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Abstract. I study monotonicity and uniqueness of the equilibrium strategies in
a two-person first price auction with affiliated signals. Existing results estab-
lish uniqueness within the class of non-decreasing bidding strategies. I show
that there is an effectively unique Nash equilibrium within the class of piece-
wise monotone strategies. The main result is that in equilibrium, the strategies
must be strictly increasing within the support of winning bids. This result pro-
vides the missing link for the analysis of uniqueness in two-person first price
auctions. The analysis applies to asymmetric environments as well and does
not require risk neutrality.
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1. Introduction

Most of the literature on auctions focuses on symmetric equilibria in which
the buyers’ bids increase monotonically in the signals they observe. For sym-
metric sealed bid first price auctions there is only one symmetric equilibrium
in monotone strategies, but it is not yet fully understood whether there may be
other equilibria that do not satisfy symmetry and monotonicity (Wilson,
1988).

* This paper is based on the second chapter of my Ph.D thesis.
1 am especially grateful to Charles Wilson for innumerable discussions on this topic. I also ap-
preciate the very useful comments of two referees.
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There are a few authors who address the question of uniqueness but only
in very specific environments. For instance, Griesmer, Levitan and Shubik
(1967) provide a complete characterization of the equilibrium set of a two-
person first price auction in which the bidders’ private valuations are in-
dependently and uniformly distributed. More recently, Lebrun (1996) and
Maskin and Riley (1996a and 1996b) establish existence and uniqueness for
the independent private values model with symmetric bidders and provide
partial extensions for asymmetric versions of that model.

However, a general treatment of environments that involve common values
and correlated signals is still missing. Maskin and Riley (1986) constitutes a
first step in tackling this problem. For the case of a two-person symmetric
auction with affiliated signals, that paper shows that the symmetric equilib-
rium is the only equilibrium in which the bidders’ strategies are monotone
non-decreasing in their respective signals. Lizzeri and Persico (1995, 1997)
extend this result to general asymmetric two-bidder auctions with a reserve
price. Using a representation of the equilibrium conditions as a system of
differential equations, their analysis proves the existence of a pure strategy
equilibrium in monotone strategies, and also shows that this equilibrium is
effectively unique within the class of monotone non-decreasing strategies (ef-
fectively unique in the sense that uniqueness needs to hold only on the support
of bids that can win with positive probability or winning bids). Using different
techniques, Athey (1997) also establishes the existence of a pure strategy
equilibrium in monotone strategies for the two-bidder model. Her argument is
based on the fact that the best reply to a monotone strategy must be mono-
tone. However, a best reply to a non-monotone strategy is not necessarily
monotone, so it is not immediately clear why there cannot also be equilibria in
non-monotone strategies.

Ruling out the possibility that there are other equilibria in non-monotone
strategies remains as the main hurdle to solving the problem of uniqueness in
the two-bidder case. In this paper, I address this problem within the context of
a sealed bid first price auction with affiliated signals. Aside from the restriction
to two bidders, the environment that I consider is rather general, encompass-
ing the general symmetric model of Milgrom and Weber (1982) as well as the
preceding models as particular cases. Importantly, the analysis does not rely
on either symmetry or risk neutrality requirements. However, I require that
the bidding strategies satisfy a regularity condition: buyers’ bids must be
piecewise monotone in their respective signals. Note that since all strategies are
piecewise monotone when the signals are discrete-valued, the condition is not
restrictive in this particular case.

The main findings are the following. I show that the equilibrium bidding
strategies must actually be strictly increasing in the respective signals, within
the support of winning bids (Proposition 1). Combining with the preceding
results, it then follows that the equilibrium in non-decreasing strategies is
effectively unique (Proposition 2). As an illustration, I also include a complete
characterization of the equilibrium strategies for the case of symmetric auc-
tions with discrete-valued signals and no reserve price (Proposition 3).

Most of the paper is devoted to the monotonicity argument, which is
rather elaborate and relies heavily on the assumption that the signals are
affiliated. The complexity of the argument stems from the fact that, generally,
it is not possible to prove directly a global result about best replies being
monotone. Instead, the approach used in this paper consists in proving a local
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result about best responses. Roughly, this local result shows that if the strat-
egy of a bidder never crosses a bid by from above, then for some ¢ > 0 and
every b € [boby + ¢), the other bidder’s best response never crosses b from
above. Combined with a statement about the infimum of the support of win-
ning bids b, which says that the strategy of at least one bidder never crosses b
from above, the local result can be expanded into a global result about the
equilibrium strategies: for any bid b in the support of winning bids, none of
the strategies ever crosses b from above. In other words, the strategies must be
monotone non-decreasing on the support of winning bids. Given the technical
character of the analysis, it is convenient to introduce the model and some
definitions before attempting a more detailed discussion. An informal account
of the main issues involved is included at the beginning of section 4.

The paper is organized as follows. In section 2 I lay out the model and
introduce the basic notation. In section 3 I derive some basic results about the
support of the equilibrium distribution of bids. Section 4 is devoted to estab-
lishing monotonicity of the equilibrium strategies (Proposition 1). Section 5
applies this result to establish uniqueness (Proposition 2) and characterizes the
solution for the discrete, symmetric case as an illustration (Proposition 3).
Section 6 is devoted to concluding remarks. Most of the proofs are relegated
to the appendix.

2. The model
2.1. Description and basic assumptions

In this section I lay out the model of a sealed bid first price auction. There are
two bidders who submit their bids simultaneously. A single object is awarded
to the highest bidder as long as his bid is at least as large as a reserve price r.
In case of a tie, the winner is selected randomly. Moreover, the price paid by
the winner equals his own bid.

The problem is modeled as a two-person Bayesian game. Throughout the
paper I refer to the players as bidder i or bidder j, making the convention that
i,j=1,2 and that i # j. Each player selects his bid after privately observing
the value of a signal. Let s; denote the signal observed by bidder i (where I
adopt the convention of using bold case letters for random variables). This
signal takes values in a set S; — IR, which I suppose to be either a closed
interval or a finite set. Let F : S} x S, — [0, 1] denote the joint distribution of
the players’ signals. I suppose that F has a density function f with support
S1 x Sz (in the discrete case, f denotes the density with respect to the counting
measure). Moreover, I assume that the signals are affiliated. In general, the
components of a random vector are affiliated if any two non-decreasing func-
tions of the random vector are positively correlated conditional on every sub-
lattice of the support of the joint distribution. In particular, two random
variables whose distribution has a density are affiliated if and only if the
probability density function is Totally Positive of Order 2 (TP,) (Karlin and
Rinott, 1980; Milgrom and Weber, 1982; Whitt, 1982). In the present case,
this means that the distribution of signals satisfies the following assumption:

(A) f()f(s") <f(s v s")f(s AS') for every s,s' € S1 X Sy, where s v s' and
s A 8" respectively denote the component-wise maximum and minimum of
sand s’
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The bidders’ preferences are represented by a von Neumann-Morgenstern
utility function. For each (s1,5:) € Si x S5, let u;(b,s;,s;) denote bidder i’s
utility if he makes a bid » € R, and obtains the object. The utility function is
normalized so that the utility of a bidder that does not obtain the object is
zero. I also assume that u; satisfies the following conditions:

(Ay) The function u; is continuously differentiable, strictly decreasing in b,
strictly increasing in s; and non-decreasing in s;.
(A3) For by > by, the difference u;(by,s;,s;) — ui(bo, si, s;) is non-decreasing in
1
Si.

2.2. Strategy sets and additional notation

Let # denote the Borel g-algebra associated to IR, and let 2(#) denote the
set of probability measures on %. A behavior strategy for bidder i is a map-
ping f; : S; — 2(#) such that, for each B e %, the application {f,, B) is a
measurable function from S; to the interval [0, 1]. The mapping f; : S; — R
is a selection from f; if f;(s;) € supp f;(s;) for every s; € S;. 1 also denote
B (b) = {si € S : b e supp Bi(s;)}. The strategy f3; and the marginal distribu-
tion of bidder i’s signal induce a probability distribution over buyer i’s bids.
The infimum and the supremum of the support of this distribution will be
denoted b, and b;, respectively. Given a strategy profile f = (f;,[,), 1 will
denote b = max{b,,b,,r} and b = max{b;,b>}.

The following concepts of monotonicity and sign-monotonicity provide a
convenient way of describing the model and stating the results.

Definition 1. Let Y denote a measurable subset of R and consider a mapping
@:Y — R. The map ¢ is monotone non-decreasing (strictly increasing) if
o(y) < (<) @(y") when y < y'. The map ¢ is monotone non-increasing (strictly
decreasing ) if —¢ is monotone non-decreasing (strictly increasing). The map ¢
is quasi single crossing (QSC) if ¢(y) > 0= ¢(y') > 0 for every y' > y. The
map ¢ is single crossing (SC) if it is QSC and ¢(y) > 0 = ¢(y’') > 0 for every
y' > y. The map ¢ is weakly QSC if ¢(y) > 0= ¢(y') = 0 for every y' > y.
Finally, ¢ is strictly SC if p(y) = 0 = ¢(y’) > 0 for every y' > y.

For any of the preceding properties, I will say that this property holds
almost everywhere as long as it is satisfied in a set S; = S; whose complement
in S; is a set of measure zero, with respect to the Lebesgue measure in the case
in which the strategy sets are closed intervals, and with respect to the counting
measure in the case of discrete-valued signals.

Applying the preceding definitions to our strategy space, 1 define the fol-
lowing concepts.

'"A map ¢: Y — R, where Y = R”, is said to be supermodular if ¢(y v y')+¢(y A y') >
#(y) + ¢(»’) for every y,y" € Y. Using this terminology, A; says that log /" is supermodular, and
Aj says that, for every s;, the function u;(b, s;, 5;) is supermodular in (b, s;). Athey (1997) employs
a related but slightly stronger condition by assuming that u; is supermodular both in (b,s;) and in

(bvsj)'
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Definition 2. A4 strategy f; is monotone non-decreasing (strictly increasing) if’
every selection f; from B, is monotone non-decreasing (strictly increasing) al-
most everywhere. Similarly, a strategy f; is monotone non-increasing (‘strictly
decreasing) if every selection fB; from f; is monotone non-increasing (strictly
decreasing) almost everywhere. A strategy [5; is piecewise monotone if there is a
finite increasing sequence (Ki),,_ . in Si such that ky = inf S;, kyr = sup S;
and, for eachm=1,..., M — 1, the restriction of f; to {s; € Si : kin < 8; < kyn1}
is either monotone non-decreasing or monotone non-increasing. A strategy f; is
monotone at b if §; — b is SC almost everywhere, for every selection f; from f;.
Similarly, we define quasi-monotonicity at 5 (weakly quasi-monotonicity at b )
by replacing SC by QSC (weakly QSC) in the last definition.

Now we can state briefly the regularity condition that the strategy sets are
required to satisfy:

(A4) The bidders are restricted to using piecewise monotone strategies.

This assumption is not restrictive at all when the strategy sets S; are dis-
crete (to see this, let {ki,...,ky} = S; and notice that the restriction of f; to
each subset {s; € S; : ki < 5; < kipi1} = {kim, kms1} clearly is either monotone
non-decreasing or monotone non-increasing). However, it imposes significant
restrictions in the continuous case. For instance, it requires that the bidders
use essentially pure strategies in this case.? Still, it allows for a meaningful
variety of strategic behavior, including all the essentially pure strategies that
can be represented almost everywhere by functions that are piecewise poly-
nomial. In fact, if the pure strategy f; : [@, 5] — IR is a differentiable function,
it is piecewise monotone if and only if the sign of the derivative changes
finitely many times. However, pure strategies that exhibit wildly oscillating
behavior, like the differentiable function ¢(x) = x?sin(1/x) defined on [—1, 1],
are not piecewise monotone.

The following notation will be used throughout the paper. Suppose that
bidder j employs the strategy ;. Given 8, let Q;(b,s;) denote the probability
that bidder i obtains the object provided that he bids » and that bidder j’s
signal is s;. Also let 7;(b,s;) denote bidder i’s expected payoff when he bids
b and his signal is s;. More explicitly, 7;(b, x) = E(u;(b,s;,s;) Qi(b,s;)|si = x).
Thus, bidder i’s optimization problem when his signal is s; can be concisely
stated as selecting a bid » to maximize 7;(b, s;).

2 A strategy ; is essentially pure if supp f;(x) is a singleton for almost every x € S;. Since in the
continuous case a given piecewise monotone strategy f5; must be monotone in each element of a
finite partition of S; in intervals, it should not come as a surprise that like monotone strategies,
piecewise monotone strategies rule out randomization in the continuous (atomless) case but not in
the discrete case. In fact, showing that every strategy that satisfies assumption Ay is essentially
pure in the atomless case reduces to showing that monotone strategies must be essentially pure.
The following brief argument is included for completeness. Suppose that f3; is piecewise monotone
but not essentially pure. Then we can select a set of positive (Lebesgue) measure X < S; such that
the restriction of f§; to X is monotone, and that, for every x € X, there are at least two different
bids a, and b, in supp f;(x), with a, < b,. Denote I = (ay, b). By monotonicity, I, n I, = & for
every x,y € X. Since each interval I, contains a rational number, there can be at most countably
many such sets, which contradicts the fact that, being a set of positive measure, X is uncountable
in the atomless case.
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Since Q;(b, s;) is monotone non-decreasing in its first argument, the corre-
sponding right and left limits exist everywhere. Moreover, I denote Q;(b™,s;)
=lim,, Qi(t,s;) and Q;(b,s;) = lim,y, Q;(¢,s;). Similarly, I denote 7;(b™, ;)
= limyp 7;(¢,s;) and 7;(b~,s;) = limy, 7;(¢,5;). The following result follows
directly from the definitions.

Lemma 1. Suppose that B; is monotone at b. Then there is a parameter §; such
that Q:(b*,s;) =1 for almost every s; < §; and Q:(b*,s;) = 0 for almost every
8j > 5

Proof: By definition of monotonicity at b, there exist some signals 5; and §;,
with §; < §;, such that f8; selects (with probability 1) a bid lower than b at
(almost every) 5; < §, a bid higher than b at (almost every) s; > §;, and selects
exactly b at (almost every) s; € [§;, §;]. Take a sequence b, | b, and note that as
n — 0, Qji(b,,s;) — 1 for almost every s; < §;, and Q;(b,,s;) — 0 for almost
every 5; > §. [

3. Preliminary results

This section reviews some properties of the support of the equilibrium bidding
distributions. In essence, I rule out the possibility of gaps and, in some sense,
mass points in the interior of the support of winning bids. Since most of the
arguments are already standard, I will only discuss the results briefly. None-
theless, detailed proofs are supplied in the appendix for completeness.

The first observation is that none of the bidders ever selects a winning bid
at which his expected payoff exhibits a jump discontinuity. Since this kind of
discontinuity can only occur because the other bidder’s strategy has a mass
point, the tie-breaker makes the expected payoff of the player in question an
average of the right and left limits of his expected payoff at the point of dis-
continuity. But then he can improve by either bidding a little more or a little
less. Thus, we can state the following:

Lemma 2. Suppose that the bid b>bis optimal for bidder i when he observes
the signal x. Then m;(b, x) is continuous at b.

To rule out gaps in the support the intuition is simple: If a bidder’s support
presents a gap (b — ¢, b], the other bidder never bids an amount close to b,
since he can reduce his bid, and expected payment, without affecting his
chance of winning. This line of thought leads to contradiction, establishing the
following result.

Lemma 3. The support of the distribution of bids of each bidder contains the
interval [b, b]. Moreover, by = by = b.

Finally, note that when a bidder’s strategy is quasi-monotone and presents
a mass point at a bid b > b, the “types’” of this player that bid b are larger
than the ones that bid less than b. Since the other bidder can increase his
payoff by increasing slightly his bid to “capture” these higher types, his payoff
jumps discontinuously at b. Thus, he never bids in some interval (b — &, b],
contradicting Lemma 3. In fact, one can show the following.
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Lemma 4. Suppose that B; is quasi-monotone at b € (b, b]. Then B; is atomless
and, consequently, monotone at b.

4. Monotonicity of the equilibrium strategies

The monotone comparative statics literature identifies an intimate link be-
tween the single crossing property of incremental returns and monotonicity of
the optimal choices with respect to a parameter (Milgrom and Shannon,
1994). In the present context, we can fix the strategy of bidder j and apply that
methodology to analyze the best reply by bidder i. I say that i’s incremental
returns satisfy the single crossing property if, for every pair of bids by and b;
such that by < by, the incremental return 7;(by, s;) — 7;(bo, s;) 18 strictly SC in
s;. It is clear that when this occurs, bidder i’s optimal strategy must be
monotone non-decreasing. To verify this fact just note that if a bid b is opti-
mal for i when his signal is s;, it must be strictly preferred to any lower bid by
when his signal is larger than s;, provided that the incremental returns satisfy
the single crossing property.

If bidder i’s incremental returns satisfied the single crossing property in-
dependently of the strategy used by the other bidder, we would be able to
conclude directly that, in equilibrium, bidder / must employ a non-decreasing
strategy. However, the condition is verified only in very special cases (inde-
pendent private values model). Typically, when the signals are affiliated, we
need to restrict the strategy used by bidder j to be able to conclude that i’s
incremental returns satisfy the single crossing property.

Fact 1. Suppose that the strategy used by bidder j is monotone non-decreasing.
Then the incremental returns of bidder i satisfy the single crossing property.?

As a consequence of the preceding result, the best reply to a non-
decreasing strategy must be a non-decreasing strategy. This fact plays a
central role in the argument to establish existence of equilibrium in non-
decreasing strategies used in Athey (1997). However, we cannot build an
argument to show that the equilibrium strategies must be monotone on the
assumption that one of the equilibrium strategies is monotone. Thus, we need
a sharper result to address issues of monotonicity and uniqueness.

The single crossing property of incremental returns is a global property in
the sense that it refers to every pair of bids by, b; € R, such that by < b;. Since
we cannot assume that the strategy of bidder j is monotone, we can only hope
for a local version of that property to be satisfied. Lemma 7 in the next sub-
section, provides the appropriate generalization of Fact 1. This result relaxes
the condition to local monotonicity, but sacrifices the global character of the
conclusion. More precisely, it shows that if bidder j’s strategy is monotone at
a given bid by (i.e.: it never crosses by from above), then, for every b; > by, the
incremental return 7;(by,s;) — m;i(bo,s;) is strictly SC in s; (where the local
character of the conclusion stems from the fact that the bid by is given).

Using this result, one can prove a local monotonicity result about the
equilibrium strategies: if bidder j’s equilibrium strategy is monotone at b,

3 This fact is a consequence of Lemma 7 below. A similar result appears in Athey (1996).
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then, for some ¢ > 0 and every b € [by, by + ¢), bidder i’s strategy is monotone
at b (Lemma 9). Combining this with a statement saying that the strategy of at
least one of the bidders must be monotone at 4 (Lemma 10), it then follows
that Lemma 9 can be expanded from a local to a global result: for every b in
the support of winning bids, both bidders’ strategies must be monotone at b.
This clearly means that the equilibrium strategies must be monotone non-
decreasing on the support of winning bids. Using the fact that the interior
of the equilibrium bid distributions must be atomless, we conclude that the
equilibrium strategies must be strictly increasing on the support of winning
bids (Proposition 1).

4.1. Single crossing property of incremental returns

The main result of this section is Lemma 7, which provides the conditions that
ensure that the incremental returns satisfy the local version of the single
crossing property, a result that will play a key role in proving local monoto-
nicity results in the next subsection. Lemmas 5 and 6 contain the steps one
must verify to prove Lemma 7. In particular, Lemma 6 contains the main
consequence for the present analysis of the assumption that the signals are
affiliated. A detailed account of the argument follows.

For the remainder of this section I fix the strategy f; of bidder j in order
to examine the best response by bidder i. I also fix two bids by and b, where
by < b1. To examine the dependence of 7;(by,s;) — 7;(bo,s;) on the signal s;,
I introduce the following concepts which will help articulate the analysis. 1
define a mapping J; : S; x S; — R such that 6;(s;, s;) = u;(b1, i,5;) 0i(b1, ;) —
ui(by . si,87)Qi(bg, s7). In words, d;(s;, s;) represents bidder i’s incremental re-
turn (from increasing his bid from a bid just above by to b;) given that the
bidders’ signals take the values s; and s;. I also define a mapping /; : S; x §; —
R such that A;(x,y) = E(d:(x,s;)|s; = y). Notice that 7;(by,s;) — mi(bg,si) =
hi(si,s;). The first argument of /; reflects the dependence of =;(by,s;) —
ni(bg ,s;) on s; through the direct dependence of J; on s; and the second argu-
ment reflects the indirect dependence on s; through the conditional distribu-
tion of s;. In other words, the first argument reflects direct information about
the expected value of the object, and the second argument reflects information
about both the expected value of the object and player 2’s bidding behavior,
which is revealed by s; indirectly through its statistical linkage with s;.

Naturally, a first step to understand /; relies on the analysis of J;. Consider
first the dependence of J; on s;. Note that

0i(s781) — 0i(si, )
= Qi(b1,5)[ui(b1, 57, 57) — ui(b1, 51, 5))]
= Qi(by , 57)[ui(bo, 57, 57) — ui(bo, i, 5)]
> [Qi(b1, 57) = Qilby , $)][ui(bo, 57, 57) — ui(bo, si; 57)] (1)
where the inequality is a consequence of assumption Aj. Thus, assumption A,

and the fact that Q;(b1,s;) — Qj(bo, s;) > 0 imply that J; is non-decreasing in its
first argument, and that it is strictly increasing when the preceding inequality
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is strict. Thus, if bidder i’s probability of obtaining the object is strictly larger
when he bids »; than when he bids by, as it will be in the relevant cases, /; will
be strictly increasing in the first argument.

Examination of the dependence of J; on s; is somewhat more intricate.
Suppose that f8; is monotone at by, Lemma 4 implies that it is also atomless at
by. Clearly, there must exist a signal §; such that if bidder 7 bids by, he wins if
and only if 5; < §;. Although bidder i also wins with by, he prefers to win with
a lower bid. Then, 5,‘(5‘,‘,5]) = u,-(bl,s,-,sj) — u,—(bo,s,-7sj) < 0 when 5 < §j' On
the other hand, when s; > §;, bidder i loses when he bids by. Thus, in this
case 0;(s;,8;) = Qi(b1, s;)ui(b1,si,s;), which can only be positive if u;(by, s;, ;)
is positive. Since u; is non-decreasing in s; by assumption, then J;(s;,s;) > 0
implies that d;(s;, s;) > 0 for 5; > s5;. We must conclude that J; is weakly QSC
in s;. The following lemma summarizes the preceding discussion.

Lemma 5. The following properties are true for almost every s; in S;:

(i) 0; is non-decreasing in s;. Moreover, Qi(by,s;) > Qi(bo,s;) implies that
5,‘<S,‘,Sj) < 5,‘(5‘{,6?/) f()}" s < Si/.
(i) Suppose that B; is monotone at by. Then 9; is weakly QSC in s;.

The consequence of Lemma 5(i) is straightforward: /; is non-decreasing in
its first argument, and it is strictly increasing whenever bidder i’s probability
of obtaining the object is strictly larger when he bids b than when he bids by.
In fact, it can be shown that /#; is strictly SC in its first argument.

When the signals are independent, /; is constant in its second argument.
However, statistical dependence between signals establishes a probabilistic
linkage between the signal observed by a bidder and the bids selected by the
other bidder, which also affects the first bidder’s expected payoff. In fact, the
analysis of the dependence of /; on its second argument constitutes a more
subtle problem whose structure depends crucially on the assumption that the
signals are affiliated. To study this effect I rely on the following property of
TP, transformations (related results appear in Karlin (1968)).

Lemma 6. Consider two mappings ¢ : S; — R and  : S; — R such that y(x) =
E(o(sj)|si = x). Suppose that the joint distribution of s; and s; satisfies assump-
tion Ay and that ¢ is weakly QSC. Then  is a QSC mapping.

I conclude directly from Lemma 5(ii) and Lemma 6 that 4; is QSC in its
second argument. Combining this with the fact that /4; is strictly SC in its first
argument, [ establish the following.

Lemma 7. Suppose that f; is monotone at by. Then, for every winning bid
by > by, the incremental return w;(by,s;) — ni(ba”,s,-) is strictly SC in s;.

Proof: Suppose that /;(x,x) > 0. Since f8; is monotone at by, Lemma 5(ii)
implies that J; is weakly QSC in s;. Then Lemma 6 implies /; is QSC in its
second argument. We conclude that /;(x, x’) > 0 for x’ > x.

I claim that Q;(by,s;) — Qi(b{,s;) > 0 with positive probability with re-
spect to the distribution of s; conditional on s; = x’. Arguing by contradic-
tion, suppose Q;(b1,s;) — Qi(by,s;) =0 with probability 1. This means that
0i(x,s;) = [ui(b1, x,8;) — u;(bo, x,5;)]Qi(b1,s;) < 0 with probability 1. But since
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Q;i(b1,s;) > 0 with positive probability because b; is a winning bid for 7, we
conclude that J;(x,s;) < 0 with positive probability. Thus, /;(x,x’) <0, a
contradiction that establishes the claim.

Lemma 5(i) and the preceding claim imply that d;(x,s;) < J;(x',s;) with
probability 1 and that the inequality is strict with positive probability. Thus,
hi(x',x") — hi(x,x") = E(6;(x",s;) — di(x,s;) |si = x’) > 0. We conclude that
hi(x’,x") > 0, as desired. [

The following result is a corollary of Lemma 7.

Lemma 8. Suppose that by is a winning bid for bidder i. Then 7;(by,s;) is strictly
SC in s;.

Proof: Just select by < b and apply Lemma 7. [J

4.2. Main result

In this section I show that the equilibrium strategies are strictly increasing
within the support of winning bids, which is the main result of the paper
(Proposition 1). The argument proceeds by first establishing local monoto-
nicity at both the interior and the infimum of the support of winning bids, and
then expanding these local results into a global one by an induction sort of
logic. I rely on the local single crossing properties derived in the preceding
section to obtain the required local monotonicity results, which are contained
in the following two lemmas.

The next lemma shows that if a bidder’s strategy is monotone at each point
of the interval (b,by), a best response by the other bidder must be monotone
at each point of a larger interval (b,bo + ¢). The following illustration con-
tains the essence of the argument. Suppose that both bidders’ strategies are
monotone at each bid lower than by, where by > b. Also suppose that there
are two signals xy and xj, with xy > x|, and a bid b; > b, such that b; is op-
timal for bidder i when his signal is x;. If, additionally, b¢ is optimal for bid-
der i when his signal is xy, bidder i’s strategy is not monotone at by. However,
since by is optimal for i when his signal is x;, we must have that 7;(b;, x;) >
7;(bo, x1). Then Lemma 7 implies that 7;(by, xo) > 7;(bo, Xo), contradicting the
optimality of by when i’s signal is x,.

Lemma 9. Let [ denote an equilibrium. Suppose that [5; is weakly quasi-
monotone at by and that f; is monotone at by. Then there is some & > 0 such that
both f; and B; are monotone at each bid b € (bo, by + ¢).

Proof: First, I claim that given a selection f§; from f; that is weakly quasi-
monotone at by, if there is a sequence (b,),_; ., such that b, | by and f; is
cluster points (gco,bo) and (xl,b1)~with xo > x1 and by < by. Denote X =
essinf{s; € S; : B;(s;) > bo}.* Since fB; is piecewise monotone, there must exist

4 The essential supremum (infimum) of a set 4, denoted ess sup 4 (ess inf A4), is defined as the
infimum (supremum) of sup B (inf B) as B ranges over all the sets B such that the symmetric dif-
ference between A4 and B is a set of measure zero.
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some x; > X and some b; > by such that f,(x;) = b; and the restriction of f;
to {s; €S;: X <s; < x} is monotone (in particular, in the discrete case, one
can always take x; = X). Using the fact that f; is weakly quasi-monotone at
by, we conclude that the restriction of f; to {s; € S; : s; < x;} must be mono-
tone at b,. Let X, denote the closure of the set {s; € S;: b, > f;(s;)}. Also
denote X = ﬂ;i X, and xo = esssup X. Since f; is not monotone at b,, then
the restriction of ; to {s; € S; : s; < xo} cannot be monotone at b,. We con-
clude that x; < xp. Note that as a consequence of the fact that f; is weakly
quasi-monotone at by, we have that f;(s;) > by for almost every s; > X, so in
view of the definition of xy, the pair (xy, bg) must actually be a cluster point of
the graph of f;. This establishes the claim.

I also claim that if f; is weakly quasi-monotone at by and, for every
winning bid b > by, the incremental return 7;(b, s;) — 7;(by, s;) is strictly SC
in s;, then there must be some ¢ > 0 such that f; is monotone at each b e
(bo, bo + ¢). I argue by contradiction. Take a selection f; from f; and suppose
that there is a sequence (b,),_, . such that b, | by and that f3; is not mono-
tone at b,, forn = 1,..., oco. By the preceding claim, the graph of f; must have
two cluster points (xg,b0) and (xj,b;) with xo > x; and by < b;. By opti-
mality we have that 7;(by,x;) > m;(b],x;). Since the incremental return is
strictly SC, we must then have that 7;(by, xo) > 7;(b], x0). Hence, for n suffi-
ciently large and x close to xy, we have that #;(b;, x) > 7;(b", x), a contradic-
tion that establishes the claim.

Since f; is monotone at by, Lemma 7 implies that, for » > by, the incre-
mental return 7;(b,s;) — m;(by,s;) is strictly SC in s;. Hence, the last claim
implies that f; is monotone at each b € (bg, by + ¢'), for some &' > 0. Using
again Lemma 7, this implies that, for b > by, also 7;(b,s;) — m;(by,s;) is
strictly SC in s;, so the claim implies that also f; is monotone at each
b e (by,by +¢"), for some ¢” > 0. Take ¢ = min{¢’,¢”} and the statement
follows. []

A variation of the preceding argument allows us to restrict equilibrium
behavior at the infimum of the support of winning bids.

Lemma 10. Both 8, and [, are weakly quasi-monotone at b. At least one of
them is actually monotone at b.

Combining Lemma 9 and Lemma 10, we reach the conclusion that the
equilibrium strategies are monotone increasing over the whole interior of the
support of winning bids. Our main result follows.

Proposition 1. Let § denote an equilibrium and also denote S? = {s; € S; : s; >
sup 571 (b)}. Then, for i = 1,2, we have that B,(s;) < b with probability 1 when
si ¢ S°, and also that the restriction of f; to S? is strictly increasing. In other
words, at every equilibrium, the strategy employed by each bidder is monotone
at each winning bid, and atomless at each b > b.

Proof: Denote m = inf{b > b: either f; or , is not monotone at b}. First, I
rule out the possibility that m = b. In fact, Lemma 10 shows that both bidders’
strategies are weakly quasi-monotone at b and that the strategy of at least one
of them is monotone at b. Then Lemma 9 implies that both bidders’ strategies
are monotone at each bid b € (b,b +¢), for some ¢ > 0. This implies that
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m > b. Now suppose that b < m < b. By definition of m, both #, and f, are
monotone at each b € (b, m), so they are quasi-monotone at m. Since m > b,
Lemma 4 implies that both f; and f, are monotone at m. Again, Lemma 9
implies that both f, and S, are monotone at each b € (b,m + ¢), for some
¢ > 0. Since this contradicts the definition of m, we must conclude that
m = o0, as desired. [

Remark 1. The Role of Assumption A4. The need of restricting the analysis to
piecewise monotone behavior strategies is connected to the crucial role played
by Lemma 7 in the proof of Lemma 9. Lemma 7 is a local version of the single
crossing property of incremental returns. Since such property concerns the
effect of a change in a bidder’s signal on his incremental returns, it is natural
to focus on behavior strategies, which represent the bidders’ behavior in terms
of their respective signals. Moreover, since Lemma 7 only provides a local
statement about incremental returns when the bid is increased from a given
value by to any larger value, say by, it only permits to rule out scenarios in

which the graph of a selection f; from f; has two cluster points (xg,by) and
(x1,b1) in S; x Ry such that xy > x; and by < by, a parameter configuration
that leads to contradiction when incremental returns are strictly single cross-
ing locally. However, to rule out non-monotonic behavior right above by, we
also need to be able to establish a necessary link between such behavior and
the preceding parameter configuration. It turns out that when assumption Ay
is satisfied such link exists; more precisely, the proof of Lemma 9 shows that
when a behavior strategy f; is piecewise monotone, if this strategy is weakly
quasi-monotone at by but it is not monotone right above bj, the desired
parameter configuration must occur, and consequently, a contradiction is
reached.

If we allow strategies that are not piecewise monotone, the preceding pa-
rameter configuration may not arise even when f; is not monotone above by.
An example is the case of a strategy f8; such that §;(x) = max{x?, xsin(1/x)}
for x > 0 and f5,(0) = 0, where S; = [0, 1]. This strategy is monotone at by = 0
but its value oscillates infinitely many times between x and x? in the interval
(0,0), for each § > 0, so it is not monotone above by.> Clearly, given any
(x1,b1) such that f;(x;) = by > 0, the graph of f§; does not have any cluster
point (xg,by) with xo > x; and by =0, so the method of proof described
above cannot be employed in this case.®

5 This example has been suggested by a referee.

¢ Although assumption Ay is not restrictive in the discrete case, it imposes substantial restrictions
in the atomless case (see Footnote 2). One may wonder whether Proposition 1 can be generally
extended to some reasonable class of mixtures of piecewice monotone strategies by using the
present methods. However, since in the atomless case even mixtures of finitely many monotone
pure strategies may give place to realization equivalent behavior strategies that are not piecewise
monotone, we should not expect an extension on these lines. The following example illustrates this
point. Consider a family of pure strategies g, = (1 — a)go + ag1, where go(x) = x, g1 (x) = x? and
0 <a < 1. Let g; denote the mixed strategy that randomizes uniformly among the preceding
strategies, and let f5; denote the realization equivalent behavior strategy that selects the value
ga(x), with o uniformly distributed on [0, 1], when bidder i’s signal is x. Although o; randomizes
among strictly increasing strategies, the selections from f; are not necessarily piecewise monotone;
for instance, the pure strategy /fi mentioned in Remark 1 is one such selection. In fact, it is easy to
see that even mixtures among the two monotone strategies go and g; would run into a similar
problem.
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5. Uniqueness of the equilibrium

In this section I combine Proposition 1 with earlier results to investigate
uniqueness of the equilibrium. Maskin and Riley (1986) establish existence
and uniqueness within the class of non-decreasing strategies for the case in
which the game is symmetric and the sets of bidders’ signals are closed inter-
vals. Lizzeri and Persico extend the analysis to asymmetric environments.
They require the following additional assumptions.

(As) fis continuously differentiable.

(A6) ui(b,s;,s;) is strictly increasing in s;.

(A7) ui(r,s;,8) <0 and u;(b,5;,5;) <0 for some b, where S;=[s;, 5] for
i=1,2

where Ag rules out the case of pure private values, and the first condition in
A5 implies that there is a positive probability that none of the buyers select a
winning bid.

The method employed in the preceding papers relies on the fact that equi-
libria in non-decreasing strategies can be represented, within the support of
winning bids, as solutions of a system of differential equations determined by
the first order conditions of each buyer’s optimization problem.

For an environment that satisfies assumptions A;—A7, Lizzeri and Persico
show that there is a unique equilibrium in non-decreasing strategies for the
case in which the set of signals is a closed interval. Their argument is based on
the following “relative toughness logic”. When signals are affiliated, a buyer
finds it more profitable to win the higher the other buyer’s signal is. Thus, with
monotone strategies, if buyer j bids » when his signal is relatively high, buyer i
will find bidding b convenient even when his signal is relatively low. Conse-
quently, if there were two equilibria and the type of buyer i that bids b were
relatively higher in the first equilibrium, the type of bidder j would be rela-
tively lower (i.e.: for every winning bid b, ;' (b) > ;' (b) implies that ﬁ;l(b)
< ﬂ;l(b)). However, this would lead to a contradiction with the terminal
equilibrium requirement that both buyers must bid the same amount when
their signal is highest (i.e.: f;(5;) = B;(5;) and B;(5i) = f;(5;)). Consequently,
there cannot be two different equilibria. In fact, Lizzeri and Persico also es-
tablish existence by showing that there always exists a solution to the differ-
ential equations that satisfies the preceding terminal requirement as well as
some relevant conditions at b.

Combining these results with Proposition 1, one reaches the following im-
portant conclusion.

Proposition 2. Suppose that assumptions A\—Aq are satisfied. Then an equilib-
rium exists and is effectively unique. Moreover, at the equilibrium both bidders
employ pure strategies that are strictly increasing within the support of winning
bids.

Proof: Lizzeri and Persico (1997) establish existence of an equilibrium in
monotone strategies and show that this equilibrium is effectively unique within
the class of monotone non-decreasing strategies. Combining with Proposition
1, the desired conclusion follows. []
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As an illustration, I also include an extension of the uniqueness argument
in Maskin and Riley (1986) to the case of a symmetric auction with discrete-
valued signals and no reserve price.” The symmetry requirement is summa-
rized by the following assumption:

(Ag) (1) Si=8%=S5
(H) M,’(b, Siasj) = uj(b,S,‘,Sj) = u(bashsj)
(i) Fis a symmetric distribution.

The following lemma shows that symmetry implies additional restrictions
at the infimun of the support of winning bids when there is no reserve price.

Lemma 11. Suppose that r =0 and that assumptions A\—As and Ag are sat-
isfied. Then, at every equilibrium, b, = by = b. Moreover, (i) when S = s, 3],
no bidder has a mass point at b, and (ii) when S = {s,...,5}, we have that
[)’;1(1_9) = ﬁ;l(b) = {s} and that the type s of at least one player bids b with

probability 1, where u(b, s, s) = 0.

Maskin and Riley’s uniqueness result essentially is a particular version for
symmetric environments of the preceding one.® It relies on the idea that if the
type of buyer i that bids b is larger than the type of buyer j that bids b, then
the type of buyer i must be larger for every bid higher than 5. This contradicts
the requirement that ;' (b) = B; (b) = {5} and shows that the unique equi-
librium in monotone strategies must be the symmetric one. Using this idea
and Proposition 1, I obtain the following result.

Proposition 3. Suppose that r = 0, that assumptions A\—As and Ag are satisfied,
and that S ={s,s+1,...,5}. Then the following (randomized) strategies,
which are monotone increasing within the support of winning bids, constitute the
unique equilibrium of this game.® For the lowest type of each bidder, we have
that Q;(b,s) = 1/2 and Q;(b,s) = 0 for b > b. On the other hand, for x > s, we
have that:

Qi(bvx):() b < by
Syl x,9) f(s]x) = S5 (b, x, ) £ (s]x)

Qi(bvx) = u(b,x, X)f(X‘X) be [bxfl;bx}

Qi(b7x):1 b> b,

7 An equilibrium may fail to exist in asymmetric first price auctions with discrete-valued signals.

See, for instance, Milgrom and Weber (1985).

8 More precisely, Maskin and Riley (1986) establish that there is a unique equilibrium within the

class of non-decreasing strategies in an environment that satisfies assumptions A;—Ajz and Ag.

It also requires that the support of F is a rectangle in R?, and that (i) f(si|s;)/F(si]s;) is strictly

A 2

decreasing in s, (ii) a—u(b7 si,87) is a non-increasing function, and (iii)

i ‘ . . . i,

%—"u(b’ si,87). Under these assumptions, we can also combine their result with Proposition 1 to
CS/'

establish uniqueness in piecewise monotone strategies for this case as well.

° Note that for every b > b, Qi(b, x) = Prob.(f;(x) < b) defines a randomized strategy for bidder /.

b,si,sj) <
abay, V(b sin9) <
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where b = by, and bg, by 1, . .., b; is the unique solution to the system:
u(b§7§7§) = 0
X x—1
Z u(by, x, ) f(s]x) — Z uby_1,x,9)f(s]x)=0 forx=s+1,...,5

Proof: Appendix.

Remark 2: All the results in this paper can also be stated in the context of a
formulation with unconstrained strategy sets. The corresponding version of
the results for this case is as follows: (i) every equilibrium in which the bidders
use piecewise monotone strategies must be strictly increasing within the sup-
port of winning bids (Proposition 1), and (ii) there is an effectively unique
equilibrium in which the bidders use piecewise monotone strategies (Proposi-
tion 2).1° To be precise, let E denote the equilibrium set of the constrained
game considered in this paper, and let E* denote the set of equilibria in
piecewise monotone strategies of the corresponding unconstrained game.
Clearly, E* < E. Lizzeri and Persico (1997) and Athey (1997) show that E* is
non-empty, and Proposition 2 shows that E is a singleton. We conclude that
E=E*.

6. Final remarks

The monotonicity result derived in this paper provides the missing link for the
analysis of uniqueness in two-person first price auctions. At least in the two-
person case the assumption of affiliation provides sufficient structure to ensure
a very general monotonicity result, which does not depend on any symmetry
considerations, on the absence of income effects or on the bidders’ attitudes
toward risk. Combining this result with existing work, it then follows a rather
general uniqueness result which virtually settles the matter for the two-bidder
case.

The two main limitations of the results reported here are related to our
focus on piecewise monotone strategies and on two-bidder auctions. The re-
striction to piecewise monotone strategies is of a technical nature but may not
be such a demanding requirement from the economic point of view. More-
over, it is not restrictive at all when the signals are discrete valued. The second
qualification is of a more fundamental nature and, in fact, our results can be
considered only a preliminary step in the analysis of the n-person case. How-
ever, the extension of the methods used here to the general case does not seem
to be straightforward. In particular, Lemma 6 does not generalize to the n-
dimensional case. The following counterexample establishes this point. Con-
sider a probability measure p defined on the set @ of the 3-tuples (i, j, k) such
that 7, j,k € {0,1}. Let p; denote the probability of the element (7, j, k) and

10 The statement of Proposition 3 remains unchanged since assumption Ay is not restrictive when
signals are discrete valued.
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let p;;(k) denote the conditional probability that the first two elements take
values i and j given the fact that the third one takes the value k. Suppose that
P00(0) = po1(0) = 1/3, p1o(0) = p11(0) = 1/6, poo(1) = 4/15 P01( ) =4/10,
pio(1) =2/15 and p;i(1) =2/10. Define a function ¢(i, ) ;; such that
P00 =0, 91 = —0.9 and ¢,y = ¢;; = 0.9. It can be easily ver1ﬁed tﬂatp is TP,
and that ¢ is a weakly QSC mapping. Finally, notice that E(p|k = 0) = 0 and
that E(p|lk = 1) = —0.06. Thus, E(gp|k) is not QSC.

Appendix

Proof of Lemma 2: Using the continuity of u;, we can write

7'[,'(15, X) — ﬂj(B_,X) = E(u,-(E,S,-, Sj)[Qi(E7Sj) — Qi(l;_, Sj)} |S,' = )C)

ni(bJr?x) - ni(bvx) = E(ui(l;7siﬁsj)[Qi(l;+vsj) - Qi(l;’sj)} |Si = x)

Note that Q;(b, 7)) — Q,(A sj) = Ql( sj) — Q,(b s;7) because the tie-breaker
is symmetric. Thus, (b, x) — mi(b~ x) = m(b* ,X) — (b, x). On the other
hand, 7;(b, x) — 7(b~,x) >0 and 7;(b*, x) — m;(h, x) < 0 because of the op-
timality of b for the bidder i with signal x. We conclude that (b, x) =
mi(b™,x) = m(b*, x), as desired. [

Proof of Lemma 3: 1 argue by contradiction. Suppose that the bid b € (b, b] is
optimal for bidder i with signal x and that bidder j bids with probability zero
in some interval [b — ¢, b). Since 7;(b, x) is continuous in b by Lemma 2, an
arbitrarily small reduction in bidder i’s bid has an arbitrarily small effect on
his expected payoff. However, an additional reduction in his bid to b —¢
means a definite reduction in what he expects to pay if he wins and does not
affect his chance of winning. Thus, 7;(b, x) < 7;(b — ¢, x), contradicting the
optimality of 5. [

Proof of Lemma 4: Suppose that f3; has a mass point and is quds1 monotone at
b. Consider a sequence (b", ”)an such that b 1 b and x" € ;' (b") (ex1s-
tence of such sequence follows from Lemma 3). Denote x = lim,_,,, x" and
= sup{s; € S; : Q;i(b™,s;) > 0}. The fact that f8; is quasi-monotone at b im-
phes that Ql( ,8;) =0 for s; >5;. Thus, hm,HC, mi(b", x") = n(b,x) =
E(u;i(b,s;,s;)0i(b™,s;) |si = x,8; < §;)P(s; < 5;|s; = x). Note that n(b™,x) >
0 as a consequence of the fact that 7;(b", x") > 0 for every n. Also note that
P(s; < §j|si =x) >0, due to the fact that b > b. Hence, we conclude that
ui(baxvsf) >0.

If u;(b,x,5;) =0, then 7;(b~,x) =0 and 7;(b —¢,x) > 0 for some small
&> 0. Thus, for n sufficiently large, 7;(b — ¢, x") > 7;(b", x") = 0, which im-
plies that x” ¢ 7' (b"), a contradiction.

If u;(b, x,5;) > 0, then u;(b, x, s;) > 0 for every s; > 5;. Thus,

E(ui(b,s;,s;)Qi(b,s;) |si = x,8 > 5;) >0 (2)

Note that Q;(b~,s;) = 0 fors; > §; and Q;(b,s;) = Qi(b™,s;) fors; < §;asa
consequence of the fact that f; is quasi-monotone at b. Using also the conti-
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nuity of u; in b we can write

mi(b,x) —mi(b™, x) = E(ui(b,s;,s;)[Qi(b,s;) — Qi(b™,8))] | si = x)
= E(ui(b,si,s;)[Qi(b,sj) — Qi(b™,s))| |si = x,8 > §;) P(s; > §;|si = x)
= E(ui(b,s;,s;)Qi(b,s;) | si = x,8; > §)P(s; > §j|s; = x) >0

where the last inequality follows from (2) and the fact that P(s; > §;|s; = x) >
0 because of the mass point at b. Since 7;(b, x") — m;(b", x") — m;(b, x) —
ni(b~,x) > 0 as n — oo, we conclude that x” ¢ ;' (b") also in this case. This
contradiction establishes the lemma. []

Proof of Lemma 5:
(i) Follows directly from equation (1).
(ii) First, I claim that J;(s) >0 1mphes that (a) Q;(by,s;) <1 and (b)
ui(bi,s) > 0. To see this, note that Q;(b;,s;) = 1 implies that Q;(by,s;) = 1
and therefore that 6;(s) = u;(b1,s) — u;(bo,s) < 0, so (a) follows. Now suppose
that u;(b,s) < 0. Since |u;(b1,s)| > |ui(bo,s)| when u;(by,s) < 0, we have that
0i(s) = —|ui(b1, )| Qi(by, 5;) — ui(bo, s)Qi(by , ;) < 0. This establishes the claim.
Now suppose that J;(s) > 0 and consider a signal sjf > 5;. Since f; is
monotone at by, Lemma 1 and the preceding claim imply that Q;(b, /) 0.
Thus, we have that d;(s;,s;) = Qi(b1,s;)ui (b1, si,s]) = 0, where the inequality
follows from the preceding claim and the fact that u;(by,s;,s ]) > u,(bl,s,,s])
by assumption A,. We conclude that d;(s;, s;) > 0 implies that d;(s;, s;) > 0, as
desired. []

Proof of Lemma 6: Since ¢ is weakly QSC, there must be a parameter value
s € S; such that ¢(s;)(s; — ] s9) > 0 for every s; € S;. Given x, x’ € S; such that
X< x', denote A(s) = fi(s;|x") /fi(s?[x") — (s]\x)/f( 57|x), where f; denotes the
dens1ty of the condltlonal distribution of s; with respect to s;. I claim that
@(s;)4(s;) = 0 for every s; € S;. Note that when s; < s? we have that 4(s;) < 0
because f is TP, and that go(sj) < 0 because ¢ is weakly QSC. Similarly,
A(sj) > 0 and (s) >0 when s5; > s0 The claim follows. Finally, note that

()/f(o\x) V(x)/fi(s}]x) = [5, @(n)A(n) dy = 0. Thus, Y is QSC. [

Proof of Lemma 10: First I claim that both strategies are weakly quasi-
monotone at b. Consider, for instance, ;. If b; = b, then f; is clearly quasi-
monotone at b. Suppose that b; <b. If a w1nn1ng bid b > b is optimal for j
when his signal is s, we must have that 7mj(b,s;) > 0. Thus, Lemma 8 implies
that 7;(b, s/) > 0 for s/ s; > s;. Since bids lower than b yield zero expected profits
to bidder j (elther because b =r or because b = b;), we conclude that when
bidder j’s signal is larger than s;, he bids at least 5. The claim follows.

For concreteness, suppose now that b, > b;. Since b is a winning bid for
bidder j when b; < b, we can also apply the preceding argument to the case of
a bid b = b to show that B; actually is quasi-monotone at b. Thus, the lemma
follows trivially if f5; is atomless at b. Consider the case in which f; has a mass
point at b. Since in thls case b is a winning bid for i and f3; is quasi-monotone
at b, Lemma 8 and the argument employed in the precedmg paragraph imply
that B, also is quasi-monotone at b. To show that f; is actually monotone at b,
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we only need to show that f; ( ) is a singleton. We argue by contradlctlon
Suppose that f; ( ), contains two signals s; and s/ such that s/ > 8i Since
7;i(b,s;) = 0, Lemma 8 implies that 7;(, s) > 0. Moreover since f3; is quasi-
monotone at b, the types of bidder j that bid b are larger than the ones that bid
less than b. Usmg these observations and the fact that u; is non-decreasing in
s, an argument similar to the one used in the proof of Lemma 4 implies that

(u,(b si,8;) Qi(b,s;)[si =s;,8; > 3;) >0, where §; = sup{s; € S; : Qi(b™, ;) > 0}.
Thus,

mi(b",s)) —mi(b,s;) = E(ui(b,si,)[0i(b",8)) — Qi(D,s))] [ s = 57)
= E(ui(b,si,5)[Qi(b",8))— Qi(b,s))] |si = 57,87 > 5) P(s; > 5|8 = 57)
= E(ui(b,s:,)[Qi(b,8;) = Qi(b™,8))] [ = 57,8 > §;) P(s; > 5|8 = 5))
= E(ui(b,s;,8)Qi(b,s) |si = 57,8 > §)P(s; > 5 |s; = 57) > 0 (3)

where we used the facts that Q;(b,s;) — Qi(b™,s;) = Qi(b",s;) — Qi(b,s;) be-
cause the tie-breaker is symmetric, and that Q;(b~,s;) =0 for s; > 5 and
Qi(b,s;) = Qi(b™,s;) for 5; < §j as a consequence of the fact that B; is quasi-
monotone at b. But (3) implies that s; ¢ §; !(b). This contradiction completes
the proof. []

Proof of Lemma 11: 1 argue by contradiction. Let b; < b; = b and denote
= sup 3, ! (b). First I claim that u(b, s° ,s) <0. To estabhsh the claim sup-
pose that u(b,s?,s) > 0. Then 7;(b + &,5°) > mi(b,s?) for a sufficiently small
& > 0, which contradicts the optlmahty of b for i when his signal is s?. The
clalm follows.
Take b; < b < b. Then

ﬂj(bv §) - E/(bv*_Y)

=E(u(b,§, Si)[Qj(b7Si)—Qj(b,S[)]+Qj(b7si)[u(b,§7 Si)_u(b7§7 Si)] |Sig*zz:))

The preceding claim and assumption Ag imply that u(b,s,s") < 0. By as-
sumption A, we have that u(b,s,s;) — u(b,s,s;) <O0. Moreover Qi(b,s;)) >0
with positive probabllrty since b; < b. Thus, equation 4 implies that mi(b,s) —
m;(b,s) <0, s0 s¢f; '(b). This contradicts Proposition 1 and establishes the
first assertion.

To establish the part (i) of the last assertion, suppose that § = [s,3]. Also
suppose that f; has a mass point at b. Since b is a winning bid for bldder l we
have that n,(b ;8) = 0. This implies that u(b, s, 5;) > 0 for some §; € '(b).
Thus, assumption Ag implies that u(b,s;,s) > 0. But then 7;(b+e,5;) >
(b, S]) for a sufficiently small ¢ > 0, a contradiction that establishes (i).

Finally, consider part (ii). Suppose that S = {s,...,5}. First I claim that
both bidders’ strategies have a mass point at b. To show this, I argue by con-
tradiction. Suppose f3; is atomless at b. Since the strategles are monotone
there must exist a type s and some ¢ > 0 such that ;' (b) = {s} and B L) =
{s} for every be (b,b+e¢). Since m;(b*,s) =0, we have that =; (b 5) =
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u(b,s,5)Q;i(b,s)f(s|s) = 0 forevery b e (b,b+¢)., Thus, u(b, s, s) = 0 for every

be (b b+ ¢), a contradiction that establishes the claim.
Since both bidders’ strategies are monotone at b, the preceding claim and

the proof of Lemma 10 imply that ;' (b) = /)’j (b) = {s} and that u(b, s,s) =
0. Thus, if the type s of bidder j bids with positive probability in some interval
(b,b+ 8), we have that 7;(b, s) = u(b, s, s)Qi(b, s) f(s|s) <0 for b e (b,b+¢).
We conclude that the type s of bidder i bids b with probability 1. Part (ii)
follows. []

Proof of Proposition 3:

(i) Existence. Note that a solution to the system in the statement exists and is
unique since, given by, ..., b,_1, the value of by is uniquely determined because
u is strictly decreasing in b. Thus, the symmetric, monotone strategy profile
described in the statement is well defined. Note that if bidder j employs this
strategy, bidder i’s expected payoff conditional on his signal is 7;(h,x) =
Zj:; u(b, x,s) f(s|x) + u(b, x,x) f(x|x)Q;(b, x). It is easy to verify that
7i(b,x) = m;(by,x) for every b€ [b,_,by]. Moreover, using Lemma 7, for
every b e[b,_1,b,] and y < x, we have that n,(b},y) = m;(b,y) implies that
7;(by, x) > m;(b, x). Similarly, for every b € [b._1,b;] and z > x, we have that
7i(b,x) = m;(b.—1,x) implies that n;(b,z) > m;(b._1,z). This contradiction
shows that actually 7;(b, x) < m;(b._1, x) in this case. We conclude from the
preceding inequalities that the strategy profile in consideration is an equilib-
rium. Since this profile is symmetric, it is consistent with Lemma 11 if and
only if each buyer bids b with probability 1 when his signal is s. Thus,
Qi(b,s) = 1/2 for i = 1,2, as a consequence of the tie-breaker.

(i) Uniqueness. Proposition 1 and Lemma 11 imply that the equilibrium
strategies are monotone over the set S. Now, I claim that the equilibrium is
symmetric. I argue by contradiction. Suppose that there is a bid b, and a type
s, such that Q;(b,,s.) > Qi(bs,s,). Since in equilibrium Q;(b,3) = Q;(b,3) =

1, by Lemma 3, and the strategies are monotone, there must ex1st some bids by
and by, with bo < by, and some type x € S such that 7' (b) = ( ) = {x}
for every b € [by, b;] and

Qj(bo, x) > Qi(bo, x)
0j(b1,x) < Qi(b1,x) (5)

Note that 7;(b, x) = u(b, x, x) Q;(b, x) f(x|x) + Z;;l u(b, x,s) f(s|x), where
fis a probability mass function. Thus, i

[7i(b1, x) — mi(bo, X)] — [m; (b1, x) — 7;(bo, x)]
={u(b1, x, x)[Qi(b1, x) = Qj(b1, X)| —u(bo, x, X)[Qi(bo’X)—Qf(bo,X)}f(Xég

Note that 7;(b;,x) > 0 implies that u(b;,x,x) > 0 and that u(bg, x, x) > 0.
Thus, (5) implies that the expression (6) is strictly positive. Then either
mi(b1,x) — mi(bo,x) > 0 or m;(by,x) — m;(bo,x) > 0, contradicting the defini-
tion of x. This establishes the claim.

Finally, Lemma 11(ii) shows that at a symmetric equilibrium both players
bid b with probability 1 when their type is s, where b is determined by the
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condition u(b, s, s) = 0. Thus, monotonicity and the requirement that Q;(b, )
= Q;(b, 5) uniquely determine the equilibrium strategies. []
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