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Abstract
The Sprague–Grundy (SG) theory reduces the disjunctive compound of impartial 
games to the classical game of NIM. We generalize this concept by introducing 
hypergraph compounds of impartial games. An impartial game is called SG-decreas-
ing if its SG value is decreased by every move. Extending the SG theory, we reduce 
hypergraph compounds of SG-decreasing games to hypergraph compounds of sin-
gle-pile NIM games. We show that this reduction works only if all games involved 
in the compound are SG-decreasing. A hypergraph is called SG-decreasing if the 
corresponding hypergraph compound of single-pile NIM games is an SG-decreasing 
game. We provide some necessary and some sufficient conditions for a hypergraph 
to be SG-decreasing. In particular, for hypergraphs with hyperedges of size at most 
3 we obtain a necessary and sufficient condition verifiable in polynomial time.

Keywords  Impartial game · Sprague-Grundy function · NIM · Hypergraph NIM · 
SG-decreasing hypergraph

1  Introduction

In this paper we consider two-person impartial games. In such a game positions are 
not repeated, the same moves are available for both players, they take turns alter-
nately, and one who makes the last move is the winner. It is also assumed that there 
are only finitely many moves from each position, and every play terminates in a 
finite number of moves. We shall refer to these in the sequel simply as games. Let us 
add that such a game is in fact a family of games and it becomes a game in the every 
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day sense only after the players agree on an initial position and the order they take 
turns. For an overview of such games see, e.g., Albert et al. (2007), Berlekamp et al. 
(2004), Conway (1976), Siegel (2013).

Sprague (1935), Sprague (1937) and Grundy (1939) considered the disjunctive 
compound (named also as disjunctive sum) of games, and developed an effective 
theory to handle such composite games. Smith (1966) considered additionally oper-
ations, called conjunctive and selective compounds. Some other game compositions 
were also considered in the literature, see e.g., Berge (1953), Milnor (1953).

In this paper we introduce hypergraph compounds generalizing disjunctive, 
conjunctive and selective compounds. Given n games �1 , ..., �n and a hypergraph 
H ⊆ 2[n]⧵{�} , where [n] = {1, 2,… , n} , the H-compound �H of these games is 
played as follows: a player on its turn chooses a hyperedge H ∈ H and makes a 
move in every game �i , i ∈ H . Note that � ∉ H means that players are not allowed 
to pass. For instance, the hypergraph compounds with H = {{1}, {2},… , {n}} , 
H = {{1, 2,… , n}} , and H = 2[n] ⧵ {�} can be seen to correspond to disjunctive, 
conjunctive and selective compounds, respectively. In the special case when all 
games �i , i ∈ [n] , are single-pile NIM games, their hypergraph compound, denoted 
by NIMH , was already considered in Boros et al. (2019a), Boros et al. (2019b) and 
called hypergraph-NIM. This family contains classical NIM (11) and several vari-
ants considered in Moore (1910), Jenkyns and Mayberry (1980), Boros et al. (2021), 
Boros et al. (2018).

Given a game � = (X,E) , where X and E denote its sets of positions and moves, 
respectively, Sprague and Grundy introduced a nonnegative integer valued mapping 
G� ∶ X → ℤ+ , which was later called the SG-function of �  . They showed that G� 
not only helps to play �  , but also reduces disjunctive compound of games to NIM. 
For a position x ∈ X the value G� (x) is called the SG-value of x.

Interestingly, such a functional relation may not exist for other compounds, see 
e.g. Beideman et al. (2020). However, for several cases it does exist. Assume that 
�i = (Xi,Ei) are games and H ⊆ 2[n]⧵{�} is a given hypergraph. Then, equations

hold for all hypergraphs H ⊆ 2[n]⧵{�} if �i , i ∈ [n] are all single-pile1 NIM games, 
by the definition of NIMH . By the Sprague-Grundy theory it also holds for all games 
�i , i ∈ [n] if H = {{1},… , {n}} , that is for disjunctive compounds. Obviously, the 
above equality always holds if n = 1 , and hence in the sequel, we assume that n ≥ 2 . 
In our paper we provide a more general characterization for the above equality to 
hold and study the related hypergraph structures.

Note that G𝛤 (y) > G𝛤 (x) may hold for a move x → y , in general. A game �  is 
called SG-decreasing if the SG value is strictly decreased by every move. A single-
pile NIM is the simplest example of an SG-decreasing game.

(1)G�H
(x1,… , xn) = GNIMH

(
G�1

(x1),… ,G�n
(xn)

)
∀ xi ∈ Xi, i ∈ [n]

1  Some authors prefer to use heaps instead of piles. Since heaps have a more specific meaning in com-
puter science, we prefer to use piles.
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Theorem 1  Equation (1) holds for an arbitrary hypergraph H ⊆ 2[n] ⧵ {�} and SG-
decreasing games �i , i ∈ [n].

Given a game �  and a position x of it, we denote by h� (x) the length of the long-
est play starting at x and call it the height of x in the game. A game �  is called 
h-unbounded if for any nonnegative integer k ∈ ℤ+ there exists a position x in �  
such that h� (x) = k . Note that all hypergraph NIM games including classical NIM 
are h-unbounded.

Our next statement shows that Eq. (1) fails unless all games involved in the 
compound are SG-decreasing. Here a hypergraph H ⊆ 2[n] is called spanning if 
∪H∈HH = [n].

Theorem 2  Let �i , i ∈ [n] , be h-unbounded games. Then Eq. (1) holds for an arbi-
trary hypergraph H ⊆ 2[n]⧵{�} if and only if all games �i , i ∈ [n] , are SG-decreas-
ing. Otherwise, Eq. (1) fails for any hypergraph H whose (inclusion-wise) minimal 
hyperedges form a spanning hypergraph with no singleton.

We derive Theorem 2 from a characteristic property of conjunctive compounds 
shown in Sect. 3. The theorem shows that h-unbounded SG-decreasing games form 
the largest family of impartial games satisfying (1) for all compound operations. We 
note that H = {[n]} corresponding to the conjunctive compound satisfies the prop-
erty of hypergraphs in the otherwise statement in Theorem 2.

Although playing an SG-decreasing game seems very simple, just like a single-
pile NIM, nevertheless both recognizing SG-decreasing games and computing their 
SG-values are nontrivial computational problems, even in the subclass of hyper-
graph NIM games; see Sect. 5 for more details.

Interestingly, if we replace in Eq. (1) the SG function by the height function we 
always get equality.

Theorem  3  Given games �1 = (X1,E1),… ,�n = (Xn,En) and a hypergraph 
H ⊆ 2[n] ⧵ {�} , for all positions x1 ∈ X1,… , xn ∈ Xn we have the identity

Note that a game �  is SG-decreasing if and only if G� = h� (which will be shown 
in Lemma 4). Thus, the above two theorems immediately imply the following 
statement.

Corollary 1  If NIMH is SG-decreasing, then the H-compound of SG-decreasing 
games is SG-decreasing.

The above results motivate us to study SG-decreasing games and, in particular, 
SG-decreasing hypergraph NIM games. We call a hypergraph H ⊆ 2[n] ⧵ {�} SG-
decreasing if NIMH is an SG-decreasing game.

Given a hypergraph H ⊆ 2[n] ⧵ {�} and a subset S ⊆ [n] , denote by HS the subhy-
pergraph HS = {H ∈ H ∣ H ⊆ S} of H induced by S.

(2)h�H
(x1,… , xn) = hNIMH

(
h�1

(x1),… , h�n
(xn)

)
.
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We call a hypergraph H totally transversal if every induced subhypergraph is 
either empty or contains a hyperedge that intersects all others, i.e.

We call H intersecting if any two hyperedges of it intersect i.e.,

Note that lines of a projective plane (or more generally, hyperplanes of projective 
geometries) are examples for intersecting hypergraphs.

Theorem  4  Condition (3) is necessary, while (4) is sufficient for a hypergraph 
H ⊆ 2[n]⧵{�} to be SG-decreasing.

As examples, let us consider hypergraph NIM games with 
H = {H ⊆ [n] ∣ |H| = k} , where 1 ≤ k < n , called exact NIM in Boros et  al. 
(2018). These hypergraphs satisfy Condition (4) and thus are SG-decreasing, if 
k > n∕2.

We can reformulate Theorem  4 as follows: intersecting hypergraphs are SG-
decreasing and SG-decreasing ones are totally transversal. Note that both contain-
ments are strict.

The dimension of a hypergraph H , denoted by dim(H) , is defined as the size of 
the largest hyperedge in H . In fact, totally transversal hypergraphs of dimension 4 
may be not SG-decreasing; see an example in Sect. 4. Furthermore, there are many 
SG-decreasing hypergraphs that are not intersecting.

Let us call a position of a game terminal if there is no move from it. Total trans-
versality can be characterized in the following way.

Theorem 5  A hypergraph H ⊆ 2[n] ⧵ {�} is totally transversal if and only if the SG-
value in NIMH is zero only in terminal positions.

Our next (and perhaps most difficult to prove) result is that total transversality is 
sufficient for dimension at most 3.

Theorem 6  A hypergraph H of dimension at most 3 is SG-decreasing if and only if it 
is totally transversal.

Obviously, Condition (4) can be checked in polynomial time in the size of the 
hypergraph. We prove the same for Condition (3) for hypergraphs of bounded 
dimension. In addition we show that computing the height (as well as the SG) func-
tion values for NIMH is an NP-complete problem, even for hypergraphs of dimen-
sion 3, while it is polynomial for hypergraphs of dimension 2.

The rest of the paper is organized as follows. In Sect. 2 we provide precise def-
initions and prove several basic properties of height and SG-functions. In Sect.  3 
we prove Theorems 1, 2, and 3. In Sect. 4 we prove Theorems 4, 5, and provide a 
sketch of the proof of  6. In Sect.  5 we consider the computational complexity of 

(3)∀S ⊆ [n] with HS ≠ � ∃H ∈ HS such that ∀H� ∈ HS ∶ H ∩ H� ≠ �.

(4)∀H,H� ∈ H ∶ H ∩ H� ≠ �.
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recognizing total transversality and computing height and SG values. Finally, in the 
Appendix we include the full technical proof of Theorem 6.

2 � Definitions, notation, and basic properties

It is well-known that in every game � = (X,E) there exists a subset P ⊆ X of its 
positions satisfying (and uniquely defined by) two properties: (a) from every posi-
tion x ∈ X⧵P there is a move to the set P ; (b) every move from a position x ∈ P 
moves to X ⧵ P . Such positions are called P-positions of �  (Berlekamp et al. 2004; 
Siegel 2013). P-positions help to play the game, since choosing a move to P from 
X ⧵ P guarantees winning.

To play the disjunctive compound of two games, it is not sufficient to know P
-positions of the compounding games. Sprague-Grundy (Sprague 1935, 1937; 
Grundy 1939) introduced a mapping G� ∶ X → ℤ+ associated to game �  , called the 
SG-function of �  , that generalizes the concept of P-positions:

We call G� (x) the SG-value of position x ∈ X . It is known that x ∈ P if and only if 
G� (x) = 0 . Furthermore, the SG-function of a compound game is the NIM-sum (11) 
of the SG-functions of the compounding games, by the cited results of Sprague and 
Grundy.

Lemma 1  Given a game � = (X,E) and a mapping f ∶ X → ℤ+ , we have f = G� if 
and only if 

	 (i)	 for any move x → y we have f (x) ≠ f (y) , and
	 (ii)	 for any x ∈ X and nonnegative integer v < f (x) there exists a move x → y such 

that f (y) = v.

Proof  By its definition, the SG-function G� satisfies (i) and (ii). The other direction 
can be shown by induction. For a terminal position x ∈ X there are no moves from x 
and thus by (ii) we must have f (x) = 0 = G� (x) . Let us observe next that properties 
(i) and (ii) imply

for all x ∈ X . Thus, if for an x ∈ X we assume that equality f (y) = G� (y) holds for 
all moves x → y , then f (x) = G� (x) follows. 	� ◻

Somewhat similarly the height functions can be uniquely characterized as follows.

Lemma 2  Given a game � = (X,E) and a mapping f ∶ X → ℤ+ , we have f = h� if 
and only if the following three properties hold. 

(5)G� (x) = min
{
ℤ+ ⧵ {G� (y) ∣ (x → y) ∈ E}

}
.

f (x) = min
{
ℤ+ ⧵ {f (y) ∣ (x → y) ∈ E}

}



	 E. Boros et al.

1 3

(a)	 Every move decreases the value of f.
(b)	 If f is positive in a position then there exists a move from this position that 

decreases f by exactly one.
(c)	 In each terminal position f takes value zero.

Proof  Note that games are regarded as acyclic directed graphs and, hence, the state-
ment follows by basic graph-theoretic arguments. 	�  ◻

The next lemma compares both functions.

Lemma 3  Given a game � = (X,E) and a position x ∈ X

	 (i)	 for every move x → y we have G� (x) ≠ G� (y) and h𝛤 (x) > h𝛤 (y);
	 (ii)	 for every position x ∈ X and integer 0 ≤ v < G𝛤 (x) there exists a move x → y 

such that G� (y) = v;

	 (iii)	 for every position x ∈ X there exists a move x → y such that h� (y) = h� (x) − 1;

	 (iv)	 for every position x ∈ X we have G� (x) ≤ h� (x).

Proof  Properties (i) and (ii) follow directly by the definitions of the height and 
SG-functions. Property (iii) follows by the definition of a longest path. For (iv) 
note that for every position x ∈ X there exists a move x → y by (ii) such that 
G� (y) = G� (x) − 1 . By repeating such moves one can create a path of length G� (x) 
starting from x, and it cannot be longer than the longest path from the same posi-
tion. 	�  ◻

Note that G𝛤 (x) < G𝛤 (y) is possible for a move x → y . Recall that �  is called 
SG-decreasing if G𝛤 (x) > G𝛤 (y) for every move x → y in the game. The following 
statement provides characterizations of SG-decreasing games that will be instru-
mental in our proofs.

Lemma 4  Given a game � = (X,E) the following three statements are equivalent: 

	 (i)	 �  is SG-decreasing;
	 (ii)	 G� = h�;
	 (iii)	 for every position x ∈ X and integer 0 ≤ v < h𝛤 (x) there exists a move x → y 

in �  such that h� (y) = v.

Proof  To see (i)⟹(ii) let us assume that G� ≠ h� and consider a position x ∈ X for 
which G� (x) ≠ h� (x) . By (iv) of Lemma 3 we get G𝛤 (x) < h𝛤 (x) . Let t = h� (x) and 
consider the positions x0 = x , x1,..., xt along a longest path starting from x, that is, 
xi → xi+1 is a move in �  and h� (xi+1) = h� (xi) − 1 for all i = 0,… , t − 1 . Since by 
(i) of Lemma 3 we have G� (xi+1) ≠ G� (xi) and since t > G𝛤 (x0) there must exists an 
index 0 ≤ i < t such that G𝛤 (xi+1) > G𝛤 (xi) , completing the proof of our claim.
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Assuming (ii) we get for every move x → y that G𝛤 (x) = h𝛤 (x) > h𝛤 (y) = G𝛤 (y) 
by (i) of Lemma 3, implying (i).

(ii)⟹(iii) follows by the definition of the SG-function.
Finally (iii)⟹(ii) follows by Lemma 1. 	�  ◻

It is easily seen that both functions h and G can be computed in time linear in 
the size of �  , whenever �  is given explicitly, as an acyclic directed graph.

It is also not difficult to see that the height functions of hypergraph-NIM games 
satisfy monotonicity.

Lemma 5  For a hypergraph H ⊆ 2[n] ⧵ {�} , and for all positions x, y ∈ ℤ
[n]
+  such 

that x ≤ y we have hH(x) ≤ hH(y) ≤ hH(x) +
∑

i∈[n](yi − xi) . 	�  ◻

For a hyperedge H ∈ H , and a position x ∈ ℤ
[n]
+  , we call a move x → x′ in 

NIMH an H-move if {i ∈ [n] ∣ x�
i
< xi} = H . For a subset H ⊆ [n] we denote by 

�(H) its characteristic vector. For positions x with x ≥ �(H) , we shall consider 
two special H-moves from x: 

Slow H-move:	� x → xs(H) defined by xs(H)

i
= xi − 1 for i ∈ H , and xs(H)

i
= xi for 

i ∉ H , that is by decreasing the value of every coordinate in H by 
exactly one.

Fast H-move:	� x → xf (H) defined by xf (H)

i
= 0 for i ∈ H , and xf (H)

i
= xi for i ∉ H , 

that is, by decreasing the value of every coordinate in H to zero.

For a position x ∈ ℤ
[n]
+  we denote by supp (x) = {i ∣ xi > 0} the set of its sup-

port, and by H supp (x) the subhypergraph of H induced by supp (x).
Then the following property holds for the height function hH.

Lemma 6  For a hypergraph H ⊆ 2[n] ⧵ {�} , let x ∈ ℤ
[n]
+  be a position such that 

hH(x) > 0 . Then for any hyperedge H ∈ H supp (x) we have

Proof  It follows from Lemmas 2 and 5. 	�  ◻

Lemma 7  Let H ⊆ 2[n] ⧵ {�} be a hypergraph. For a hyperedge H ∈ H , 
let x ∈ ℤ

[n]
+  be a position such that x ≥ �(H) . Then for every integer v with 

hH(x
f (H)) ≤ v ≤ hH(x

s(H)) we have an H-move x → x′ such that hH(x�) = v.

Proof  We decrease the i-th component of xs(H) , i ∈ H , in an arbitrary order, subtract-
ing one in each step, until we get xf (H) . Every time the height decreases by at most 
one by Lemma 5. Since xs(H)

i
< xi for all i ∈ H , all the positions encountered in the 

above process can be reached from x by a single H-move. 	�  ◻

hH(x) > hH(x
s(H)) ≥ max{hH(x

f (H)), hH(x) − |H|}.
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The next claim follows directly from the definitions, and will be frequently used 
in our proofs.

Lemma 8  Let H ⊆ 2[n] ⧵ {�} be a hypergraph and x ∈ ℤ
[n]
+  be a position such that 

hH(x) > 0 . Then we have hH(xf (H)) = 0 for a hyperedge H ∈ H if and only if H inter-
sects all hyperedges of H supp (x) . 	�  ◻

3 � Hypergraph compounds of games

In this section we formally define hypergraph-compound of games, and prove Theo-
rems 1, 2, and 3.

Given games �i = (Xi,Ei) , i ∈ [n] = {1,… , n} , and a hypergraph H ⊆ 2[n] ⧵ {�} , 
we define the H-compound �H = (X,E) of these games by setting

Since the compound game NIMH plays a special role in our statements, we introduce 
a simplified notation for the rest of the paper. Namely, we denote by GH the SG func-
tion, by hH the height function, and by PH the set of P-positions of NIMH.

Proof of Theorem  1  Consider the H-compound �H = (X,E) as defined above. To 
prove the theorem, we show first the “if" part of the statement, that is that the func-
tion defined by the right hand side of Equation (1) satisfies (i) and (ii) in Lemma 1 if 
all games �i, i ∈ [n], are SG-decreasing.

For (i), consider a position x = (x1,… , xn) ∈ X and denote by 
g(x) = (G�i

(xi) ∣ i ∈ [n]) ∈ ℤ
[n]
+  the vector of SG values in n given games. Since 

g(x) ∈ ℤ
[n]
+

 , it is a position of NIMH . Let us define a function f ∶ X → ℤ+ by

Consider first a move (x, x�) ∈ E , where (xi, x�i) ∈ Ei for i ∈ H for some hyper-
edge H ∈ H . By the definition of E we must have x�

i
= xi for all i ∉ H . Denote 

by g(x�) ∈ ℤ
[n]
+  the corresponding vector of SG values. Note that g(x�)i < g(x)i for 

i ∈ H , since �i is an SG-decreasing game for all i ∈ [n] , and g(x�)i = g(x)i for all 
i ∉ H since x�

i
= xi for these indices. Consequently, g(x) → g(x�) is a move in NIMH 

and therefore f (x) = GH(g(x)) ≠ GH(g(x
�)) = f (x�) . This proves (i) in Lemma 1.

For (ii) in Lemma 1, let us next consider an integer 0 ≤ v < f (x) . We are going to 
show that there exists a move x → x′ in �H such that f (x�) = v . Let us consider again 
the corresponding integer vector g = g(x) ∈ ℤ

[n]
+  , for which we have f (x) = GH(g) . 

By the definition of the SG function of NIMH , there exists a move g → g′ such 
that GH(g

�) = v . Let H ∈ H be the hyperedge used in this move, i.e., g′
i
< gi for 

X =
∏

i∈[n]

X
i
and

E =

{
(x, x�) ∈ X × X

||||
∃ H ∈ H such that

(x
i
, x�

i
) ∈ E

i
∀i ∈ H

x
i
= x

�
i

∀i ∉ H

}
.

f (x) = GH(g(x)) = GNIMH
(g(x)).
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i ∈ H and g�
i
= gi for i ∉ H . Then for each i ∈ H , we must have moves xi → x′

i
 in 

�i such that G�i
(x�

i
) = g�

i
 for all i ∈ H . By setting x�

i
= xi for i ∉ H , we get a move 

x → x� = (x�
1
,… , x�

n
) in the H-compound such that f (x�) = v . This proves (ii) in 

Lemma 1. 	�  ◻

Our proof of Theorem 2 is based on a general criterion showing when Eq. (1) 
holds for conjunctive compounds (Theorem  7) which may be of independent 
interest.

We first note that the conjunctive compound of single-pile NIM games, 
NIM∧ = NIMH with H = {[n]} , satisfies the equality:

which we will use in our proof.
For a game � = (X,E) and a position x ∈ X , let � [x] = (X[x],E[x]) denote the 

subgame of �  obtained by restricting the positions reachable from x by a sequence 
of moves. We call � [x] a truncated game. Note that any game with a fixed initial 
position is a truncated game. Note also that both the SG-function and the height 
function values at a position x depend only the positions reachable from x, and thus 
we have for every y ∈ X[x] the equality G� (y) = G� [x](y) and h� (y) = h� [x](y) . Fur-
thermore, we have h� (y) ≤ h� (x) for all y ∈ X[x] with strict inequality for y ≠ x by 
(i) of Lemma 3.

To a game � = (X,E) let us associate the parameter

where by convention we have �(� ) = +∞ if �  is SG-decreasing. The following 
technical lemma will be instrumental to our proofs.

Lemma 9  Any position x of � = (X,E) with h� (x) ≤ �(� ) + 1 satisfies 
G� (x) = h� (x).

Proof  Assume that this is not the case. Then we have a position x ∈ X such that

Since we have �(� ) ≤ G� (x) by the definition of �(� ) we must have 
𝜅(𝛤 ) ≤ G𝛤 (x) < h𝛤 (x) ≤ 𝜅(𝛤 ) + 1 , implying �(� ) = G� (x) = h� (x) − 1 . By (iii) 
of Lemma 3, there exists a move x → y such that h� (y) = h� (x) − 1 . Then we 
have G� (y) ≤ h� (y) = h� (x) − 1 . Furthermore, it follows from (i) of Lemma 3 that 
G� (y) ≠ G� (x) = h� (x) − 1 . Consequently we have G𝛤 (y) < h𝛤 (y) = 𝜅(𝛤 ) . This con-
tradicts the definition of �(� ) , which completes the proof. 	�  ◻

The following statement can be viewed as a criterion showing when Equation (1) 
holds for the conjunctive compound. It will be used to prove Theorem 2.

(6)GNIM∧ (x) = min
i∈[n]

xi ∀ x = (x1,… , xn) ∈ ℤ
[n]
+ ,

�(� ) = min{G� (x) ∣ x ∈ X, G� (x) ≠ h� (x)}

G𝛤 (x) < h𝛤 (x) ≤ 𝜅(𝛤 ) + 1.
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Theorem  7  Let n be a positive integer with n ≥ 2 . For i ∈ [n] , let �i = (Xi,Ei) be 
games. Then Equation (1) holds for their conjunctive compound if and only if

Proof  For the if direction, let us assume that (7) holds. For a position x = (x1,… , xn) 
with xi ∈ Xi , i ∈ [n] , let us denote the right hand side of (1) by

We are going to prove using Lemma 1 that f(x) is the SG-function of the conjunctive 
compound of the games �i , proving the equality in (1) under the condition (7).

To this end, we first claim that for any position x = (x1,… xn) , there exists a com-
ponent r ∈ [n] such that f (x) = G�r

(xr) = h�r
(xr) . Assume that any component r with 

f (x) = G�r
(xr) satisfies G𝛤r

(xr) < h𝛤r
(xr) by Lemma 3 (iv). Then by (7), definition of 

� , and Lemma 3 (iv), there exists a component i ∈ [n] such that

This together with (8) implies that G�i
(xi) = h�i

(xi) = f (x) , which contradicts the 
assumption.

By the claim, let r be a component with f (x) = G�r
(xr) = h�r

(xr) . Then any move 
xr → yr in Xr satisfies G𝛤r

(yr) ≤ h𝛤r
(yr) < f (x) by Lemma 3 (i) and (iv). This together 

with (8) implies that any move x → y in the compound game satisfies f (y) < f (x) , 
which proves the property (i) in Lemma 1. To prove the property (ii) in Lemma 1, 
let us consider an arbitrary nonnegative integer v < f (x) . By (ii) of Lemma 3, any 
component i ∈ [n] has a move xi → yi such that G�i

(yi) = v , since G�i
(xi) ≥ f (x) by 

(8). Therefore, y = (y1,… , yn) satisfies f (y) = mini∈[n] G�i
(yi) = v , which proves 

(ii) in Lemma 1.
For the only-if direction, let us denote by h∗ and �∗ the minimum values on the 

left and right hand sides of inequality (7), and denote by q ∈ [n] a component such 
that �∗ = �(�q) . Let us assume that (7) does not hold, that is,

holds for all i ∈ [n] . Let us choose a position xq ∈ Xq such that 
𝜅∗ = G𝛤q

(xq) < h𝛤q
(xq) . By the definition of � such a position exists in game �q . For 

each other game �i , i ≠ q , we choose a position xi ∈ Xi such that h�i
(xi) = �∗ + 1 . 

Since �∗ + 1 ≤ h∗ ≤ supzi∈Xi
h�i

(zi) , such a position exists by (iii) of Lemma 3. By 
Lemma 9, the truncated games �i[xi] , i ≠ q are all SG-decreasing, implying 
G�i

(xi) = �∗ + 1 for all i ≠ q . Note that on the right hand side of (1) we have 
f (x) = min

�∈[n] G�
�
(x

�
) = �∗ by (6). We prove a violation of the equality in (1) by 

exhibiting a move x → y in the conjunctive compound for which we have 
f (y) = �∗ (= f (x)) . Since by (i) of Lemma 3 the SG-value must change in a move, 
equality in (1) does not hold for at least one of x and y.

(7)min
i∈[n]

sup
xi∈Xi

h�i
(xi) ≤ min

i∈[n]
�(�i).

(8)f (x) = min
i∈[n]

G�i
(xi).

G�i
(xi) ≤ h�i

(xi) ≤ min
i∈[n]

�(�i) ≤ G�r
(xr) (= f (x)).

(9)sup
xi∈Xi

h𝛤i
(xi) ≥ h∗ > 𝜅∗ = 𝜅(𝛤q) = min

�∈[n]
𝜅(𝛤

�
)
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In the game �q , we choose a move xq → yq such that h�q
(yq) = h�q

(xq) − 1 ≥ �∗ 
according to (iii) of Lemma 3. Note that G𝛤q

(yq) < 𝜅∗ would then contradict the defi-
nition of �(�q) , and therefore we also have G�q

(yq) ≥ �∗ . In each other game �i , 
i ≠ q , we choose a move xi → yi such that h�i

(yi) = h�i
(xi) − 1 = �∗ , in accordance 

with (iii) of Lemma 3. Note that such an i exists by n ≥ 2 . Since the truncated games 
�i[xi] , i ≠ q are all SG-decreasing, the equations f (y) = �∗ = f (x) follow as claimed, 
completing the proof of the theorem. 	�  ◻

Proof of Theorem 2  Since the if part is proven in Theorem 1, we here show the only-
if part. Assume that game �i is not SG-decreasing for at least one i ∈ [n] . Define 
�∗ = min

�∈[n] �(��
) , and let zi be a position in Xi such that G𝛤i

(zi) = 𝜅∗ < h𝛤i
(zi) , 

Take a minimal hyperedge H ∈ H be that contains i. For j ∈ H⧵{i} , we arbitrarily 
choose a position zj that satisfies h�j

(zj) = �∗ + 1 . Note that such a position exists, 
since �j is assumed to be h-unbounded. For j ∈ [n]⧵H , let zj a position with 
h�j

(zj) = 0.
Let us now consider H-compound of the truncated games �j[zj] , j ∈ [n] . Since 

h�j[zj]
(zj) = 0 for all j ∈ [n] ⧵ H , it can be regarded as the conjunctive compound of 

�j[zj] , j ∈ H . Our statement then follows by Theorem 7, since condition (7) does not 
hold for the truncated games �j[zj] , j ∈ H . 	�  ◻

Finally, in this section we prove Theorem 3.

Proof of Theorem 3  Similarly to the proof of Theorem 1, we shall show that the func-
tion defined by the right hand side of Equation (2) satisfies the above properties (a), 
(b) and (c).

Consider a position x = (x1,… , xn) ∈ X and denote by 
t(x) = (h�i

(xi) ∣ i ∈ [n]) ∈ ℤ
[n]
+  the vector of height values in these n games. Notice 

that t(x) is a position in the game NIMH . Let us denote by

the function defined by the right hand side of Eq. (2).
For (a), consider a move (x, x�) ∈ E , where (xi, x�i) ∈ Ei for i ∈ H for some hyper-

edge H ∈ H . By the definition of E we must have x�
i
= xi for all i ∉ H . Denote by 

t� ∈ ℤ
[n]
+  the corresponding vector of height values, and note that t�

i
< ti(x) for i ∈ H 

since h�i
 satisfies property (a) for all i ∈ [n] , and t�

i
= ti(x) for all i ∉ H since xi = x�

i
 

for these indices. Consequently, t → t� = t(x�) is a move in NIMH , and therefore 
f (x) = hH(t(x)) > hH(t(x

�)) = f (x�) , since hH satisfies property (a). This proves that 
f satisfies (a).

For (b), consider next an arbitrary position x ∈ X such that 0 < f (x) = hH(t(x)) . 
Since hH satisfies property (b), there exists a move t(x) → t� in NIMH 
such that hH(t

�) = hH(t(x)) − 1 . Then, by the definition of NIMH we have 
H = {i ∈ [n] ∣ ti(x) > t�

i
} ∈ H . Since h�i

 satisfies property (b), there exists moves 
xi → x′

i
 such that h�i

(x�
i
) = h�i

(xi) − 1 = ti(x) − 1 for i ∈ H . Define x�
i
= xi for i ∉ H . 

f (x) = hH(t(x))
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Then we have hH(t(x)) − 1 ≥ hH(t(x
�)) ≥ hH(t

�) by Lemmas  2 (b) and 5 for the 
height function hH . Consequently we have f (x�) = f (x) − 1 , which proves (b).

Finally, to see property (c), let us consider a terminal position x ∈ X and its cor-
responding height vector t(x). By the definition of NIMH this is a terminal position 
if and only if {i ∈ [n] ∣ ti(x) = 0} intersects all hyperedges of H , in which case we 
must have f (x) = hH(t(x)) = 0 . 	�  ◻

4 � SG‑decreasing hypergraphs

In this section we prove Theorems 4, 5, and sketch the proof of Theorem 6.

Proof of Theorem 4  We show first that Condition (3) is necessary for a hypergraph to 
be SG-decreasing. By Lemma 4 for an SG-decreasing hypergraph we have GH = hH , 
implying that for every position with a positive SG-value we have a move to a 
terminal position. Let us consider now an arbitrary subset S ⊆ [n] such that HS is 
non-empty, and consider an arbitrary position x ∈ ℤ

[n]
+  for which {i ∣ xi > 0} = S . 

Since HS is non-empty, we have hH(x) = GH(x) > 0 . Thus there exists an H-move 
x → y for some H ∈ HS such that GH(y) = hH(y) = 0 . This implies that H intersects 
all other hyperedges of HS . Since this is true for all non-empty induced subhyper-
graphs, H must be totally transversal.

To see that Condition (4) is sufficient let us consider an arbitrary position 
x ∈ ℤ

[n]
+  . If hH(x) = 0 then the claim holds by definition. Assume that hH(x) > 0 

and consider a hyperedge H ∈ H such that hH(x − �H) = hH(x) − 1 . Such a hyper-
edge exists, since hH(x) > 0 . Let us consider positions xs(H) and xf (H) . By our choice 
of H, we have hH(xs(H)) = hH(x) − 1 . Since the hypergraph is intersecting, we also 
have hH(xf (H)) = 0 by Lemma 8. Thus, by Lemma 7, for all values 0 ≤ v ≤ hH(x) − 1 
there exists an H-move x → x′ such that hH(x�) = v . Since this holds for all posi-
tions, we get GH(x) = hH(x) , by Lemma 4. This completes the proof of the theorem. 	
� ◻

Let us associate to a hypergraph H ⊆ 2[n]⧵{�} the set of positions ZH ⊆ ℤ
[n]
+  

which have zero height:

Obviously, we have

since there is no move from x by the definition of the height function. We shall 
show next that in fact all P-positions of NIMH are in ZH if and only if H is totally 
transversal.

Lemma 10  For a hypergraph H ⊆ 2[n] ⧵ {�} , we have PH = ZH if and only if H is 
totally transversal.

ZH = {x ∈ ℤ
[n]
+ ∣ hH(x) = 0}.

(10)ZH ⊆ PH,



1 3

Impartial games with decreasing Sprague–Grundy function and…

Proof  Since ZH ⊆ PH holds for any hypergraph H ⊆ 2[n]⧵{�} , we first assume the 
converse inclusion PH ⊆ ZH , and consider a subset S ⊆ [n] such that HS ≠ ∅ . Let 
us then choose a position x ∈ ℤ

[n]
+

 such that supp(x) = S . Since HS ≠ ∅ , we have 
hH(x) > 0 implying GH(x) > 0 by our assumption. Furthermore, by the definition of 
the SG function, we must have a hyperedge H� ∈ H and an H′-move x → x′ such 
that GH(x

�) = 0 . Again by our assumption, we have hH(x�) = 0 , which implies 
hH(x

f (H�)) = 0 by Lemma 5. Hence this H� ⊆ supp (x) = S intersects all hyperedges 
of HS , which prove the total transversality.

For the other direction, assume that H is totally transversal, and consider a posi-
tion x ∈ ℤ

[n]
+  with hH(x) > 0 . Then we have H supp (x) ≠ � , By totally transversality 

of H , we have a hyperedge H ∈ H supp (x) that intersects all other hyperedges of this 
induced subhypergraph, i.e., hH(xf (H)) = 0 by Lemma 8. This implies GH(x

f (H)) = 0 
by (iv) of Lemma 3. Since x → xf (H) is an H-move, GH(x) ≠ 0 is implied by the defi-
nition of the SG function, which concludes that PH ⊆ ZH . This together with (10) 
proves the if-direction of the theorem. 	�  ◻

Proof of Theorem 5  Follows by Lemma 10. 	�  ◻

The following example demonstrates that total transversality alone is not 
enough, generally, to guarantee that a hypergraph is SG-decreasing.

Lemma 11  The hypergraph H in Fig. 1 is totally transversal, but not SG-decreasing.

Proof  To see this, let us set Tj and Fj for j ∈ ℤ9 as in the caption of Fig. 1, where 
additions are modulo 9. Let us observe first that

Fig. 1   A hypergraph H on the 
ground set ℤ9 = {0,… , 8} , with 
hyperedges T

i
= {i, i + 1, i + 2} 

and F
i
= {i, i + 1, i + 4, i + 6} 

for i ∈ ℤ9 , where addi-
tions are modulo 9, that is, 
H = {T

i
, F

i
∣ i ∈ ℤ9} . The 

figure shows T1 and F0 in dotted 
and solid lines, respectively

0

1

2

3

45

6

7

8
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An easy case-analysis shows that H is totally transversal.
On the other hand, for the position x = (1,… , 1) ∈ ℤ

[n]
+  we have hH(x) = 3 , 

since T0 , T3 , and T6 provides consecutive moves from x to (0,… , 0) . Furthermore, 
hH(x − �(Tj)) = 2 and hH(x − �(Fj)) = 0 for all j ∈ ℤ9 . Thus, there exists no move 
x → x′ with hH(x�) = 1 , which by (iii) of Lemma 4 implies that H is not SG-decreas-
ing. 	�  ◻

Note that the above hypergraph is of dimension 4. In Apendix we show that 
there is no such example among the hypergraphs of dimension at most 3, as 
claimed in Theorem 6. In fact, for hypergraphs of dimension at most 2, the equiv-
alence can be shown easily, since totally transversality (i.e., Condition (3)) can be 
substantially simplified.

Lemma 12 

	 (i)	 A hypergraph H ⊆ 2[n] ⧵ {�} of dimension 1 is totally transversal if and only 
if it consists of a single hyperedge, i.e., H = {{i}} for some i ∈ [n].

	 (ii)	 A hypergraph H ⊆ 2[n] ⧵ {�} of dimension 2 is totally transversal if and only 
if there is a hyperedge H ∈ H such that H ∩ H� ≠ � for all H� ∈ H.

Proof  It follows from Condition (3). 	�  ◻

Figure 2 shows the possible structures of such hypergraphs of dimension 2. On 
the left any hyperedge satisfies the condition in Lemma 12 (ii), while on the right 
it is a 2-element set described in black thin edge. Circles in both pictures indicate 
possible singletons (i.e., 1-element hyperedges).

Lemma 12 together with Fig. 2 implies the following lemma.

Lemma 13  A hypergraph H ⊆ 2[n] ⧵ {�} of dimension at most 2 is SG-decreasing if 
and only if it is totally transversal. Furthermore, it can be checked in linear time in 
the size of H (i.e., 

∑
H∈H �H�).	�  ◻

Tj ∩ Fi ≠ � and Fj ∩ Fi ≠ � for all i, j ∈ ℤ9.

H

· · ·

H

· · · · · · · · ·

Fig. 2   Possible structures of totally transversal hypergraphs of dimension 2
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By Theorem  4, total transversality is necessary for a hypergraph of any 
dimension to be SG-decreasing. Next, we prove that for hypergraphs of dimen-
sion 3, it is also sufficient.

Given a hypergraph H ⊆ 2[n] ⧵ {�} and a position x ∈ ℤ
[n]
+  , let us call an inte-

ger vector m ∈ ℤ
H
+

 an x-packing if

Let us denote by M(x) ⊆ ℤ
H
+

 the family of x-packings. Let us further define

that is, Hx- pack is the subfamily of H of those hyperedges that participate with a 
positive multiplicity in some x-packing of H . Let us recall that H supp (x) is the sub-
hypergraph induced by the support of x, and define a subhypergraph of H supp (x) by

which consists of those hyperedges that intersect all others in H supp (x).

Lemma 14  Let H ⊆ 2[n] ⧵ {�} be a totally transversal hypergraph. For a position 
x ∈ ℤ

[n]
+  such that hH(x) > 0 , both Hx- all and Hx- pack are nonempty. Furthermore, 

we have 

	 (i)	 hH(x
s(H)) = hH(x) − 1 for all H ∈ H

x- pack;
	 (ii)	 hH(x

f (H)) = 0 if and only if H ∈ H
x- all.

Proof  Let us first recall that hH(x) = k > 0 means that we can make k consecutive 
moves from x before arriving to a terminal position. All these moves can be assumed 
to be slow moves, furthermore they can be executed in any order.

Since H ∈ H
x- pack implies by definition that there exists a sequence of k consecu-

tive moves starting from x such that one of these moves is an H-move, by the above 
remark we can assume that this slow H-move is the first one. Thus we can still make 
k − 1 moves from xs(H) , proving that hH(xs(H)) ≥ hH(x) − 1 , from which (i) follows 
by Lemma 6.

To see (ii) observe that hH(xf (H)) = 0 implies H supp (xf (H)) = � , which can happen 
if and only if H ∈ H

x- all . 	�  ◻

4.1 � Plan of the proof of theorem 6

We assume that H ⊆ 2[n] ⧵ {�} is a totally transversal hypergraph of dimension 3 
that is not SG-decreasing and derive a contradiction from these assumptions.

First we observe by Lemma 4 the existence of a position x ∈ ℤ
[n]
+  and an integer 

value v ∈ ℤ+ such that hH(x) > v > 0 and there is no move x → y with hH(y) = v . 
This allows us to show that hH(x) = 3 , v = 1 and obtain a partition H = H1 ∪H2 

(11)
∑

H∈H

mH�(H) ≤ x and
∑

H∈H

mH = hH(x).

(12)H
x- pack = {H ∈ H ∣ ∃m ∈ M(x) s.t. mH > 0},

(13)H
x- all = {H ∈ H supp (x) ∣ ∀H

� ∈ H supp (x) ∶ H ∩ H� ≠ �},
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such that hH(xs(H)) = 0 for all H ∈ H1 and hH(xf (H)) = 2 for all H ∈ H2 . We also 
prove that the subhypergraphs H1 and H2 have a special structure, as summarized in 
Lemma 24.

Next we prove that H1 contains three hyperedges such any two intersects 
in exactly one point, and derive from this a partition of H2 into three non-empty 
subhypergraphs.

Finally we show that H must contain a special substructure that in fact is impos-
sible to realize.

The full proof is quite long and technical, and therefore we included it in the 
Appendix of this paper.

5 � Computational issues

In this section we consider the computational complexity of recognizing total trans-
versality and computing height ad SG-values.

Let us call a hyperedge of a hypergraph H intersecting if it intersects all other 
hyperedges of H . Recall that H is called totally transversal if every non-empty 
induced subhypergraphs of it contains an intersecting hyperedge. Let us call H mini-
mal transversal-free if it does not contain an intersecting hyperedge, but every non-
empty proper induced subhypergraph of it does.

Lemma 15  (Bogdanov 2017) If F ⊆ 2U is a minimal transversal-free hypergraph of 
dimension at most k, then

Proof  Our assumptions imply that for every i ∈ U we have a hyperedge Fi ∈ FU⧵{i} 
such that Fi ∩ F� ≠ � for all F� ∈ FU⧵{i} . Let us denote by F� = {Fi ∣ i ∈ U} the 
family of these hyperedges. Since F  does not have an intersecting hyperedge, for 
every F ∈ F

� there exists a hyperedge B(F) ∈ F  disjoint from F. Let us choose a 
minimal subhypergraph B ⊆ F  such that

Let us note first that such a B must form a cover of U, that is, U =
⋃

B∈B B . This 
is because for all Fi ∈ F

� there exists a B ∈ B such that Fi ∩ B = � and, con-
sequently, i ∈ B . Let us observe next that for all B ∈ B there exists at least one 
A(B) ∈ F

� such that A(B) ∩ B = � and A(B) ∩ B� ≠ � for all B� ∈ B⧵{B} . This is 
because we choose B to be a minimal family with respect to (14). Let us now define 
A = {A(B) ∈ F

� ∣ B ∈ B} . The pair A , B of hypergraphs now satisfies the condi-
tions of the classical Bollobás’ Lemma (Bollobás 1965), page 448, implying that

Since dim(B) ≤ k and it covers U, our claim follows. 	� ◻

|U| ≤ k

(
2k

k

)
.

(14)∀F ∈ F
� ∃B ∈ B ∶ F ∩ B = �.

|A| = |B| ≤
(
2k

k

)
.
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Theorem  8  Given a hypergraph H ⊆ 2[n] and a constant k, it can be tested in 
poly(n, |H|) time if H is totally transversal or not, if dim(H) ≤ k.

Proof  If Condition (3) does not hold for H then there is a minimal subset U ⊆ [n] 
such that HU ≠ ∅ and HU is minimal transversal-free. Then, by Lemma 15, we have 

|U| ≤ k

(
2k

k

)
 . Since k is a fixed constant, we will need to check only polynomially 

many induced subhypergraphs and that can be accomplished in polynomial time. 	
� ◻

We consider next the complexity of computing the height function of a hyper-
graph NIM game.

Theorem 9  Given a hypergraph H ⊆ 2[n] ⧵ {�} and a position x ∈ ℤ
[n]
+  , computing 

hH(x) is 

	 (i)	 NP-hard for intersecting hypergraphs, already for dimension 4;
	 (ii)	 NP-hard for hypergraphs of dimension at most 3;
	 (iii)	 polynomial for hypergraphs of dimension at most 2 (that is, for graphs).
	 (iv)	 polynomial for fixed n.

Proof  Let us consider an arbitrary hypergraph H ⊆ 2[n]⧵{�} . Its matching number 
�(H) is the maximum number of pairwise disjoint hyperedges of H and is known 
to be NP-hard to compute already for the hypergraphs of dimension 3 (Karp 1972).

Let us consider w ∉ [n] and define H∗ = {H ∪ {w} ∣ H ∈ H} . Also consider 
position x ∈ ℤ

[n]∪{w}
+  defined by xi = 1 for i ∈ [n] and xw = |H| . Then H∗ is an inter-

secting hypergraph and we have hH∗ (x) = �(H) . This equality still holds when H is 
of dimension 3 and xi = 1 for all i ∈ [n].

Yet, if H is of dimension at most 2, then hH(b) for a position b ∈ ℤ
[n]
+  is the so 

called b-matching number of the underlying graph and is known to be computable in 
polynomial time (Edmonds 1965; Tutte 1954).

For a position x, computing hH(x) is an integer programming problem, which is 
polynomial when the number of variables is a fixed constant (Lenstra 1983). 	�  ◻

Corollary 2  Given a hypergraph H ⊆ 2[n] ⧵ {�} and a position x ∈ ℤ
[n]
+  , computing 

GH(x) is NP-hard, even for intersecting hypergraphs.

Proof  Since intersecting hypergraphs satisfy Condition (3), Theorem  6 implies 
hH = GH . Thus, the claim follows, by Theorem  9 (i). 	� ◻

Let us finally remark that the complexity of computing the height of a position for 
hypergraphs of dimension 3 is open under Condition (3).
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Appendix: Proof of Theorem 6

In order to prove Theorem 6, we assume for a contradiction that there exists a hyper-
graph H ⊆ 2[n]⧵{�} of dim(H) = 3 which is totally transversal, but not SG-decreas-
ing. We first provide the properties of such hypergraphs, and derive a contradiction 
at the end.

By Lemma  4 our indirect assumption implies the existence of x ∈ ℤ
[n]
+  and 

v ∈ ℤ+ such that hH(x) > v ≥ 0 and there exists no move x → x′ with hH(x�) = v . 
Since Condition (3) applies to all induced subhypergraphs, we can assume without 
any loss of generality that

Then it follows from Lemma 7 that any H ∈ H satisfies 

 By Lemma 6, no hyperedge H ∈ H satisfies both (15a) and (15b). Thus, the above 
defines a unique partition of H:

By Lemma 14, both H1 and H2 are nonempty. For H ∈ H1 we get by Lemma 6 that

while for H ∈ H2 we get by Lemmas 6 and 14 that

These inequalities together imply that v = hH(x) − 2 > 0,

The next series of claims help us to prove Lemma 24 which summarizes structural 
properties of non-SG-decreaing, totally transversal hypergraphs of dimension 3.

Lemma 16  We have Hx- all ⊆ H1.

Proof  This follows from Lemma 14. 	�  ◻

[n] = supp (x).

(15a)either hH(x
s(H)) ≤ v − 1,

(15b)or hH(x
f (H)) ≥ v + 1.

(16)
H1 = {H ∈ H ∣ hH(x

s(H)) ≤ v − 1} and

H2 = {H ∈ H ∣ hH(x
f (H)) ≥ v + 1}.

hH(x) − 3 ≤ hH(x
s(H)) ≤ v − 1,

hH(x) − 1 ≥ hH(x
s(H)) ≥ hH(x

f (H)) ≥ v + 1.

(17a)hH(x
s(H)) = hH(x) − 3 for H ∈ H1 and

(17b)hH(x
f (H)) = hH(x) − 1 for H ∈ H2.
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Lemma 17  For all H ∈ H1 we have |H| = 3.

Proof  The claim follows by the definition of H1 , Lemma 6, and the assumption that 
dim(H) = 3 . 	�  ◻

Lemma 18  We have H2 = H
x- pack.

Proof  By Lemma 14, for all H ∈ H
x- pack we have

implying H ∈ H2 . For H ∈ H2 , it follows from Lemma 6 that

implying hH(xs(H)) = hH(x) − 1 . Let us choose an arbitrary m ∈ M(xs(H)) and define 
m�

H
= mH + 1 and m�

H� = mH� for all H� ∈ H with H′ ≠ H . Then we have m� ∈ M(x) 
and m′

H
> 0 implying H ∈ H

x- pack by (12). 	�  ◻

Lemma 19  For all m ∈ M(x) and H ∈ H we have mH ≤ 1.

Proof  If mH ≥ 2 for some H ∈ H then for position x� = x − 2�(H) we have that 
hH(x

�) = hH(x) − 2 and x → x′ is a move, contradicting our assumption that there 
exists no such move. 	�  ◻

Lemma 20  For all H1 ∈ H
x- all and H2 ∈ H

x- pack(= H2) , we have |H1 ∩ H2| = 1.

Proof  Since H1 ∈ H
x- all , we have H1 ∩ H2 ≠ � . We thus assume to the contrary that 

|H1 ∩ H2| ≥ 2 . By Lemmas 16 and 17 we have |H1| = 3.
Assume without loss of generality that H1 = {i, j, k} and {i, j} ⊆ H2 . Let us define 

the position x′ by x�
�
= x

�
− 1 for � ∈ {i, j} and x�

�
= x

�
 for � ∉ {i, j} . Then we have 

x� ≥ xs(H2) , implying

by Lemmas 5, 14 (i), and 18. Furthermore, we have x� − �({k}) ≤ xs(H1) implying by 
Lemma 5 that

From these inequalities, we obtain hH(xs(H1)) ≥ hH(x) − 2 . This contradicts (17a), 
which completes the proof of the lemma. 	�  ◻

For an x-packing m ∈ M(x) let us associate the corresponding position x(m) 
defined by

hH(x
s(H)) = hH(x) − 1 > hH(x) − 3,

hH(x) > hH(x
s(H)) ≥ hH(x

f (H)) = hH(x) − 1,

hH(x
�) ≥ hH(x

s(H2)) = hH(x) − 1

hH(x
�) − 1 ≤ hH(x

� − �({k})) ≤ hH(x
s(H1)).
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Lemma 21  For all m ∈ M(x) and i ∈ H∗ ∈ H
x- all we have x(m)i = xi.

Proof  Clearly, we must have x(m) ≤ x for all m ∈ M(x) , by the definition of 
M(x). Assume to the contrary that there exist an x-packing m ∈ M(x) and a point 
i ∈ H∗ = {i, j, k} such that x(m)i < xi . Then we have x(m) ≤ x − �({i}) , implying by 
Lemma 5 that

from which hH(x − �({i})) = hH(x) follows. Thus, again by Lemma 5, we get

This contradicts (17a) and Lemma 16, which completes the proof. 	�  ◻

Lemma 22  For all H∗ ∈ H
x- all we have hH(x) =

∑
i∈H∗ xi.

Proof  By Lemmas 18, 20, and 21, hH(x) can be restated as follow.

where proves the statement of the lemma. 	�  ◻

Lemma 23  For all H∗ ∈ H
x- all and all i ∈ H∗ we have xi = 1.

Proof  By Lemmas 20 and 21, any hyperedge H∗ ∈ H
x- all has a hyperedge H2 ∈ H2 

with H2 ∩ H∗ = {i} for all i ∈ H
∗ . Let us fix an element i in H∗ arbitrarily and let 

H∗ = {i, j, k} by Lemmas 16 and 17.
Let m ∈ M(xf (H2)) be an xf (H2)-packing. By (17b), it is not a zero vector, and 

for all H ∈ H with m(H) > 0 , we have H ⊆ supp (xf (H2)) ⊆ supp (x) , and thus 
H ∩ (H∗ ⧵ H2) ≠ � by the definition of Hx- all . Again by (17b), we can write

(18)x(m) =
∑

H∈H

m(H)�(H).

hH(x) ≥ hH(x − �({i})) ≥
∑

H∈H

m(H) = hH(x),

hH(x
s(H∗)) = hH((x − �({i})) − �({j, k})) ≥ hH(x − �({i})) − 2 = hH(x) − 2.

hH(x) =
∑

H∈H

m(H)

=
∑

H∈H2

m(H) ( by Lemma 18)

=
∑

i∈H∗

∑

H∈H2∶

H∋i

m(H) ( by Lemma 20)

=
∑

i∈H∗

x(m)i

=
∑

i∈H∗

xi ( by Lemma 21),
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which implies xi ≤ 1 . Since H∗ ⊆ supp (x) implies xi ≥ 1 , we have xi = 1 . 	�  ◻

Lemma 24  A hypergraph H is partitioned into

such that 

(i)	|H| = 3 for every H ∈ H1,
(ii)	|H1 ∩ H2| = 1 for every H1 ∈ H1 and H2 ∈ H2,
(iii)	For every H1 ∈ H1 and every i ∈ H1 , there exists H2 ∈ H2 such that H1 ∩ H2 = {i},

(iv)	xi = 1 for every i ∈
⋃

H∈H1
H,

(v)	hH satisfies 

Proof  By Lemmas 17,  18, 20, 23 we have H2 = H
x−pack , (i), (ii), and (iv).

H1 = H
x−all : We note that hH(xs(H)) = 0 for every H ∈ H1 by (20a) and (17a), 

implying H1 ⊆ H
x−all . This together with Lemma 16 proves the claim.

(iii): It follows from Lemmas 20 and 21.
(v): (20a) follows from Lemmas 22 and 23. (20b) and (20c) are obtained from 

(17a) and (17b). 	�  ◻

In the rest of the proof we show that H1 and H2 have some special structure, 
from which we can derive a contradiction at the end. To this end we show first 
that H1 includes three hyperedges such that any two of those intersect in exactly 
one point.

Lemma 25  For all H∗ ∈ H1 and i ∈ H∗ , there exists a hyperedge H∗∗ ∈ H1 such 
that i ∉ H∗∗.

hH(x) − 1 = hH(x
f (H2)) =

∑

H∈H

m(H)

≤ x(m)j + x(m)k ( by H∗ ∈ Hx−all)

≤ x
f (H2)

j
+ x

f (H2)

k

= xj + xk

= hH(x) − xi ( by Lemma 22),

(19)H1 = H
x−all and H2 = H

x−pack

(20a)hH(x) = 3

(20b)hH(x
s(H)) = 0for all H ∈ H1

(20c)hH(x
f (H)) = 2 for all H ∈ H2.
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Proof  Since |H∗| = 3 by Lemma 24 (i), we have a point j ∈ H∗ ⧵ {i} . Lemma 24 (iii) 
implies the existence of a hyperdege H ∈ H2 such that H ∩ H∗ = {j} . This implies 
H[n]⧵{i} ≠ � , since this induced subhypergraph contains H. Therefore, by the total 
transversality of H , there exists a hyperedge H∗∗ ∈ H[n]⧵{i} that intersects all oth-
ers in the induced subhypergraph. Consequently, all hyperedges H� ∈ H such that 
H� ∩ H∗∗ = � contain the point i, which implies hH(xf (H

∗∗)) ≤ xi = 1 by Lemma 24 
(iv). By Lemma 24 (v), we get H∗∗ ∈ H1 , as claimed. 	�  ◻

Lemma 26  Let H1 and H2 be hyperedges in H1 such that i ∈ H1 ∩ H2 . Then there 
exists no H3 ∈ H1 such that H3 ⊆ (H1 ∪ H2) ⧵ {i}.

Proof  By Lemma  24 (ii) and (iii), there exists a hyperedge H� ∈ H2 such that 
H� ∩ H1 = H� ∩ H2 = {i} . This implies that H� ∩ ((H1 ∪ H2) ⧵ {i}) = � . Again by 
Lemma 24 (ii), we have H� ∩ H3 ≠ � for all H3 ∈ H1 , which completes the proof of 
the lemma. 	�  ◻

Lemma 27  There exist three hyperedges H1,H2,H3 ∈ H1 such that 
H1 ∩ H2 ∩ H3 = � and |Hp ∩ Hq| = 1 for all 1 ≤ p < q ≤ 3.

Proof  We first claim the existence of two hyperedges H1 and H2 in H1 with 
|H1 ∩ H2| = 1 . Note that H1 contains at least two hyperedges by Lemma 25, and any 
two distinct hyperedges of H1 intersect in one or two points by Lemma 24. Assume 
to the contrary that any two (distinct) hyperedges of H1 intersect in two points. 
Take arbitrarily two hyperedges in H1 , say H1 = {i, j, k} and H2 = {i, j,�} , where 
|H1| = |H2| = 3 is implied by Lemma 24 (i), and let H3 ∈ H1 be a hypergraph with 
i ∉ H3 . By Lemma  25, such an H3 exists. Then |H1 ∩ H3| ≥ 2 and |H2 ∩ H3| ≥ 2 
together with i ∉ H3 imply H3 = {j, k,�} , that is, H3 ⊆ (H1 ∪ H2)⧵{i} . This contra-
dicts Lemma 26, which proves the claim.

Let H1 and H2 be such two hyperedges in H1 , i.e., H1 ∩ H2 = {i} for some 
i ∈ [n] . Then by Lemma  25, there exists H3 ∈ H1 such that i ∉ H3 . Since 
H3 ⊈ (H1 ∪ H2) ⧵ {i} by Lemma  26, H1 , H2 , and H3 satisfy the properties in the 
lemma. 	�  ◻

Corollary 3  There exist six distinct points U = {a, b, c, d, e, f } ⊆ [n] such that 
H1 = {a, b, f } , H2 = {b, c, d} and H3 = {c, a, e} are all hyperedges in H1 . 	�  ◻

We show next that H2 has also a special form with respect to these six points.

Lemma 28  Any hyperedge H ∈ H2 satisfies H ∩ U = {a, d} , {b, e} , or {c, f }.

Proof  By Lemma 24 (ii), we have |H ∩ Hp| = 1 for all p = 1, 2, 3 . Thus either H sat-
isfies the property in the lemma, or H = {d, e, f } . In the latter case, let us consider a 
hyperedge H� ∈ H2 such that H� ∩ H = � . Such an H′ must exist by (20c). This H′ 
also intersects Hp , p = 1, 2, 3 in exactly one point. However, this is impossible with-
out intersecting H, which completes the proof. 	�  ◻



1 3

Impartial games with decreasing Sprague–Grundy function and…

Corollary 4  Let � = {a, d} , � = {b, e} and � = {c, f } . Then the subhypergraphs

form a partition of H2 . In particular, none of these families is empty.

Proof  The first claim follows directly from Lemma 28. By Lemma 24 (iv), we have 
xa = xb = xc = xd = xe = xf = 1 , and thus for any m ∈ M(x) and � ∈ {�, �, �} we 
have 

∑
H∈H2,�

m(H) ≤ 1 . On the other hand, since hH(x) = 3 by (20a), for any 
m ∈ M(x) and for any � ∈ {�, �, �} we have a hyperedge H ∈ H2,� with m(H) = 1 , 
completing the proof of the claim. 	�  ◻

In the rest of our proof, we show that H must contain a special small substructure 
that in fact cannot be realized.

Lemma 29  No hyperedge H ∈ H1 contains � ∈ {�, �, �}.

Proof  By Corollary  4 there exists a hyperedge H� ∈ H2,𝜇 ⊆ H2 , and thus 
|H ∩ H�| ≥ |�| = 2 holds if such a hypergraph H exists. This contradicts Lemma 24 
(ii). 	�  ◻

Lemma 30  For any two distinct �, � ∈ {�, �, �} , let H ∈ H2,� and H� ∈ H2,� be two 
sets such that H ∩ H� = � . Then there exists a hyperedge H�� ∈ H2,� ∪H2,� that 
intersects both H and H′.

Proof  By the total transversality, we have a set H�� ∈ H such that H�� ⊆ H ∪ H� 
and it intersects all hyperedges in the (nonempty) induced subhypergraph HH∪H� . 
If H�� ∈ H1 , then we have either |H�� ∩ H| ≥ 2 or |H�� ∩ H�| ≥ 2 , since |H��| = 3 by 
Lemma  24 (i). This contradicts Lemma  24 (ii), which implies H�� ∈ H2 , and there-
fore H�� ∈ H2,� ∪H2,� by Corollary 4. 	�  ◻

Let us next introduce N� =
⋃

H∈H2,�
H for � ∈ {�, �, �} . Note that these sets are 

all disjoint from X = H1 ∪ H2 ∪ H3 , by definition of H2,�.

Corollary 5  For any distinct �, � ∈ {�, �, �} , we have N𝜇 ⊆ N𝜈 or N𝜈 ⊆ N𝜇.

Proof  If there are points u ∈ N�⧵N� and v ∈ N�⧵N� , then by Lemma  30 we have 
� ∪ {v} ∈ H2,� or � ∪ {v} ∈ H2,� , which contradicts u ∉ N� or v ∉ N� . 	�  ◻

Lemma 31  For any distinct �, � ∈ {�, �, �} , there exist no two distinct points 
u, v ∈ [n] ⧵ U such that all four sets � ∪ {u} , � ∪ {v} , � ∪ {u} , and � ∪ {v} are 
hyperedges in H.

H2,� = {H ∈ H2 ∣ � = H ∩ U},

H2,� = {H ∈ H2 ∣ � = H ∩ U},

H2,� = {H ∈ H2 ∣ � = H ∩ U}
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Proof  Assume to the contrary that such two points exist. Then by Lemma 29 
these sets are all from H2 . By the total transversality, H contains a hyperedge 
H ⊆ 𝜇 ∪ 𝜈 ∪ {u, v} that intersects all these four hyperedges. Since H must intersect 
some of these four hyperedges in two points, H ∈ H2 holds by Lemma 24 (ii). Then 
by Corollary 4, we have H ∈ H2,� ∪H2,� . This is however impossible, since H is of 
size at most 3. 	�  ◻

Corollary 6  For any distinct �, � ∈ {�, �, �} , we have |N� ∩ N�| ≤ 1.

Proof  Immediate from Lemma 31. 	� ◻

Corollary 7  By relabeling the points in [n], we have N𝛼 ⊆ N𝛽 ⊆ N𝛾 with 
|N�| ≤ |N�| ≤ 1.

Proof  Immediate from Corollaries 5 and 6. 	�  ◻

In the subsequent discussion, we assume that points in [n] are relabeled as in 
Corollary 7.

Lemma 32  At most one of � , � , and � is a hyperedge in H.

Proof  Suppose that two �, � ∈ {�, �, �} belongs to H . Then by total transversal-
ity, we have a hyperedge H ∈ H such that H ⊆ 𝜇 ∪ 𝜈 and it intersects both � and � . 
Since �, � ∈ H2 , Lemma 24 (i) and (ii) implies that H ∈ H2 . Then, by Corollary 4 
we have H ∈ H2,� or H ∈ H2,� . Since H intersects both � and � , we have |H| = 3 , 
from which we derive a contradiction by Lemma 24 (ii) due to the structure of H1 
within the set U. 	�  ◻

Lemma 33  N� ≠ ∅.

Proof  Assume to the contrary that N� = � . This implies that H2,� = {�} . Let us con-
sider an arbitrary x-packing m ∈ M(x) . Since hH(x) = 3 by (20a), we have hyper-
edges H� ∈ H2,� for all � ∈ {�, �, �} with m(H�) = 1 by Lemma 24 (iv). In particu-
lar, we have m(�) = 1 and m(H) = 1 for some H ∈ H2,� . Since � ∩ H = � , by the 
total transversality, H contains a hyperedge H′ such that H� ⊆ 𝛼 ∪ H and it intersects 
both � and H. If H� ∈ H1 then we get a contradiction by Lemma 24 (ii). On the other 
hand if H� ∈ H2 , then by Corollary  4, H2,� = {�} implies that H� ∈ H2,� , which 
contradicts the fact that � is disjoint from all hyperedges in H2,� . 	�  ◻

Now we are ready to complete the proof of Theorem  6. By Corollary  7 
and Lemma  33, we have |N�| = |N�| = 1 , that is, for some u ∈ [n] we have 
N𝛼 = N𝛽 = {u} ⊆ N𝛾 and, therefore H = � ∪ {u} ∈ H2,� . Let x� = xf (H) , and 
consider an x′-packing m ∈ M(x�) . By Lemma  24 (ii), we have m(H∗) = 0 
for all H∗ ∈ H1 . Furthermore, any H� ∈ H2 with u ∈ H� satisfies m(H�) = 0 . 
Consequently, only H� ∈ H2,� ∪H2,� with u ∉ H� can have m(H�) = 1 by 
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Lemma 24 (iv). Since by Lemma 32 at most one of � and � can belong to H2 , 
we have hH(x�) ≤ 1 , which contradicts (20c). This completes the proof of the 
theorem. 	�  ◻
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