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Abstract
This paper provides a new characterization of belief consistency in extensive games. 
We show that all consistent assessments are supported by sequences of strategy pro-
files with the property that all actions with vanishing probability are played accord-
ing to power functions of the sequence index. The result makes it simpler to prove 
or disprove that a given assessment is consistent, facilitating the use of sequential 
equilibria.
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JEL Classification C72 · C73

1 Introduction

Sequential rationality is a key plausibility requirement in extensive games: It 
requires that players behave optimally at each point of the game given the other 
players’ behavior and available information. If information is perfect, requiring equi-
librium strategies to be sequentially rational is equivalent to subgame perfection 
(Selten 1965). If information is imperfect, requiring sequential rationality requires 
specifying players’ beliefs about previous play at each decision node. On the path 
of play, Bayes’ rule pins down beliefs. Off the path of play, Bayes’ rule is not well 
defined, raising the question of which restrictions on beliefs are plausible and/or 
desirable. Selten (1975) addressed the question by posing the possibility that players 
may make mistakes with small probabilities. He defined (trembling-hand) perfect 
equilibria as limits of equilibria of versions of the game perturbed according to a 
sequence of vanishing trembles. In each perturbed game, Bayes’ rule can always be 
applied since all instances of the game occur with positive probability on the path of 
play.
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While requiring perfection is a powerful and sensible way to refine the set of Nash 
equilibria, it is difficult to use in practice. The reason is that obtaining and working 
with the right tremble sequences and the corresponding sequences of equilibria to 
prove or disprove that a strategy profile is a perfect equilibrium is often cumbersome 
and many times not feasible. To address this problem, Kreps and Wilson (1982) pro-
posed a weaker but easier-to-use equilibrium concept, sequential equilibrium, where 
beliefs are obtained as the limit of fully mixed sequences of strategy profiles, but 
sequential rationality is only required in the limit.1 Still, while using sequential equi-
libria is indeed simpler than using perfect equilibria, it suffers from a similar prob-
lem: proving or disproving that a given assessment is consistent requires proving 
or disproving that it is not supported by any sequence of strategy profiles, which is 
often difficult to do. This has led to the use of other, weaker equilibrium concepts, 
such as different versions of perfect Bayesian equilibrium, first defined in Fudenberg 
and Tirole (1991).

This paper provides a simple characterization of assessment consistency. 
We show that an assessment (�,�) is consistent if and only if it is supported by 
a power sequence of strategy profiles, that is, a sequence of strategy profiles (�n)n 
for which, for each action a , there is a pair (x(a), y(a)) ∈ ℝ++ ×ℝ+ satisfying that 
�n(a) = x(a) n−y(a) for all n when y(a) > 0 , and �n(a) → x(a) when y(a) = 0.2 We 
argue that since obtaining assessments from power sequences of strategy profiles 
is straightforward, our result greatly simplifies proving or disproving that a given 
assessment is consistent.

The proof of the result is involved. To understand its difficulties, take a consistent 
belief system (�,�) , meaning that some sequence of fully-mixed strategy profiles 
(�n)n supports it. The probabilities with which actions are played along the sequence 
may not be power functions of the index and may differ significantly across actions. 
The crucial step in the proof is showing that there is a strictly increasing sequence 
(n̂n ∈ ℕ)n and a K-dimensional sequence (q1

n
,… , qK

n
)n , for some K ∈ ℕ , with the 

properties that, for all a ∈ A,

for unique values �(a) ∈ ℝK+1 , and that limn→∞(q
k
n
)�∕qk+1

n
= 0 for all k and � ∈ ℝ . 

The sequence (q1
n
,… , qK

n
)n contains the different types of convergence to 0 across 

different actions. The value �(a) can then be used to obtain a pair (x(a), y(a)) such 
that the corresponding power sequence of strategy profiles supports (�,�).

The class of power sequences of strategy profiles is particularly convenient to use. 
We show that the relative likelihoods of different histories can be straightforwardly 
obtained from the values that the maps x and y assign to their actions. Conversely, 
the consistency of an assessment is characterized by simple equations involving the 

lim
n→∞

𝜎n̂n (a)

𝛼0(a)
∏K

k=1
(qk

n
)𝛼k(a)

= 1

1 As part of their motivation, Kreps and Wilson state that “it is vastly easier to verify that a given equi-
librium is sequential than that it is perfect” (p. 864).
2 We use the shorter notation (�n)n to denote the sequence (�n)n∈ℕ = (�n)

∞
n=1

= (�1, �2,…).
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values that x and y take for the actions in different histories. We also show that any 
consistent assessment is supported by a power sequence of strategy profiles with 
integer exponents, further simplifying the analysis of sequential equilibria.

Literature review Since the seminal paper of Kreps and Wilson (1982), belief con-
sistency has been seen as a natural requirement in extensive games. Still, as working 
with (high-dimensional) sequences of strategy profiles is not feasible in many appli-
cations, other equilibrium concepts have been favored, most notably (weak/strong) 
perfect Bayesian equilibrium (PBE) as defined in Fudenberg and Tirole (1991), 
where off-path beliefs are updated using Bayes’ rule “whenever possible”. PBE is 
often too permissive, so ad-hoc restrictions on off-path belief updating are often 
imposed, such as the “no signaling what you do not know” and “never dissuaded 
once convinced” conditions (see Osborne and Rubinstein 1994). Alternative restric-
tions on belief updating off the path of play have been used in Cramton (1985), 
Rubinstein (1985), Bagwell (1990), and Harrington (1993). The current paper takes 
a different direction by identifying a simple set of sequences of strategy profiles that 
is sufficient to characterize consistency. In separate work (Dilmé 2023a), we use the 
current characterization to provide a full characterization of sequential equilibria in 
terms of lexicographic numbers.

The rest of the paper is organized as follows. Section 2 provides the notation for 
extensive form games and consistent assessments. Section 3 states and proves our 
main result. Section 4 provides techniques to prove or disprove the consistency of 
an assessment and illustrates them through examples. An “Appendix” contains the 
omitted proofs.

2  Belief consistency in extensive‑form games

We now provide the definitions and corresponding notation for an extensive-form 
game.

An (finite) extensive-form game G ≡ ⟨A,H, I,N,�, u⟩ has the following compo-
nents. A finite set of actions A . A finite set of histories H containing finite sequences 
of actions satisfying that, for all (aj)Jj=1 ∈ H with J > 0 , we have (aj)J−1j=1

∈ H ; the set 
of terminal histories is denoted T  . An information partition I  of the set of non-ter-
minal histories satisfying that there is a partition {AI|I ∈ I} of A with the property 
that, for each I ∈ I  and h, h� ∈ H , we have (1) (h, a) ∈ H for some a ∈ AI if and 
only if h ∈ I , and (2) if h ∈ I and h′ > h then h� ∉ I.3 A finite set of players N ∌ 0 . 
A player assignment � ∶ I → N ∪ {0} assigning each information set to a player or 
to nature. A strategy by nature � ∶ ∪I∈�−1({0}) A

I
→ (0, 1] satisfying 

∑
a∈AI �(a) = 1 

for each I ∈ �−1({0}) . For each player i ∈ N , a (von Neumann–Morgenstern) payoff 
function ui ∶ T → ℝ.

A strategy profile is a map � ∶ A → [0, 1] such that 
∑

a∈AI �(a) = 1 for all 
I ∈ I  (i.e., it is a probability distribution for each set of actions available at each 

3 Note that we assume, without loss of generality, that each action only belongs to a unique information 
set (otherwise, one can rename actions). We use h′ > h to indicate that h′ succedes h.
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information set) and �(a) = �(a) for all a played by nature (i.e., nature plays accord-
ing to � ). We let Σ be the set of strategy profiles.

2.1  Consistent assessments

As explained in the introduction, requiring that a player behaves sequentially ration-
ally requires assigning beliefs over the information she does not know at the time 
she makes a decision. Such beliefs are modeled using a belief system, which is a 
map � ∶ H�T → [0, 1] satisfying that 

∑
h∈I �(h) = 1 for all I ∈ I  . Kreps and Wilson 

(1982) define an assessment as a pair (�,�) , where � is a strategy profile and � is 
a belief system. The usual interpretation is that for each information set I , action 
a ∈ AI and history h ∈ I , �(a) is the probability with which player �(I) (i.e., the 
player taking action at this node of the game) chooses a while the value �(h) is the 
posterior belief that this player assigns to h (both probabilities are conditional on I 
being reached).

Kreps and Wilson (1982) pointed out that not all assessments are plausible. Fix, 
for instance, a strategy profile � and an on-path information set I . If a rational player 
assumes that players use � , she should use Bayes’ rule to assign the probability of 
h ∈ I conditional on I having been reached. If � is a full-support strategy profile 
(i.e., 𝜎(a) > 0 for all a ∈ A ), Bayes’ rule pins down a unique assessment, where � is 
given by

for all information sets I ∈ I  and histories h ∈ I , where abusing notation �(⋅) indi-
cates the probability with which a history or an information set occurs under � . 
Instead, if there is an information set I that is not reached under � , both the numera-
tor and the denominator of the right side of equation (2.1) are 0, thus the Bayes’ rule 
cannot be applied.

Selten (1975) proposed studying perturbed versions of the game with “slight mis-
takes” (in the form of trembles), where all information sets occur on the path of 
play. Following a similar approach, Kreps and Wilson (1982) introduced the concept 
of consistent assessment as one that is approximated by a sequence of fully-mixed 
strategy profiles. Formally, (�,�) is a consistent assessment if it is supported by 
some fully-mixed sequence (�n)n , that is, a sequence satisfying 𝜎n(a) > 0 and

for all a ∈ A and h ∈ H�T  . Consistency is a crucial requirement of Kreps and Wil-
son ’s definition of sequential equilibrium, which, additionally, requires that � is 
sequentially rational given �.4

(2.1)�(h|�) = �(h)

�(I)

(2.2)(�(a),�(h)) = lim
n→∞

(�n(a),�(h|�n))

4 It is easy to see that for a fixed assessment, the payoff a player obtains from playing a given action 
conditionally on the corresponding information set being reached is uniquely pinned down. Hence, (�,�) 
is sequentially rational if there is no information set I ∈ I  and actions a, a� ∈ AI such that 𝜎(a) > 0 and 
player �(I) ’s payoff from playing a at I is strictly lower than that of playing a′.
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Different reasons make using sequential equilibria desirable. First, consistency 
provides a systematic and powerful way to discipline off-path beliefs, hence avoid-
ing using ad-hoc requirements often made in perfect Bayesian equilibria (see the 
Literature Review). Second, Blume and Zame (1994) showed that the set of sequen-
tial equilibria coincides with the set of limits of Nash equilibria of perturbed games 
where both actions and payoffs are perturbed. Hence, they are the predictions of 
an external observer who cannot perfectly assess the small likelihood of trembles 
or the exact payoffs of the players. Third, because perfect equilibrium outcomes 
are sequential equilibrium outcomes (perfection requires exact equilibria along the 
sequence) and also sequentially stable outcomes (sequential stability requires exact 
stability for all trembles; see Dilmé 2023b), ruling out that an outcome is sequen-
tial permits ruling out its perfection and sequential stability. Additionally, if one can 
prove that there is a unique sequential outcome, then such outcome is the unique 
perfect outcome and the unique sequentially stable outcome (and also the unique 
outcome of a proper equilibrium, see Myerson 1978, and the unique quasi-perfect 
equilibrium, see van Damme 1984).5

3  Main result

3.1  Power sequences of strategy profiles

In this section, we introduce a simple and natural class of sequences of strategy pro-
files. These are sequences of strategy profiles where actions that are played with 
vanishing probability decrease according to power functions of the sequence’s index.

Definition 3.1 A (�n)n is a power sequence of strategy profiles if there exists a pair 
of maps x ∶ A → ℝ++ and y ∶ A → ℝ+ such that, for every a ∈ A and n ∈ ℕ large 
enough,6

where Mn(a) is a factor satisfying that limn→∞ Mn(a) = 1.

In a power sequence of strategy profiles, the probability with which an action 
a is played along the sequence is characterized by two parameters. The first 

(3.1)𝜎n(a) =

{
x(a) n−y(a) if y(a) > 0,

Mn(a) x(a) if y(a) = 0,

5 In games with generic payoffs, all sequential equilibria are perfect equilibria (see Kreps and Wilson 
1982), so belief consistency and sequential rationality are sufficient to prove perfection.
6 As we are only interested in how the sequence behaves for large n , we do not impose the functional 
form (3.1) for small n . We argue below that this is convenient as it permits stating that “there is a power 
sequence of strategy profiles with (x, y) if and only if 

∑
a∈AI �y(a)=0 x(a) = 1 for all information sets I ∈ I  .” 

Otherwise, (x, y) would have to satisfy additional conditions for some (�n)n satisfying (3.1) to exist 
because if, for example, (x(a), y(a)) = (2, 2) for some a ∈ A , we would have 𝜎1(a) = 2 ⋅ 1−2 > 1 , which is 
not possible.
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is a “rate” y(a) ∈ ℝ+ at which the sequence tends to 0. The action a is played 
with probability 0 in the limit if and only if y(a) > 0 . Also, if y(a) > y(a�) then 
a is played with a vanishing probability relative to a′ . The second parameter is a 
multiplying factor x(a) ∈ ℝ++ . This factor determines the relative likelihood of 
actions with the same rate. If y(a) = 0 , then x(a) is the asymptotic probability 
with which action a is played; hence, it must be that 

∑
a∈AI �y(a)=0 x(a) = 1 for all I . 

Note that if n is large enough, then �n is a fully-mixed strategy profile.
Power sequences of strategy profiles are simple and often used to provide 

examples of consistent assessments. The reason is that the asymptotic likeli-
hood of each action is determined by only two numbers; hence, obtaining rela-
tive likelihoods is easy. As we shall see, even though the set of power sequences 
of strategy profiles is small relative to the set of all sequences, it is rich enough 
to support all consistent assessments. Furthermore, we show in Sect. 4 that the 
limit relative likelihoods of histories can be straightforwardly computed from the 
values that x and y take on their actions. It follows that a power sequence of strat-
egy profiles has a well-defined limit belief system; that is, it supports a consistent 
assessment.

3.2  Main result

Our main result establishes that any consistent assessment is supported by a 
power sequence of strategy profiles.

Theorem 3.1 An assessment is consistent if and only if it is supported by a power 
sequence of strategy profiles.

Theorem  3.1 is proven in Sect.  3.3. It establishes that the set of power 
sequences of strategy profiles is rich enough to support all consistent assess-
ments. As we will see in Sect.  4, our result simplifies working with consistent 
assessments and hence eases the use of sequential equilibria.

We now provide an idea of the challenges that proving Theorem 3.1 poses. Since 
the “if” part of the statement is trivial (assessments supported by power sequences 
of strategy profiles are consistent), we focus on the “only if” part of the result.

Proving the “only if” part of Theorem  3.1 is involved. To see why, we fix a 
consistent assessment (�,�) and a sequence (�̂�n)n supporting it. Note that the rate 
at which �̂�n(a) converges to �(a) may be very different for different actions a ∈ A , 
and not necessarily through a power sequence of the form (3.1). The complication 
of the proof lies in that each action typically belongs to different histories belong-
ing to different information sets; hence, the choice of (x(a), y(a)) simultaneously 
affects the likelihood of all histories containing a . Guaranteeing that a power 
sequence of the form (3.1) supports (�,�) involves simultaneously satisfying a 
potentially large set of interconnected constraints without a clear structure, some 
of them in the form of inequalities. Our proof provides a method to obtain values 
for {(x(a), y(a))|a ∈ A} and some sequence (n̂n) satisfying that, for all h, h� ∈ H,
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where �n is a sequence of the form (3.1). We are then able to ensure that the asymp-
totic relative likelihoods of all pairs of histories under (�̂�n̂n)n and (�n)n coincide.

To shed further light on the problem, consider the game in Fig. 1 (the game in 
the figure is assumed to continue after each depicted terminal history). Consider 
the depicted assessment, where the arrows indicate the actions played with posi-
tive probability. Consider a fully mixed sequence of strategy profiles (�̂�n)n such 
that

This implies that

Hence, for a power sequence of strategy profiles of the form (3.1) to exist, it must be 
that

The first equation says that r3 is played infinitely more likely than r2 as n → 0 , but 
both probabilities tend to 0. The second equation says that the likelihood of history 
(r1) vanishes at the same rate that history (r2, r3) . The third equation says that the 
asymptotic relative likelihood of (r1) relative to (r2, r3) is 1/3. While it is easy to find 
(x, y) ∶ A → ℝ++ ×ℝ+ satisfying the constraints in (3.3) in this simple example, it 
is difficult to obtain a systematic procedure to prove the existence of solutions in 
general. The proof of Theorem 3.1 provides a constructive procedure that gives a 
power sequence of strategy profiles supporting any given consistent assessment of 
an arbitrary extensive-form game.

lim
n→∞

�̂�n̂n(h)

�̂�n̂n(h
�)

= lim
n→∞

∏J

j=1
�̂�n̂n (aj)∏J�

j=1
�̂�n̂n (a

�
j
)
= lim

n→∞

∏J

j=1
𝜎n(aj)

∏J�

j=1
𝜎n(a

�
j
)
= lim

n→∞

𝜎n(h)

𝜎n(h
�)
,

(3.2)
�̂�n(r1) = log(n + 3)−1, �̂�n(r2) = e−n + e−n

3

sin(n), and �̂�n(r3) = 3 log(n + 4)−1 e−n.

𝛼 = lim
n→∞

(1 − �̂�n(r1)) (1 − �̂�n(r2)) �̂�n(r3)

(1 − �̂�n(r1)) (1 − �̂�n(r2)) �̂�n(r3) + (1 − �̂�n(r1)) �̂�n(r2) (1 − �̂�n(r3))
= 1 and

𝛾 = lim
n→∞

�̂�n(r2) �̂�n(r3)

�̂�n(r2) �̂�n(r3) + �̂�n(r1)
=

1

4
.

(3.3)0 < y(r3) < y(r2), 0 < y(r2) + y(r3) = y(r1), and x(r1) = x(r2) x(r3)∕3.

Fig. 1  Game tree 1
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3.3  Proof of Theorem 3.1

We here present a proof of the “only if” part of the statement of Theorem 3.1, since 
the “if” part is trivial, as we explained before. A reader interested in the use of Theo-
rem 3.1 to work with consistent assessments can directly move to Sect. 4.

Proof of Theorem 3.1 We begin with a useful lemma, proven in the “Appendix”.

Lemma 3.1 (Representation) Let Â = {a1,… , aJ} be a finite set, and 
(𝜎n ∶ Â → (0, 1])n be a sequence. There are a strictly increasing sequence (n̂n ∈ ℕ)n 
and a sequence ((q1

n
,… , qK

n
) ∈ ℝK

++
)n , for some K ∈ {0,… , J} , such that

1. limn→∞ q1
n̂n
= 0 and limn→∞ qk

n̂n
∕(qk−1

n̂n
)𝛾 = 0 for all � ∈ ℝ and k = 2,… ,K.

2. For each a ∈ A there is a unique �(a) ≡ (�1(a),… , �K(a)) ∈ ℝK such that 

3. There are two sequences (𝚥k)Kk=1 with 1 ≤ 𝚥1 < ⋯ < 𝚥K ≤ J and (k̂k)Kk=1 with k̂k ≠ k̂k′ 
for all k, k′ , such that, for all k ∈ {1,… ,K} , we have (1) 𝛼k̂k� (âj) = 0 for all k′ > k 
and j < 𝚥k , and (2) 𝛼k̂k (â𝚥k ) ≠ 0.

Lemma 3.1 shows that any finite collection of sequences on (0, 1] can be repre-
sented as the product of the powers of a basis of sequences. Its proof constructively 
provides such sequences by proceeding iteratively over the set of actions. In each 
iteration j, we expand the basis of sequences only if (an appropriate subsequence 
of) �n(aj) tends to 0 at a rate that cannot be expressed as the product of powers of 
the current basis.7 The case K = 0 corresponds to the case where (n̂n)n is such that 
limn→∞ 𝜎n̂n(aj) > 0 for all j = 1,… , J.

Fix a consistent assessment (�,�) supported by some sequence (�n)n . Let (n̂n)n and 
(q1

n
,… , qK

n
)n be two sequences with the properties in the statement of Lemma 3.1 

applied to (�n)n and A . We then have that, for each action a ∈ A , there exist unique 
�0(a) ∈ ℝ++ and �(a) ∈ ℝK such that

lim
n→∞

𝜎n̂n (a)∏K

k=1
(qk

n̂n
)𝛼k(a)

∈ ℝ++.

lim
n→∞

𝜎n̂n (a)

𝛼0(a)
∏K

k=1
(qk

n̂n
)𝛼k(a)

= 1.

7 For each k , 𝚥k indicates the step in the process where qk̂kn  was added to the basis. In the proof, if the cur-
rent basis is {qk

n
|k = 1,… , k�} and �n(aj) cannot be expressed as the combination of the current basis, we 

show there are some coefficients {�(aj)|k = 1,… , k�} such that, defining qn = �n(aj)∕
∏k�

k=1
q�

k

n
 , either qn 

or q−1
n

 satisfy the conditions of the statement.
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Note that 𝜎(a) > 0 if and only if �k(a) = 0 for all k = 1,… ,K , in which case 
�(a) = �0(a) . Similarly, it follows that, for each history h = (a1,… , aJ) ∈ H , we 
have

where �(h) ∶=
∑J

j=1
�(aj).

We define the reversed lexicographic order ≻ on ℝK as follows. For each 
pair �(h), �(h�) ∈ ℝK , 𝛼(h) ≻ 𝛼(h�) indicates that there is some k ∈ {1,… ,K} 
such that �k� (h) = �k� (h�) for all k� = k + 1,… ,K and 𝛼k(h) > 𝛼k(h�) . By the 
first property of the statement of Lemma  3.1, we have that if 𝛼(h) ≻ 𝛼(h�) then 
limn→∞ 𝜎n̂n(h)∕𝜎n̂n(h

�) = 0.8 Our goal is to use � and �0 to construct the maps x and y 
such that the power sequence of strategy profiles in Eq. (3.1) supports (�,�).

For each M ∈ ℝ++ , we define

and

and note that 
∏K

k=1
(qk

M,n
)�

k
M
(a) =

∏K

k=1
(qk

n
)�

k(a) . We also define the pair of maps 
(xM , yM) ∶ A → ℝ++ ×ℝ+ assigning, to each action a ∈ A , the value

It is then clear that, if M is large enough, then yM(a) > yM(a
�) if and only if 

𝛼(a) ≻ 𝛼(a�) , and also that for all histories h, h� ∈ H,

In particular, if M is large enough, we have �(a) = 0 if and only if yM(a) = 0 , and 
therefore 

∑
a∈AI �y(a)=0 xM(a) = 1 (recall that �(a) = �0(a) when 𝜎(a) > 0 ). In conclu-

sion, if M is large enough, then (�,�) is supported by a power sequence of strategy 
profiles satisfying Eq. (3.1) with (x, y) ∶= (xM , yM) , so the proof of Theorem 3.1 is 
complete.   ◻

lim
n→∞

𝜎n̂n(h)

(
∏J

j=1
𝛼0(aj))

∏K

k=1
(qk

n̂n
)𝛼k(h)

= 1,

(q1
M,n

,… , qK
M,n

) ∶=
(
(q1

n
)1∕M , (q2

n
)1∕M

2

,… , (qK
n
)1∕M

K)

(�1
M
(a), �2

M
(a),… , �K

M
(a)) ∶=

(
M1 �1(a),M2 �1(a),… ,MK �K(a)

)
,

(3.4)(xM(a), yM(a)) ∶=

�
�0(a),

K∑
k=1

�k
M
(a)

�
.

(3.5)lim
n→∞

𝜎n̂n (h)

𝜎n̂n (h
�)

=

⎧⎪⎨⎪⎩

xM(h)∕xM(h
�) if yM(h) = yM(h

�),

0 if yM(h) < yM(h
�),

∞ if yM(h) > yM(h
�).

8 See Part 4 of the proof of Lemma 3.1 for a related argument.
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4  Considerations

In this section, we illustrate how Theorem  3.1 can be used to obtain consistent 
assessments easily. Section 4.1 introduces a result that is useful in finding consist-
ent assessments. Section 4.2 shows that the exponents in a power sequence of strat-
egy profiles can be chosen to be integers. Section 4.3 examines alternative classes 
of sequences of strategy profiles with similar properties. Section 4.4 provides some 
examples illustrating how our results can be used to find consistent assessments.

4.1  Constructing consistent assessments

We begin with a useful corollary of Theorem 3.1.

Corollary 4.1 Fix a sequence of power strategy profiles (�n)n as in Eq. (3.1) for some 
pair (x, y) . Then, for any history h ≡ (aj)

J
j=1

∈ H,

Corollary  4.1 establishes that the asymptotic likelihood of a history h can be 
easily obtained from the values that x and y take on its actions. This is clear if h 
is only composed of actions with vanishing probabilities; in this case, the term (∗) 
in (4.1) is exactly 1 for all n . Otherwise, each action with a non-vanishing prob-
ability is typically not a power function of n , but the sum of polynomial functions 
of n . These additional terms typically make the expressions of the probability of 
a history h under �n long and complicated. Still, given that limn→∞ Mn(a) = 1 (i.e., 
�n(a) → x(a) ), the belief system can be computed “as if” the probabilities of all 
actions were of the form x(a) n−y(a) , including those with y(a) = 0.

Generating consistent assessments is easy using Corollary 4.1: First, choose a 
pair of maps (x, y) ∶ A → ℝ++ ×ℝ+ with the condition that 

∑
a∈AI �y(a)=0 x(a) = 1 for 

all I . For each action a define �(a) ∶= x(a) if y(a) = 0 and �(a) ∶= 0 otherwise. 
Next, for each history h ≡ (aj)

J
j=1

 , compute

Then, for each information set I , only histories h ∈ I with the lowest value y(h) 
receive a positive probability under � , and the relative probability of two such histo-
ries h, h� ∈ I is x(h)∕x(h�).

Verifying that a given assessment (�,�) is consistent (or proving it is not) is more 
difficult but can often be done using Corollary 4.1 as follows. First, set x(a) ∶= �(a) 
and y(a) ∶= 0 for all a ∈ A such that 𝜎(a) > 0 . Second, for the rest of the actions, 

(4.1)lim
n→∞

=∶(∗)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
�n(h)

(
J∏
j=1

x(aj)) n
−
∑J

j=1
y(aj)

= 1.

(4.2)x(h) ∶=
J∏
j=1

x(aj) and y(h) ∶=
J∑
j=1

y(aj).
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look for values x(a), y(a) > 0 so that for all histories h, h�, h�� ∈ H in the same 
information set with 𝜇(h),𝜇(h�) > 𝜇(h��) = 0 we have y(h) = y(h�) < y(h��) and 
x(h)∕x(h�) = �(h)∕�(h�).

An important observation is that obtaining the values {x(a)|a ∈ A} and 
{y(a)|a ∈ A} can be done separately. Indeed, to obtain maps x and y supporting a 
given assessment, the first step consists in obtaining y , which determines the rela-
tive rates at which the probability of different histories vanish. The second step con-
sists in finding x so that the implied relative probabilities of histories with a posi-
tive probability coincide with those implied by the belief system.9 For example, it 
is easy to see that if a consistent assessment (�,�) is such that �(h) ∈ {0, 1} for all 
h ∈ H�T  , then there is a power sequence of strategy profiles with x(a) = 1 for all 
actions satisfying that �(a) = 0 . The examples below illustrate this procedure.

Finally, we state that power sequences of strategy profiles can be rescaled while 
supporting the same assessment.

Proposition 4.1 Fix (x, y) ∶ A → ℝ++ ×ℝ+ such that 
∑

a∈AI �y(a)=0 x(a) = 1 for all 
I ∈ I  . Let K1,K2 ∈ ℝ++ be two constants. Define

Then, the power sequences of strategy profiles defined by (x, y) and (x̃, ỹ) support the 
same assessment.

The intuition for Proposition  4.1 is the following. First, note that two histories 
h ≡ (aj)

J
j=1

 and h� ≡ (a�
j�
)J

�

j�=1
 satisfy ỹ(h) < ỹ(h�) if and only if they also satisfy 

y(h) < y(h�) . Also, if ỹ(h) = ỹ(h�) then y(h) = y(h�) , and

Hence, the parameters associated with actions played with vanishing prob-
abilities can be rescaled while supporting the same assessment (notice that 
(x̃(a), ỹ(a)) = (x(a), y(a)) when y(a) = 0).

4.2  Integer exponents

Our definition of power sequences of strategy profiles (Definition  3.1) allows the 
rate of convergence of each action’s probability to be any non-negative real number. 
In practice, nevertheless, integer exponents are often used in examples. In this sec-
tion, we show that all assessments are supported by power sequences of strategy 

(x̃(a), ỹ(a)) ∶= (K
y(a)

2
x(a),K1 y(a)) for all a ∈ A.

x̃(h)

x̃(h�)
=

∏J

j=1
x̃(aj)

∏J�

j�=1
x̃(a�

j�
)
=

K
y(h)

2

∏J

j=1
x(aj)

K
y(h�)

2

∏J�

j�=1
x(a�

j�
)
=

∏J

j=1
x(aj)

∏J�

j�=1
x(a�

j�
)
=

x(h)

x(h�)
.

9 Note that x and y are pinned down uniquely for actions played with positive probability in the limit. 
Indeed, if 𝜎(a) > 0 , then x(a) = �(a) and y(a) = 0.
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profiles with integer exponents; hence, the assumption of integer exponents can be 
made without loss of generality.

Definition 4.1 We say that (�n)n is an integer power sequence of strategy profiles if it 
can be written as in (3.1) for some functions x ∶ A → ℝ++ and y ∶ A → ℤ+.

The class of integer power sequences of strategy profiles is significantly smaller 
than the class of power sequences of strategy profiles. Still, as the following proposi-
tion states, it is large enough to support all consistent assessments.

Proposition 4.2 An assessment is consistent if and only if some integer power 
sequence of strategy profiles supports it.

Proposition 4.2 establishes that any consistent assessment is supported by an inte-
ger power sequence of strategy profiles; that is, the rates of convergence to 0 of dif-
ferent actions can be chosen to be non-negative integers. There are various reasons 
for doing so. One is pedagogical, as integers make it easier to categorize different 
convergence rates. Another is a potential technical advantage since looking for inte-
ger solutions to systems of equations is often numerically easier. In many cases, nev-
ertheless, not restricting to integer exponents is easier as it gives more flexibility to 
find or construct consistent assessments.

Remark 4.1 Our characterization of sequential equilibria using monomials with inte-
ger powers is reminiscent of Blume and Zame (1994)’s characterization of sequen-
tial equilibria using algebraic geometry. They show that the graph of the equilibrium 
correspondence for sequential equilibria is a semi-algebraic set; that is, it is defined 
by finite systems of polynomial inequalities (with integer powers). While we would 
find a thorough exploration of the connection between these two approaches inter-
esting, it lies outside the boundaries of the current paper’s focus.

4.3  Other convenient sequences

Power sequences of strategy profiles are easy and convenient to use. They are 
determined by two maps ( x and y in Definition  3.1 with the only condition that ∑

a∈AI �y(a)=0 x(a) = 1 ), and they permit easily computing relative likelihoods of his-
tories (recall Corollary 4.1). In this section, we present other classes of sequences of 
strategy profiles that are convenient to use.

We begin by noticing three desirable properties of the class of power sequences of 
strategy profiles. First, a single parameter determines the relative limit likelihood of 
actions: limn→∞ �n(a)∕�n(a

�) = 0 if and only if y(a) > y(a�) . Second, another param-
eter determines the relative probability of the actions with the same convergence 
rate: limn→∞ �n(a)∕�n(a

�) = x(a)∕x(a�) whenever y(a) = y(a�) . Finally, the procedure 
to obtain the rate of convergence and relative probability for histories from their 
actions involves simple operations (addition and multiplication, see Eq. (4.2)).
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We now show that other classes of sequences of strategy profiles share simi-
lar properties. We begin noticing that, for any function f ∶ ℕ → ℝ++ satisfy-
ing that limn→∞ f (n) = 0 and any consistent assessment (�,�) , there exists a pair 
(x, y) ∶ A → ℝ++ ×ℝ+ such that (�,�) is supported by

where Mn(a) is a factor satisfying that limn→∞ Mn(a) = 1 . The convergence rates of 
histories can be computed using Eq. (4.2). So, the properties of a class of sequences 
of strategy profiles are the same as the properties of power sequences of strategy 
profiles, so they support the same assessment (for a given pair (x, y) ) independently 
of the value of f.

A slightly different formulation is the following. It is easy to see that, for each 
f ∶ ℕ → ℝ+ such that limn→∞ f (n) = +∞ and for each consistent assessment (�,�) , 
there is a pair of maps (x̂, ŷ) ∶ A → ℝ++ × (0, 1] (note that the co-domain of ŷ is differ-
ent from before) such that (�,�) is supported by a sequence (�̂�n)n satisfying that, if n is 
large enough,

where again M̂n(a) is a factor satisfying that limn→∞ M̂n(a) = 1 . In this case, an 
action is played with vanishing probability if and only if ŷ(a) < 1 . Now, the con-
verge rate of a history h ≡ (aj)

J
j=1

 is given by

instead of by Eq. (4.2). In this case, it is easy to see that the assessment supported by 
(�̂�n)n for (x̂, ŷ) is the same as the assessment supported by (�n)n satisfying (3.1) with 
(x, y) ∶= (x̂,− log(ŷ)).

(4.3)𝜎n(a) ∶=

{
x(a) f (n)−y(a) if y(a) > 0,

Mn(a) x(a) if y(a) = 0,

(4.4)�̂�n(a) =

{
x̂(a) ŷ(a)−f (n) if ŷ(a) > 0,

M̂n(a) x̂(a) if ŷ(a) = 1,

x̂(h) ∶=
J∏
j=1

x̂(aj) and ŷ(h) ∶=
J∏
j=1

ŷ(aj)

Fig. 2  Game tree 2
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4.4  Examples

Example 4.1 We first illustrate how consistent assessments can be easily gener-
ated using power sequences of strategy profiles. Consider Fig. 2, which represents 
part of a tree of a game where all information sets belong to different players (the 
game is assumed to continue after each depicted terminal history). Assign, for 
example, (x(r1), y(r1)) ∶= (1, 4) , (x(r2), y(r2)) ∶= (2, 2) , (x(r3), y(r3)) ∶= (2, 1) and 
(x(r4), y(r4)) ∶= (1, 1) (note that, necessarily, all other actions get assigned (1, 0)). 
For example, note that

Hence, since y(r1) = y(l1, r2, r3, r4) = 4 , we have that 
(1 − �)∕� = x(r1)∕x(l1, r2, r3, r4) = 1∕4 . It is then easy to see that this implies that 
� = 1 , � = 1∕3 , and � = 4∕5 ; hence, such assessment is consistent.

Example 4.2 The example illustrates how a power sequence of strategy profiles can 
be obtained from a given assessment. Consider Fig. 2 again. Assume that, under an 
assessment, all {rj}4j=1 are played with probability 0 (hence the rest of the actions are 
played with probability 1) and �, �, � ∈ (0, 1) . Set x(r2) ∶= 1 and y(r2) ∶= 1 (note 
that, by Proposition 4.1, the values of x and y assigned to one of the actions played 
with probability zero can be chosen freely). That � ∈ (0, 1) implies y(r3) = 1 and 
x(r3) = �∕(1 − �) . Simiarly, that � ∈ (0, 1) implies y(r4) = 1 and 
x(r4) = � �∕((1 − �) (1 − �)) . Finally, that � ∈ (0, 1) implies y(r1) = 3 and 
x(r1) = �2 � (1 − �)∕((1 − �)2 (1 − �) �).

Example 4.3 Fig. 3 reproduces the game depicted in Figure 235.1 in Osborne and 
Rubinstein (1994) (for graphical clarity, we omit the continuation game after the 
dashed information sets). In their Example 234.3, they argue through a lengthy argu-
ment that the assessment where only actions with an arrow are played with positive 
probability and with the belief system given in the picture is not consistent (their 
argument further relies on their assumption that i1 , i2 , and i3 are played with the same 
probability).

(x(r1), y(r1)) = (1, 4) and

(x(l1, r2, r3, r4), y(l1, r2, r3, r4)) = (1 ⋅ 2 ⋅ 2 ⋅ 1, 0 + 2 + 1 + 1) = (4, 4).

Fig. 3  Game tree 3
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We now argue that their result follows trivially using Theorem  3.1 (with-
out the need to assume that i1 , i2 , and i3 are played with the same probability). If 
the assessment in Fig.  3 would be consistent, then there would exist functions 
(x, y) ∶ A → ℝ++ ×ℝ+ satisfying

The first equation requires that the exponent of n for the history (i2, c2, l2) is strictly 
smaller (in absolute value) than those of the other histories in the same information 
set (note that y(i2) = 0 ), while the second equation requires that the exponent of n for 
the history (i1, c1,m1) is strictly lower than those of the other histories of the same 
information set. The contradiction is clear: the left equation requires y(c2) < y(c1) , 
while the second one requires y(c1) < y(c2).

A Omitted proofs

Proof of Lemma 3.1

Proof We proceed by induction over the number of actions. If Â has one action 
(i.e., Â = {a1} ) the result is clear: we let (n̂n)n be strictly increasing and such that 
(𝜎n̂n(a1))n converges to some �(a1) ∈ [0, 1] . If 𝜎(a1) > 0 then K ∶= 0 , and if 
�(a1) = 0 then K ∶= 1 and (q1

n
)n ∶= (�n(a1))n . Assume then that the result is true 

for Â ∶= {a1,… , aJ} with J ≥ 1 , and we prove it is true for Â ∪ {â} (we use â to 
denote aJ+1 for notational convenience). We use (n̂n)n and (q1

n
,… , qK

n
)n to denote the 

sequences provided by the theorem for (𝜎n ∶ Â → (0, 1])n . We divide the proof into 
four parts.

Part 1: The algorithm We propose the following algorithm, which follows steps 
k = K,… , 1 in descending order, from K to when the algorithm stops. In each step 
k , the algorithm takes the sequences (n̂k

n
)n and (q̃k

n
∈ ℝ++)n from the previous step, 

which satisfy limn→∞ q̃k
n̂k
n

 exists (in ℝ+ ). We initialize (n̂K
n
)n to be a subsequence of 

(n̂n)n such that (𝜎n̂K
n
(â))n is convergent, and (q̃K

n
)n ∶= (𝜎n(â))n . The final outputs of 

the algorithm are �∗ ∈ ℝK , (n̂∗
n
)n , (q̃0n,… , q̃K

n
)n , and k∗ ∈ {0,… ,K} ( k∗ indicates the 

step where the algorithm stopped.)

Step 1:

 (a) If lim infn→∞ q̃k
n̂k
n

∕(qk
n̂k
n

)𝛾 = 0 for all � ∈ ℝ , then we set (n̂∗
n
)n to be the subse-

quence of (n̂k
n
)n , defined as follows:

 i. n̂∗
1
∶= n̂k

1
.

y(c2) + y(l2) < min{y(c1), y(l3)} and y(c1) + y(m1) < min{y(c2), y(m3)}.
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 ii. n̂∗
2
∶= min{n̂k

n
> n̂∗

1
|q̃k

n̂k
n

∕(qk
n̂k
n

)2 < 1∕2}  ( e x i s t s  s i n c e 
lim infn→∞ q̃k

n̂k
n

∕(qk
n̂k
n

)2 = 0).
 iii. ...
 iv. n̂∗

m
∶= min{n̂k

n
> n̂∗

m−1
|q̃k

n̂∗
n

∕(qk
n̂k
n

)m < 1∕m}  ( e x i s t s  s i n c e 
lim infn→∞ q̃k

n̂k
n

∕(qk
n̂k
n

)m = 0).
 v. ...

   Since limn→∞ qk
n̂k
n

= 0 and limn→∞ q̃n̂k
n
∕(qk

n̂k
n

)n = 0 ,  it is clear that 
limn→∞ q̃k

n̂∗
n

∕(qk
n̂∗
n

)𝛾 = 0 for all � ∈ ℝ . We then set k∗ ∶= k ; set (q̃k�
n
)n ∶= (q̃k

n
)n 

and �̂�k�

∗
∶= 0 for all k′ ≤ k ; and stop. 

 (b) If the previous case fails, and lim infn→∞(q̃
k

n̂k
n

)−1∕(qk
n̂k
n

)𝛾 = 0 for all � ∈ ℝ , then 
set (n̂∗

n
)n to be a subsequence of (n̂k

n
)n such that limn→∞(q̃

k
n̂∗
n

)−1∕(qk
n̂∗
n

)𝛾 = 0 for all 
� ∈ ℝ (which exists by the previous argument); set k∗ ∶= k ; set (q̃k�

n
)n ∶= (q̃k

n
)n 

and �̂�k�

∗
∶= 0 for all k′ ≤ k ; and stop.

 (c) If the previous cases fail and lim infn→∞ qk
n̂k
n

∕(q̃k
n̂k
n

)𝛾 = 0 for all � ∈ ℝ , then 
(n̂k−1

n
)n is set to be a subsequence of (n̂k

n
)n such that limn→∞ qk

n̂k−1
n

∕(q̃k
n̂k−1
n

)𝛾 = 0 for 
all � ∈ ℝ (which again exists by the previous argument), (q̃k−1

n
)n ∶= (q̃k

n
)n , and 

�̂�k
∗
∶= 0 ; and go to Step 2.

 (d) If the previous cases fail, we proceed as follows. Note that it must be that 
limn→∞ q̃k

n̂k
n

∈ {0,+∞} (since, otherwise, we would have limn→∞ qk
n̂k
n

∕(q̃k
n̂k
n

)𝛾 = 0 
for all � ∈ ℝ because qk

n̂k
n

 tends to 0 as n → ∞ , but we assume that part (c) fails). 
There are then two sub-cases:

i. Assume first limn→∞ q̃k
n̂n
= 0 . Since case (a) fails, there is some � ∈ ℝ++ such 

that 

 Let �1 be the infimum of the set of values � such that the previous inequality 
holds. Note that �1 ≥ 0 because both q̃k

n̂k
n

 and qk
n̂k
n

 tend to 0 as n → ∞ . Note 
that, for all 𝛾 > 𝛾1 , the left-hand side of (A.1) is +∞ ; and, if 𝛾 < 𝛾1 , the left-
hand side of (A.1) is 0. We then let (n̂k−1

n
)n be such that q̃k

n̂k−1
n

∕(qk
n̂k−1
n

)𝛾1 tends 

to some limit in ℝ+ ; q̃k−1
n

∶= q̃k
n
∕(qk

n
)𝛾1 ; and �k

∗
∶= �1 ; and go to Step 2. For 

future use, we further prove that 𝛾1 > 0 (recall that we already argued that 
�1 ≥ 0 ). To see this, assume for the sake of contradiction that �1 = 0 . Then 
we have that, for all 𝛾 > 0 , 

(A.1)lim inf
n→∞

q̃k
n̂k
n

(qk
n̂k
n

)𝛾
> 0.
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 That is, replacing � by 1∕� � , we have that for all 𝛾 ′ > 0

 Since lim infn→∞ qk
n̂k
n

∕(q̃k
n̂k
n

)𝛾
�

= 0 for all � ′ ≤ 0 (because both qk
n̂k
n

 and q̃k
n̂k
n

 tend 
to 0 as n → 0 ), we reach a contradiction with the assumption that (c) does 
not hold.

  Note finally, also for future use, that using similar arguments and that case 
(c) fails,  we have that there exists some 𝛾2 > 0 such that 
lim infn→∞ qk

n̂k
n

∕(q̃k
n̂k
n

)𝛾 = +∞ for all 𝛾 > 𝛾2 and lim infn→∞ qk
n̂k
n

∕(q̃k
n̂k
n

)𝛾 = 0 for 
all 𝛾 < 𝛾2 . From the definition of �1 , we have that for all 𝛾 > 𝛾1 we have that 

 Hence, we have 𝛾 > 𝛾1 implies 1∕𝛾 < 𝛾2 ; that is, �1 ≥ 1∕�2 . Similarly, if 
𝛾 < 𝛾1 , we have 

 Now we have that 𝛾 < 𝛾1 implies 1∕𝛾 > 𝛾2 , that is, �1 ≤ 1∕�2 . Overall, we 
have �1 = 1∕�2 , that is, lim infn→∞ qk

n̂k
n

∕(q̃k
n̂k
n

)𝛾 = +∞ for all 𝛾 > 1∕𝛾1 and also 
lim infn→∞ qk

n̂k
n

∕(q̃k
n̂k
n

)𝛾 = 0 for all 𝛾 < 1∕𝛾1.
 ii. Assume now limn→∞ q̃k

n̂k
n

= +∞ . We proceed analogously to case i, where now 
�1 is the supremum of the set of values � such that inequality (A.1) holds. The 
rest holds equivalently.

Step 2: If k > 1 , then replace k by k − 1 and go to Step 1. If k = 1 , then set 
(n̂∗

n
)n ∶= (n̂0

n
)n and k∗ ∶= 0 , and stop.

(End of the algorithm, the proof of Lemma3.1 continues.)
Part 2: Intermediate results Define (q∗

n
)n ∶= (q̃0

n
)n . We note first that

We also note that, for all k > k∗ , it must be that

+∞ = lim inf
n→∞

q̃k
n̂k
n

(qk
n̂k
n

)𝛾
=

(
lim sup
n→∞

qk
n̂k
n

(q̃k
n̂k
n

)1∕𝛾

)−𝛾

.

0 = lim sup
n→∞

qk
n̂k
n

(q̃k
n̂k
n

)𝛾 �
≥ lim inf

n→∞

qk
n̂k
n

(q̃k
n̂k
n

)𝛾 �
≥ 0 ⇒ lim inf

n→∞

qk
n̂k
n

(q̃k
n̂k
n

)𝛾 �
= 0.

+∞ = lim inf
n→∞

q̃k
n̂k
n

(qk
n̂k
n

)𝛾
=

(
lim sup
n→∞

qk
n̂k
n

(q̃k
n̂k
n

)1∕𝛾

)−𝛾

≤

(
lim inf
n→∞

qk
n̂k
n

(q̃k
n̂k
n

)1∕𝛾

)−𝛾

.

0 = lim inf
n→∞

q̃k
n̂k
n

(qk
n̂k
n

)𝛾
=

(
lim inf
n→∞

qk
n̂k
n

(q̃k
n̂k
n

)1∕𝛾

)−𝛾

.

(A.2)q∗
n
= q̃0

n
=

q̃1
n

(q1
n
)𝛼

1
∗

=
1

(q1
n
)𝛼

1
∗

q̃2
n

(q2
n
)𝛼

2
∗

= ... =
𝜎n(â)∏K

k=1
(qk

n
)𝛼

k
∗

.
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(recall that (n̂∗
n
)n is a subsequence of (n̂k

n
)n ). Indeed, k > k∗ means that both cases 1(a) 

and 1(b) in the algorithm do not hold for k . If case 1(c) holds for k , then it is clear 
that limn→∞ qk

n̂∗
n

∕(q̃k−1
n̂∗
n

)𝛾 = 0 for all � ∈ ℝ . Assume then case 1(d) holds for k , and 
that limn→∞ q̃k

n̂∗
n

= 0 (the case where limn→∞ q̃k
n̂∗
n

= +∞ is analogous). Assume then, 
for the sake of contradiction, that there is some � ∈ ℝ such that

where we used that q̃k−1
n

= q̃k
n
∕(qk

n
)𝛾1 in case 1(d). If 1 + � �1 = 0 , then it must be that 

𝛾 < 0 (since 𝛾1 > 0 ), but then Eq. (A.4) does not hold because both qk
n̂∗
n

 and (q̃k−1
n̂∗
n

)−𝛾 
tend to 0. Alternatively, if 1 + 𝛾 𝛾1 > 0 , then it must be that 𝛾 > 0 for Eq. (A.4) to 
hold, and hence

By the definition of �1 , this implies that (1 + � �1)∕� ≤ �1 , which is a contradiction. 
Finally, if 1 + 𝛾 𝛾1 < 0 , then it must be that 𝛾 < 0 (since 𝛾1 > 0 ), and hence we have

By the definition of �2 (in Step 1(d) of the algorithm), we have that 
𝛾∕(1 + 𝛾 𝛾1) < 𝛾2 = 1∕𝛾1 , which is again a contradiction.

Part 3: Definition of the objects in the statement To conclude the proof of Lemma 
3.1 by providing the objects in its statement. Note that there are three possibilities: 

1. If limn→∞ q∗
n̂∗
n

∈ ℝ++ (and so k∗ = 0 ) then we have that (n̂∗
n
)n and (q1

n
,… , qK

n
)n are 

the desired sequences. Note that in this case, the values of � , (k̂k)Kk=1 , and (𝚥k)Kk=1 
are unchanged (by (A.2) we have that the second property of the statement holds 
for â for 𝛼(â) = 𝛼∗).

2. If limn→∞ q∗
n̂∗
n

= 0 then the desired sequences are (n̂∗
n
)n and 

 Indeed, in this case, the algorithm ends in one of the following two cases. In the first 
case, the algorithm ends because k∗ = 0 . Note that since (q∗

n
)n = (q̃0

n
)n , we have 

limn→∞ q1
n̂∗
n

∕(q∗
n̂∗
n

)𝛾 = 0 for all � ∈ ℝ (by Eq. (A.3) at k = 1 ). In the second case, the 
algorithm ends at Step 1(a) for some k∗ > 0 . Nevertheless, now, for all � ∈ ℝ , 

(A.3)lim
n→∞

qk
n̂∗
n

(q̃k−1
n̂∗
n

)𝛾
= 0 for all 𝛾 ∈ ℝ

(A.4)0 < lim sup
n→∞

qk
n̂∗
n

(q̃k−1
n̂∗
n

)𝛾
= lim sup

n→∞

(qk
n̂∗
n

)1+𝛾 𝛾1

(q̃k
n̂∗
n

)𝛾
,

0 < lim sup
n→∞

(qk
n̂∗
n

)1+𝛾 𝛾1

(q̃k
n̂∗
n

)𝛾
=

(
lim inf
n→∞

q̃k
n̂∗
n

(qk
n̂∗
n

)(1+𝛾 𝛾1)∕𝛾

)−𝛾

.

0 < lim sup
n→∞

(qk
n̂∗
n

)1+𝛾 𝛾1

(q̃k
n̂∗
n

)𝛾
=

(
lim sup
n→∞

q̃k
n̂∗
n

(qk
n̂∗
n

)(1+𝛾 𝛾1)∕𝛾

)−𝛾

=

(
lim inf
n→∞

qk
n̂∗
n

(q̃k
n̂∗
n

)𝛾∕(1+𝛾 𝛾1)

)1+𝛾 𝛾1

.

(q1
n
,… , qk

∗

n
, q∗

n
, qk

∗+1
n

,… , qK
n
)n.
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 The first equality holds from the algorithm ending at Step 1(a) for k∗ , while the 
second equality holds because (q∗

n
)n = (q̃k

∗

n
)n (and using Eq. (A.3) again, now at 

k = k∗ + 1 ). Note that new � , and (𝚥k)K+1k=1
 , and (k̂k)K+1k=1

 , are given by 

 respectively.
3. If limn→∞(q

∗
n̂∗
n

)−1 = 0 then, proceeding as in the previous case, it is easy to see 
that the desired sequences are (n̂∗

n
)n and 

 (and � , and (𝚥k)K+1k=1
 , and (k̂k)K+1k=1

 coincide with the previous case except that the 
new value for 𝛼k∗+1(â) is −1 instead of 1).

Part 4: Uniqueness of � We finally prove that � is unique (for some given (q1
n
,… , qK

n
)n 

satisfying the second property of the statement of Lemma 3.1). To do so, assume that 
there is some a ∈ A and 𝛼(a), �̂�(a) ∈ ℝK+1 satisfying

It then follows that

Let k† ∈ {1,… ,K} be the maximum value k for which 𝛼k(a) − �̂�k(a) ≠ 0 (which 
exists because 𝛼(a) ≠ �̂�(a) ). Since (q1

n
,… , qK

n
)n satisfies the second property of the 

statement, we have that

This is a contradiction; hence, � is unique.   ◻

lim
n→∞

q∗
n̂∗
n

(qk
∗

n̂∗
n

)𝛾
= 0 and, if k∗ < K, lim

n→∞

qk
∗+1
n̂∗
n

(q∗
n̂∗
n

)𝛾
= 0.

�
(𝛼1

∗
(â),… , 𝛼k∗

∗
(â), 1, 𝛼k∗+1

∗
(â),… , 𝛼K

∗
(â)) if a = â,

(𝛼1(a),… , 𝛼k∗ (â), 0, 𝛼k∗+1(a),… , 𝛼K(a)) if a ≠ â,

(𝚥1,… , 𝚥K , J + 1), and

⎧
⎪⎨⎪⎩

k̂k if k ≤ k∗,

k̂k + 1 if k ∈ {k∗ + 1,K},

k∗ + 1 if k = K + 1,

(q1
n
,… , qk

∗

n
, (q∗

n
)−1, qk

∗+1
n

,… , qK
n
)n

lim
n→∞

𝜎n̂n (a)∏K

k=1
(qk

n̂n
)𝛼k(a)

∈ ℝ++ and lim
n→∞

𝜎n̂n(a)∏K

k=1
(qk

n̂n
)�̂�k(a)

∈ ℝ++.

ℝ++ ∋ lim
n→∞

∏K

k=1
(qk

n̂n
)𝛼

k(a)

∏K

k=1
(qk

n̂n
)�̂�k(a)

= lim
n→∞

K�
k=1

(qk
n̂n
)𝛼

k(a)−�̂�k(a).

lim
n→∞

K∏
k=1

(qk
n̂n
)𝛼

k(a)−�̂�k(a) =

{
0 if 𝛼k† (a) − �̂�k† (a) > 0,

+∞ if 𝛼k† (a) − �̂�k† (a) < 0.
.
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Proof of Corollary 4.1

Proof The result follows from Eq. (3.1) and the fact that limn→∞ Mn(a) = 1 for all a 
such that y(a) = 0 .   ◻

Proof of Proposition 4.1

Proof The result follows from the arguments following the statement in the text.   ◻

Proof of Proposition 4.2

Proof Like in Theorem 3.1, the “if” part of the statement is obvious. To prove the 
“only if” part, fix a consistent assessment (�,�) , and let (x, y) ∶ A → ℝ++ ×ℝ+ be 
a pair such that (�n)n defined in Eq.  (3.1) supports (�,�) (which exists by Theo-
rem 3.1). We will now find another pair (x̂, ŷ) ∶ A → ℝ++ × ℤ+ such that x̂ = x and 
ŷ(h) ≥ ŷ(h�) if and only if y(h) ≥ y(h�) , hence (x̂, ŷ) will also support (�,�).

Fix some 𝜀 > 0 to be pinned down later in the proof. We define 
A0 ∶= {a|�(a) = 0} . We denote the actions in A0 as {a1,… , aJ0} . We define 
ŷ𝜀 ∶ A → ℚ recursively as follows. Define J0 ∶= � . Then, letting j run from 1 until 
J0 , proceed recursively as follows:

1. If y(aj) is a rational combination of elements in {y(aj� )|j� ∈ J
j−1} , given by 

y(aj) =
∑

j�∈Jj−1 �
j,j�

� y(aj� ) (where � j,j
�

� ∈ ℚ for all j� ∈ J
j−1 ), then set Jj ∶= J

j−1 
and ŷ𝜀(aj) ∶=

∑
j�∈Jj−1 𝛾

j,j�

𝜀 ŷ𝜀(aj� ) ∈ ℚ.
2. Otherwise, if y(aj) is a not rational combination of elements in {y(aj� )|j� ∈ J

j−1} , 
set ŷ𝜀(aj) to be a rational number in (y(aj) − �, y(aj) + �) and set Jj ∶= J

j−1 ∪ {j}.

Let J  denote JJ0 . Note that, by construction, ŷ𝜀(a) ∈ ℚ for all a ∈ A0 . Note also that 
if a number ỹ ∈ ℝ is a rational combination of {y(aj)|j = 1,… , J0} , then there exists 
a unique set of rational coefficients {𝛾 ỹ,j𝜀 |j ∈ J} such that ỹ =

∑
j∈J 𝛾

ỹ,j
𝜀 y(aj) . Indeed, 

by construction, for each j ∈ J  , y(aj) cannot be written as a rational combination of 
{y(aj� )|j� ∈ J�{j}} , while for all j ∉ J  we have that y(aj) can be written uniquely as 
a rational combination of elements in {y(aj)|j ∈ J}.

Note that there exists some y ∈ ℝ++ such that, for all 𝜀 > 0 and ŷ𝜀 obtained from 
the previous algorithm, we have |ŷ𝜀(a) − y(a)| < y 𝜀 for all a ∈ A . This is obviously 
true for all aj with j ∈ J  , since ŷ𝜀(aj) ∈ (y(aj) − 𝜀, y(aj) + 𝜀) by construction. The 
result then follows because, when aj is such that j ∉ J  , ŷ𝜀(aj) is a linear combination 
of elements in {ŷ𝜀(aj� )|j� ∈ J} with coefficients that are independent of �.

From the previous paragraphs, we have that if h, h� ∈ H are such that y(h) > y(h�) , 
then ŷ𝜀(h) > ŷ𝜀(h

�) if � is small enough. Finally, assume that h, h� ∈ H are such that 
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y(h) = y(h�) . Let {�h,j� |j ∈ J} be the unique set of rational coefficients such that 
y(h) =

∑
j∈J �

h,j
� y(aj) . Then, it is clear that

Note finally that ŷ𝜀(a) = 0 if and only if y(a) = 0 , hence 
∑

a∈AI �ŷ𝜀(a)=0
x(a) = 1 for 

all information sets I ∈ I  . Therefore, a strategy defined as in (3.1) with (x, ŷ𝜀) exists 
and supports (�,�) , so the proof is concluded.1   ◻
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