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Abstract
This paper examines the properties of networks that determine the uniqueness of long-
run equilibria emerging from symmetric coordination games when players are myopic
best responders. We identify the contagion threshold and the network diameter as two
measures of finite networks that determine when strategies in the minimal p-best
response set of a coordination game are uniquely stochastically stable. We show that
when the contagion threshold is greater or equal to p, strategies in the minimal p-best
response set are uniquely stochastically stable in strongly connected networks with
diameter greater or equal to seven. The contagion threshold and the network diameter
are easy to compute and their values are unique for every strongly connected network.

Keywords Evolutionary dynamics · Stochastic stability · Networks · p-best response
set · Contagion threshold

JEL classification C72 · C73 · D83 · D85

1 Introduction

The concept of Nash equilibrium plays a central role in the field of game theory and
economics. However, many games, such as coordination games,1 have multiple strict
Nash equilibria. This raises the question of which outcomes should be regarded as
more reasonable than others. To address this issue, Foster and Young (1990), Kandori
et al. (1993) and Young (1993) proposed examining the process by which conventions
(Nash equilibria of coordination games) become established using evolutionary mod-

1 Coordination games represent a class of games where players benefit most by choosing the same strategy.
They are generally applied to model technology choice, social conventions, decisions on industry standards,
and political action.
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els with persistent randomness. In this framework, persistent randomness ensures that
all outcomes are likely, but as the amount of noise vanishes, some outcomes become
more likely than others. Outcomes that retain a positive probability of being played in
the long run as the amount of noise vanishes are said to be stochastically stable.

A notable observation in the aforementioned papers is that stochastic stability as a
selection mechanism not only rules out unstable mixed equilibria, but also selects a
unique outcome in coordination games with two strategies. This outcome being the
risk-dominant equilibrium, which is a strategy that is a unique best response to any
distribution that places on it a mass of at least one half. Recent studies show that the
predictions of stochastic stability strictly depend on the interaction structure (Alós-
Ferrer andWeidenholzer 2007; Peski 2010).2 And for most coordination games, there
can be multiple stochastically stable outcomes on a given interaction structure. Even
for 2 × 2 coordination games, it is easy to construct an interaction structure where
uniform adoption of either strategy is stochastically stable.

This paper seeks to identify properties of the interaction structure that robustly deter-
mine the uniqueness of stochastically stable outcomes. We consider an evolutionary
model of best response with mutations (BRM) in symmetric coordination games—a
framework introduced by Young (1993) and Kandori et al. (1993)—where players
interact locally through a social network. The social network is modeled as a graph
consisting of the set of players as nodes and a set of edges/links connecting different
pairs of players. For any pair of players i and j , a directed link from i to j implies that
i observes strategies chosen by j . The central behavioural assumptions of the BRM
model are: (i) players aremyopic in that their strategy choices at any period depend on
the profile of strategies chosen by their opponents (i.e., the set of players with whom
a player directly interacts) in the previous period; (i i) players choose strategies that
are best responses to opponents’ strategy profile with a high probability, and with a
small probability, independent across players and time, they experiment (mutate) and
choose any strategy at random. These behavioural assumptions capture some aspects
of bounded rationality of decision makers (e.g., limited attention and the inability to
make farsighted decisions) often observed in economics and psychology.3

We identify two network measures, the contagion threshold and network diameter,
that determinewhen strategies in theminimal p-best response set are uniquely stochas-
tically stable.4 The minimal p-best response set is a generalization of risk-dominance
to games with more than two strategies. A set of strategies of a coordination game is a
p-best response set if the best responses to distributions that place on them a mass of
at least p are themselves within that set (Tercieux 2006). Theminimal p-best response
set is the p-best response set that does not contain another smaller subset that itself is

2 This result has both strengths and weaknesses. On the one hand, it implies that, where possible, the
interaction structure can be manipulated to obtain a desired stochastically stable outcome. On the other
hand, it implies that when computing the stochastically stable outcome of an evolutionarymodel on arbitrary
networks, the modeller must keep track of the identity of players. The computational time of stochastic
stability algorithms, however, increases exponentially with the population size in such scenarios. This could
in turn limit the applicability of evolutionary models.
3 See DellaVigna (2009) for the survey of the economics and psychology literature on bounded rationality.
4 Throughout this paper, a set of strategies, A′, is said to be uniquely stochastically stable if the stochastically
stable outcomes consist of states where all players play only strategies in A′.
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a p-best response set. If the minimal p-best response set contains only one strategy,
then that strategy is a p-dominant equilibrium (Morris et al. 1995). In a coordina-
tion game with only two strategies, a 1

2 -dominant equilibrium is also a risk-dominant
equilibrium.

The contagion threshold of an unweighted and strongly connected network, G, is
defined as follows (Opolot and Azomahou 2021).5 Denote the set of players by N and
define the r -order neighbours of any player i as the set of players located at a distance
of r steps from i (i.e. player j is an r -order neighbour of i if the shortest path from i
to j consists of r consecutive links). Define also the r th-neighbourhood of i as the set
of all players within r steps from i , with i included; and di as the maximum shortest
distance from i to any other player. The contagion threshold, η(G), of network G is
the minimum over all i ∈ N , all r = 2, 3, . . . , di and all r -order neighbours of i ,
of the proportion of the first-order neighbours of each r -order neighbour of i that are
contained in the (r−1)th-neighbourhood of i .6 Every strongly connected network has
a unique contagion threshold bounded from above by 1/2 and from below by 1/�(G),
where �(G) is the maximum number of first-order neighbours of any player in the
network.

The diameter, d(G), of network G is the maximum shortest distance between
any two players (i.e., the maximum over all i ∈ N of di ). The value of the network
diameter is unique for every strongly connected network and it captures the density and
centralization of the network. Centralized networks exhibit a core-periphery structure
where a subset of densely interconnected players form the core, and the rest who
are adjacent to the core but not to themselves form the periphery. Highly centralized
networks have a short diameter (e.g. a star network with diameter of 2). The network
density is the total number of connections relative to the number of players. For a fixed
number of players, the lower the network density the larger the network diameter.

We show that an absorbing set of states containing only strategies in the minimal
p-best response set is uniquely stochastically stable in undirected, unweighted and
strongly connected networks with the contagion threshold greater or equal to p and
diameter greater or equal to seven.We discuss in Sect. 5 how this result directly extends
to directed and weighted networks.

The proof of this result relies on the properties of contagion dynamics in networks.
We distinguish between three forms of contagion dynamics: full contagion, partial
contagion, and step-by-step contagion. Full contagion is the spread of strategies to
the whole network through best response starting from a group of players whose
size is less than half the population size. Partial contagion is the spread of strategies
through best response from a group of players, say N ′, whose size, n′, is less than half
the population size, to a group of players whose size is larger than n′. Step-by-step

5 A network is unweighted if every link between any pair of players carries a weight of one, and it is
strongly connected if every two players are connected through some path.
6 Formally, given networkG, let Nir and Bir denote the r -order neighbours and the r th-neighbourhood of i
respectively. Let α j (Bir ) denote the proportion of player j’s first-order neighbours that are contained in set
Bir . Then the contagion threshold ofG is defined as η(G) = mini∈N minr∈{2,3,...,di } min j∈Nir α j (Bir−1 ).
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contagion is the spread of strategies to the whole network through iterative application
of partial contagion.7

The contagion threshold and the network diameter determine when strategies in
the minimal p-best response set are uniquely stochastically stable because, firstly,
when η(G) ≥ p and d(G) ≥ 7, strategies in the minimal p-best response set spread
through full and step-by-step contagion from the first-neighbourhood of any player.
This implies that theminimumnumber ofmutations that trigger the spread of strategies
in the minimal p-best response set through full and step-by-step contagion is at most
the size of the smallest first-neighbourhood of G. Secondly, when η(G) ≥ p and
d(G) ≥ 7, the cost of reaching the basin of attraction of an absorbing set of states
containing only strategies in the minimal p-best response set from any other state is
bounded from above by the minimum number of mutations that trigger full and step-
by-step contagion.8 Thirdly, when η(G) ≥ p and d(G) ≥ 7, the minimum number of
mutations needed to leave the basin of attraction of an absorbing set of states containing
only strategies in theminimal p-best response set is greater than the size of the smallest
first-neighbourhood of G. Following Ellison (2000, Theorems 1 and 2), these three
observations imply that an absorbing set of states containing only strategies in the
minimal p-best response set is uniquely stochastically stable whenever η(G) ≥ p and
d(G) ≥ 7.9

The network measures that have previously been identified as determinants of the
uniqueness of stochastically stable outcomes include the sizes of the smallest odd
and the largest first-order neighbourhoods, and the maximum group cohesion of the
network (Alós-Ferrer and Weidenholzer 2008; Peski 2010; Opolot 2020). Let δ0(G)

be the size of the smallest odd first-order neighbourhood of network G. Peski (2010,
Theorem 2 and Corollary 1) shows that in a BRM model, a p-dominant strategy is
uniquely stochastically stable in network G if p is less or equal to 1

2 (1 − 1/δ0(G)).
In comparison, our results offer more accurate predictions of stochastically stable
outcomes in sparsely connected networks (i.e. where �(G) is small so that the lower
bound of the contagion threshold, 1/�(G), is large), while Peski (2010, Theorem
2 and Corollary 1) offers more accurate predictions in densely connected networks
(i.e., where δ0(G) is large so that 1

2 (1 − 1/δ0(G)) is close to one half). For example,
when δ0(G) = 1, Peski (2010, Theorem 2 and Corollary 1) fails to predict the unique
stochastically stable outcome.

7 More formally, a set of strategies, A′, is step-by-step contagious if, starting from any state x, there
exists a sequence of absorbing sets W1,W2, . . . ,WJ , with WJ = A′ being the absorbing set of states
containing only strategies in A′, and a corresponding sequence of strategy sets, A2, A3, . . . , AJ , such that,
for any y ∈ Wj , strategies in A j+1 spread through partial contagion after n j+1 mutations to strategies in
A j+1, where, for all j = 1, . . . , J − 1, n j+1 is less than half the population size. Along the sequence
W1,W2, . . . ,WJ , the evolutionary process converges toWj+1 from any y ∈ Wj . When n j+1 ≤ n∗ for all
j = 1, . . . , J − 1, we say that n∗ mutations trigger step-by-step contagion of strategies in A′ starting from
x.
8 That is, the coradius and modified coradius (Ellison 2000) of an absorbing set of states containing only
strategies in the minimal p-best response set are bounded from above by the size of the smallest first-
neighbourhood of the network.
9 Ellison (2000, Theorems 1 and 2) states that if the cost of leaving the basin of attraction of an absorbing
set of states is greater than the cost of reaching it from any other state, then that absorbing set is uniquely
stochastically stable.
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Alós-Ferrer and Weidenholzer (2008) show that in a BRM model, a 1/�(G)-
dominant strategy is uniquely stochastically stable.10 Our results generalize this special
case from Alós-Ferrer and Weidenholzer (2008) since the lower bound of the conta-
gion threshold of any network is 1/�(G).11 Opolot (2020) finds that for a BRMmodel
on cyclic regular networks where the size of the first-order neighbourhoods is k, strate-
gies in the smallest iterated p-best response set (i.e., a set of strategies that remain
after iterative application of the notion of p-best response sets) are uniquely stochasti-
cally stable whenever p is less or equal to one minus the maximum group cohesion.12

Opolot (2020) provides a counter example showing that the maximum group cohe-
sion fails to predict the uniqueness of stochastically stable outcomes in some arbitrary
networks. Since every strongly connected arbitrary network has a unique contagion
threshold greater or equal to 1/�, our result provides a prediction of when the min-
imal p-best response set is uniquely stochastically stable in any strongly connected
arbitrary network.

Besides the aforementioned papers, many other papers have examined long-run
stability of the BRM model in networks.13 Ellison (1993, 2000) and Weidenholzer
(2012) show that a 1

2 -dominant strategy is uniquely stochastically stable in cyclic
regular networks where each player has an even number of neighbours; Blume (1995),
Young (1998), Lee and Valentinyi (2000) and Lee et al. (2003) show that the risk-
dominant strategy is uniquely stochastically stable in 2-dimensional grid lattices; and
Alós-Ferrer and Weidenholzer (2007) show that a globally pairwise risk-dominant
strategy of a 3 × 3 coordination game is stochastically stable in a cyclic network
where each player has two neighbours. In contrast to the present paper, these papers
focus on specific (mostly regular) networks and do not identify the general network
properties that determine the uniqueness of stochastically stable outcomes.

Finally, this paper is related to Morris (2000), Oyama and Takahashi (2015) and
Opolot and Azomahou (2021) who study contagion in networks when players are
myopic best responders. Morris (2000) finds that a p-dominant strategy of a 2 × 2

10 More generally, Alós-Ferrer andWeidenholzer (2008) study an evolutionarymodelwhere players imitate
strategies that yield the highest payoff (i.e. “imitate-the-best”) and find that a payoff dominant strategy of a
2 × 2 coordination game is the unique stochastically stable outcome. Related papers in this regard include
Alós-Ferrer and Weidenholzer (2006) and Chen et al. (2013).
11 Sandholm (2001) and Oyama et al. (2015) also show that a 1/�-dominant strategy is the long-run stable
outcome of a deterministic evolutionary model where players choose strategies that are best responses to the
empirical distribution of at most � others sampled randomly from an infinitely large population. Although
the solution concept of this model—-almost global convergence—is different from stochastic stability, the
result is comparable to the stochastic stability of a 1/�-dominant equilibrium in a BRM model.
12 A group of players in a given network is c-cohesive if every player in that group has at least proportion
c of her neighbours within that group. The maximum group cohesion of the network is then the maximum
cohesiveness of any group of players.
13 There are many papers that also study alternative classes of noisy best response choice rules to the
BRM model considered in this paper (Maruta 2002; Myatt and Wallace 2003; Staudigl 2012; Staudigl and
Weidenholzer 2014; Newton and Sawa 2015; Sandholm and Staudigl 2016; Sawa and Wu 2018). These
papers however focus on global interactions, which makes comparison to our findings non-trivial. Few
papers have also examined the BRM model with asymmetric coordination games. For example, Staudigl
(2012) finds that a risk-dominant strategy is stochastically stable in 2× 2 asymmetric coordination games;
and Neary (2012) examines the effects of payoff asymmetries caused by differences in preferences of
multiple interacting groups of players. We instead focus on symmetric coordination games where it is
relatively easier to isolate the effects of the network structure on stochastically stable outcomes.
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coordination game is fully contagious on an unbounded network if p is less or equal to
the contagion threshold. We discuss in Sect. 3.1 the difference between the contagion
threshold for finite networks defined in this paper and the contagion threshold for
unbounded networks as defined byMorris (2000). Oyama and Takahashi (2015) derive
the conditions under which the risk-dominant and Pareto-dominant strategies of a 3×3
coordination game containing a dominated strategy are fully contagious on unbounded
networks; they also compare networks in terms of their power of inducing contagion in
general supermodular games. Opolot and Azomahou (2021) show that a p-dominant
strategy of an m-strategy coordination game is fully contagious on a finite network
whenever p is less or equal to the contagion threshold. We build on the ideas of
contagion dynamics developed in these papers and use them to derive the conditions
under which the minimal p-best response set is uniquely stochastically stable.

The remainder of the paper is organized as follows. Section 2 outlines a model
of evolutionary dynamics with best response and mutations. Section 3 defines the
notion of contagion and contagion threshold, and discusses how contagion determines
stochastically stable outcomes. Section 4 states the main results and discusses the
intuition of the proof. Section 5 discusses the implications of our results and how
they relate to the literature. Concluding remarks are offered in Sect. 6 and proofs are
contained in the Appendix.

2 An evolutionarymodel of best response withmutations

We consider a finite set of players, N = {1, 2, . . . , n}, connected through a social
network. Each player plays a symmetric coordination game against her direct neigh-
bours. Players revise their strategies simultaneously and independently at discrete
times, t = 1, 2, . . .. We start with a description of an unperturbed evolutionary model
where, at each t , each player chooses a pure strategy randomly from the set of pure
strategies that are best responses to the profile of strategies played by the opponents at
t − 1. Players do not play mixed strategies. For the characterization of stochastically
stable outcomes, we consider an evolutionary model of best response with mutations
(BRM) where, with a fixed small probability ε, independent across players and across
time, players choose any pure strategy at random, and with the complementary proba-
bility 1−ε, they choose a strategy from the best response set. The following subsections
formally outline these concepts.

2.1 The coordination game

We consider m-strategy 2-player symmetric strict coordination games with a set of
pure strategies denoted by A = {a1, . . . , a j , . . . , am}, identical to all players. Let U
be an m × m payoff matrix with the elements u(a j , al), for all a j , al ∈ A, being
the payoff to a player playing strategy a j against an opponent playing strategy al .
The double (A,U ) is a coordination game if u(a j , a j ) ≥ u(al , a j ) for all a j , al ∈ A
and al �= a j ; it is a symmetric coordination game if, in addition, u(a j , al), for all
a j , al ∈ A, is identical for all players; and it is a strict symmetric coordination game
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if u(a j , a j ) > u(al , a j ), for all a j , al ∈ A and al �= a j , and u(a j , al) is identical for
all players. This paper focuses on strict symmetric coordination games.

Let � be the set of all distributions over A whereby, for any a j ∈ A and σ ∈ �,
σ(a j ) is the mass that σ places on a j , and

∑
ak∈A σ(ak) = 1. We consider linear

payoffs where the payoff to a player playing pure strategy a j against distribution σ is
given byU (a j | σ) = ∑

ak∈A σ(ak)u(a j , ak). The set of pure strategy best responses
to σ is defined as

BR(σ ) = {a j ∈ A | U (a j | σ) ≥ U (al | σ) ∀al ∈ A}.

2.2 The network game

The social network is represented by an exogenously given and fixed over time graph
G(N , E), with N representing the set of players and E the set of edges linking different
pairs of players.14 Let Ni be the set of first-order neighbours of i—the set of players
that i directly interacts with inG(N , E)—and let ni be the cardinality of Ni . A directed
path from player i to j is a finite sequence of players (i1, i2, . . . , ir ), with i = i1 and
ir = j , that are connected through distinct directed links (i.e., no link appears more
than once).

We focus on unweighted, undirected and strongly connected networks. A network
is unweighted if a link between any pair of players i, j ∈ N has a weight of one; it
is undirected if the existence of a link from i to j implies existence of a reverse link
from j to i ; and it is strongly connected if there exists a directed path connecting any
pair of players i, j ∈ N and i �= j .

Focusing on unweighted and undirected networks is for simplicity and we discuss
in Sect. 5 how our results extend to weighted and directed networks. Requiring the
network to be strongly connected is necessary for our results to hold. Networks that
are not strongly connected may consist of disconnected subgroups, which affects
convergence of an evolutionary process. By avoiding issues related to convergence,
we can focus on examining structural properties of the network that determine the
uniqueness of stochastically stable outcomes. One of the network measures that is
relevant to our analysis is thediameter. Letdi j be the length of the shortest directed path
from i to j (i.e. the distance from i to j), anddi = max j∈N di j be themaximumshortest
distance from i to any other player. The diameter of G(N , E) is d(G) = maxi∈N di ,
which is the maximum shortest distance between any two players.

In analogy to the linear payoffs defined above, let σi = (σi (a1), . . . , σi (am)) be
the distribution over A that represents the proportion of i’s direct neighbours playing
each pure strategy. Then the total payoff that i receives from playing pure strategy a j

against distribution σi is (players do not play mixed strategies)15

14 Where no confusion arises, we simply write G as a shorthand for G(N , E).
15 Since the network is unweighted, the linear total payoff represented by (1) implies that player i
attaches a weight of 1

ni
to each neighbour’s strategy. That is, if u(a j , x

k ) is the payoff to a player play-

ing strategy a j against a neighbour, k, playing strategy xk , then (1) can equivalently be expressed as

Ui (a j | (x1, . . . , xni )) = 1
ni

∑
k∈Ni u(a j , x

k ), where (x1, . . . , xni ) is a vector of strategies adopted by
i’s direct neighbours.
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Ui (a j | σi ) =
∑

al∈A

σi (al)u(a j , al). (1)

We refer to the quadruple (A,U , N ,G), where each player’s payoff is given by (1),
for all σi ∈ �, as a network game.

2.3 Unperturbed evolutionary process

The unperturbed evolutionary process is a myopic best response process where play-
ers revise their strategies simultaneously and independently over discrete times,
t = 1, 2, . . .. At each t , each player plays the symmetric strict coordination game
against the same set of direct neighbours and selects a pure strategy randomly from
a set of strategies that maximize (1). Players are myopic in that the strategies chosen
at t are those that maximize the payoffs of the profiles of strategies chosen by their
neighbours at t − 1.

Formally, let x = (x1, . . . , xn) denote the profile/configuration of pure strategies,
where xi is the pure strategy played by the i th player. Each strategy profile is a state of
an evolutionary process, andwedenote the set of all states byX. For each x, letσi (al; x)
be the proportion of i’s neighbours playing strategy al in profile x, and let σi (x)
= (σi (a1; x), . . . , σi (am; x)) be the distribution over A representing the proportions
of i’s neighbours playing different strategies in profile x. Let also x(t) be the strategy
profile at t , and xi (t) the respective strategy played by the i th player in profile x(t). In
analogy to (1), Ui

(
a j | σi (xt )

) = ∑
al∈A σi (al; xt )u(a j , al) is player i’s payoff from

playing pure strategy a j against the profile of strategies chosen by the neighbours at
t . Accordingly, BR(σi (x(t))) is the best response set of σi (x(t)) (i.e. the set of all
strategies, a j ∈ A, that satisfy the inequality Ui

(
a j | σi (xt )

) ≥ Ui
(
al | σi (xt )

)
, for

all al ∈ A). Then, at period t + 1, player i randomizes uniformly over the strategies
in BR(σi (x(t))).

The assumption of myopia is standard in the literature of evolutionary game theory
and it is used to model agents with bounded rationality. That is, it assumes that agents
are incapable of keeping track of the entire history of play and performing complex
evaluations associated with forward-looking decision making.

The evolutionary framework described above is a finite time homogeneous Markov
chain (i.e., the associated transition probability matrix is independent of time) on
the state space X. It is time homogeneous because the four components, A,U , N
and G, that make up the network game are independent of time. Let P denote the
transition probability matrix so that P(x, y) is the probability of transiting from state
x to y in a single step. We refer to the tuple (A,U , N ,G, P) as an unperturbed
evolutionary process on network G. The equilibrium behaviour of (A,U , N ,G, P)

is fully described by its absorbing sets. A subset of states,W ⊆ X, is an absorbing set
of (A,U , N ,G, P) if, once entered, is never exited. If an absorbing set is a singleton
then it is called an absorbing state; that is, any state x ∈ X for which P(x, x) = 1
is an absorbing state. Absorbing sets that are not absorbing states form an absorbing
cycle. For example, a pair of states x and y form an absorbing cycle if P(x, y) = 1
and P(y, x) = 1. We denote by A a set of all absorbing sets.
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2.4 Perturbed evolutionary process and stochastic stability

Following the literature, a perturbed evolutionary process is derived from the unper-
turbed evolutionary process by adding rare mutations. We follow the evolutionary
framework of best response with mutations (BRM) by Young (1993) and Ellison
(2000), whereby, with a fixed small probability ε > 0, independent across players
and time, a player chooses a strategy uniformly at random, and with a complementary
probability (1 − ε), randomizes uniformly over the strategies in BR(σi (x(t))).

Let Pε be the transition probability matrix of the associated Markov chain, so that
Pε(x, y) is the probability that profile x is followed by y. Let c(x, y) be the number of
players for whom yi , the i th strategy in y, is not a best response to x (i.e. the number of
mutations involved in a direct transition from x to y). Then Pε(x, y) can be expressed
as follows, where we use the notation bi (x) = |BR(σi (x))|.16

Pε(x, y) =
( ε

m

)c(x,y) n−c(x,y)∏

i=1

(
m + (bi (x) − m)ε

mbi (x)

)

(2)

The parameter c(x, y), for any pair x, y ∈ X, is also commonly referred to as the
cost function of the stochastic evolutionary process. The cost, c(x, y), reflects how
unlikely the direct transition from x to y is when ε is small. For this reason, c(x, y) is
formally defined as

c(x, y) = − lim
ε→0

ε ln Pε(x, y) (3)

Substituting for the expression of the transition probabilities from (2), we see that
the limit on the right hand side of (3) exists. The definition of the cost function in (3)
is not limited to the BRM model. Sandholm (2010) applies this definition to derive
the cost functions of evolutionary models where the transition probabilities assume a
logit and probit probability structures.

The tuple (A,U , N ,G, Pε) is here referred to as the perturbed evolutionary process
on networkG. The equilibrium behaviour of (A,U , N ,G, Pε) is fully described by its
stationary distribution,πε, which is the probability distribution over the state space,X,
that describes the long-run average time spent in each state. For each x ∈ X,πε(x) is the
proportion of time that (A,U , N ,G, Pε) spends in x in the long run. The stationary
distribution of (A,U , N ,G, Pε) exists, and is unique, because (A,U , N ,G, Pε) is
ergodic (i.e., it is possible to get from every state to every other state with positive
probability). The ergodicity of (A,U , N ,G, Pε) follows because the incorporation of
mutations that are independent across players and time ensures that Pε(x, y) > 0, for
all pairs x, y ∈ X.

We are interested in identifying the long-run or stochastically stable set of states of
(A,U , N ,G, Pε), which is a set of states that maximize πε when ε is small. However,

16 This follows because the probability that c(x, y) players mutate to play non-best response strategies

is
(

ε
m

)c(x,y). And the probability that the remaining n − c(x, y) players simultaneously play their best

responses is
∏n−c(x,y)

i=1

(
ε
m + (1 − ε) 1

bi (x)

)
= ∏n−c(x,y)

i=1

(
m+(bi (x)−m)ε

mbi (x)

)
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computing πε is difficult, and the standard approach is to focus on the limit stationary
distribution, π∗, defined as π∗ = limε→0 πε. The reason for this is that π∗, which
is easier to compute, provides an approximation to πε when ε is small. The limit
stationary distribution exists and the set of statesA∗ ⊂ X, withπ∗(A∗) > 0, is called a
stochastically stable set (Young 1993; Ellison 2000). It is known that the stochastically
stable set of (A,U , N ,G, Pε) is contained in A (Young 1993). If A∗ = {x∗}, then x∗
is a stochastically stable state. Accordingly, a set of strategies A∗ ⊆ A played in A∗
are said to be stochastically stable strategies.

To compute the stochastically stable set of (A,U , N ,G, Pε), we employ themethod
developed by Ellison (2000), which involves computing the radius, coradius and
modified coradius of the basins of attraction of absorbing sets. The basin of attraction,
D(W ), of W ⊆ A, is the set of initial states from which the unperturbed evolutionary
process, (A,U , N ,G, P), converges to W with probability one.17

The radius, coradius and modified coradius are all cost functions that depend on the
total costs of paths between states.Define apath fromsubset Z toW as afinite sequence
of distinct states (x1, x2, . . . , xT )withx1 ∈ Z ,xT ∈ W andxτ /∈ W for 2 ≤ τ ≤ T−1.
Let S(Z ,W ) be the set of all paths from Z to W . The cost c(x1, x2, . . . , xT ) of path
(x1, x2, . . . , xT ) is the sum of the costs of the transitions between pairs of states along
(x1, x2, . . . , xT ). That is, c(x1, x2, . . . , xT ) = ∑T−1

τ=1 c(xτ , xτ+1).
Recall that each c(xτ , xτ+1), defined in (3), reflects how unlikely the direct tran-

sition from xτ to xτ+1 is when ε is small. Accordingly, c(x1, x2, . . . , xT ) reflects
how unlikely it is for (A,U , N ,G, Pε) to reach xT from x1 through the path
(x1, x2, . . . , xT ) when ε is small.

Let C(Z ,W ) = min(x1,x2,...,xT )∈S(Z ,W ) c(x1, x2, . . . , xT ) be the cost of the mini-
mum cost path from Z toW . The radius, R(W ), ofW , is the minimum cost of any path
from W out of the basin of attraction of W (i.e., the minimum number of mutations
needed to exit D(W )):

R(W ) = min
(x1,x2,...,xT )∈S(W ,X−D(W ))

c(x1, x2, . . . , xT )

Intuitively, R(W ) measures how likely it is for (A,U , N ,G, Pε) to leave the basin of
attraction of W when ε is small.

The coradius, CR(W ), of W is the maximum over all other states of the mini-
mum number of mutations required to reach W , and it measures how likely it is for
(A,U , N ,G, Pε) to reach W from any other state when ε is small:18

CR(W ) = max
x/∈W min

(x1,...,xT )∈S(x,W )
c(x1, . . . , xT ) = max

x/∈W C(x,W )

Let Z1, Z2, . . . , Zq , with x ∈ D(Z1), Zq ⊆ W and Zl � W for l < q, be a
sequence of absorbing sets through which some path, (x1, x2, . . . , xT ), from x = x1
to xT ∈ Zq traverses consecutively. Define the modified cost, c∗(x1, x2, . . . , xT ),

17 That is, D(W ) = {
y ∈ X | P (∃t ′ such that x(t) ∈ W ∀ t > t ′ | x(0) = y

) = 1
}

18 Note that since the cost of reaching W from any state within the basin of attraction of W is zero, the
coradius of W can also be expressed as CR(W ) = maxx/∈D(W ) C(x, D(W )).
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of the path (x1, x2, . . . , xT ) as the cost, c(x1, x2, . . . , xT ), minus the radius of the
intermediate limit sets through which the path (x1, x2, . . . , xT ) passes. That is,

c∗(x1, x2, . . . , xT ) = c(x1, x2, . . . , xT ) −
q−1∑

l=2

R(Zl) (4)

The modified coradius, CR∗(W ), of W is the maximum over all x /∈ W of the
minimum modified cost of all paths from x to W . That is,

CR∗(W ) = max
x/∈W min

(x1,x2,...,xT )∈S(x,W )
c∗(x1, x2, . . . , xT ) = max

x/∈W C∗(x,W ) (5)

where C∗(x,W ) = min(x1,x2,...,xT )∈S(x,W ) c∗(x1, x2, . . . , xT ) is the minimum modi-
fied cost of all paths from x to W . Like the coradius, the modified coradius measures
how likely it is for (A,U , N ,G, Pε) to reach W from any other state when ε is small.
The following lemma summarize the results of Ellison (2000, Theorems 1 and 2).

Lemma 1 (Ellison 2000, Theorems 1 and 2) Let A∗ ⊆ A be a set of absorbing sets. If
R(A∗) > CR(A∗) and/or R(A∗) > CR∗(A∗), then the unique stochastically states
are contained in A∗.

3 How contagion affects stochastically stable outcomes

3.1 p-best response sets, contagion and the contagion threshold

We aim to establish the relationship between p-best response/p-dominance and
stochastic stability of the evolutionary process (A,U , N ,G, Pε). We derive the con-
ditions under which the minimal p-best response set is uniquely stochastically stable
on a given network. A p-best response set is a set of strategies that are best responses
to distributions that place on them a mass of at least p. And for the network game
(A,U , N ,G), if at least proportion p of a player’s neighbours play strategies in the
p-best response set, then all of a player’s best responses are themselves within that
set. For any nonempty subset A′ ⊆ A and any σ ∈ �, let σA′ = ∑

a j∈A′ σ(a j ) be the

total mass that distribution σ places on A′.
Definition 1 A nonempty subset of strategies A′ ⊆ A is a p-best response set of a
symmetric strict coordinationgame (A,U ) if for allσ ∈ �withσA′ ≥ p, BR(σ ) ⊆ A′.
A′ is a minimal p-best response set if A′ does not contain any proper subset that is a
p-best response set.

The definition of a p-best response set in Definition 1 implies that the strategy set,
A, is, trivially, a p-best response set of (A,U ) for all p ∈ [0, 1]. A coordination game
can have more than one p-best response set, and the minimal p-best response set is the
one that does not contain another smaller subset that itself is a p-best response set.19

19 The notion of p-best response also exhibits monotonicity in that for p < q, a p-best response set of a
game is also a q-best response set of that game.
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Fig. 1 a A 3× 3 symmetric coordination game with strategy a3 as the p-dominant equilibrium, for p > 3
8 ;

bA 3× 3 symmetric coordination game with A′ = {a2, a3} as the minimal p-best response set, for p > 1
3

We denote by Ap the minimal p-best response set of (A,U ). Every coordination game
has a unique minimal p-best response set when p ≤ 1

2 (Tercieux 2006, Theorem 1).
If, for some p ≤ 1

2 , A
p = {a}, then a is a p-dominant equilibrium.

Although the predictions of stochastic stability will be coarse when Ap contains
more than one strategy, it is useful to examine when strategies in Ap are stochastically
stable because, firstly,many coordination games do not have a p-dominant equilibrium
but every coordination game has a unique minimal p-best response set for p ≤ 1

2 .
Secondly, if only one strategy is indeed uniquely stochastically stable, then we would
know that that strategy is in Ap. A more precise method can then be used to isolate
the unique stochastically stable strategy from Ap. Thirdly, there are situations, such as
technology adoption, where one may be interested in the diffusion of a combination
of strategies. A firm that owns two technologies may be interested in the long-run
market survival of both technologies if they are complementary or if producing both
is cost-effective.

Consider the two examples of symmetric coordination games in Fig. 1. For the game
in Fig. 1a, set A′ = {a2, a3} is a p-best response set for p > 5

18 , and for p > 3
8 , both

A′ = {a2, a3} and A′′ = {a3} are p-best response sets. The minimal p-best response
set is Ap = A′′, which is also a p-dominant equilibrium since it is a singleton set.
The game in Fig. 1b does not contain a p-dominant equilibrium for all p ≤ 1

2 , but it
contains a minimal p-best response set Ap = {a2, a3}, for p > 1

3 . For this scenario,
our analysis below establishes the conditions under which the unique stochastically
stable strategy is contained in Ap = {a2, a3}.

Given Ap ⊆ A, letAp ⊆ A be the set of all absorbing sets of states containing only
strategies in Ap. Strategies in Ap are said to be uniquely stochastically stable if setAp

is uniquely stochastically stable. We derive conditions under which Ap is uniquely
stochastically stable (i.e. underwhich R(Ap) > CR(Ap),CR∗(Ap)) by exploiting the
properties of the process of contagion in networks. We distinguish between two forms
of contagion that are both used in the derivation of the main results: full contagion
and step-by-step contagion. Full contagion is the spread of strategies in A′ ⊂ A to
the whole network through best response starting from a group of players whose size
is less than half the population size. Step-by-step contagion is derived by iteratively
applying partial contagion, which is the spread of strategies in A′ ⊂ A through best
response from a group of players, say N ′ ⊂ N , whose size, n′, is less than half the
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population size, to a group of players whose size is larger than n′. These three concepts
are formally developed through the following series of definitions.

Definition 2 A sequence of strategy profiles {xt }t̄t=0 of (A,U , N ,G, P), for some
t̄ ≥ 2, is a best response sequence if it satisfies the following properties: (i) for all
1 ≤ t < t̄ , there exists at least one i ∈ N such that xit �= xit−1; (i i) if x

i
t �= xit−1, then

xit ∈ BR(σi (xt−1)).

According to Definition 2, a sequence of states is a best response sequence if, (i)
for any pair of consecutive states xt and xt+1 along the sequence, at least one player
must play a strategy in state xt+1 that is different from a strategy played in state xt ;
(i i) players switch strategies through best response, that is, if i’s strategy in state xt+1
is different from the strategy played in state xt , then xit+1 is a best response to σi (xt ).

Definition 3 Let (A,U , N ,G, P) start from some x ∈ X. Strategies in A′ ⊂ A spread
through full contagion from a subgroup of players, M(A′; x) ⊂ N , if there exists
some t̄ ≥ 2 such that every best response sequence {xt }t̄t=0 with x0 = x and xi1 ∈ A′
for all i ∈ M(A′; x) satisfies xit̄ ∈ A′ for all i ∈ N .

According to Definition 3, when (A,U , N ,G, P) starts from x, strategies in A′
spread through full contagion from a subset M(A′; x) if they spread to the whole
network through best response once all players inM(A′; x) play strategies in A′. Let
μ(A′; x) be the cardinality of M(A′; x) and let μ∗(A′; x) be the size of the smallest
group of players fromwhich strategies in A′ can spread through full contagion starting
from x. Equivalently,μ∗(A′; x) is theminimum number of mutations needed to trigger
evolution of (A,U , N ,G, P) from x to some state in A′, a set of absorbing sets
containing only strategies in A′.

Definition 4 Strategies in A′ ⊂ A are fully contagious on G if, starting from every
x /∈ A′, they can spread through full contagion from a group ofμ∗(A′; x) < n

2 players.

When maxx/∈Ap μ∗(Ap; x) ≤ μ∗, we say that μ∗ mutations to strategies in Ap

trigger full contagion. From the definition of the coradius in Sect. 2.4, it follows from
Definition 4 that when strategies in Ap are fully contagious on a given network, the
coradius of Ap is bounded from above by maxx/∈Ap μ∗(Ap; x). In the analysis that
follows, we define a network measure, the contagion threshold, that determines when
strategies in Ap can spread through full contagion. Once such a measure is defined,
it is then possible to establish an upper bound of maxx/∈Ap μ∗(Ap; x), and hence, the
coradius of Ap.

Although the notion of full contagion enables us to derive the upper bound of
the coradius of Ap, the coradius is a less accurate measure of the cost of reaching
Ap from any other state compared to the modified coradius. In some networks, the
value of maxx/∈Ap μ∗(Ap; x), and hence, the coradius of Ap, can be large (i.e. close
to n

2 ), which in turn requires imposing strict assumptions on the network structure to
ensure that R(Ap) > CR(Ap). Using the modified coradius can mitigate this problem
because in most cases, the modified coradius is less than the coradius of an absorbing
set.
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Recall that the modified coradius of Ap is the cost of the minimum cost path that
passes along absorbing sets that are different from Ap. The notion of step-by-step
contagion captures the costs of evolution along sequences of absorbing sets, and can
thus be used to place an upper bound on the modified coradius of Ap. Let N (A′; x)
be the set of players playing strategies in A′ in configuration x, and let n(A′; x) be the
cardinality of N (A′; x). Then partial and step-by-step contagion are formally defined
as follows.

Definition 5 Let (A,U , N ,G, P) start from some x ∈ X and let x ∈ D(W ′), where
W ′ ∈ A and W ′ �= A′. Strategies in A′ ⊂ A spread through partial contagion from
a subgroup of players, M(A′; x;W ) ⊂ N , to some absorbing set W �= W ′, if there
exists some t̄ ≥ 2 such that every best response sequence {xt }t̄t=0 with x0 = x and
xi1 ∈ A′ for all i ∈ M(A′; x;W ) satisfies xt̄ ∈ W and n(A′; xt̄ ) > n(A′; x).

Let μ(A′; x;W ) be the cardinality ofM(A′; x;W ). Definition 5 states that strate-
gies in Ap spread through partial contagion from a group M(Ap; x;W ) of players,
where x ∈ D(W ′), to an absorbing setW �= W ′ ifμ(Ap; x;W )mutations to strategies
in Ap trigger an iterative process of best response where (A,U , N ,G, P) eventually
converges to W . Let μ∗(Ap; x;W ) be the size of the smallest group of players from
which strategies in Ap can spread through partial contagion starting from x to W .
Equivalently, μ∗(Ap; x;W ) is the minimum number of mutations to strategies in Ap

needed to trigger evolution of (A,U , N ,G, P) from x to some state in W .

Definition 6 Strategies in A′ ⊂ A are step-by-step contagious on G starting from
x /∈ A′, if there exists a sequence of absorbing setsW1,W2, . . . ,WJ , with x ∈ D(W1)

and WJ = A′, and a corresponding sequence of strategy sets, A2, A3, . . . , AJ , such
that, for any y ∈ Wj , strategies in A j+1 spread through partial contagion from
μ∗(A j+1; y;Wj+1) < n

2 players.

Definition 6 states that strategies in Ap are step-by-step contagious on a given
network if they spread to the whole network through iterative application of partial
contagion. That is, starting from x ∈ D(W ), there exists a sequence of absorbing sets
W1, . . . ,WJ , withW = W1 andWJ = Ap, and a corresponding sequence of strategy
sets A2, A3, . . . , AJ , with AJ = Ap, such that along W1, . . . ,WJ , (A,U , N ,G, P)

evolves from x to W2 through best response once μ∗(A2; x;W2) < n
2 players play

(mutation to) strategies in A2; and from any y ∈ W2 toW3 through best response once
μ∗(A3; y;W3) < n

2 players play (mutation to) to strategies in A3; and so on, until it
eventually reaches Ap. When μ∗(A j+1; y;Wj+1) ≤ μ∗ for all j = 1, . . . , J − 1, we
say that μ∗ mutations trigger step-by-step contagion of strategies in Ap starting from
x.

We demonstrate that the contagion threshold not only determines when strategies
in Ap can spread through full contagion, but also when they can spread through
partial, and hence, step-by-step contagion. The definition of the contagion threshold is
based on the following reinterpretation of the definitions of full and partial contagion
in Definitions 3 and 5. Given a network G and any subset of players S ⊂ N , let
Ni (S) = Ni ∩ S be the set of i’s direct neighbours within G that belong to subgroup
S. Let ni (S) be the corresponding cardinality of Ni (S) and αi (S) = ni (S)

ni
be the

proportion of i’s neighbours in S.
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From Definition 3, strategies in Ap spread through full contagion if, for every best
response sequence {xτ }t̄τ=0 satisfying the conditions in Definition 3, there exists a
sequence of players S1, S2, . . . , St̄ , with S1 = M(Ap; x) and ∪t̄

τ=1Sτ = N , such
that for each j ∈ Sτ , and all τ = 2, 3, . . . , t̄ , α j (∪τ−1

k=1Sk) ≥ p. That is, every
player in Sτ has at least proportion p of their neighbours in ∪τ−1

k=1Sk . The inequality
α j (∪τ−1

k=1Sk) ≥ p, for all j ∈ Sτ and τ = 2, 3, . . . , t̄ , ensures that once all players
in S1 = M(Ap; x) play strategies in Ap, all players in S1 ∪ S2 subsequently play
strategies in Ap since each j ∈ S2 has at least proportion p of her neighbours in S1;
all players in S1 ∪ S2 ∪ S2 subsequently play strategies in Ap since each j ∈ S2 ∪ S3
has at least proportion p of her neighbours in S1 ∪ S2; this iterative process continues
until the whole network eventually plays strategies in Ap.

Similarly, fromDefinition 5, strategies in Ap spread through partial contagion from
a group of players, M(Ap; x;W ′), where x ∈ D(W ), to W ′ �= W if, for every best
response sequence {xτ }t̄τ=0 satisfying the conditions in Definition 5, there exists a
sequence of players S1, S2, . . . , St̄ , with S1 = M(Ap; x;W ′) = N (Ap; x1), S2 =
N (Ap; x2), . . . , St̄ = N (Ap; xt̄ ), such that for each j ∈ Sτ , and all τ = 2, 3, . . . , t̄ ,
α j (Sτ−1) ≥ p. These sequences of players have two main properties: first, the sets
Sτ , for τ = 1, . . . , t̄ , need not be disjoint sets, that is, for any pair Sτ and Sτ+1 along
the sequence, it is not necessary for Sτ ∩ Sτ+1 = ∅ to hold; second, St̄ ⊆ N , because
for partial contagion, strategies in Ap need not spread to the whole network.

Thus, the first step in defining the network measure that determines when strategies
in Ap can spread though full and step-by-step contagion involves choosing a set of
players from which contagion can be triggered. We identify the first-neighbourhoods
of players (i.e. the set of direct neighbours of each i ∈ N , with i included) as groups of
players from which strategies in Ap can spread through full and partial contagion.20

For each i ∈ N , let Bir be the r th-neighbourhood of i (i.e. the set of all players within r
steps from i , with i included) and Nir be the r -order neighbours of i (i.e. all players that
are located at r steps from i). These definitions imply that Bir = i∪Ni1∪Ni2∪. . .∪Nir .
Let bir and nir be the respective cardinalities of Bir and Nir .

Strategies in Ap can spread from Bi1 of any i ∈ N through either full or partial
contagion if the corresponding sequence, Bi1 , Ni2 , . . . , Nidi

, satisfies the conditions
outlined in the above reinterpretations of Definitions 3 and 5. That is, starting from
any x /∈ D(Ap), bi1 mutations to strategies in Ap by all players in Bi1 can trigger
full contagion, if, along the sequence Bi1 , Ni2 , . . . , Nidi

, α j (Biτ−1) ≥ p for each
j ∈ Niτ and all τ = 2, . . . , di (i.e. minτ∈[2,di ] min j∈Niτ

α j (Biτ−1) ≥ p). Similarly, bi1
mutations to strategies in Ap by all players in Bi1 can trigger partial contagion, if, along
the sequence, S1, S2, . . . , St̄ with S1 = Bi1 , S2 ⊆ Bi2 , . . . , St̄ ⊆ Bit̄ , αh(Sτ−1) ≥ p
for each h ∈ Sτ and all τ = 2, . . . , t̄ . The following lemma shows that such sequences
are guaranteed to exist whenever minτ∈[2,di ] min j∈Niτ

α j (Biτ−1) ≥ p.

20 The first-neighbourhood is not unique in this role. For example, cohesive subgroups (i.e. groups of
players where each member of the group has at least half of her interactions with other group members)
can also be used as groups of players from which strategies in Ap spread through full and partial contagion
(see Morris (2000) and Opolot (2020) for a formal definition of group cohesion and how group cohesion
determines when strategies can spread through contagion).
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Fig. 2 An example of a network
with the contagion threshold of
η(G) = 1

3 and diameter of
d(G) = 3

1

2

3

4

5

6

7

8

Lemma 2 Let G be unweighted and strongly connected. If minτ∈[2,di ] min j∈Niτ
α j

(Biτ−1) ≥ p for all i ∈ N, then there exist sequences of the form S1 = Bi1 , S2 ⊆
Bi2 , S3 ⊆ Bi3 , . . . , St̄ ⊆ Bit̄ , such that αh(Sτ−1) ≥ p for all h ∈ Sτ and all τ =
2, . . . , t̄ .

Proof See Appendix 2 ��
The sufficient condition for strategies in Ap to spread through either full or par-

tial contagion from Bi1 is then minτ∈[2,di ] min j∈Niτ
α j (Biτ−1) ≥ p. As in Opolot

and Azomahou (2021), we define the contagion threshold, η(G), as the minimum
minτ∈[2,di ] min j∈Niτ

α j (Biτ−1) over all i ∈ N such that strategies in Ap spread from
Bi1 of any i ∈ N through either full or partial contagion whenever η(G) ≥ p.

Definition 7 The contagion threshold of a strongly connected network, G, is defined
as η(G) = mini∈N minr∈[2,di ] min j∈Nir

α j (Bir−1).

Example 1 Consider an example of the network in Fig. 2. Denote by ηi (G), the conta-
gion threshold of player i in network G. That is, ηi (G) = minr∈[2,di ] min j∈Nir

α j

(Bir−1), so that the contagion threshold of network G is η(G) = mini∈N ηi (G).
For player 1 in this network, the composition of the neighbourhoods is as fol-
lows: B11 = {1, 2, 3, 8}, N12 = {4, 6, 7}, N13 = {5}. For each j ∈ N12 , we have
α j (B11) ≥ 1

3 ; and for player 5 in N13 , we have α5(B12) = 1; and hence, η1(G) = 1
3 .

If (A,U , N ,G, P) starts, at t = 1, from any state where all players in B11 play a
1
3 -dominant strategy, then these players will continue to play a 1

3 -dominant strategy
for all t ≥ 2. From t = 2 onward, all players in N12 switch to the

1
3 -dominant strategy

because each has at least 13 of their neighbours in B11 , all of whom play the 1
3 -dominant

strategy at t = 1; and from t = 3 onwards, player 5 in N13 also switches to the 1
3 -

dominant strategy. Thus, a 1
3 -dominant strategy spreads through full contagion from

a subset B11 of players. Following the same steps, we find that, for this network,
ηi (G) = 1

3 for all i ∈ N , so that η(G) = 1
3 . Consequently, a

1
3 -dominant strategy

spreads through full contagion in this network.
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The definition of the contagion threshold in Definition 7 is specific to finite net-
works but shares some similarities with the definition of the contagion threshold for
unbounded networks according to Morris (2000). Morris (2000) defines the conta-
gion threshold of an unbounded network as the maximum p such that a p-dominant
strategy spreads to the whole network through best response starting from a finite
group of players. The similarity between this definition and Definition 7 is that they
both determine when a p-dominant strategy is fully contagious. The difference con-
cerns the definition of the group of players from which a p-dominant strategy spreads
contagiously. To be able to establish the bounds of the coradius, modified coradius
and radius of Ap in finite networks, it is necessary to precisely define the set and the
number of players from which contagion can be triggered. It is not sufficient, as in the
case of unbounded networks, to require strategies in Ap to spread contagiously from a
finite group of players without defining the composition and the size of such a group.

3.2 Contagion, coradius, modified coradius and the radius of Ap

This subsection discusses how full and step-by-step contagion determine the upper
bounds of the coradius and modified coradius of Ap, and the lower bound of the
radius of Ap. By definition of the contagion threshold, when η(G) ≥ p, strategies
in Ap spread from the first-neighbourhood of any player through either full or partial
contagion. When full contagion is feasible on an undirected, unweighted and strongly
network G, the coradius of Ap is bounded from above by maxx/∈Ap μ∗(Ap; x). And
since full contagion can be triggered from bi1 of any i ∈ N , it follows that CR(Ap) ≤
maxx/∈Ap μ∗(Ap; x) ≤ mini∈N bi1 = b1 for any G where full contagion of strategies
in Ap is feasible.

To see the connection between step-by-step contagion and the modified coradius
of Ap, consider any x ∈ D(W ) and W �= Ap. If W1, . . . ,WJ , with W1 = W and
WJ = Ap, is the sequence of absorbing sets alongwhich somepath, (x1, . . . , xT ), from
x = x1 to xT ∈ Ap passes, then (x1, . . . , xT ) can be partitioned into sub-paths between
absorbing sets. That is, (x1, . . . , xT ) can be partitioned into

⋃J−1
j=1 (x j1 , . . . , x jT ′ ),

where, for j = 1, . . . , J − 1, (x j1 , . . . , x jT ′ ) is the sub-path of (x1, . . . , xT ) that
starts from x j1 ∈ Wj and ends at x jT ′ ∈ Wj+1.21 From (4), the modified cost
c∗(x1, x2, . . . , xT ) of path (x1, x2, . . . , xT ) can then be rewritten as:

c∗(x1, x2, . . . , xT ) = c(x11 , . . . , x1T ′ ) +
J−1∑

j=2

c(x j1 , . . . , x jT ′ ) −
J−1∑

j=2

R(Wj )

Let �(x,Ap) be the set of all sequences of absorbing sets along which paths from
x to Ap traverse. Then the minimum modified cost of all paths from x to Ap becomes

21 To avoid notational clutter, we write (x j1 , . . . , x jT ′ ) for a typical path starting from Wj and ending at
Wj+1 whenever the sequence W1, . . . ,WJ is clearly defined. This notation should not be interpreted to
mean that all paths fromWj toWj+1, and for all j = 1, . . . , J − 1, are of the same length, T ′. These paths
can have different lengths. A more explicit notation would involve adding a quantifier for each T ′, but this
would lead to notational clutter.
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C∗(x,Ap) = min
(W1,...,WJ )∈�(x,Ap)

[

min
(x11 ,...,x1T ′ )∈S(x,W2)

c(x11 , . . . , x1T ′ )

+
J−1∑

j=2

min
(x j1 ,...,x jT ′ )∈S(Wj ,Wj+1)

c(x j1 , . . . , x jT ′ ) −
J−1∑

j=2

R(Wj )

]

(6)

By definition of partial contagion above, we have

min
(x j1 ,...,x jT ′ )∈S(Wj ,Wj+1)

c(x j1 , . . . , x jT ′ ) = min
y∈Wj

μ∗(A j+1; y;Wj+1)

C∗(x,Ap) = min
(W1,...,WJ )∈�(x,Ap)

[

μ∗(A2; x;W2) +
J−1∑

j=2

(

min
y∈Wj

μ∗(A j+1; y;Wj+1) − R(Wj )

)]

(7)

We demonstrate in Sect. 4 below that when strategies in Ap spread through step-
by-step contagion, then, along the sequence of absorbing sets, W1,W2, . . . ,WJ ,
that the minimum modified cost path from x ∈ D(W1) to Ap traverses, R(Wj )

= miny∈Wj μ∗(A j+1; y;Wj+1). More specifically, we show that when strategies in
Ap are not fully contagious, there are two other possible categories of paths from any
x ∈ D(W ) to Ap. The first category of paths traverse through a sequence of only
three absorbing sets, W ,W ′,Ap, where W ′ is an absorbing cycle containing both
strategies in Ap and A\Ap. Along this sequence, R(W ) = miny∈W μ∗(Ap; y;W ′)
and R(W ′) = miny∈W ′ μ∗(Ap; y;Ap). The second category of paths traverse
through a sequence of four absorbing sets, W ,W ′,W ′′,Ap, where W ′ and W ′′
are absorbing cycles containing both strategies in Ap and A\Ap. Along this
sequence, R(W ) = miny∈W μ∗(Ap; y;W ′), R(W ′) = miny∈W ′ μ∗(A\Ap; y;W ′′)
and R(W ′′) = miny∈W ′′ μ∗(Ap; y;Ap). For both categories of paths, it follows from
(7) that C∗(x,Ap) = minW ′ �=W μ∗(Ap; x;W ′) ≤ b1, where the inequality follows
because the partial contagion of strategies in Ap can be triggered from the first-
neighbourhood of any player. The modified coradius of Ap then becomes

CR∗(Ap) = max
x/∈D(Ap)

C∗(x,Ap) = max
x/∈D(Ap)

min
W ′ �=W

μ∗(Ap; x;W ′) ≤ b1 (8)

Contagion not only determines the upper bounds of the coradius and modified
coradius of Ap but also the lower bound of its radius. We demonstrate that when
strategies in Ap are fully or step-by-step contagious, the diameter of the network
determines when the lower bound of the radius of Ap is greater than b1. Specifically,
we show that when (A,U , N ,G, P) starts from any x ∈ Ap, and d(G) ≥ 7, bi1
mutations to strategies in A\Ap by all players in Bi1 of any i ∈ N are not sufficient
to trigger an exit from the basin of attraction of Ap.

The underlying intuition is that when d(G) ≥ 7, each i ∈ N has di ≥ 4 (see
Lemma 3 for the proof), which implies that for all j ∈ Ni4 ∪ Ni5 ∪ . . . ∪ Nidi

,
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Bj2 ∩ Bi1 = ∅ (i.e. there is no overlap between the first-neighbourhood of i and
the second-neighbourhood of j). This implies that, starting from any x ∈ Ap, if
all players in Bi1 mutate to strategies in A\Ap, there exists at least one player j ∈
Ni4 ∪ Ni5 ∪ . . .∪ Nidi

for whom all players in Bj2 play strategies in Ap. The definition
of the contagion threshold implies that when η(G) ≥ p, (A,U , N ,G, P) converges
to Ap from any configuration where all players in Bj2 of any j ∈ N play strategies
in Ap (i.e., b j2 mutations to strategies in Ap sufficiently trigger full contagion on any
unweighted and strongly connected network).22 Thus, when η(G) ≥ p and d(G) ≥ 7,
more than bi1 mutations are required to trigger an exit from the basin of attraction of
Ap so that R(Ap) > b1 ≥ CR(Ap),CR∗(Ap).

4 Stochastic stability of theminimal p-best response set

This section presents the main results of this paper. The following Theorem provides
the conditions under which strategies in Ap are uniquely stochastically stable.

Theorem 1 Given an evolutionary process of best response with mutations, (A,U , N ,

G, Pε), on an undirected, unweighted and strongly connected network G(N , E), the
minimal p-best response set Ap ⊆ A is uniquely stochastically stable whenever
η(G) ≥ p and d(G) ≥ 7.

The following steps provide the sketch and intuition of the proof of Theorem 1. A
detailed exposition is provided in Appendix 3. The proof involves deriving the upper
bounds of the coradius andmodified coradius, and the lower bound of the radius ofAp.
It exploits the implications of the process of full and step-by-step contagion discussed
in Sect. 3.

We show that the upper bound of both the coradius and modified coradius of Ap is
b1 = mini∈N bi1 . To prove this result, we first show that when (A,U , N ,G, P) starts
from any x /∈ Ap, bi1 mutations to strategies in Ap, for any i ∈ N , trigger either full
contagion of strategies in Ap or partial contagion where (A,U , N ,G, P) converges
to an absorbing cycle of states containing both strategies in Ap and A\Ap. For net-
works where bi1 mutations trigger full contagion, we have C(x,Ap) = μ∗(Ap; x) ≤
mini∈N bi1 = b1 and CR(Ap) = maxx∈X\Ap C(x,Ap) ≤ b1.

Now, let C(A) be the set of all absorbing cycles of states containing both strategies
in Ap and some strategies in A\Ap. Let Nr

iτ
, for τ < r , τ = 1, 2, . . . , di − 1 and

r = 2, . . . , di , be the set of players in Niτ that lie along the paths of length greater
or equal to r . Put differently, Nr

iτ
is the set of all h ∈ Niτ with Nhr−τ ∩ Nir �= ∅

(i.e. the set of players in Niτ with at least one (r − τ)-order neighbour in Nir ). For
example, N 3

i1
is the set of all h ∈ Ni1 with at least one second-order neighbour in Ni3

22 To see why, let (A,U , N ,G, P) start, at t = 0, from any x /∈ D(Ap) where all players in B j2 of some
j ∈ N play strategies in Ap . Then, from t = 1 onward, all players in B j3 play strategies in Ap since
η(G) ≥ p implies that each h ∈ B j3 has αh(B j2 ) ≥ p. From t = 2 onward, all players in B j4 play
strategies in Ap because each h ∈ B j4 has αh(B j3 ) ≥ p; from t = 3 onward, all players in B j5 play
strategies in Ap because each h ∈ B j5 has αh(B j4 ) ≥ p; this iterative process continues until the whole
network eventually plays strategies in Ap .
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(i.e. Nh2 ∩ Ni3 �= ∅).23 Let N̄ r
iτ

= Niτ \Nr
iτ
be the set of all players in Niτ that are not

contained in Nr
iτ
, and nriτ and n̄riτ be the respective cardinalities of Nr

iτ
and N̄ r

iτ
.

We show that when bi1 mutations to strategies in Ap fail to trigger full contagion,
(A,U , N ,G, P) converges to an absorbing cycle, W ∈ C(A), where players in N 3

i1
∪

Ni3 ∪Ni5 ∪. . .∪Nidi
and i∪N 3

i2
∪Ni4 ∪Ni6 ∪. . .∪Nidi−1 alternate between strategies in

Ap and some strategies in A (i.e., including some strategies in A\Ap), and the rest play
some strategies in A. We then show that, firstly, nri1 mutations to strategies in Ap, for
any 4 ≤ r ≤ di , sufficiently trigger an exit from the basin of attraction of W to some
state in Ap. Since this result holds for any i ∈ N , including player i = i ∈ argmin bi1
with the fewest number of direct neighbours, it follows that C(W ,Ap) ≤ n∗

1 ≤ nr1,
where nr1 = mini∈N nri1 and n∗

1 = mini∈N minr∈[4,di ] nri1 .
Secondly, if (A,U , N ,G, P) exits the basin of attraction of W after less or equal

to n∗
1 mutations to strategies in A\Ap, then it converges to an absorbing cycle where

players in N 4
i1
∪N 4

i3
∪Ni5∪. . .∪Nidi

and i∪N 4
i2
∪Ni4∪Ni6∪. . .∪Nidi−1 alternate between

strategies in Ap and some strategies in A, and the rest play some strategies in A. Denote
this absorbing cycle byW ′ ∈ C(A). This implies that either R(W ) = C(W ,Ap),when
C(W ,Ap) ≤ C(W ,W ′), or R(W ) = C(W ,W ′) when C(W ,W ′) ≤ C(W ,Ap).

Thirdly, we show that n4i1 mutations to strategies in Ap sufficiently trigger an exit

from the basin of attraction of W ′ to Ap. However, n4i1 mutations to strategies in
A\Ap cannot trigger an exit from the basin of attraction of W ′. This implies that
R(W ′) = C(W ′,Ap) ≤ n41.

Thus, there are three possible minimum cost paths from any x /∈ D(Ap) to Ap.
First, b1 mutations to strategies in Ap trigger full contagion from any x /∈ D(Ap)

so that CR(Ap) ≤ b1. Second, (A,U , N ,G, P) converges to some absorbing cycle
W ∈ C(A) after b1 mutations to strategies in Ap, and that the number of mutations to
strategies in A\Ap needed to trigger an exit from D(W ) is greater than n∗

1. For this
scenario, R(W ) = C(W ,Ap) so that

C∗(x,Ap) = min
W∈C(A)

[
min

(x1,x2,...,xT ′ )∈S(x,W )
c(x1, x2, . . . , xT ′)

+ min
(y1,y2,...,yT )∈S(W ,Ap)

c(y1, y2, . . . , yT ) − R(W )
]

= min
W∈C(A)

[
C(x,W ) + C(W ,Ap) − R(W )

]

= min
W∈C(A)

C(x,W ) ≤ b1 (9)

Third, (A,U , N ,G, P) converges to some absorbing cycle W ∈ C(A) after b1
mutations to strategies in Ap, but the number of mutations to strategies in A\Ap

needed to trigger an exit from D(W ) is less or equal to n∗
1. For this scenario, there exists

another absorbing cycle, W ′ ∈ C(A) and W ′ �= W , where C(W ,W ′) ≤ C(W ,Ap)

and R(W ) = C(W ,W ′). And following the above discussion, R(W ′) = C(W ′,Ap)

so that

23 The definition of Nr
iτ

implies that, for τ < s ≤ r , τ = 1, . . . , di − 1, s = 2, . . . , di and r = 2, . . . , di ,

Nr
iτ

⊆ Ns
iτ
. For example, all j ∈ N4

i1
are also contained in N3

i1
and N2

i1
, but not vice versa.
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C∗(x,Ap) = min
W ,W ′∈C(A)

[
min

(x1,x2,...,xT ′ )∈S(x,W )
c(x1, x2, . . . , xT ′)

+ min
(y1,y2,...,yT )∈S(W ,W ′)

c(y1, y2, . . . , yT ) − R(W )

+ min
(z1,z2,...,zT )∈S(W ′,Ap)

c(z1, z2, . . . , zT ) − R(W ′)
]

= min
W ,W ′∈C(A)

[
C(x,W ) + C(W ,W ′) − R(W ) + C(W ′,Ap) − R(W ′)

]

= min
W∈C(A)

C(x,W ) ≤ b1 (10)

Since Eqs. (9) and (10) hold for any x /∈ D(Ap) from which b1 mutations cannot
trigger full contagion, it follows thatCR∗(Ap) = maxx/∈D(Ap) minW∈C(A) C(x,W ) ≤
b1. The following examples help to elaborate these steps.24

Example 2 Consider the network depicted in Fig. 3, with the contagion threshold and
diameter of η(G) = 1

3 and d(G) = 8 respectively. The players with the smallest

first-neighbourhood are 1 and 16, with b11 = b161 = b1 = 2. Let p ≤ 1
3 , and

let (A,U , N ,G, P) start from some configuration x /∈ D(Ap) (i.e. a configuration
containing both strategies in Ap and A\Ap). If players in B11 = {1, 2} both mutate to
strategies in Ap at t = 1, then (A,U , N ,G, P) will evolve as follows:

t = 1 All players in B11 = {1, 2} play strategies in Ap ; all other players play strategies in A.
t = 2 Player 1 plays a strategy in Ap since α1(B11 ) > p; a player in N11 = {2} plays a strategy in

Ap because α2(B11 ) = 1
3 > p. All j ∈ N12 = {3, 4} also play strategies in Ap because

each has α j (B11 ) = 1
3 ≥ p. All other players play strategies in A.

t = 3 All j ∈ B13 = {1, 2, 3, 4, 5, 6, 7} play strategies in Ap because each has α j (B12 ) ≥ 1
3 ≥ p

and that all players in B12 play strategies in Ap at t = 2. All other players play strategies in
A.

−− -----------------------------------------------------------------------------------------------------------------
t = 8 All players in B18 = N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} play strategies in

Ap .

Thus, for this network, b1 mutations to strategies in Ap sufficiently trigger full
contagion, which implies thatC(x,Ap) ≤ b1 for any x /∈ D(Ap), and thatCR(Ap) =
maxx/∈D(Ap) C(x,Ap) ≤ b1.

Example 3 Consider the network in Fig. 4, with the contagion threshold of η(G) = 1
2

and diameter of d(G) = 10. Let (A,U , N ,G, P) start from some configuration x
where all players play strategies in A\Ap, and let players in B31 = {1, 3, 5} mutate
to strategies in Ap at t = 1. For p = 1

2 = η(G), (A,U , N ,G, P) evolves from t = 2
onward as follows:

24 Note also that for each j ∈ N12 , since p ≤ η(G) ≤ α1 ≤ α j (B11 ), we have (1 − p) ≥ (1 − η(G)) ≥
(1 − α1) ≥ (1 − α j (B11 )) ≥ α j (N13 ). This implies that strategies in A\Ap are not best responses to
all j ∈ N12 since they are best responses only when played by more than proportion 1 − p of a player’s
neighbours.
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Fig. 3 An example of a network
with contagion threshold
(computed using the
matrix-based steps in Appendix
1) of η(G) = 1

3 and d(G) = 8
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Fig. 4 An example of a network
with contagion threshold of
η(G) = 1

2 and d(G) = 10
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t = 2 Players in 3 ∪ N32 = {2, 3, 4, 6, 7, 8} play strategies in Ap since each has at least proportion
1
2 = p of neighbours in B31 . All j ∈ N31 = {1, 5} switch back to strategies in A\Ap because

each has α j (B31 ) = 1
3 < p. All other players play strategies in A\Ap .

t = 3 Players in 3 ∪ N32 play strategies in A\Ap ; players in N31 play strategies in Ap ; a player in
N33 = {9} plays a strategy in Ap ; all other players play strategies in A\Ap .

t = 4 Players in 3∪ N32 ∪ N34 play strategies in Ap ; players in N31 ∪ N33 play strategies in A\Ap ; all
other players play strategies in A\Ap .

−− —————————————————————————————————————–
t = 9 Players in 3 ∪ N32 ∪ N34 ∪ N36 ∪ N38 play strategies in A\Ap ; and players in

N31 ∪ N33 ∪ N35 ∪ N37 ∪ N39 play strategies in Ap .

Thus, for this network, (A,U , N ,G, P) converges to an absorbing cycleW ∈ C(A)

where players in 3∪N32 ∪N34 ∪N36 ∪N38 and N31 ∪N33 ∪N35 ∪N37 ∪N39 alternate
between strategies in Ap and A\Ap.25

25 Note that the composition of this absorbing cycle can equivalently be stated as: players in 3 ∪ N3
32

∪
N34 ∪ N36 ∪ N38 and N3

31
∪ N33 ∪ N35 ∪ N37 ∪ N39 alternate between strategies in Ap and A\Ap , and

the rest, consisting of players in N̄3
31

∪ N̄3
32
, play strategies in A.
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We now show that n∗
1 = 1 mutations26 to strategies in Ap sufficiently trigger

an exit from D(W ) to Ap, but n∗
1 mutations to strategies in A\Ap cannot trigger

exit from D(W ). Let (A,U , N ,G, P) start (at t = 0) from configuration y ∈ W
where players in 3 ∪ N32 ∪ N34 ∪ N36 ∪ N38 play strategies in A\Ap and players in
N31 ∪ N33 ∪ N35 ∪ N37 ∪ N39 play strategies in Ap. At t = 1, let a player in N 9

31
= {5}

mutate to a strategy in Ap. Then (A,U , N ,G, P) evolves from t = 1 onward as
follows:

t = 1 Players in 3 ∪ N9
31

∪ N32 ∪ N34 ∪ N36 ∪ N38 play strategies in Ap ; players in

N̄9
31

∪ N33 ∪ N35 ∪ N37 ∪ N39 play strategies in A\Ap , where N̄9
31

= {1}.
t = 2 Players in 3 ∪ N31 ∪ N32 ∪ N33 ∪ N35 ∪ N37 ∪ N39 play strategies in Ap , where players in

3 ∪ N31 ∪ N32 ∪ N33 all play strategies in Ap because each has at least 1
2 = p of their

neighbours in {3, 5} ∪ N32 , all of whom play strategies in Ap at t = 1. Players in
N34 ∪ N36 ∪ N38 play strategies in A\Ap .

t = 3 Players in B34 ∪ N36 ∪ N38 play strategies in Ap ; players in N35 ∪ N37 ∪ N39 play strategies in
A\Ap .

−− —————————————————————————————————————–
t = 7 Players in B38 play strategies in Ap ; players in N39 play strategies in A\Ap .
t = 8 All players in B39 = N play strategies in Ap .

Thus, n∗
1 mutations to strategies in Ap sufficiently trigger an exit from D(W ), which

implies that C(W ,Ap) ≤ n∗
1. Now, let (A,U , N ,G, P) instead start (at t = 0) from

configuration z ∈ W where players in 3 ∪ N32 ∪ N34 ∪ N36 ∪ N38 play strategies in
Ap and players in N31 ∪ N33 ∪ N35 ∪ N37 ∪ N39 play strategies in A\Ap.27 At t = 1,
let a player in N 9

31
= {5}mutate to a strategy in A\Ap. Then (A,U , N ,G, P) evolves

from t = 1 onward as follows.

t = 1 Players in N̄9
31

∪ N33 ∪ N35 ∪ N37 ∪ N39 play strategies in Ap ; players in

3 ∪ N9
31

∪ N32 ∪ N34 ∪ N36 ∪ N38 play strategies in A\Ap .
t = 2 Players in 3 ∪ N32 ∪ N34 ∪ N36 ∪ N38 play strategies in Ap . Player 3 and players in

N̄4
32

= {2, 4} all play strategies in Ap because each has at least 1
2 = p of their neighbours

in N̄9
31

= {1} playing strategies in Ap at t = 1. Players in N4
32

= {6, 7, 8} play strategies in
Ap because for each k ∈ N4

32
, there is a j ∈ N34 = {10, 11, 12} where Nk1 ∩ N j1 ⊆ N4

33
.

This implies that, for each k ∈ N4
32
,

αk (N
4
33

) ≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) = p = 1

2 . Since all players

in N4
33

⊆ N33 play strategies in Ap at t = 1, strategies in Ap are best responses to all

k ∈ N4
32
. And since N32 = N̄4

32
∪ N4

32
, it follows that all players in N32 play strategies in

Ap at t = 2. Players in N31 ∪ N33 ∪ N35 ∪ N37 ∪ N39 play strategies in A\Ap .
t = 3 Players in N31 ∪ N33 ∪ N35 ∪ N37 ∪ N39 play strategies in Ap ; and players in

3 ∪ N32 ∪ N34 ∪ N36 ∪ N38 play strategies in A\Ap .

26 Where n∗
1 = 1 because N3

31
= N4

31
= . . . = N9

31
= {5}.

27 Starting from configuration z rather than y represents the best possible starting point of exiting the basin
of attraction of W with n∗

1 mutations to strategies in A\Ap .
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Thus, (A,U , N ,G, P) reverts to W after n∗
1 mutations to strategies in A\Ap.

Exiting the basin of attraction of W through mutations to strategies in A\Ap requires
more than n∗

1 mutations, which implies that R(W ) = C(W ,Ap) ≤ n∗
1. Following the

above discussion, and Eq. (9), it follows that C∗(x,Ap) = minW∈C(A) C(x,W ) ≤ b1.
The second part of the proof of Theorem 1 establishes a lower bound of the radius of

Ap. Following the implications of full and partial contagion discussed above, we show
in Appendix 3 that when η(G) ≥ p and d(G) ≥ 7, b1 mutations to strategies in A\Ap

can not trigger an exit from the basin of attraction of Ap, and hence, R(Ap) ≥ b1 + ι,
where ι is some integer greater or equal to one. The underlying intuition is that if
d(G) ≥ 7, which, according to Lemma 3, also implies that di ≥ 4 for all i ∈ N , then
there is no overlap between the first-neighbourhood of any i ∈ N and the second-
neighbourhood of any j ∈ Ni4 ∪ . . . ∪ Nidi

(i.e. Bi1 ∩ Bj2 = ∅). As discussed in Sect.
3.1 (see also Footnote 22), when η(G) ≥ p, (A,U , N ,G, P) converges to Ap from
any configuration consisting of at least one j ∈ N with all players in Bj2 playing
strategies in Ap. This implies that when (A,U , N ,G, P) starts from any state in Ap

and players in Bi1 mutate to strategies in A\Ap, (A,U , N ,G, P) will revert to Ap

whenever η(G) ≥ p and d(G) ≥ 7, so that R(Ap) ≥ b1 + ι.
The above dynamics does not directly extend to networks with d(G) ≤ 6. Firstly,

networks with d(G) ≤ 4 contain at least one i ∈ N with di = 2. For these networks,
when all players in Bi1 of any i ∈ N with di = 2 mutate to strategies in A\Ap starting
from any x ∈ Ap, all players in Ni2 can switch to strategies in A\Ap at t = 2. This
implies that bi1 mutations to strategies in A\Ap can trigger an exit from D(Ap) to an
absorbing state or cycle containing both strategies in Ap and A\Ap or only strategies
in A\Ap. Secondly, networks with 5 ≤ d(G) ≤ 6 contain at least one i ∈ N with
di = 3. For each i ∈ N with di = 3, N j2 ⊆ Bi1 for all j ∈ Ni3 . This implies that
when all players in Bi1 mutate to strategies in A\Ap starting from any x ∈ Ap, the
resulting configuration consists of players in Bj1 , for all j ∈ Ni3 , playing strategies in
Ap and the rest play strategies in A\Ap. From such a configuration, (A,U , N ,G, P)

can converge to an absorbing cycle containing both strategies in Ap and A\Ap (see the
proof of the upper bounds of CR(Ap) and CR∗(Ap) above). The following counter
example helps to further illustrate this point.

Example 4 Consider an example of the network in Fig. 5with η(G) = 2
5 and consisting

of at least one player with di = 3.28 Let p ≤ η(G), and let (A,U , N ,G, P) start
from any x ∈ Ap. If all players in B61 = {4, 5, 6}, where player 6 has d6 = 3,
simultaneously mutate to strategies in A\Ap at t = 1, then at t = 2, all players
in {2, 3, 6, 7, 8} switch to strategies in A\Ap because each has at least proportion
2
3 > 3

5 = (1 − p) of their neighbours playing strategies in A\Ap at t = 1. Still at
t = 2, all players in {1, 4, 5} play strategies in Ap. From t = 3 onward, these two
sets of players (i.e. {2, 3, 6, 7, 8} and {1, 4, 5}) alternate between strategies in Ap and

28 For player 1 in this network, the composition of the neighbourhoods is as follows: B11 = {1, 2, 3},
N12 = {4, 5}, N13 = {6, 7, 8}. For each j ∈ N12 , we have α j (B11 ) = 2

5 ; and for each

h ∈ N13 , we have αh(B12 ) = 1, and hence, η1(G) = 2
5 , where we use the notation, ηi (G) =

minr∈[2,di ] min j∈Nir α j (Bir−1 ). Following the same steps, we find that η2(G) = η3(G) = η4(G) =
η5(G) = 1, and η6(G) = η7(G) = η8(G) = 2

3 , so that η(G) = 2
5 .

123



p-dominance and stochastic stability in network games 331

Fig. 5 An example of a network
with the contagion threshold of
η(G) = 2

5 and diameter of
d(G) = 3

1

2

3
4

5

6

7

8

A\Ap. A total of b61 mutations to strategies in A\Ap are therefore sufficient to trigger
an exit from D(Ap) to an absorbing cycle containing both strategies in Ap and A\Ap.

To conclude the proof of Theorem 1, we see from the above discussion that when
p ≤ η(G) and d(G) ≥ 7, CR(Ap) ≤ b1, CR∗(Ap) ≤ b1 and R(Ap) ≥ b1 + ι. Thus,
the inequalities R(Ap) > CR(Ap) and R(Ap) > CR∗(Ap) hold, which implies that
the absorbing setAp, and hence, the subset Ap ⊆ A, is uniquely stochastically stable.

5 Discussion and relation to the literature

We now discuss the implications of each of the conditions in Theorem 1. The first
condition requires the network to be undirected, unweighted and strongly connected.
The results of Theorem 1 extend to directed networks that are unweighted and strongly
connected. This is because the requirements we make in the proof of Theorem 1
regarding the diameter of an undirected network, also hold for directed networks.
It follow from the proof of Lemma 3 that, for a directed, unweighted and strongly
connected network G(N , E), if d(G) ≥ 7, then di ≥ 4 for all i ∈ N . Thus, the steps
undertaken to derive the upper bounds of the coradius and modified coradius, and the
lower bound of the radius ofAp hold for directed, unweighted and strongly connected
networks as well.

Theorem 1 can also be extended to weighted and strongly connected networks but
only after accounting for link weights in the definition of the contagion threshold.
Specifically, for any j ∈ Nir , let φ j (Bir−1) be the proportion of j’s interactions with
players in Bir−1 . That is, if w jk is the weight of the directed link from j to k, then
φ j (Bir−1) = ∑

k∈Bir−1
w jk/

∑
l∈N j

w jl . The contagion threshold of a weighted net-

work G is then defined as η(G) = mini∈N minr∈[2,di ] min j∈Nir
φ j (Bir−1). To account

for the link weights in the total payoffs, the payoff to player i from playing strategy
a j against configuration x can be expressed as Ui

(
a j | x) = ∑

k∈Ni
wiku(a j , xk),

where xk is the strategy played by player k in configuration x. These definitions of the
contagion threshold and the total payoffs ensure that strategies in Ap will be fully and
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step-by-step contagious on any weighted and strongly connected networkG whenever
η(G) ≥ p, and that Theorem 1 holds for weighted and strongly connected networks.29

Unlike directedness and weightedness, requiring the network to be strongly con-
nected is necessary for Theorem 1 to hold. When a network is not strongly connected,
there is no guarantee that strategies in Ap can spread contagiously from neighbour-
hood Bi1 of every i ∈ N . Similarly, there is no guarantee that d(G) ≥ 7 implies that
di ≥ 4 for all i ∈ N . The proof, and hence validity of Theorem 1, relies on these two
conditions. Note, however, that if an undirected network is not strongly connected,
then it consists of strongly connected components which can be analysed as separate
networks. More specifically, if G is the set of all strongly connected components of
G and Gk is a typical element of G, then, when d(Gk) ≥ 7 and η(Gk) ≥ p for all
Gk ∈ G, strategies in Ap are uniquely stochastically stable in each component and in
turn the whole network.

The second condition is a restriction on the diameter, d(G) ≥ 7. This condition is
sufficient but not necessary for Theorem 1 to hold. It is easy to construct examples
of networks with d(G) < 7 where strategies in Ap are uniquely stochastically stable.
The inequality, d(G) ≥ 7, rules out highly centralized networks (e.g. a star network
for which all strategies are stochastically stable) and densely connected networks (e.g.
a complete network where each player interacts with every other player). Overall, this
condition does not limit the applicability of the results of Theorem 1. This is because
real-world networks (e.g. social media networks, collaboration networks in academia,
etc.) are large and sufficiently localized that their diameters are greater than seven.

The last condition relates p to the contagion thresholds η(G). The inequality,
p ≤ η(G), is sufficient but not necessary for strategies in Ap to be uniquely stochas-
tically stable. It is easy to construct an example where strategies in Ap are uniquely
stochastically stable in a network with p > η(G), but such examples cannot easily be
generalized.

Our analysis and results are related to Opolot (2020) and Peski (2010) who also
identify network measures that determine which and when strategies are uniquely
stochastically stable. Opolot (2020) shows that for regular cyclic networks, if the
maximum group cohesion is less or equal to (1− p), then there exists a threshold net-
work diameter above which strategies that form the smallest iterated p-best response
set (i.e., a set of strategies that remain after iterative application of the notion of a p-
best response set) are uniquely stochastically stable. And when the network diameter
is greater or equal to two, strategies in the minimal p-best response set are uniquely
stochastically stable whenever themaximum group cohesion is less or equal to (1− p).
Morris (2000) and Opolot (2020) define the maximum group cohesion as follows.

For some Z ⊂ N and i ∈ Z in network G, define ηi (Z ,G) as the proportion of i’s
neighbours in Z . That is,

ηi (Z ,G) = |Ni ∩ Z |
ni

29 Specifically, these definitions of the contagion threshold and the total payoffs ensure that the derivation
of the upper bounds of CR(Ap) and CR∗(Ap) and the lower bound of R(Ap) for a weighted network
follows the same steps outlined in Appendix 3.
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A group Z ⊂ N of players is α-cohesive if η(Z ,G) = mini∈Z ηi (Z ,G) ≥ α. The
maximum group cohesion in G is then η(G) = maxZ⊂N η(Z ,G).

Opolot (2020) also demonstrateswith an example that although themaximumgroup
cohesion predicts unique stochastically stable outcomes in regular cyclic networks, it
fails to do so in some arbitrary networks. In contrast, since 1/�(G) ≤ η(G) ≤ 1

2 for all
strongly connected networks with d(G) ≥ 7, where�(G) = maxi∈N ni , is the size of
the largest first-order neighbourhood in G, Theorem 1 states that strategies in Ap, for
1/�(G) ≤ p ≤ 1

2 , are uniquely stochastically stable in any undirected, unweighted
and strongly connected arbitrary network with η(G) ≥ p and d(G) ≥ 7.30

The contagion threshold can also be defined using alternative reference groups. For
example, the cohesive subgroups, rather than the first-neighbourhoods of players, can
be used as reference groups from which strategies in Ap spread through contagion.
That is, let Z(G) denote the set of all groups of players in G that are 1

2 -cohesive. For
each Z ∈ Z(G), let NZ1 be the set of players in N\Z with at least one neighbour
in Z ; NZ2 is the set of players in N\{Z ∪ NZ1} with at least one neighbour in NZ1 ;
and more generally, NZr is the set of players in N\{Z ∪ NZ1 ∪ . . . ∪ NZr−1} with at
least one neighbour in NZr−1 . Let dZ (G) be the diameter of Z in network G (i.e., the
value of r at which NZr �= ∅ but NZr+1 = ∅). For any j ∈ NZr , let η

′
j (NZr−1) be the

proportion of j’s neighbours in NZr−1 . Then the contagion threshold of G can also be
defined as

η′(G) = min
Z∈Z(G)

min
r∈[1,dZ ] min

j∈NZr

η′
j (NZr−1) (11)

This definition of the contagion threshold ensures that strategies in Ap can spread
on G through either full or partial contagion starting from any Z ∈ Z(G) whenever
η′(G) ≥ p. From the proof of Theorem 1 and the discussion in Opolot (2020, Sect.
5), we conjecture that when η′(G) ≥ p, there exists a threshold value of the minimum
group diameter (i.e., theminimum dZ (G) over all Z ∈ Z(G)) abovewhichCR(Ap) ≤
minZ∈Z(G) |Z |, and R(Ap) ≥ minZ∈Z(G) |Z |+ι, where ι ≥ 1 is some positive integer
(i.e., the threshold diameter at which strategies in Ap are uniquely stochastically
stable). The exact proof of this conjecture is beyond the scope of this paper and is left
as an avenue for future research.

Peski (2010, Theorem 2&Corollary 1) shows that for the BRMmodel, a
( 1
2 − δ∗)-

dominant strategy is uniquely stochastically stable under local interactions, where
δ∗ is defined below. That is, let strategy a ∈ A be

( 1
2 − δ∗)-dominant, and for any

pair i, j ∈ N , let gi j = 1 if there is a link from i to j , and zero otherwise. Then
configuration a, where all players coordinate on strategy a, is uniquely stochastically
stable on any network G with δ∗ = maxi∈N δi and

30 To see why the upper bound of η(G) is 1
2 , first notice that for any i ∈ N and each h ∈ Nr

iτ
, for all τ =

2, 3 . . . , di − 2, r = 2, 3 . . . , di and τ = r − 2, there exists at least one j ∈ Nir , with Nh1 ∩ N j1 ⊆ Nr
iτ+1

,

for whom 1−αh(Biτ−1 ) ≥ αh(Nr
iτ+1

) ≥ αh(N j1 ) = αh(B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G). This implies

that if αh(Biτ−1 ) = αh(Nr
iτ−1

) > 1
2 for each h ∈ Nr

iτ
, for all τ = 2, 3 . . . , di − 2 and r = 2, 3 . . . , di ,

which would imply that minτ∈[2,di ] minl∈Niτ αl (Biτ−1 ) > 1
2 , then η(G) ≤ 1 − αh(Biτ−1 ) ≤ 1

2 .
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δi = inf

{

δ : ∀S⊆N\i∀ j∗∈S if
∑

j∈S gi j
∑

j �=i gi j
>

1

2
+ δ, then

∑
j∈S\ j∗ gi j

∑
j �=i gi j

≥ 1

2
− δ

}

(12)

If we label Ni , the first-order neighbours of player i ∈ N , as Ni = {1, 2, . . . , ni }, then
the set S satisfying (12) is such that when ni is even, S = {1, 2, . . . , ni

2 }, and when ni
is odd, S = {1, 2, . . . , � ni

2 �}. This implies that:

δi =
{
0 if ni is even
1
2ni

if ni is odd
(13)

where the equality for ni odd follows because when S = {1, 2, . . . , � ni
2 �}, we have

∑
j∈S gi j

∑
j �=i gi j

= � ni
2 �
ni

= 1

2
+ 2� ni

2 � − ni
2ni

= 1

2
+ 1

2ni

If we let δ0(G) be the size of the smallest odd neighbourhood in G31 so that
δ∗ = 1

2δ0(G)
, then the results in Peski (2010, Theorem 2 & Corollary 1) essentially

state that a p-dominant strategy is uniquely stochastically stable in network G if

p ≤ 1
2

(
1 − 1

δ0(G)

)
.32 Thus, these results depend solely on the size of the smallest

odd neighbourhood. Stated this way, the contrast with our results becomes apparent.
First, the results in Peski (2010) offer more accurate predictions for evolutionary

dynamics in densely connected networks (i.e. where δ0(G) is large)—bymore accurate
predictions we mean the upper bound of p at which a p-dominant strategy is uniquely
stochastically stable is as close to 1

2 as it can be for a given network. Our results instead
offer more accurate predictions in sparsely connected networks. For example, when
the smallest odd neighbourhood size is 3, Peski (2010, Theorem 2 and Corollary 1)
predicts that a 1

3 -dominant strategy is uniquely stochastically stable. However, in the
example of the network in Fig. 4 above with δ0(G) = 3, Theorem 1 predicts that
a 1

2 -dominant strategy is uniquely stochastically stable. Peski (2010, Theorem 2 and
Corollary 1) fails to predict the unique stochastically stable outcome in any unweighted
network containing at least one player with ni = 1. This is because for such networks,
δ0(G) = 1, and hence, p = 0. An example of such a network is depicted in Fig.

31 That is, if O is the set of all odd integers, then δ0(G) = mini∈N ;ni∈O ni
32 The proof of these results relies on the intuition that when p ≤ 1

2

(
1 − 1

δ0(G)

)
, then for every i ∈

N , �(1 − p)ni � > �pni �. That is, since (1 − p) ≥ 1 − 1
2

(
1 − 1

δ0(G)

)
= 1

2

(
1 + 1

δ0(G)

)
, we have

�(1 − p)ni � ≥ � 12
(
ni + ni

δ0(G)

)
� ≥ � 12 (ni + 1)�, where the last inequality follows because ni

δ0(G)
≥ 1.

Similarly, �pni � ≤ � 12
(
ni − ni

δ0(G)

)
� ≤ � 12 (ni − 1)�. Since � 12 (ni + 1)� > � 12 (ni − 1)�, it follows that

�(1 − p)ni � > �pni �. This inequality means that, if a ∈ A is a p-dominant strategy, then the number of
neighbours that must play strategies in A\a for the best response to be within A\a is strictly larger than the
number that must play a for a to be a best response. The implication is that the cost of reaching a from any
other configuration will be strictly smaller than the cost of reaching any other absorbing set from all other
configurations, which makes a uniquely stochastically stable.
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3 above, where Theorem 1 instead predicts that a 1
3 -dominant strategy is uniquely

stochastically stable.
Second, Theorem 1 establishes conditions under which the minumal p-best

response set are stochastically stable and not just p-dominant strategies. This gen-
eralization is important because games with a p-dominant strategy are an exception
rather than the rule. In the absence of a unique p-dominant strategy, the next best
option may be to isolate strategies that form the minimal p-best response set.

6 Concluding remarks

Evolutionary models with persistent randomness provide a framework for equilibrium
selection in games with multiple equilibria. These models employ stochastic stability
as a solution concept. However, recent developments have highlighted the lack of
robustness of stochastic stability to the interaction structure, to the extent that it fails
to distinguish between equilibria in 2 × 2 coordination games in some networks.

One approach that can lead to relatively robust predictions is to identify network
parameters and aggregatemeasures that determine the conditions underwhich stochas-
tically stable outcomes are unique. We adopt this approach and identify the contagion
threshold as one of such aggregate network measures. Network structures can then
be categorized based on their contagion thresholds and the predictions of stochastic
stability will be identical for networks with the same contagion threshold. We show
that, with mild restrictions on the network diameter and connectedness, strategies that
form the minimal p-best response set are uniquely stochastically stable in networks
with the contagion threshold of p.

The contagion threshold is just one among a potential list of network parameters and
aggregate measures that can robustly predict unique stochastically stable outcomes.
More research is thus needed to further explore the role of different network properties.
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AMatrix-based steps for computing the contagion threshold

The contagion threshold of a network can be computed through matrix-based rep-
resentation of networks. The network G(N , E) can be represented by an adjacency
matrix, which, with a slight abuse of notation, is here denoted by G. The adjacency
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matrix is a zero-one matrix with elements gi j = 1 if there is a link from i to j ,
and zero otherwise. Recall that the contagion thresholds is the minimum α j (Biτ−1)

over all j ∈ Niτ , τ = 2, . . . , di , and i ∈ N , where α j (Biτ−1) is the proportion of
player j’s neighbours that are contained in Biτ−1 . For τ = 2, 3, . . . , d(G), the val-
ues of α j (Biτ−1), for all j ∈ Niτ and i ∈ N , can be written in matrix form, here
denoted by W (τ ). That is, W (τ ) is a matrix with each element wi j (τ ) = α j (Biτ−1) if
j ∈ Niτ and zero otherwise. For this representation, the contagion threshold is given by
η(G) = mini∈N minτ∈[2,d(G)] min j �=i wi j (τ ). For any network with adjacency matrix
G, the corresponding W (τ ) matrices, for τ = 2, . . . , di , can be computed from G
through the following matrix-based algorithmic step. These algorithmic steps involve
matrix multiplication and addition, which makes them tractable – matrix multiplica-
tion can be executed in polynomial time of order three (Bini et al. 1979).

Let I denote the identity matrix, and D(G), or simply D where no confusion
arises, be the diagonal matrix with the diagonal elements being the number of direct
neighbours of each player. More precisely, if c is a column vector containing sums
of rows of G (i.e. ci = ∑

j∈N gi j for each i ∈ N ), then D(G) is a square matrix

whose diagonal is c and zero elsewhere. For any arbitrary matrix M , let M [1] be a
matrix derived from M by replacing all elements of M that are greater than one with
one, and let M [0] be a matrix derived from M by replacing all negative elements of
M with zero. These two matrix operations can be extended to sums and products of
matrices. For example, [H × M][1] is a matrix derived from the product H × M by
replacing all elements of H × M that are greater than one with one, and [H + M][1] is
a matrix derived from H +M by replacing all elements of H +M that are greater than
one with one. The third operator that we use in the computation of W (τ ) matrices is
RepZero[M; H ], which takes two equal-sized square matrices M and H , and replaces
the element mi j of M with zero if hi j = 0, otherwise mi j = mi j if hi j �= 0. For
τ = 2, 3, . . . d(G), each W (τ ) is computed as follows.

To computeW (2), first notice that the entries of G ×G are the number of two-step
paths leading up to a given node (i.e. the i j th entry of G × G is the number of paths
that start from i and end at j in two steps). Thus, if all elements of G × G that are
greater than one are replaced by 1, then the i j th element of [G × G][1] is one if j is
reachable in two steps from i , and zero otherwise. Note, however, that, for each i ∈ N ,
we aim to compute the values of α j (Bi1) for all j ∈ Ni2 , where Ni2 is the set of the
second-order neighbours of i (i.e. players that are two steps away from i and are not
contained in Bi1 ). Note also that the i j th element of matrix I + G is one if j is in
Bi1 and zero otherwise. Thus, if we subtract I + G from [G × G][1], we end up with
[[G × G][1] − (I + G)][0] whose i j th entry is equal to one if j is contained in Ni2
and zero otherwise. The i j th entry of G × G, which is the number of two-step paths
from i to j , is equal to the number of direct neighbours of j that are contained in Bi1 .
This implies that the i j th entry of RepZero

[
G ×G; [[G ×G][1] − (I +G)][0]] is the

number of neighbours of j ∈ Ni2 that are contained in Bi1 and zero otherwise. The
W (2) matrix is then equal to RepZero

[
G × G; [[G × G][1] − (I + G)][0]] with each

i j th entry normalized by the number of neighbours of j . That is

W (2) = RepZero
[
G × G; [[G × G][1] − (I + G)][0]] × D(G)−1
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The matrix W (3) is computed through the same steps above. To shorten notation,
let M(2) = [[G × G][1] − (I + G)][0]. The product M(2) × G is the number of
three-step paths between pairs of players (i.e. the i j th entry is the number of paths
that start from i and end at j in three steps); and the i j th element of [M(2) × G][1]
is one if j is reachable in three steps from i , and zero otherwise. The i j th element of
matrix I + G + M(2) is one if j is in Bi2 , and zero otherwise. Thus, the i j th entry of[[M(2) × G][1] − (I + G + M(2))

][0]
is equal to one if j ∈ Ni3 . The matrixW (3) is

then given by

W (3) = RepZero
[
M(2) × G;

[
[M(2) × G][1] − (I + G + M(2))

][0] ] × D(G)−1

Letting M(3) = [[M(2) × G][1] − (I + G + M(2))
][0]

, the product M(3) × G
is the number of four-step paths between pairs of players, so that the i j th entry of
[M(3) × G][1] is one if j is reachable in four steps from i , and zero otherwise. The
i j th element of matrix I +G + M(2)+ M(3) is one if j is in Bi3 , and zero otherwise.

Thus, the i j th entry of
[[M(3) × G][1] − (I + G + M(2) + M(3))

][0]
is equal to one

if j ∈ Ni4 . The matrix W (4) is then given by

W (4) = RepZero
[
M(3)

×G;
[
[M(3) × G][1] − (I + G + M(2) + M(3))

][0] ] × D(G)−1

Let M(τ ) =
[
[M(τ − 1) × G][1] − ∑τ−1

r=0 M(r)
][0]

, where M(0) = I and

M(1) = G. Then, following the same steps in the above iterative process, the W (τ )

matrix, for τ = 2, 3, . . . , d(G) is given by

W (τ ) = RepZero

[

M(τ − 1) × G;
[
[M(τ − 1) × G][1] −

τ−1∑

r=0

M(r)
][0]

]

× D(G)−1

B Proof of Lemma 2

To prove Lemma 2, we first show that the following relation holds.

min
r∈{τ,τ+1} min

j∈Bir
α j (Bir−1)

= min

{

min
j∈Niτ−1

α j (Biτ−1), min
j∈Niτ

α j (Biτ−1), min
j∈Niτ+1

α j (Biτ )

}

(14)

To prove (14), first notice that

min
r∈{τ,τ+1} min

j∈Bir
α j (Bir−1) = min

{

min
j∈Biτ

α j (Biτ−1), min
j∈Biτ+1

α j (Biτ )

}

. (15)

Second, since all direct neighbours of any h ∈ Biτ−2 are contained within Biτ−1 , it
follows that αh(Biτ−1) = 1 for all h ∈ Biτ−2 . And if τ + 1 ≤ di , so that Niτ+1 �= ∅,
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then there exists at least one k ∈ Niτ−1 ∪ Niτ with αk(Biτ−1) < 1, so that

min
j∈Biτ

α j (Biτ−1) = min
j∈Niτ−1∪Niτ

α j (Biτ−1)

= min

{

min
j∈Niτ−1

α j (Biτ−1), min
j∈Niτ

α j (Biτ−1)

}

(16)

Similarly, min j∈Biτ+1
α j (Biτ ) = min

{
min j∈Niτ

α j (Biτ ),min j∈Niτ+1
α j (Biτ )

}
.

Third, note that αk(Biτ ) ≥ αk(Biτ−1) for all k ∈ Niτ . This is because some of
the direct neighbours of k ∈ Niτ are contained within Niτ , and that Niτ ⊆ Biτ but
Niτ � Biτ−1 . This inequality implies that

min

{

min
j∈Biτ

α j (Biτ−1), min
j∈Biτ+1

α j (Biτ )

}

= min

{

min
j∈Niτ−1

α j (Biτ−1), min
j∈Niτ

α j (Biτ−1), min
j∈Niτ+1

α j (Biτ )

}

This proves Eq. (14).
Now, considering the minimum min j∈Bir α j (Bir−1) over all r = 3, . . . , di , it fol-

lows from (14) that

min
r∈[3,di ]

min
j∈Bir

α j (Bir−1) = min

{

min
j∈Ni2

α j (Bi2), min
r∈[3,di ]

min
j∈Nir

α j (Bir−1)

}

≥ min
r∈[2,di ]

min
j∈Nir

α j (Bir−1) (17)

where the inequality on the right hand side of (17) follows because αk(Bi2) ≥
αk(Bi1) for all k ∈ Ni2 . Thus, when minr∈[2,di ] min j∈Nir

α j (Bir−1) ≥ p, minr∈[3,di ]
min j∈Bir α j (Bir−1) ≥ p, and since Sτ ⊆ Biτ for all τ = 2, . . . , di , it follows that
for any sequence S3 ⊆ Bi3, . . . , Sdi ⊆ Bidi , αh(Sτ−1) ≥ p for each h ∈ Sτ and all
τ = 3, . . . , di .

It then remains to show that when minr∈[2,di ] min j∈Nir
α j (Bir−1) ≥ p, there

exists some S2 ⊆ Bi2 with αh(S1) = αh(B1) ≥ p for each h ∈ S2. Indeed, from

(16), we have min j∈Bi2 α j (Bi1) = min
{
min j∈Ni1

α j (Bi1),min j∈Ni2
α j (Bi1)

}
. Since

minr∈[2,di ] min j∈Nir
α j (Bir−1) ≥ p implies that min j∈Ni2

α j (Bi1) ≥ p, it follows that
there exists some subgroup of players S2, where N2 ⊆ S2 ⊆ Bi2 , with αh(B1) ≥ p
for each h ∈ S2.

Thus, when minr∈[2,di ] min j∈Nir
α j (Bir−1) ≥ p, for any i ∈ N , there exist

sequences of players, S1, S2, S3, . . . , St̄ , with S1 = Bi1 , S2 ⊆ Bi2 , S3 ⊆ Bi3, . . . , St̄ ⊆
Bit̄ , such that αh(Sτ−1) ≥ p for all h ∈ Sτ and all τ = 2, . . . , t̄ , where t̄ ≤ di .

C Proof of Theorem 1

Before deriving the upper bounds of the cordadius and modified coradius and the
lower bound of the radius of Ap, we first show in the following lemma that, for an
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undirected, unweighted and strongly connected network G, d(G) ≥ 7 implies that
di (G) ≥ 4 for all i ∈ N .

Recall that a directed path from i to j is a finite sequence (i1, i2, . . . , ir ), with
i = i1 and ir = j , that is connected through distinct directed links; di j is the length of
the maximum shortest path from i to j ; di = max j �=i di j is the length of the shortest
path from i to any other player; and d(G) = maxi∈N di is the diameter of G.

Lemma 3 Foranundirected, unweightedand strongly connectednetworkG, if d(G) ≥
7, then di ≥ 4 for all i ∈ N.

Proof We first show that, for an undirected, unweighted and strongly connected net-
work G, if d(G) is even, then di ≥ d(G)

2 for all i ∈ N , and if d(G) is odd, then

di ≥ d(G)+1
2 for all i ∈ N .

Consider any directed path that forms a diameter of G (there can be many such
paths), and label the elements along this path as i = i1, i2, . . . , id(G)+1 = j . Since
i, j ∈ N are the endpoints of this path, and thatG is strongly connected andundirected,
it follows that j ∈ Nidi

, i ∈ N jd j
and di j = di = d j = d(G). If d(G) is even, then

the distance (i.e. the number of steps) from i d(G)
2 +1 (the player at halfway point along

(i1, i2, . . . , id(G)+1)) to players i and j is exactly d(G)
2 , That is, di d(G)

2 +1
i = di d(G)

2 +1
j =

d(G)
2 . If d(G) is odd, then i d(G)+1

2
and i d(G)+3

2
are the players at halfway point along

i1, i2, . . . , id(G)+1. And the distances from i d(G)+1
2

to j and i d(G)+3
2

to i is exactly
d(G)+1

2 . That is, di d(G)+1
2

j = di d(G)+3
2

i = d(G)+1
2 .

This implies that for every player, h, along (i1, i2, . . . , id(G)+1), dh ≥ d(G)
2 when

d(G) is even, and dh ≥ d(G)+1
2 when d(G) is odd. And since the network is strongly

connected, there exists a shortest path connecting every other player, k �= h, that does
not lie along (i1, i2, . . . , id(G)+1), to some h along (i1, i2, . . . , id(G)+1). For all such
players, dk ≥ dkh + d(G)

2 if d(G) is even, and dk ≥ dkh + d(G)+1
2 if d(G) is odd. Thus,

when d(G) is even, di ≥ d(G)
2 for all i ∈ N , and when d(G) is odd, di ≥ d(G)+1

2 for
all i ∈ N , and hence, when d(G) ≥ 7, di ≥ 4 for all i ∈ N . ��

The upper bounds of the coradius andmodified coradius of Ap

We aim to show that, for the evolutionary processes (A,U , N ,G, P) and (A,U , N ,

G, Pε) on an undirected, unweighted and strongly connected G, if p ≤ η(G) and
d(G) ≥ 7, then CR(Ap) ≤ b1 and CR∗(Ap) ≤ b1, where b1 = mini∈N bi1 . The
proof follows in four steps. First, we show that when (A,U , N ,G, P) starts from any
x /∈ D(Ap), b1 mutations to strategies in Ap trigger either full contagion of these
strategies or an iterative process of best response where (A,U , N ,G, P) ultimately
converges to an absorbing cycle of states containing both strategies in Ap and A\Ap.

Second, for a scenario where b1 mutations to strategies in Ap fail to trigger full
contagion, (A,U , N ,G, P) converges to an absorbing cycleW ∈ C(A)where players
in N 3

i1
∪ Ni3 ∪ Ni5 ∪ . . .∪ Nidi

and i ∪ N 3
i2

∪ Ni4 ∪ Ni6 ∪ . . .∪ Nidi−1 alternate between
strategies in Ap and some strategies in A, and the rest play some strategies in A. Third,
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at most n∗
1 mutations to strategies in Ap sufficiently trigger an exit from the basin of

attraction of W ∈ C(A), so that C(W ,Ap) ≤ n∗
1. This implies that if the number of

mutations to strategies in A\Ap that trigger an exit from D(W ) is greater than n∗
1,

then R(W ) = C(W ,Ap).
Fourth, we show that in a scenario where the number of mutations to strategies in

A\Ap that trigger an exit from the basin of attraction ofW is less or equal to n∗
1, there

exists another absorbing cycleW ′ ∈ C(A) andW ′ �= W , where R(W ) = C(W ,W ′) ≤
n∗
1. For any such W ′ ∈ C(A), n41 mutations to strategies in Ap trigger an exit from
D(W ′) toAp, but n41 mutations to strategies in A\Ap cannot trigger exit from D(W ′),
which implies that R(W ′) = C(W ′,Ap) ≤ n41. Following the discussion in Sect. 4,
together with Eqs. (9) and (10), we then demonstrate that these four results imply that
CR(Ap) ≤ b1 and CR∗(Ap) ≤ b1.

Let (A,U , N ,G, P) start from any x /∈ D(Ap), and at t = 1, let all players in Bi1
of any i ∈ N mutate to strategies in Ap. Then from t = 2 onward, (A,U , N ,G, P)

evolves as follows, where we write i → A′ and N ′ → A′ to mean i and respectively
each player in N ′ plays a strategy in A′.

t = 1 Bi1 → Ap ; Ni2 ∪ Ni3 ∪ . . . ∪ Nidi
→ A.

t = 2 i ∪ Ni2 → Ap , where i plays a strategy in Ap because all j ∈ Ni1 play strategies in Ap at t = 1.
Players in Ni2 play strategies in Ap because each h ∈ Ni2 has αh(Bi1 ) ≥ η(G) ≥ p, and that

all j ∈ Ni1 play strategies in Ap at t = 1. Note that no h ∈ N3
i2

will play a strategy in A\Ap

even if all players in Ni2 and Ni3 play strategies in A\Ap at t = 1. This is because for each

h ∈ N3
i2
, αh(Bi1 ) ≥ η(G) ≥ p implies that

(1 − p) ≥ (1 − η(G)) ≥ (1 − αh(Bi1 )) = αh(Ni2 ∪ Ni3 ). Since (1 − p) ≥ αh(Ni2 ∪ Ni3 ),
strategies in A\Ap are not best responses to any such h because they are best responses only
when played by more than proportion 1− p of neighbours. Ni1 ∪ Ni3 ∪ Ni4 ∪ . . . ∪ Nidi

→ A.

Note, however, that some players in Ni1 will play strategies in Ap ; for example, all j ∈ N̄2
i1

(i.e. all j ∈ Ni1 with N j1 ∩ Ni2 = ∅) play strategies in Ap because each has all their direct
neighbours within Bi1 , all of whom play strategies in Ap at t = 1. But since Ap ⊂ A, we
simply write Ni1 → A. Moreover, for the rest of the remaining analysis, it is sufficient to only

keep track of the strategies played by the players in i, N3
i1

, N4
i1

, N3
i2

, N4
i2

, Ni3 , Ni4 , . . . , Nidi
.

t = 3 N3
i1

∪ Ni3 → Ap . All h ∈ N3
i1

play strategies in Ap because, firstly, each has at least one

second-order neighbours in Ni3 (i.e. Nh2 ∩ Ni3 �= ∅). This implies that, for each h ∈ N3
i1
, there

exists some j ∈ Ni3 with Nh1 ∩ N j1 = Nh1 ∩ B j1 �= ∅ and Nh1 ∩ N j1 ⊆ N3
i2

(i.e. all direct

neighbours of h ∈ N3
i1

that are also direct neighbours of j ∈ Ni3 are contained within N3
i2
). It

then follows that αh(N3
i2

) ≥ αh(N j1 ) = αh(B j1 ) ≥ mink∈N j2
αk (B j1 ) ≥ η(G) ≥ p. The first

inequality, αh(N3
i2

) ≥ αh(N j1 ), holds because, if there is more than one j ∈ Ni3 , then for each

h ∈ N3
i1
, it is not necessary for all Nh1 ⊂ N3

i2
(i.e. direct neighbours of h that are contained in

Ni2 ) to also be contained in N j1 . Secondly, since all players in N3
i2

⊆ Ni2 play strategies in Ap

at t = 2, and by the above inequality, αh(N3
i2

) ≥ η(G) ≥ p for each h ∈ N3
i1
, strategies in Ap

are best responses to all h ∈ N3
i1
. All players in Ni3 play strategies in Ap because each l ∈ Ni3

has αl (Ni2 ) = αl (Bi2 ) ≥ η(G) ≥ p and all players in Ni2 play strategies in Ap at t = 2.

i ∪ N̄3
i1

∪ Ni2 ∪ Ni4 ∪ Ni5 ∪ . . . ∪ Nidi
→ A.
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t = 4 i ∪ N3
i2

∪ Ni4 → Ap . Player i plays a strategy in Ap because for each j ∈ N3
i2
, Ni1 ∩ N j1 ⊆ N3

i1
(i.e. all direct neighbours of j ∈ N3

i2
that are also direct neighbours of i are contained within

N3
i1
). This implies that, for any j ∈ N3

i2
,

αi (N
3
i1

) ≥ αi (N j1 ) = αi (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. And since all players in N3

i1
play strategies in Ap at t = 3, it follows that a strategy in Ap is a best response to player i .
Players in N3

i2
play strategies in Ap for the similar reason. That is, for each k ∈ N3

i2
,

Nk1 ∩ Ni1 ⊆ N3
i1
, which implies that αk (N

3
i1

) = αk (Ni1 ) = αk (Bi1 ) ≥ η(G) ≥ p, and hence,

strategies in Ap are best responses to all k ∈ N3
i2
. Players in Ni4 play strategies in Ap because

each l ∈ Ni4 has αl (Ni3 ) = αl (Bi3 ) ≥ η(G) ≥ p, and that all players in Ni3 play strategies in

Ap at t = 3. Ni1 ∪ N̄3
i2

∪ Ni3 ∪ Ni5 ∪ Ni6 ∪ . . . ∪ Nidi
→ A.

t = 5 N3
i1

∪ Ni3 ∪ Ni5 → Ap . Players in N3
i1

∪ Ni3 play strategies in Ap for the same reasons outlined

in t = 3 above. Players in Ni5 play strategies in Ap because each l ∈ Ni5 has
αl (Ni4 ) = αl (Bi4 ) ≥ η(G) ≥ p, and that all players in Ni4 play strategies in Ap at t = 4.

i ∪ N̄3
i1

∪ Ni2 ∪ Ni4 ∪ Ni6 ∪ Ni7 ∪ . . . ∪ Nidi
→ A.

t = 6 Following the same steps above, i ∪ N3
i2

∪ Ni4 ∪ Ni6 → Ap .

Ni1 ∪ N̄3
i2

∪ Ni3 ∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
→ A.

t = 7 N3
i1

∪ Ni3 ∪ Ni5 ∪ Ni7 → Ap . i ∪ N̄3
i1

∪ Ni2 ∪ Ni4 ∪ Ni6 ∪ Ni7 ∪ . . . ∪ Nidi
→ A.

-- ———————————-
t = di If di is an odd number, then: N3

i1
∪ Ni3 ∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi

→ Ap

i ∪ N̄3
i1

∪ Ni2 ∪ Ni4 ∪ Ni6 ∪ Ni8 ∪ . . . ∪ Nidi−1 → A. If di is an even number, then:

i ∪ N3
i2

∪ Ni4 ∪ Ni6 ∪ Ni8 ∪ . . . ∪ Nidi
→ Ap .

Ni1 ∪ N̄3
i2

∪ Ni3 ∪ Ni5 ∪ Ni7 ∪ Ni9 ∪ . . . ∪ Nidi−1 → A.

Thus, from t = di iterations onward, if di ≥ 3, then the iterative process will
converge to either an absorbing state/cycle containing only strategies in Ap, or to
an absorbing cycle containing both strategies in Ap and some strategies in A\Ap.
Specifically, if players in i ∪ N̄ 3

i1
∪ Ni2 ∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 , for di odd, and

players in Ni1 ∪ N̄ 3
i2

∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi−1 , for di even, all play strategies in
Ap ⊂ A after t = di iterations, then (A,U , N ,G, P) converges to an absorbing
set containing only strategies in Ap. For this scenario, bi1 mutations, for any i ∈ N ,
to strategies in Ap sufficiently trigger evolution from any x /∈ D(Ap) to Ap so that
CR(Ap) = maxx/∈D(Ap) C(x,Ap) ≤ b1.

We use the following definitions and notation in the following steps where we
examine the evolution of (A,U , N ,GP) out of absorbing cycles containing both
strategies in Ap and some strategies in A\Ap.

N̄r
i1

[Nr
i1

] For r = 3, 4, . . . , di , N̄
r
i1

[Nr
i1

] is the set of players in N̄r
i1

(i.e. the set of

players in Ni1 that are not contained in Nr
i1
) that are one step away from

at least one player in Nr
i1
. That is, for each j ∈ N̄r

i1
[Nr

i1
], there exists at

least one h ∈ Nr
i1

where j ∈ Nh1 . For example, in the network of Fig. 6,

N̄3
11

[N3
11

] = {7}
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Fig. 6 For player 1, the above
defined subsets have the
following composition:
N3
11

= {2, 13}; N̄3
11

[N3
11

] = {7};
N̄3
12

[N3
11

] = {3, 14}; and
N̄4
12

[N4
11

] = {14}

12

3

4
5

6

7 8

9

10

11 12

13
14

15
16

17

1819

N̄r
i2

[Nr
i2

] N̄r
i2

[Nr
i1

] For r = 3, 4, . . . , di , N̄
r
i2

[Nr
i2

] is the set of players in N̄r
i2

that are one step

away from at least one player in Nr
i2
. That is, for each j ∈ N̄r

i2
[Nr

i2
],

there exists at least one h ∈ Nr
i2

where j ∈ Nh1 . For example, in the

network of Fig. 6, N̄3
12

[N3
12

] = {3}. Similarly, N̄r
i2

[Nr
i1

] is the set of
players in N̄r

i2
that are one step away from at least one player in Nr

i1
.

That is, for each j ∈ N̄r
i2

[Nr
i1

], there exists at least one h ∈ Nr
i1

where

j ∈ Nh1 . For example, in the network of Fig. 6, N̄3
12

[N3
11

] = {3, 14}.
N̄r
i1

[N̄r
i1

[Nr
i1

]] For r = 3, 4, . . . , di , N̄
r
i1

[N̄r
i1

[Nr
i1

]] is the set of players in N̄r
i1

that are one

step away from at least one player in i ∪ N̄r
i1

[Nr
i1

]. That is, for each
j ∈ N̄r

i1
[N̄r

i1
[Nr

i1
]], where j ∈ N̄r

i1
but j /∈ i ∪ N̄r

i1
[Nr

i1
], there exists at

least one h ∈ i ∪ N̄r
i1

[Nr
i1

] where j ∈ Nh1 . For example, in the network

of Fig. 6, N̄3
11

[N̄3
11

[N3
11

]] = {8, 10}.

Now, let W ∈ C(Ap) be an absorbing cycle where players in N 3
i1

∪ Ni3 ∪ Ni5 ∪
. . . ∪ Nidi

and i ∪ N 3
i2

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 alternate between strategies in Ap

and some strategies in A, and the rest play some strategies in A. More specifically,
consider any two configurations y, z ∈ W ∈ C(Ap)with P(y, z) = 1, where y consist
of all players in N 3

i1
∪ Ni3 ∪ Ni5 ∪ . . .∪ Nidi

playing strategies in Ap, and all players in

i∪ N̄ 3
i1

∪Ni2 ∪Ni4 ∪Ni6 ∪ . . .∪Nidi−1 play strategies in A; and configuration z consists
of all players in i ∪ N 3

i2
∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 playing strategies in Ap, while all

players in Ni1 ∪ N̄ 3
i2

∪ Ni3 ∪ Ni5 ∪ . . .∪ Nidi
play strategies in A. Let (A,U , N ,G, P)

start from y, and let all players in Nr
i1
, for 4 ≤ r ≤ di , mutate to strategies in Ap at

t = 1. Then for di1 ≥ 4, (A,U , N ,G, P) evolves from t = 1 onward as follows:

123



p-dominance and stochastic stability in network games 343

t = 1 i ∪ Nr
i1

∪ N3
i2

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → Ap ; N̄r
i1

∪ N̄3
i2

∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
→ A.

t = 2 i ∪ N3
i1

∪ Nr
i2

∪ N̄3
i2

[N3
i2

] ∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
→ Ap . Player i plays a strategy in Ap

because for each k ∈ Nr
i2
, Nk1 ∩ Ni1 ⊆ Nr

i1
, which implies that, for any k ∈ Nr

i2
,

αi (N
r
i1

) ≥ αi (Nk1 ) = αi (Bk1 ) ≥ minl∈Nk2
αl (Bk1 ) ≥ η(G) ≥ p. And since all players in

Nr
i1

play strategies in Ap at t = 1, a strategy in Ap must be a best response to player i .

Players in N3
i1

play strategies in Ap because for each k ∈ N3
i1
, there exists at least one

j ∈ Ni3 with Nk1 ∩ N j1 ⊆ N3
i2
, which implies that

αk (N
3
i2

) ≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. And since all players in

N3
i2

play strategies in Ap at t = 1, strategies in Ap are best responses to all k ∈ N3
i1
. Players

in Nr
i2

play strategies in Ap because for each k ∈ Nr
i2
, Nk1 ∩ Ni1 ⊆ Nr

i1
, which implies that

αk (N
r
i1

) = αk (Ni1 ) = αk (Bi1 ) ≥ η(G) ≥ p. And since all players in Nr
i1

play strategies in

Ap at t = 1, strategies in Ap are best responses to all k ∈ Nr
i2
. To see why players in

N̄3
i2

[N3
i2

] play strategies in Ap , first observe that no k ∈ N̄3
i2

[N3
i2

] is a direct neighbour of
any j ∈ Ni3 . That is, if k ∈ N̄3

i2
[N3

i2
], then k /∈ N j1 for all j ∈ Ni3 . This observation implies

that, for each k ∈ N̄3
i2

[N3
i2

], there exists at least one j ∈ Ni3 where Nk1 ∩ N j1 ⊆ N3
i2
, so

that αk (N
3
i2

) ≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p, and hence,

strategies in Ap are best responses. Players in Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
play strategies in Ap

because each h ∈ Ni3 and l ∈ Nir , for r = 5, 7, . . . , di , has

αh(N3
i2

) = αh(Ni2 ) = αh(Bi2 ) ≥ η(G) ≥ p and αl (Nir−1 ) = αl (Bir−1 ) ≥ η(G) ≥ p

respectively. Since all players in N3
i2

and Nir−1 , for all r = 5, 7, . . . , di , play strategies in

Ap at t = 1, strategies in Ap are best responses to all players in Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
.

Finally N̄3
i1

∪ N̄r
i2

\N̄3
i2

[N3
i2

] ∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → A.

t = 3 i ∪ Nr
i1

∪ N̄3
i1

[N3
i1

] ∪ N3
i2

∪ N̄3
i2

[N3
i1

]\
{
N̄3
i2

[N3
i1

] ∩ N̄3
i2

[N3
i2

]
}

∪ N̄3
i2

[Nr
i2

] ∪ Nr
i3

∪ Ni4 ∪
Ni6 ∪ . . . ∪ Nidi−1 → Ap . Players in i ∪ Nr

i1
∪ N3

i2
∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 all play

strategies in Ap for the same reasons outlined in t = 2 above. To see why players in

N̄3
i1

[N3
i1

] ∪ N̄3
i2

[N3
i1

]\
{
N̄3
i2

[N3
i1

] ∩ N̄3
i2

[N3
i2

]
}
play strategies in Ap , first observe that for

each k ∈ N̄3
i1

[N3
i1

] ∪ N̄3
i2

[N3
i1

]\
{
N̄3
i2

[N3
i1

] ∩ N̄3
i2

[N3
i2

]
}
, where k /∈ N̄3

i2
[N3

i2
], and any

j ∈ N3
i2
, we have Nk1 ∩ N j1 ⊆ N3

i1
∪ N̄3

i2
[N3

i2
] (i.e., all direct neighbours of any

k ∈ N̄3
i1

[N3
i1

] ∪ N̄3
i2

[N3
i1

], that are also direct neighbours of some j ∈ N3
i2
, are contained

within N3
i1

∪ N̄3
i2

[N3
i2

]). This implies that for each

k ∈ N̄3
i1

[N3
i1

] ∪ N̄3
i2

[N3
i1

]\
{
N̄3
i2

[N3
i1

] ∩ N̄3
i2

[N3
i2

]
}
, there exists at least one j ∈ N3

i2
such

that αk
(
N3
i1

∪ N̄3
i2

[N3
i2

]
)

≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. And

since all players in N3
i1

∪ N̄3
i2

[N3
i2

] play strategies in Ap at t = 2, strategies in Ap are best

responses to all k ∈ N̄3
i1

[N3
i1

] ∪ N̄3
i2

[N3
i1

]\
{
N̄3
i2

[N3
i1

] ∩ N̄3
i2

[N3
i2

]
}
. Players in N̄3

i2
[Nr

i2
]

play strategies in Ap because, firstly, no k ∈ N̄3
i2

[Nr
i2

] is a direct neighbour of any j ∈ Nr
i3
.

That is, if k ∈ N̄3
i2

[Nr
i2

], then k /∈ N j1 for all j ∈ Nr
i3
. This observation implies that, for

each k ∈ N̄3
i2

[Nr
i2

], there exists at least one j ∈ Nr
i3

where Nk1 ∩ N j1 ⊆ Nr
i2
, so that

αk (N
r
i2

) ≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. Secondly, since all

players in Nr
i2

play strategies in Ap at t = 2, strategies in Ap are best responses to all

k ∈ N̄3
i2

[Nr
i2

]. Players in Nr
i3

play strategies in Ap because for each
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h ∈ Nr
i3
, Nh1 ∩ Ni2 ⊆ Nr

i2
, which implies that αh(Nr

i2
) = αh(Ni2 ) = αh(Bi2 ) ≥ η(G) ≥ p.

And since all players in Nr
i2

play strategies in Ap at t = 2, strategies in Ap are best

responses to all h ∈ Nr
i3
.

{
N̄r
i1

\N̄3
i1

[N3
i1

]
}

∪ N̄3
i2

\
{
N̄3
i2

[Nr
i2

] ∪ N̄3
i2

[N3
i1

]\
{
N̄3
i2

[N3
i1

] ∩ N̄3
i2

[N3
i2

]
}}

∪ N̄r
i3

∪ Ni5 ∪
Ni7 ∪ . . . ∪ Nidi

→ A.

t = 4 i∪Ni1 ∪Nr
i2

∪ N̄3
i2

[N3
i2

]∪ N̄3
i2

[Nr
i1

]\
{
N̄3
i2

[N3
i1

] ∩ N̄3
i2

[Nr
i2

]
}
∪Ni3 ∪Ni5 ∪Ni7 ∪ . . .∪Nidi

→
Ap . Players in

i ∪ Nr
i2

∪ N̄3
i2

[N3
i2

] ∪ N̄3
i2

[Nr
i1

]\
{
N̄3
i2

[N3
i1

] ∩ N̄3
i2

[Nr
i2

]
}

∪ Ni3 ∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
all

play strategies in Ap for the same reasons outlined in t = 2 and t = 3 above. To see why all
players in Ni1 play strategies in Ap , first notice that N3

i1
∪ N̄3

i1
[N3

i1
]∪ N̄3

i1
[N̄3

i1
[N3

i1
]] = Ni1 ;

and similarly, Nr
i1

∪ N̄r
i1

[Nr
i1

] ∪ N̄r
i1

[N̄r
i1

[Nr
i1

]] = Ni1 . Now, players in N3
i1

play strategies

in Ap for the same reasons outlined in t = 2. Players in N̄r
i1

[Nr
i1

] play strategies in Ap

because, firstly, for each k ∈ N̄r
i1

[Nr
i1

], and any j ∈ Nr
i2
, we have

Nk1 ∩ N j1 ⊆ Nr
i1

∪ N̄r
i2

[Nr
i2

], where N̄r
i2

[Nr
i2

] ⊆ N̄3
i2

[Nr
i2

] ∪ N3
i2

\Nr
i2
. This implies that

for each k ∈ N̄r
i1

[Nr
i1

], there exists at least one j ∈ Nr
i2

such that

αk

(
Nr
i1

∪ N̄r
i2

[Nr
i2

]
)

≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. Secondly,

since all players in Nr
i1

∪ N̄r
i2

[Nr
i2

] play strategies in Ap at t = 3, strategies in Ap are best

responses to all k ∈ N̄r
i1

[Nr
i1

]. Players in N̄3
i1

[N̄3
i1

[N3
i1

]] play strategies in Ap because,

firstly, each k ∈ N̄3
i1

[N̄3
i1

[N3
i1

]] is not directly connected to any player in N3
i1
, but there

exists at least one j ∈ N3
i1

where Nk1 ∩ N j1 ⊆ N̄3
i1

[N3
i1

] ∪ N̄3
i2

[N3
i1

]. This implies that for

each k ∈ N̄3
i1

[N̄3
i1

[N3
i1

]], there exists at least one j ∈ N3
i1

where

αk

(
N̄3
i1

[N3
i1

] ∪ N̄3
i2

[N3
i1

]
)

≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p.

Secondly, since all players in N̄3
i1

[N3
i1

] ∪ N̄3
i2

[N3
i1

] play strategies in Ap at t = 3, strategies

in Ap are best responses to all k ∈ N̄3
i1

[N̄3
i1

[N3
i1

]]. Finally, since Nr
i1

⊆ N3
i1

and

N̄r
i1

[N̄r
i1

[Nr
i1

]] ⊆ N̄3
i1

[N̄3
i1

[N3
i1

]] ∪ N3
i1

\Nr
i1
, it follows that all players in

Nr
i1

∪ N̄r
i1

[Nr
i1

] ∪ N̄r
i1

[N̄r
i1

[Nr
i1

]] = Ni1 play strategies in Ap at t = 4.

N̄r
i2

\
{
N̄3
i2

[N3
i2

] ∪ N̄3
i2

[Nr
i1

]\
{
N̄3
i2

[N3
i1

] ∩ N̄3
i2

[Nr
i2

]
}}

∪Ni4∪Ni6∪Ni8∪. . .∪Nidi−1 → A.

t = 5 i ∪ Ni1 ∪ Ni2 ∪ Nr
i3

∪ Ni4 ∪ Ni6 ∪ Ni8 ∪ . . . ∪ Nidi−1 → Ap . Players in

i ∪ Ni1 ∪ Nr
i3

∪ Ni4 ∪ Ni6 ∪ Ni8 ∪ . . . ∪ Nidi−1 all play strategies in Ap for the same

reasons outlined in t = 2, t = 3 and t = 4 above. Players in Ni2 play strategies in Ap

because each k ∈ Ni2 has αk (Bi1 ) ≥ η(G) ≥ p, and that all players in Bi1 = i ∪ Ni1 play

strategies in Ap at t = 4. N̄r
i3

∪ Ni5 ∪ Ni7 ∪ Ni9 ∪ . . . ∪ Nidi
→ A.

t = 6 Bi1 ∪ Ni2 ∪ Ni3 ∪ Ni5 ∪ Ni7 ∪ Ni9 ∪ . . . ∪ Nidi
→ Ap .

Ni4 ∪ Ni6 ∪ Ni8 ∪ Ni10 ∪ Ni12 ∪ . . . ∪ Nidi−1 → A.

t = 7 Bi4 ∪ Ni6 ∪ Ni8 ∪ . . . ∪ Nidi−1 → Ap . Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
→ A.

−− ———————————————————————————————————–
t = di + 2 Bidi−1 → Ap ; and Nidi

→ A.

t = di + 3 Bidi
= N → Ap .
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Thus, nri1 mutations to strategies in Ap sufficiently trigger an exit from the basin of
attraction of W ∈ C(A) to Ap. Since this holds for all i ∈ N , it follows that n∗

1 ≤ nr1
mutations to strategies in Ap also sufficiently trigger an exit from D(W ) to Ap, so
that C(W ,Ap) ≤ n∗

1.

Now, consider again the two configurations y, z ∈ W ∈ C(A) defined above, and
let y be a subsequent configuration to z so that P(z, y) = 1. Let (A,U , N ,G, P) start
from z at t = 0, and let a subset of players Sri1 ⊆ Nr

i1
, for 4 ≤ r ≤ di , mutate to

strategies in A\Ap at t = 1. Given that di ≥ 4 for all i ∈ N , (A,U , N ,G, P) evolves
from t = 1 onward as follows.

t = 1 N3
i1

\Sri1 ∪ Ni3 ∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
→ Ap . Sri1

→ A\Ap .

i ∪ N̄3
i1

∪ Ni2 ∪ Ni4 ∪ . . . ∪ Nidi−1 → A.

t = 2 N4
i2

∪ Ni4 ∪ Ni6 ∪ Ni8 ∪ . . . ∪ Nidi−1 → Ap . Players in N4
i2

play strategies in Ap

because for each k ∈ N4
i2
, there exists at least one j ∈ Ni4 with Nk1 ∩ N j1 ⊆ N4

i3
,

which implies thatαk (N
4
i3

) ≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p.

And since all players in N4
i3

⊆ Ni3 play strategies in Ap at t = 1, strategies in Ap are

best responses to all k ∈ N4
i2
. Players in Ni4 play strategies in Ap because for each

k ∈ Ni4 , αk (N
4
i3

) = αk (Bi3 ) ≥ η(G) ≥ p. And since all players in N4
i3

⊆ Ni3 play

strategies in Ap at t = 1, strategies in Ap are best responses to all k ∈ Ni4 .

i ∪ Ni1 ∪ N̄4
i2

∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
→ A. Players in Ni1 , including players in Sri1

,

play strategies in A because they are surrounded by direct neighbours in
i ∪ Sri1

∪ N̄3
i1

∪ Ni2 that all play strategies in A at t = 1. Similarly, there is no guarantee

that players in N̄4
i2
, or even players in N3

i2
\N4

i2
, will play strategies in Ap . For example,

all players in N̄4
i2

[N4
i1

] play strategies in A because, although all their direct neighbours

in Ni3 ∪ N3
i1

\N4
i1

play strategies in Ap at t = 1, all their direct neighbours in N4
i1

play

strategies in A\Ap .
t = 3 N4

i1
∪ N4

i3
∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi

→ Ap . Players in N4
i1

play strategies in Ap because

for each k ∈ N4
i1
, there exists at least one j ∈ N4

i3
with Nk1 ∩ N j1 ⊆ N4

i2
, which

implies that αk (N
4
i2

) ≥ αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. And since all

players in N4
i2

play strategies in Ap at t = 2, strategies in Ap are best responses to all

k ∈ N4
i1
. All k ∈ N4

i3
play strategies in Ap because each has

αk (N
4
i2

) = αk (Bi2 ) ≥ η(G) ≥ p, and that all players in N4
i2

play strategies in Ap at

t = 2. i ∪ N̄4
i1

∪ Ni2 ∪ N̄4
i3

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → A.

t = 4 i ∪ N4
i2

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → Ap . Player i plays a strategy in Ap because for

each k ∈ N4
i2
, Nk1 ∩ Ni1 ⊆ N4

i1
, which implies that, for any k ∈ N4

i2
,

αi (N
4
i1

) ≥ αi (Bk1 ) ≥ η(G) ≥ p. And since all players in N4
i1

play strategies in Ap at

t = 1, a strategy in Ap must be a best response to player i . All k ∈ N4
i2

play strategies in

Ap because each has αk (N
4
i1

) = αk (Bi1 ) ≥ η(G) ≥ p, and that all players in N4
i1

play

strategies in Ap at t = 3. Ni1 ∪ N̄4
i2

∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
→ A.

t = 5 N4
i1

∪ N4
i3

∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
→ Ap .

i ∪ N̄4
i1

∪ Ni2 ∪ N̄4
i3

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → A.
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Thus, if (A,U , N ,G, P) exits the basin of attraction of W after less or equal to n∗
1

mutations (i.e., after a subset of players in Nr
i1
, for any i ∈ N , mutate) to strategies

in A\Ap, then it converges to an absorbing cycle, W ′ ∈ C(Ap), where players in
N 4
i1

∪ N 4
i3

∪ Ni5 ∪ . . . ∪ Nidi
and i ∪ N 4

i2
∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 alternate between

strategies in Ap and some strategies in A, and the rest play some strategies in A.
Depending on the network structure (e.g., when N 3

i1
= N 4

i1
, N 3

i2
= N 4

i2
and Ni3 = N 4

i3
),

it is also possible that (A,U , N ,G, P) will revert to W ∈ C(Ap), an absorbing cycle
where players in N 3

i1
∪Ni3∪Ni5∪. . .∪Nidi

and i∪N 3
i2

∪Ni4∪Ni6∪. . .∪Nidi−1 alternate
between strategies in Ap and some strategies in A, in which case R(W ) = C(W ,Ap)

(see the above discussion).
Now, let u, v ∈ W ′ ∈ C(Ap), with P(u, v) = 1, be two subsequent configurations

where u consist of all players in N 4
i1

∪ N 4
i3

∪ Ni5 ∪ . . . ∪ Nidi
playing strategies in Ap,

and all players in i ∪ N̄ 4
i1

∪ Ni2 ∪ N̄ 4
i3

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 play strategies in A;

and configuration v consists of all players in i ∪ N 4
i2

∪ Ni4 ∪ Ni6 ∪ . . .∪ Nidi−1 playing

strategies in Ap, while all players in Ni1 ∪ N̄ 4
i2

∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
play strategies

in A. Let (A,U , N ,G, P) start from u, and let all players in N 4
i1
, mutate to strategies

in Ap at t = 1. Then (A,U , N ,G, P) evolves from t = 1 onward as follows:

t = 1 i ∪ N4
i1

∪ N4
i2

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → Ap ;

N̄4
i1

∪ N̄4
i2

∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
→ A.

t = 2 i ∪ N4
i1

∪ N4
i2

∪ N4
i3

∪ Ni5 ∪ . . . ∪ Nidi
→ Ap . Player i plays a strategy in Ap because

for each k ∈ N4
i2
, Nk1 ∩ Ni1 ⊆ N4

i1
, which implies that, for any k ∈ N4

i2
,

αi (N
4
i1

) ≥ αi (Nk1 ) = αi (Bk1 ) ≥ minl∈Nk2
αl (Bk1 ) ≥ η(G) ≥ p. And since all

players in N4
i1

play strategies in Ap at t = 1, a strategy in Ap must be a best response to

player i . Players in N4
i1

play strategies in Ap because for each k ∈ N4
i1
, there exists at

least one j ∈ N4
i3

with Nk1 ∩ N j1 ⊆ N4
i2
, which implies that

αk (N
4
i2

) ≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. And since all

players in N4
i2

play strategies in Ap at t = 1, strategies in Ap are best responses to all

k ∈ N4
i1
. Players in N4

i2
play strategies in Ap because for each k ∈ N4

i2
,

Nk1 ∩ Ni1 ⊆ N4
i1
, which implies that αk (N

4
i1

) = αk (Ni1 ) = αk (Bi1 ) ≥ η(G) ≥ p. And

since all players in N4
i1

play strategies in Ap at t = 1, strategies in Ap are best

responses to all k ∈ N4
i2
. Similarly, players in N4

i3
play strategies in Ap because for each

k ∈ N4
i3
, Nk1 ∩ Ni2 ⊆ N4

i2
, which implies that αk (N

4
i2

) = αk (Bi2 ) ≥ η(G) ≥ p. And

since all players in N4
i2

play strategies in Ap at t = 1, strategies in Ap are best

responses to all k ∈ N4
i3
. Players in Ni5 ∪ Ni7 ∪ . . . ∪ Nidi

play strategies in Ap

because each l ∈ Nir , for r = 5, 7, . . . , di , has αl (Nir−1 ) = αl (Bir−1 ) ≥ η(G) ≥ p.
And since all players in Nir−1 , for all r = 5, 7, . . . , di , play strategies in Ap at t = 1,
strategies in Ap are best responses to all players in Ni5 ∪ Ni7 ∪ . . . ∪ Nidi

.

N̄4
i1

∪ N̄4
i2

∪ N̄4
i3

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → A.
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t = 3 i ∪ N4
i1

∪ N4
i2

∪ N4
i3

∪ N̄4
i3

[N4
i3

] ∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → Ap . Players in

i ∪ N4
i1

∪ N4
i2

∪ N4
i3

∪ Ni6 ∪ . . . ∪ Nidi−1 play strategies in Ap for the same reasons

outlined in t = 2. To see why players in N̄4
i3

[N4
i3

] play strategies in Ap , first observe

that no k ∈ N̄4
i3

[N4
i3

] is a direct neighbour of any j ∈ Ni4 . This observation implies that,

for each k ∈ N̄4
i3

[N4
i3

], there exists at least one j ∈ Ni4 where Nk1 ∩ N j1 ⊆ N4
i3
, so that

αk (N
4
i3

) ≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. Secondly, since all

players in N4
i3

play strategies in Ap at t = 2, strategies in Ap are best responses to all

k ∈ N̄4
i3

[N4
i3

]. Similarly, players in Ni4 all play strategies in Ap because for each

k ∈ Ni4 , Nk1 ∩ Ni3 ⊆ N4
i3
, which implies that αh(N4

i3
) = αh(Bi3 ) ≥ η(G) ≥ p.

N̄4
i1

∪ N̄4
i2

∪
{
N̄4
i3

\N̄4
i3

[N4
i3

]
}

∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
→ A.

t = 4 i∪N4
i1

∪N4
i2

∪ N̄4
i2

[N4
i2

]∪N4
i3

∪ N̄4
i3

[N4
i3

]∪ N̄4
i3

[N4
i2

]∪Ni4 ∪Ni5 ∪Ni7 ∪ . . .∪Nidi
→ Ap .

Players in i ∪ N4
i1

∪ N4
i2

∪ N4
i3

∪ N̄4
i3

[N4
i3

] ∪ Ni4 ∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
play

strategies in Ap for the same reasons outlined in t = 2 and t = 3. Players in N̄4
i2

[N4
i2

]
and N̄4

i3
[N4

i2
]\

{
N̄4
i3

[N4
i2

] ∩ N̄4
i3

[N4
i3

]
}
play strategies in Ap because for each

k ∈ N̄4
i2

[N4
i2

] ∪ N̄4
i3

[N4
i2

]\
{
N̄4
i3

[N4
i2

] ∩ N̄4
i3

[N4
i3

]
}
, there exists at least one j ∈ N4

i3
with Nk1 ∩ N j1 �= ∅. For any j ∈ N4

i3
satisfying the preceding property,

Nk1 ∩ N j1 ⊆ N4
i2

∪ N̄4
i3

[N4
i3

], which implies that

αk

(
N4
i2

∪ N̄4
i3

[N4
i3

]
)

≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. And

since all players in N4
i2

∪ N̄4
i3

[N4
i3

] play strategies in Ap at t = 3, strategies in Ap are

best responses to all players in N̄4
i2

[N4
i2

] and N̄4
i3

[N4
i2

]\
{
N̄4
i3

[N4
i2

] ∩ N̄4
i3

[N4
i3

]
}
.

N̄4
i1

∪
{
N̄4
i2

\N̄4
i2

[N4
i2

]
}
∪

{
N̄4
i3

\
{
N̄4
i3

[N4
i2

] ∪ N̄4
i3

[N4
i3

]
}}

∪Ni6∪Ni8∪. . .∪Nidi−1 → A.

t = 5 i ∪ N4
i1

∪ N̄4
i1

[N4
i1

] ∪ N4
i2

∪ N̄4
i2

[N4
i2

] ∪ N̄4
i2

[N4
i1

] ∪ N4
i3

∪ N̄4
i3

[N4
i3

] ∪ N̄4
i3

[N4
i2

] ∪ Ni4 ∪
Ni5 ∪ Ni6 ∪ Ni8 ∪ . . . ∪ Nidi−1 → Ap . Players in

i∪N4
i1

∪N4
i2

∪ N̄4
i2

[N4
i2

]∪N4
i3

∪ N̄4
i3

[N4
i3

]∪ N̄4
i3

[N4
i2

]∪Ni4∪Ni5∪Ni6∪Ni8∪. . .∪Nidi−1

play strategies in Ap for the same reasons outlined in t = 2, t = 3 and t = 4. Players in

N̄4
i1

[N4
i1

] and N̄4
i2

[N4
i1

]\
{
N̄4
i2

[N4
i1

] ∩ N̄4
i2

[N4
i2

]
}
play strategies in Ap because for each

k ∈ N̄4
i1

[N4
i1

] ∪ N̄4
i2

[N4
i1

]\
{
N̄4
i2

[N4
i1

] ∩ N̄4
i2

[N4
i2

]
}
, there exists at least one j ∈ N4

i2
with Nk1 ∩ N j1 �= ∅. For any j ∈ N4

i2
satisfying the preceding property,

Nk1 ∩ N j1 ⊆ N4
i1

∪ N̄4
i2

[N4
i2

], which implies that

αk

(
N4
i1

∪ N̄4
i2

[N4
i2

]
)

≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. And

since all players in N4
i1

∪ N̄4
i2

[N4
i2

] play strategies in Ap at t = 3, strategies in Ap are

best responses to all players in N̄4
i1

[N4
i1

] and N̄4
i2

[N4
i1

]\
{
N̄4
i2

[N4
i1

] ∩ N̄4
i2

[N4
i2

]
}
.

{
N̄4
i1

\N̄4
i1

[N4
i1

]
}

∪
{
N̄4
i2

\
{
N̄4
i2

[N4
i2

] ∪ N̄4
i2

[N4
i1

]
}}

∪
{
N̄4
i3

\
{
N̄4
i3

[N4
i2

] ∪ N̄4
i3

[N4
i3

]
}}

∪ Ni7 ∪ Ni9 ∪ . . . ∪ Nidi
→ A.

t = 6 i ∪ Ni1 ∪ N4
i2

∪ N̄4
i2

[N4
i2

] ∪ N̄4
i2

[N4
i1

] ∪ N4
i3

∪ N̄4
i3

[N4
i3

] ∪ N̄4
i3

[N4
i2

] ∪ Ni4 ∪ Ni5 ∪ Ni6 ∪
Ni7 ∪ Ni9 ∪ . . . ∪ Nidi

→ Ap . Players in i ∪ N4
i2

∪ N̄4
i2

[N4
i2

] ∪ N̄4
i2

[N4
i1

] ∪ N4
i3

∪
N̄4
i3

[N4
i3

] ∪ N̄4
i3

[N4
i2

] ∪ Ni4 ∪ Ni5 ∪ Ni6 ∪ Ni7 ∪ Ni9 ∪ . . . ∪ Nidi
play strategies in Ap

for the same reasons outlined in t = 2, t = 3, t = 4 and t = 5. To see why players in Ni1

123



348 Daniel Opolot

all play strategies in Ap , first recall that Ni1 = N4
i1

∪ N̄4
i1

[N4
i1

] ∪ N̄4
i1

[N̄4
i1

[N4
i1

]]. Players
in N4

i1
∪ N̄4

i1
[N4

i1
] play strategies in Ap for the same reasons outlined in t = 5. Players

in N̄4
i1

[N̄4
i1

[N4
i1

]] play strategies in Ap because, firstly, each k ∈ N̄4
i1

[N̄4
i1

[N4
i1

]] is not
directly connected to any player in N4

i1
, but there exists at least one j ∈ N4

i1
where

Nk1 ∩ N j1 ⊆ N̄4
i1

[N4
i1

] ∪ N̄4
i2

[N4
i1

]. This implies that for each k ∈ N̄4
i1

[N̄4
i1

[N4
i1

]], there
exists at least one j ∈ N4

i1
where

αk

(
N̄4
i1

[N4
i1

] ∪ N̄4
i2

[N4
i1

]
)

≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p.

Secondly, since all players in N̄4
i1

[N4
i1

] ∪ N̄4
i2

[N4
i1

] play strategies in Ap at t = 5,

strategies in Ap are best responses to all k ∈ N̄4
i1

[N̄4
i1

[N4
i1

]].
{
N̄4
i2

\
{
N̄4
i2

[N4
i2

] ∪ N̄4
i2

[N4
i1

]
}}

∪
{
N̄4
i3

\
{
N̄4
i3

[N4
i2

] ∪ N̄4
i3

[N4
i3

]
}}

∪ Ni8 ∪ Ni10 ∪
. . . ∪ Nidi−1 → A.

t = 7 i∪Ni1∪Ni2∪N4
i3

∪N̄4
i3

[N4
i3

]∪N̄4
i3

[N4
i2

]∪Ni4∪Ni5∪Ni6∪Ni7∪Ni8∪Ni10∪. . .∪Nidi−1 →
Ap , where players in Ni2 all play strategies in Ap because for each k ∈ Ni2 ,
αk (Bi1 ) ≥ η(G) ≥ p, and that all players in Bi1 play strategies in Ap at t = 6.
{
N̄4
i3

\
{
N̄4
i3

[N4
i2

] ∪ N̄4
i3

[N4
i3

]
}}

∪ Ni9 ∪ Ni11 ∪ . . . ∪ Nidi
→ A.

t = 8 Bi2 ∪ Ni3 ∪ Ni4 ∪ Ni5 ∪ Ni6 ∪ Ni7 ∪ Ni8 ∪ Ni9 ∪ Ni11 ∪ . . . ∪ Nidi
→ Ap , where players

in Ni3 all play strategies in Ap because for each k ∈ Ni3 , αk (Bi2 ) ≥ η(G) ≥ p, and
that all players in Bi2 play strategies in Ap at t = 7. Ni10 ∪ Ni12 ∪ . . . ∪ Nidi−1 → A.

t = 9 Bi10 ∪ Ni12 ∪ Ni14 ∪ . . . ∪ Nidi−1 → Ap . Ni11 ∪ Ni13 ∪ . . . ∪ Nidi
→ A.

−− ————————————————————————————————————-
t = di − 2 Bidi−1 → Ap ; and Nidi

→ A.

t = di − 1 Bidi
= N → Ap .

Thus, n41 mutations to strategies in Ap sufficiently trigger an exit from the basin
of attraction of W ′ to Ap, so that C(W ′,Ap) ≤ n41. However, as we demonstrated
in the dynamics of (A,U , N ,G, P) from W to W ′ above, if, starting from W ′, n41
players mutate to strategies in A\Ap, (A,U , N ,G, P) will revert toW ′. Specifically,
let (A,U , N ,G, P) start from v at t = 0, and let all players in N 4

i1
mutate to strategies

in A\Ap at t = 1.33 Given that di ≥ 4 for all i ∈ N , (A,U , N ,G, P) evolves from
t = 1 onward as follows.

t = 1 N4
i3

∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
→ Ap . i ∪ Ni1 ∪ Ni2 ∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → A.

t = 2 N4
i2

∪ Ni4 ∪ Ni6 ∪ Ni8 ∪ . . .∪ Nidi−1 → Ap . Players in N4
i2
play strategies in Ap because

for each k ∈ N4
i2
, there exists at least one j ∈ Ni4 with Nk1 ∩ N j1 ⊆ N4

i3
, which

implies that αk (N
4
i3

) ≥ αk (N j1 ) = αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. And

since all players in N4
i3

⊆ Ni3 play strategies in Ap at t = 1, strategies in Ap are best

responses to all k ∈ N4
i2
. Players in Ni4 play strategies in Ap because for each k ∈ Ni4 ,

αk (N
4
i3

) = αk (Bi3 ) ≥ η(G) ≥ p. And since all players in N4
i3

⊆ Ni3 play strategies in

33 Starting from v rather than u presents the best possible starting point of exiting the basin of attraction
of W ′ through n4i1 mutations to strategies in A\Ap .
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Ap at t = 1, strategies in Ap are best responses to all k ∈ Ni4 .

i ∪ Ni1 ∪ N̄4
i2

∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
→ A.

t = 3 N4
i1

∪ N4
i3

∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
→ Ap . Players in N4

i1
play strategies in Ap because

for each k ∈ N4
i1
, there exists at least one j ∈ N4

i3
with Nk1 ∩ N j1 ⊆ N4

i2
, which

implies that αk (N
4
i2

) ≥ αk (B j1 ) ≥ minl∈N j2
αl (B j1 ) ≥ η(G) ≥ p. And since all

players in N4
i2

play strategies in Ap at t = 2, strategies in Ap are best responses to all

k ∈ N4
i1
. All k ∈ N4

i3
play strategies in Ap because each has

αk (N
4
i2

) = αk (Bi2 ) ≥ η(G) ≥ p, and that all players in N4
i2

play strategies in Ap at

t = 2. i ∪ N̄4
i1

∪ Ni2 ∪ N̄4
i3

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → A.

t = 4 i ∪ N4
i2

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → Ap . Player i plays a strategy in Ap because for

each k ∈ N4
i2
, Nk1 ∩ Ni1 ⊆ N4

i1
, which implies that, for any k ∈ N4

i2
,

αi (N
4
i1

) ≥ αi (Bk1 ) ≥ η(G) ≥ p. And since all players in N4
i1

play strategies in Ap at

t = 1, a strategy in Ap must be a best response to player i . All k ∈ N4
i2

play strategies in

Ap because each has αk (N
4
i1

) = αk (Bi1 ) ≥ η(G) ≥ p, and that all players in N4
i1

play

strategies in Ap at t = 3. Ni1 ∪ N̄4
i2

∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
→ A.

t = 5 N4
i1

∪ N4
i3

∪ Ni5 ∪ Ni7 ∪ . . . ∪ Nidi
→ Ap .

i ∪ N̄4
i1

∪ Ni2 ∪ N̄4
i3

∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 → A.

Thus, n4i1 ≥ n41, for any i ∈ N , mutations to strategies in A\Ap are not sufficient
to trigger an exit from the basin of attraction of W ′. This implies that R(W ′) =
C(W ′,Ap) ≤ n41.

Putting the above three scenarios together, we see that, for any x /∈ D(Ap), b1
mutations can trigger evolution from x toAp so that C(x,Ap) ≤ b1. Otherwise, there
exists at least one absorbing cycle W ∈ C(A), with C(x,W ) ≤ b1, where players in
N 3
i1

∪ Ni3 ∪ Ni5 ∪ . . . ∪ Nidi
and i ∪ N 3

i2
∪ Ni4 ∪ Ni6 ∪ . . . ∪ Nidi−1 alternate between

strategies in Ap and some strategies in A, and the rest play some strategies in A. For
this scenario, the number of mutations to strategies in Ap that trigger evolution from
W toAp is less or equal to n∗

1, so that if the number of mutations to strategies in A\Ap

needed to trigger an exit from D(W ) is greater than n∗
1, then R(W ) = C(W ,Ap).

However, if the number of mutations to strategies in A\Ap needed to trigger an exit
from the basin of attraction of W is less or equal to n∗

1, then there exists another
absorbing cycle W ′ ∈ C(A) and W ′ �= W , where R(W ) = C(W ,W ′) ≤ n∗

1, and
R(W ′) = C(W ′,Ap) ≤ n41. Since these three scenarios hold for any x /∈ D(Ap), it
follows from the discussion in Sect. 4, together with Eqs. (9) and (10), thatCR(Ap) ≤
b1 and

CR∗(Ap) = max
x/∈D(Ap)

C∗(x,Ap) = max
x/∈D(Ap)

min
W∈C(A)

C(x,W ) ≤ b1.
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The lower bound of the radius of Ap

We now show that when p ≤ η(G) and d(G) ≥ 7, the radius of Ap is bounded from
below by R(Ap) ≥ b1 + ι, where ι ≥ 1 is some positive integer. Specifically, for
an undirected, unweighted and strongly connected network G with d(G) ≥ 7, which
also means that di ≥ 4 for all i ∈ N , if p ≤ η(G), then b1 mutations to strategies in
A\Ap cannot trigger an exit from D(Ap).

We first show that if (A,U , N ,G, P) starts, at t = 0, from any configuration,
x /∈ D(Ap), where all players in Bi2 of any i ∈ N play strategies in Ap, then it
will converge to Ap. Indeed, since, by definition of the contagion threshold, each
h ∈ Bi2 ∪ Ni3 has αh(Bi2) ≥ η(G) ≥ p (i.e. each h ∈ Bi2 ∪ Ni3 has at least
η(G) ≥ p of her direct neighbours within Bi2 ), and all players in Bi1 have all their
direct neighbours within Bi2 , it follows that all players in Bi3 will play strategies in
Ap from t = 2 onward. From t = 3 onward, all players in Bi4 play strategies in Ap

because each h ∈ Bi3 ∪Ni4 has αh(Bi3) ≥ η(G) ≥ p. This iterative process continues
until t = di − 1 when all players in Bidi = N play strategies in Ap because each
h ∈ Bidi−1 ∪ Nidi

has αh(Bidi−1) ≥ η(G) ≥ p.
Now, for any i ∈ N , if di ≥ 4, then for all j ∈ Ni4 ∪ Ni5 ∪ . . . ∪ Nidi

, we have
Bj2 ∩ Bi1 = ∅ (i.e. there is no overlap between the first-neighbourhood of i and the
second-neighbourhood of j). This implies that, if (A,U , N ,G, P) starts from any
x ∈ Ap at t = 0, and all players in Bi1 mutate to strategies in A\Ap at t = 1, then
(A,U , N ,G, P) will revert to Ap (i.e. converge to some state within Ap) because:
firstly, there exists at least one player j ∈ Ni4 ∪ Ni5 ∪ . . . ∪ Nidi

for whom all players
in Bj2 play strategies in Ap at t = 1; secondly, (A,U , N ,G, P) converges toAp from
any configuration x /∈ D(Ap) where all players in Bj2 of any j ∈ N play strategies in
Ap.

Thus, when η(G) ≥ p and d(G) ≥ 7, more than bi1 mutations are required to
trigger an exit from the basin of attraction of Ap. Since this holds for all i ∈ N , it
follows that R(Ap) ≥ b1 + ι, for ι ≥ 1.

Stochastically stable set of states/strategies

Putting the above results together, we see that, for an undirected, unweighted and
strongly connected network with d(G) ≥ 7, if p ≤ η(G), then CR∗(Ap) ≤ b1 and
R(Ap) ≥ bi1 + ι, for ι ≥ 1, which implies that R(Ap) > CR∗(Ap), and hence, Ap,
and strategies in Ap, are uniquely stochastically stable.
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