decessors of i according to p, that is:

Pp�i� :� f j A N : pÿ1� j� < pÿ1�i�g:

Then the marginal value mp is de®ned by

mp
i �v� :� v�Pp�i�W fig� ÿ v�Pp�i�� for every v A GN and i A N:

Observe that, by (1):

mp
i �v� �

X
TJPp�i�Wfig;T C i

Dv�T� for every v A GN and i A N: �2�

In words this says that at a marginal value mp a player obtains the dividends
of every coalition in which his rank according to p is maximal.

The Weber set is the convex hull of the marginal values:

W�v� :� convfmp�v� : p a permutation of Ng:
It is well known that the core is always contained in the Weber set (Weber,
1988; Derks, 1992). Furthermore, the Weber set is a subset of the selectope.
This is a consequence of Lemma 1 below.

In order to obtain some feeling for these de®nitions we include an example
of a three-person game in Figure 1.

Lemma 1. Let p be a permutation of N and let a : 2Nnfqg ! N be de®ned by

a�S� :� p�maxf j A N : p� j� A Sg� for every nonempty coalition S:

Then a is a selector and ma�v� � mp�v� for every v A GN.

Proof: Obviously a is a selector. For i A N and v A GN :

mp
i �v� �

X
TJPp�i�Wfig;T C i

Dv�T� � ma
i �v�

where the ®rst equality follows by (2) and the second equality follows because
i � a�T� for every T JPp�i�W fig with T C i. r

For a converse of Lemma 1 the following condition on a selector is required.
A selector a is consistent if a�S� � a�T� whenever S JT and a�T� A S.1

1 This condition has the same mathematical form as Nash's (1950) condition of Independence of
Irrelevant Alternatives for bargaining solutions.
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Lemma 2. Let a be a selector. Then there is a permutation p of N with
mp�v� � ma�v� for every game v A GN if and only if a is consistent. In that case,
p is unique and described, recursively, by p�n� � a�N� and

p�i� � a�Nnfp�n�; . . . ; p�i � 1�g� for every i A Nnfng:

S 1 2 3 12 13 23 123
v�S� 0 0 0 1 1 ÿ1 3
Dv�S� 0 0 0 1 1 ÿ1 2 ma�v�

a1 1 2 3 1 1 2 1 4;ÿ1; 0
a2 1 2 3 1 1 2 2 2; 1; 0
a3 1 2 3 1 1 2 3 2;ÿ1; 2

a4 1 2 3 1 1 3 1 4; 0;ÿ1
a5 1 2 3 1 1 3 2 2; 2;ÿ1
a6 1 2 3 1 1 3 3 2; 0; 1

a7 1 2 3 1 3 2 1 3;ÿ1; 1
a8 1 2 3 1 3 2 2 1; 1; 1
a9 1 2 3 1 3 2 3 1;ÿ1; 3

a10 1 2 3 1 3 3 1 3; 0; 0
a11 1 2 3 1 3 3 2 1; 2; 0
a12 1 2 3 1 3 3 3 1; 0; 2

a13 1 2 3 2 1 2 1 3; 0; 0
a14 1 2 3 2 1 2 2 1; 2; 0
a15 1 2 3 2 1 2 3 1; 0; 2

a16 1 2 3 2 1 3 1 3; 1;ÿ1
a17 1 2 3 2 1 3 2 1; 3;ÿ1
a18 1 2 3 2 1 3 3 1; 1; 1

a19 1 2 3 2 3 2 1 2; 0; 1
a20 1 2 3 2 3 2 2 0; 2; 1
a21 1 2 3 2 3 2 3 0; 0; 3

a22 1 2 3 2 3 3 1 2; 1; 0
a23 1 2 3 2 3 3 2 0; 3; 0
a24 1 2 3 2 3 3 3 0; 1; 2

Fig. 1. Dividends, core, Weber set, and selectope in a three-person game
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Proof: Let p be a permutation of N with mp�v� � ma�v� for every v A GN .
Let T and S be coalitions with S JT and a�T� A S. Say i � a�T�. De®ne
w A GN by Dw�T� :� 1 and Dw�M� :� 0 for all M 0T . Then ma

i �w� � 1, so
mp

i �w� � 1 and by (2) pÿ1�i� � maxfpÿ1� j� : j A Tg. Hence also pÿ1�i� �
maxfpÿ1� j� : j A Sg. De®ne ~w by D ~w�S� :� 1 and D ~w�M� :� 0 for all M 0S.
Then ma

i �~w� � mp
i �~w� � D ~w�S� � 1 and therefore a�S� � i. It follows that a is

consistent.
Next let a be a consistent selector. De®ne vn A GN by Dv n�N� :� 1 and

Dv n�M� :� 0 otherwise. Then by (2), for every permutation p, mp�vn� �
ma�vn� if and only if a�N� � p�n�. De®ne vnÿ1 A GN by Dv nÿ1�Nnfp�n�g� :� 1
and Dv nÿ1�M� :� 0 otherwise. By (2) again, for every permutation p,
mp�vnÿ1� � ma�vnÿ1� if and only if a�Nnfp�n�g� � p�nÿ 1�. By repeating this
argument the unique permutation p as in the statement of the lemma is
obtained. r

Summarizing, there is a one-to-one correspondence between permutations and
consistent selectors, and between marginal values and selector values corre-
sponding to consistent selectors. In Figure 1, for example, the consistent
selectors are a1, a4, a12, a14, a20, and a24.

The relations between core and selectope, already proved by Hammer et
al. (1977) with the aid of ¯ows, can also be proved in a direct and elementary
way, without duality-based arguments. See Corollary 1 and the equivalence
between statements (i) and (iii) in Theorem 2. In the proofs of these results a
lemma (Lemma 3 below) will be used which has some signi®cance on its own.

From equation (1) one immediately derives the well known fact that each
game v A GN can uniquely be represented by:

v �
X

q0SJN

Dv�S�uS

where for every S 0q the unanimity game uS is de®ned by uS�T� :� 1 if
S JT and uS�T� :� 0 otherwise. These unanimity games form a basis of the
linear space GN . Given this representation one de®nes

v� �
X

S:Dv�S�>0

Dv�S�uS and vÿ �
X

S:Dv�S�<0

ÿDv�S�uS:

Then v � v� ÿ vÿ.

Lemma 3. Let v A GN. Then:

(a) S�v�� � C�v�� and S�vÿ� � C�vÿ�.
(b) S�v� � C�v�� ÿ C�vÿ�.2

Proof: (a) We only prove the ®rst equality, the second is similar. Because
C�v��JS�v�� it is su½cient to prove that ma�v�� A C�v�� for any selector a.
This, however, follows because

2 Sums and di¨erences of sets are de®ned vector-wise.
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ma�v���S� �
X
i AS

X
T :i�a�T�

Dv��T�

V
X
TJS

Dv��T�

� v��S�
for every coalition S 0q, where the inequality follows because all dividends
in v� are nonnegative and the last equality follows from (1).
(b) For any selector a, ma�v� � ma�v�� ÿma�vÿ�, hence ma�v� A C�v��ÿ
C�vÿ� in view of part (a). This proves S�v�JC�v�� ÿ C�vÿ�. For the
converse it is, in view again of part (a), su½cient to prove that for selectors
a; b A AN it holds that ma�v�� ÿmb�vÿ� A S�v�. De®ne the selector g by
g�S� :� a�S� if Dv�S�V 0 and g�S� :� b�S� if Dv�S� < 0. Then S�v� C mg�v� �
ma�v�� ÿmb�vÿ�. r

Lemma 3 and in particular part (b) has some important consequences. The
®rst one is that the selectope has a core-like structure. To see this we need to
recall some well known facts concerning dual and convex games.

The dual of a game v, denoted by v�, is de®ned as v��S� � v�N� ÿ v�NnS�
for each S JN. It can easily be checked that, in general, ÿC�v� � C��ÿv���
so that in particular ÿC�vÿ� � C��ÿvÿ���. Further, observe that v� is a
convex game and ÿvÿ a concave game, where a game w is convex if
w�S WT� � w�S XT�Vw�S� � w�T� holds for all S;T JN, and w is
concave if ÿw is convex. The dual of a concave game is generally known and
can easily be shown to be convex. Therefore, Lemma 3 implies that the
selectope of a game is a sum of the cores of two convex games.

It is well known that the core of a game is equal to the Weber set if, and
only if, the game is convex (Shapley, 1971; Ichiishi, 1981). The Weber set has
the subadditivity property W�v� �W�w�KW�v� w� and the core has the
superadditivity property C�v� � C�w�JC�v� w� for all games v;w. This
implies that the core is additive on the cone of convex games, so that we have
the following result.

Theorem 1. The selectope of a game v equals the core of the convex game
~v � v� � �ÿvÿ��.
From this theorem we conclude that the geometric structure of the selectope is
of a much simpler nature than that of the Weber set, since we now know that
the facets of the selectope correspond to normals with �0; 1�-coe½cients, like
the core, and the number of extreme elements is majorized by the maximal
number of extreme elements of the Weber set. Further, the candidates for
these elements are as easy to compute as the marginal values, the candidates
for the extreme elements of the Weber set. This feature will be elaborated in
the subsection on the Shapley value below.

An interpretation of the worth ~v�S� of coalition S (see Theorem 1) is
obtained by rewriting this worth in terms of dividends:

~v�S� � v��S� ÿ vÿ�N� � vÿ�NnS�
�

X
T :TJS;Dv�T�>0

Dv�T� �
X

T :TXS0q;Dv�T�<0

Dv�T�: �3�
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Thus, if the worth v�N� �PT Dv�T� is distributed among the players, so that
each portion Dv�T� is allocated to only players in T , then the value ~v�S� is a
sharp lower bound for the amount the players can achieve.

Corollary 1. The core is a subset of the selectope.

Proof: Observe that by (3) the game v majorizes the corresponding game ~v.
Together with v�N� � ~v�N�, this implies that C�v�JC�~v�. So by Theorem 1
we have C�v�JS�v�. r

Call a game v almost positive if the dividends of all non-singleton coalitions
are non-negative. One easily shows that the set of almost positive games is
a subset of the class of convex games. Theorem 2 shows that the core and
selectope coincide for almost positive games, which was already noticed by
Hammer et al. (1977).

Call v additive if the worth of the union of any two disjoint coalitions
equals the sum of the separate worths. An additive game may be identi®ed
with the vector of the individual worths, and this vector is the unique core
element of the game. Also, C�v� w� � C�v� � C�w� if w is an additive game.

Theorem 2 presents another consequence of Lemma 3(b).

Theorem 2. Let v A GN. The following three statements are equivalent.

(i) C�v� � S�v�,
(ii) S�v�J I�v�,

(iii) v is almost positive.

Furthermore, S�v� � I�v� if and only if v is additive.

Proof: (i) implies (ii) because C�v�J I�v� by de®nition. Assume (ii) and
suppose there is a coalition S with jSjV 2 and Dv�S� < 0. Take i A S and let a
be a selector with the property that i � a�S� and i 0 a�T� for every T 0
S; fig. Then ma

i �v� � v�fig� � Dv�S� < v�fig�, contradicting S�v�J I�v�. This
proves that (ii) implies (iii). Next, assume that v is almost positive. Then
C�v� � C�v� ÿ vÿ� � C�v�� ÿ C�vÿ� � S�v�, where the second equality
follows because ÿvÿ is an additive game and the third equality follows by
Lemma 3.

For the ®nal statement of the theorem, observe that v is additive if, and
only if, Dv�S� � v�fig� for S � fig and Dv�S� � 0 otherwise, which is true if,
and only if, S�v� � f�vf1g�; . . . ; v�fng�g � I�v�. r

See Crama et al. (1989) for a characterization of the class of almost positive
games in terms of inequalities on the coalitional worths.

The remainder of this section is organized in two subsections. The ®rst one
deals with the relationship between the selectope and the Shapley value.
Although values are the topic of the next section we discuss the Shapley value
at this place because of the close relationship with the second subsection, on
the coincidence of the Weber set and the selectope.
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2.1. Selector values and the Shapley value

The Shapley value (Shapley, 1953) is the best known solution concept within
the theory of cooperative games. There are many di¨erent ways to introduce
this value and here we will describe a new one. Well known is the description
of the Shapley value as the average of the marginal values:

j�v� � 1

n!

X
p

mp�v�;

where the summation is taken over all permutations of the player set N.
Alternatively therefore, j is the average of the consistent selector values (see
Lemma 1 and Lemma 2). Now consider the average of all selector values, not
just the consistent ones, say f. This value is related to the selectope in the same
way as the Shapley value is related to the Weber set. In the sum of all selector
values the dividend Dv�T� has to be distributed equally often to all players in
T , implying that in the average the dividend of T is equally shared between
the players of T . Therefore,

fi�v� �
X

T :TJN;T C i

Dv�T�
jT j ;

and this expression is again a standard description of the Shapley value (hence
f � j).

Next, consider the marginal values mp�~v� of the game ~v. The convex hull
of these values is the Weber set and hence the core of the convex game ~v and
by Theorem 1 this set is equal to the selectope of v. Then,

mp
i �~v� � ~v�Pp�i�W fig� ÿ ~v�Pp�i��

� v��Pp�i�W fig� ÿ v��Pp�i��

� vÿ�Nn�Pp�i�W fig�� ÿ vÿ�NnPp�i��

�
X

T :i�maxp�T�;Dv�T�>0

Dv�T� �
X

T :i�minp�T�;Dv�T�<0

Dv�T�; �4�

where maxp�T� denotes the player in T which is last in the queue p�1�; . . . ;
p�n�, and similarly, minp�T� is the player in T who is the ®rst player of T in
this queue.

From the point of view of the ®rst players one can argue that this alloca-
tion is far from pro®table: the ®rst player p�1� in the queue receives all nega-
tive dividends of the coalitions he is a member of, and his own dividend
Dv�fp�1�g�. The players thereafter receive, one by one, the positive dividends
of only those coalitions where they are the last player, and the negative divi-
dends of those coalitions where they are the ®rst player. From this point of
view, the last player is best o¨. Nevertheless, we will call these allocations
greedy allocations because looking in the reverse direction of the `queue' a
player may grab all positive dividends yet to come while leaving the negative
dividends for the players lower in the queue. These greedy allocations are to
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be considered as allocations in the game v. In the example in Figure 1 the
greedy allocations are exactly the extreme points of the selectope S�v�, i.e., of
C�~v� �W�~v� (cf. Theorem 1).

The greedy allocations are the marginal values in the game ~v so that the
average of these allocations is the Shapley value of ~v. Moreover, the Shapley
value is a linear function on the game space, with the property that the values
of any game and its dual coincide. Therefore,

j�~v� � j�v�� � j��ÿvÿ��� � j�v�� ÿ j�vÿ� � j�v�;

and we conclude that the Shapley value equals the average of the greedy
allocations as well.

2.2. The selectope and the Weber set

In this subsection we characterize those games for which the selectope and the
Weber set coincide. The question is tackled by examining the greedy alloca-
tions: When is the allocation mp�~v� an element of the Weber set for a game v
and permutation p? Observe that for any selector a, with

a�T� � max
p
�T� for all T with Dv�T� > 0; and

a�T� � min
p
�T� for all T with Dv�T� < 0;

we have mp�~v� � ma�v� in view of (4). If it is possible to choose a to be con-
sistent, then we call permutation p consistent in the game v (the consistency
property here is indeed dependent on data of the game; see also later). So, if p
is consistent in v then the greedy allocation mp�~v� equals a consistent selector
value, which by Lemma 2 is equal to a marginal value. Therefore, if all per-
mutations are consistent in the game then the Weber set must contain the
selectope, implying equality. The converse also holds:

Theorem 3. The selectope and the Weber set of a game v coincide if and only if
all permutations are consistent in v.

Proof: The if-part has been addressed above. For the only-if part suppose that
for a game v there is a permutation p that is not consistent in v. Without loss
of generality assume that p is the identity permutation. Take p A RN with
p1 < p2 < � � � < pn. Let a be a consistent selector such that p �ma�v� is maxi-
mal subject to all consistent selector values. Because p is not consistent in v we
can take a coalition S with either a�S�0maxp�S� and Dv�S� > 0, or
a�S�0minp�S� and Dv�S� < 0. Let the selector a 0 be equal to a for all coali-
tions T 0S, and a 0�S� � maxp�S� if Dv�S� > 0 or a 0�S� � minp�S� if
Dv�S� < 0. If Dv�S� > 0 then

p �ma 0 �v� � p �ma�v� � �pmaxp�S� ÿ pa�S��Dv�S� > p �ma�v�;

and if Dv�S� < 0 then
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p �ma 0 �v� � p �ma�v� � �pminp�S� ÿ pa�S��Dv�S� > p �ma�v�:
In both cases we have p �ma 0 �v� > p �ma�v� which proves that S�v�0W�v�.

r

The consistency property of a permutation in a game v is dependent on the
signs of the dividends and not on their actual values. It is therefore possible to
generalize the consistency de®nition as follows. Let U and W be two disjoint
collections of coalitions. A permutation p is called �U;W�-consistent if a
consistent selector a exists such that a�S� � maxp�S� if S A U, and a�S� �
minp�S� if S A W.

In Derks and Peters (1998) it is proved that the existence of a permutation
that is not �U;W�-consistent is equivalent to the existence of a sequence
S1;S2; . . . ;Sk of coalitions, at least one of which is in U and at least one of
which is in W, and k di¨erent players i1; . . . ; ik, such that ij A Sj XSj�1, with
j � 1; . . . k and Sk�1 equal to S1. Applying this result one easily proves the
following corollary.

Let D��v� denote the set of players who are members of non-singleton
coalitions with positive dividends in the game v, and similarly, Dÿ�v� �
6fS : jSj > 1;Dv�S� < 0g.

Corollary 2. In a game v the Weber set and the selectope coincide if

jD��v�XDÿ�v�jU 1: �5�
Almost positive games obviously satisfy (5). The same is true for almost neg-
ative games (which have all non-singleton dividends nonpositive). Every two-
person game trivially is almost negative or almost positive. In a game satisfy-
ing (5) non-singleton subcoalitions of coalitions with positive [resp. negative]
dividend have nonnegative [resp. nonpositive] dividend. In general, there are
games satisfying (5) other than the almost positive or almost negative games.
Moreover, not every convex game satis®es (5), as the following example
shows.

Example 1. Let v A Gf1;2;3g be de®ned by v�f1; 2g� � v�f1; 3g� � 1, v�f2; 3g� �
9, v�f1; 2; 3g� � 10, and v�fig� � 0 for every i A f1; 2; 3g. It is easy to check
that this game is convex. The dividend of the grand coalition is equal to ÿ1
and the dividends of the two-person coalitions f1; 2g, f1; 3g, and f2; 3g are
equal to 1, 1, and 9, respectively, so the game does not satisfy (5). Also note
that the maximum that player 1 can obtain in any marginal value is equal to
1, whereas ma

1 �v� � 2 for any selector a with a�f1; 2g� � a�f1; 3g� � 1 and
a�f1; 2; 3g�0 1. This implies that for this game the Weber set is strictly
smaller than the selectope.

3. Value-theoretic approach

In this section the selectope and its subsets will be considered from a value-
theoretic point of view.

A sharing system is a collection q � �qS; ��S A 2 Nnfqg with qS A RS, qS; i V 0
for all i A S, and

P
i AS qS; i � 1, for every nonempty coalition S. Let QN
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denote the set of all sharing systems on N. With every sharing system q A QN

a sharing value mq is associated, de®ned by:

m
q
i �v� :�

X
S:i AS

qS; iDv�S� for every v A GN and every i A N:

Such a sharing value distributes the dividends of a game between the players
according to the weights given by the sharing system q. The following lemma
relates sharing values with the selectope. First note that all values mq are
linear; in general, a value c : GN ! RN is called linear if c�bv� gw� �
bc�v� � gc�w� for all v;w A GN and b; g A R.

Lemma 4. Let v be a game.

(i) For any sharing system q,

mq�v� �
X

a:a AA N

qama�v� �6�

where qa :�QS0q qS;a�S�.
(ii) For any collection �pa�a AA N with pa V 0 for all a A AN and

P
a AAN pa �

1,

mq�v� �
X

a:a A AN

pama�v� �7�

where qS; i :�Pa:a�S��i pa.

(iii) S�v� � fmq�v� : q A QNg.

Proof: (iii) follows from (i) and (ii). By linearity of the values mq (and ma) it is
su½cient to show (6) and (7) for a unanimity game uS. For a player j B S
equation (7) has zero on both sides because in uS the coalition S has dividend
equal to 1 and all other coalitions have zero dividend. For a player i A S
equation (7) reduces to qS; i �

P
a:a�S��i pa, which is true by de®nition. Also

equation (6) has zero on both sides for players outside S. For a player i A S it
reduces to qS; i �

P
a:i�a�S�

Q
T0q qT ;a�T�. This equality is a standard property

that can be proved in an elementary way. r

Thus, sharing values are convex combinations of selector values and ®ll up the
selectope. If in equation (6) or (7) the summation is taken only over consistent
selectors, then the corresponding sharing value is called a random order value,
cf. Weber (1988) and Lemma 2 above. Thus, random order values are convex
combinations of marginal values and ®ll up the Weber set.

A sharing system q is called consistent if the following holds for all non-
empty coalitions S and T :

If i A S JT and
X
j AS

qT ; j > 0; then qS; i � qT ; iP
j AS qT ; j

:

Sharing values corresponding to consistent sharing systems are weighted
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Shapley values: see Shapley (1953), Kalai and Samet (1987), and Monderer et
al. (1992). In the last paper it is shown that weighted Shapley values cover the
core. They are always contained in the Weber set, and marginal values are
weighted Shapley values. The Shapley value (introduced in the preceding
section) is the unique symmetrically weighted Shapley value, with weights
qS; i � 1=jSj for every nonempty coalition S and every i A S. Here jSj denotes
the cardinality of the set S.

Sharing values, random order values, weighted Shapley values, and the
Shapley value can be characterized by coherent sets of axioms. The axioms
under consideration are the following, de®ned for a value c : GN ! RN .

(i) Additivity: c�v� w� � c�v� � c�w� for all v;w A GN .
(ii) Null-Player: ci�v� � 0 whenever i is a null player in v, i.e., v�S W fig� �

v�S� for every S A 2N .
(iii) E½ciency: c�v��N� � v�N� for every game v.
(iv) Positivity: c�v�V 0 whenever v is almost positive and v�fig�V 0 for

every i A N.
(v) Monotonicity: c�v�V 0 whenever v is monotonic, i.e., S JT implies

v�S�U v�T� for all S;T A 2N .
(vi) Partnership: ci�c�uT ��S�uS� � ci�uT� for all S JT JN and all i A S.

(vii) Symmetry: ci�v� � cj�v� whenever i and j are symmetric in v, i.e.,

v�S W fig� � v�S W f jg� for every S A 2Nnfi; jg.

Most axioms can be found in the literature. The partnership axiom is slightly
weaker than the corresponding axiom in Kalai and Samet (1987). The posi-
tivity axiom is new. Table 1 gives an overview over values and axioms. A ``�''
means that the (all) corresponding value(s) satis®es or satisfy the correspond-
ing axiom. A ``ÿ'' means the opposite. Characterizing systems are found by
collecting axioms denoted by ``l''. The results summarized in Table 1 are
collected in the following theorem.

Theorem 4. Let c : GN ! RN be a value satisfying Additivity, Null-Player, and
E½ciency. Then:

(a) c satis®es Positivity if and only if c is a sharing value.
(b) c satis®es Monotonicity if and only if c is a random order value.

Table 1. Axiomatics of sharing values

Shapley
value

weighted
Shapley
values

random
order
values

sharing
values

Additivity l l l l
Null-Player l l l l
E½ciency l l l l
Positivity � l � l
Monotonicity � � l ÿ
Partnership � l ÿ ÿ
Symmetry l ÿ ÿ ÿ
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(c) c satis®es Positivity and Partnership if and only if c is a weighted Shapley
value.

(d) c satis®es Symmetry if and only if c is the Shapley value.

Proof: To prove that all values satisfy the desired axioms is left to the reader.
Attention will now be restricted to the opposite directions of the character-
izations.
(a) Suppose c satis®es Positivity. For every q0S JN and i A S de®ne
qS; i :� ci�uS�. By E½ciency, Null-Player and Positivity it follows that
�qS; ��S A 2 Nnfqg is a sharing system. In order to prove that c � mq it is, in
view of Additivity of c and mq, su½cient to prove that for a unanimity game
uS and a A R, c�auS� � mq�auS�. Because mq�auS� � amq�uS� � ac�uS� by
de®nition of q and mq, it is su½cient to prove c�auS� � ac�uS�. By Additivity
this is true for all a A N, and by E½ciency and Positivity also for a � 0. Fur-
thermore, for any a A R note that 0 � c��aÿ a�uS� � c�auS� � c�ÿauS� so

that c�ÿauS� � ÿc�auS�. For a rational, say a � k

l
with k; l integer, observe

that by Additivity lc
k

l
uS

� �
� kc�uS� so that c�auS� � ac�uS� follows after

dividing by l. Finally, for a A R, let g; d be rational numbers with g < a < d.
By Positivity, c��aÿ g�uS�V 0 and c��dÿ a�uS�V 0, hence

gc�uS� � c�guS�Uc�auS�Uc�duS� � dc�uS�:
By letting g " a and d # a it follows that c�auS� � ac�uS�.
(b) Suppose c satis®es Monotonicity. Then it also satis®es Positivity and
hence, by (a), Linearity. The desired result now follows from Theorems 4 and
13 in Weber (1988).
(c) This is straightforward from (a) and the de®nition of a consistent sharing
system.
(d) Well known and straightforward. r

It can be shown that all characterizations in Theorem 4 are tight: The axioms
are logically independent. The characterization of the sharing values is new.
The characterization of the random order values of Weber (1988) is slightly
strenghtened here by the use of Additivity instead of Linearity. There does not
seem to be an elementary and simple characterizing description of the sharing
systems in random order values. A property satis®ed by such sharing systems
is monotonicity, where a sharing system �qS; ��S A 2Nnfqg is called monotonic

if qS; i V qT ; i for all i A N and S;T JN with i A S JT . In other words, a
player's weight cannot increase as the coalition becomes larger. In order to
prove that the sharing system q in a random order value mq is monotonic, let
S JT and consider the monotonic game w � uS � uTnS ÿ uT . Then Dw�S� �
Dw�TnS� � 1, Dw�T� � ÿ1, and all other dividends in w are equal to 0. For a
player i A S one has m

q
i �w� � qS; i ÿ qT ; i by de®nition of mq. Because mq is

monotonic, m
q
i �w�V 0 implying qS; i V qT ; i (which was to be proved).

However, monotonic weights not necessarily imply Monotonicity of the value,
as the following example shows.

Example 2. Consider the four-person game �N; v� with N � f1; 2; 3; 4g and
with v�S� � 0 for S A ff2; 4g; f3; 4gg and for S with jSj � 1, and with v�S� �
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1 otherwise. This is clearly a monotonic game. Consider the sharing system q
de®ned by qN � �0; 1

3 ;
1
3 ;

1
3�, qS � �13 ; 1

3 ;
1
3� for all S with jSj � 3, qS � �13 ; 2

3� for
all S with 1 A S and jSj � 2, and with qS � �12 ; 1

2� for all two-person coalitions
not containing player 1. Clearly, q is a monotonic system. It is straightforward
to check, however, that m

q
1 �v� � ÿ 1

2. So the sharing value mq is not mono-
tonic.

The characterization of the weighted Shapley values in Theorem 4 is a varia-
tion on the characterization by Kalai and Samet (1987). The partnership
axiom is basically a translation of the idea of consistency of a sharing system
to consistency in a game-theoretic sense. The latter property is usually related
to the idea of a reduced game, and the partnership axiom indeed has
the ¯avour of a reduced game property. The last result of this section is ex-
plicitly concerned with reduced games. To this end the de®nition of a value
c is extended to G :�6

NJN; jNj<yGN , such that c�N; v� A RN for every

�N; v� A G. In Hart and Mas-Colell (1989) the following reduced game is
introduced. Let �N; v� A GN and U JN, then �NnU ; vU ;c� A GNnU is de®ned
by vU ;c�q� :� 0 and:

vU ;c�S� :� v�S WU� ÿ
X
i AU

ci�S WU ; v� for all S JNnU ;S 0q:

A value c is called consistent if ci�N; v� � ci�NnU ; vU ;c� for all �N; v� A G,
U JN, and i A NnU .

Also the concept of a sharing system can be extended to a system q �
�qS; ��SJN; jSj<y in the obvious way. Consistency of such an extended system q
is de®ned in the same way as for the ®nite case.

Theorem 5. Let q be a (an extended) sharing system. The following two state-
ments are equivalent.

(i) q is consistent,
(ii) mq is consistent.

Proof: For (ii)) (i) assume that mq is a consistent sharing value. In order to
prove that q is consistent, let i A S JT and assume that

P
j AS qT ; j > 0. It is

straightforward to calculate that the reduced game �S; �uT�NnS;m q�, that is, the
unanimity game uT reduced to the coalition S, assigns

P
j AS qT ; j to the grand

coalition S and 0 to all other coalitions. So m
q
i �S; �uT�NnS;m q� � qS; i

P
j AS �

qT ; j. By consistency of mq one has m
q
i �S; �uT�NnS;m q� � m

q
i �uT�, hence

qS; i

P
j AS qT ; j � m

q
i �uT�. This proves consistency of q.

For (i)) (ii) ®rst note that for a linear value c and games v and w one has
�v� w�U ;c � vU ;c � wU ;c, and �av�U ;c � avU ;c for any scalar a. Hence, to
deduce consistency of mq from consistency of the sharing system q it su½ces
to consider unanimity games and their reduced games. The proof is then
completed by reversing the above argument. r

Thus, within the class of sharing values the weighted Shapley values are
exactly the values that are consistent. Alternatively, weighted Shapley values
can be characterized by consistency together with ``consistency across two-
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person games''. This is proved in Hart and Mas-Colell (1989) for the case of
strictly positive weights.

4. Concluding remarks

One of the remaining questions on this research topic is which other solution
concepts ± besides the core and the sharing values are caught by the selectope.

For the nucleolus (Schmeidler, 1969) the answer is negative. The nucleolus,
an imputation by de®nition, need not belong to the Weber set. In particular,
the set of imputations may have an empty intersection with the Weber set (see
Martinez-de-Albinez and Rafels, 1996) and also with the selectope, as the
following example shows.

Example 3. Let the 4-person game v be de®ned by v�S� � 0 for jSj A f0; 1; 4g,
v�3; 4� � ÿ10, v�S� � 1 for all other 2-person coalitions, v�1; 2; 3� �
v�1; 2; 4� � 4, and v�1; 3; 4� � v�2; 3; 4� � ÿ7. The dividends in this game are
equal to 0 for the 1-person coalitions, ÿ10 for coalition f3; 4g, and 1 for all
the other coalitions. In any point of the selectope players 1 and 2 together
obtain at least 1, whereas the unique imputation and thus the nucleolus is the
zero vector. So the latter is not in the selectope.

Also the prenucleolus (see Sobolev, 1975) ± which is not necessarily an impu-
tation ± need not belong to the Weber set, as the following example shows.

Example 4. Let the 4-person game v be de®ned as in the following table.

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N

v�S� 2 0 6 3 2 0 5 0 1 0 1 3 0 6 6

The prenucleolus of this game is the vector �1:75;ÿ1:5; 4:25; 1:5�. It can be
shown that this vector is not in the Weber set, by checking that it is separated
from the Weber set by a hyperplane with normal vector equal to �3; 0; 1; 0�.

It is an open problem whether the prenucleolus has to be in the selectope.
Another interesting question is whether the selectope can be characterized

by a reduced game property. Since the selectope is always equal to the core of
an associated convex game, a candidate would be the Davis-Maschler reduced
game property (cf. Peleg (1992)). This topic is left for further research.
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