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Abstract
We study zero-sum combinatorial games within the framework of so-called Richman
auctions (Lazarus et al., in Games No Chance 29:439–449, 1996). We modify the
alternating play scoring ruleset Cumulative Subtraction (Cohensius et al., in Electron
J Combin 26(P4):52, 2019), to a discrete bidding scheme, similar to Develin and
Payne (Electron J Combin 17(1):85, 2010). Players bid to move, and the player with
the highest bid wins the move and hands over the winning bid amount to the other
player. The new game is dubbed Bidding Cumulative Subtraction. In so-called unitary
games, players remove exactly one item out of a single heap of identical items, until
the heap is empty, and their actions contribute to a common score, which increases
or decreases by one unit depending on whether the maximizing player wins the turn
or not. We show that there is a unique bidding equilibrium for a much larger class of
games that generalize standard scoring play. We prove that for all sufficiently large
heap sizes, the equilibrium outcomes of unitary games are eventually periodic, with
period 2. We show that the periodicity appears at the latest for heaps of sizes quadratic
in the total budget.
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1 Introduction

Suppose that you are involved in a 2-player game. At each stage, one of the players
removes an item out of a common heap. The goal is to capture more objects than your
opponent. Say that there are two objects in the heap, and therefore to win the game
you need to collect both, whereas if you collect exactly one object, the game is drawn.

You may remove an object if you win a specially designed auction. Suppose that
you and your opponent share a total budget of 5 dollar bills, you have $1 and he has
$4. By bidding, a player declares any number of bills as prescribed by their budget
constraint, possibly $0, but dollars cannot be split. In addition to your single dollar, you
have a tie-breaking marker, which works in your favor. If a player wins the bid strictly,
by bidding say d dollars, then they get an item but must pay the bidding amount to the
opponent. If the bids end up equal, then the player with the tie-breaking marker wins
the round, gets an item, and hands over the d dollars together with the marker to the
other player. The utility of the game is solely due to what you have removed during
play, and it does not depend on the final partition of the total budget. The auction is
just a means to determine who is to play next, at each stage.

Clearly, you cannot win both bids with a single dollar. The question is whether you
will be able to tie this game, and win one of the bids, or if the opponent can win both,
and the answer is easy. Since the opponent has to bid $2 to win the bid, then you will
win the next round. If you had only the marker but no dollar you would lose both bids,
and if you had only a dollar but no marker you would lose both bids.

From this gentle introduction, we already have an intuition that the marker has
a non-trivial impact on such games, and it could be worth sometimes a dollar. The
tie-breaking is necessary to play the game, and to understand such games it seems an
unavoidable issue to resolve the worth of this ‘marker’ in every game situation. We
will formalize this ‘every’ setting and present some further major issues to solve. But
first, we provide some more background.

Richman auctions (Lazarus et al. 1996) are designed for any standard combinatorial
2-player game (Berlekamp et al. 2004), to resolve who is to play next. Instead of
alternating play, for each stage of game, the 2 players, called Left and Right,1 resolve
this crucial moment by a type of auction where the winning player must pay the losing
player their bid amount.

Richman bidding can be adapted to any standard combinatorial game, and thus
offers a way to extend classical Combinatorial Game Theory (CGT) (Siegel 2013;
Berlekamp et al. 2004; Conway 1976) to a more economic style of game play.

Moreover, Richman auctions are a perfect fit for combinatorial games, as they offer
an unlimited number of bidding rounds. This is useful, since many popular board
games can be played on an arbitrarily large board, and various kinds of Nim-type
removal games (a.k.a. heap games, take-away games, etc.) (Berlekamp et al. 2004)
can contain arbitrarily many objects in a starting position.

In this paper, we study discrete bidding in a manner similar to Develin and Payne
(2010). We adapt the setting to a class of games known as Cumulative Subtraction
(CS) (Cohensius et al. 2019). CS is played on a finite heap of pebbles, and players

1 Player names are adapted from standard literature on combinatorial games, ‘she’ is Left and ‘he’ is Right.
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take turns removing pebbles from the heap, but are only allowed to remove a number
of pebbles from a fixed set of values, called the subtraction set S ⊂ N. For example,
if S = {3, 5, 9}, then players are allowed to remove either 3, 5 or 9 pebbles at each
turn, as long as the heap size stays non-negative. In the standard zero-sum variation,
the final score is the difference between the number of pebbles accumulated by each
player at the end of play. Player Left is the maximizer, whereas player Right is the
minimizer; the final score is the total number of pebbles collected by Left during play
minus Right’s total number.

In order not to obscure the main ideas of our bidding setting, we will simplify the
‘subtraction-part’ of the games, and focus on the simplest possible subtraction set,
namely when S = {1}. Although several results hold also for more general subtraction
sets; see Sect. 4 for a related conjecture.

Let N = {1, 2, . . .}, and let N0 = N∪{0}. Discrete bidding here means that there is
a given total budget of TB ∈ N0. One of the players has a budget p ∈ {0, . . . ,TB}, and
the other player has the budget q = TB − p. At each turn, players submit a (closed)
bid. The player with the higher bid gets to play, and pays their bid to the player with the
lower bid. Thus, if player Left wins by bidding �, she pays this bid to Right, and makes
her desired move. The new budget partition becomes (p− �, q + �). Ties are resolved
using a tie-breaking marker: one of the players has the marker, and this player wins
the turn in case of equal bids. They make their desired move, pay the other player the
bidding amount, and pass them the marker. Similar to Develin and Payne (2010), we
study pure bidding strategies, since this is closer to recreational play, in the tradition
of combinatorial game studies.

By adapting the bidding mechanism to CS, we get a new game, called Bidding
Cumulative Subtraction (BCS).

The discrete setting gives new challenges and problems to Richman games. For
example, the marker, which is a necessary and convenient tool to resolve a tie, can
sometimes be worth a dollar (but not more).2 Perhaps this seems like an unfortunate
side effect of the discrete setting, but it turns out that it is quite interesting to resolve
the accompanying asymmetry of the game. In many situations, the player with the
marker has a slight advantage, and it appears non-trivial to find out exactly what that
means, even in the case of the simplest subtraction set, S = {1}, which will also be
called the unitary setting.

1.1 Related work

In the classical Richman setting (Lazarus et al. 1996, 1999), the auction is continuous,
saywith total budget $1, and theplayers split that budget to, say p andq,with p+q = 1.
Optimal bids have been resolved for the game tic- tac- toe (Develin andPayne 2010),
but very little is known for the game of chess (Larsson and Wästlund 2019).

The main theorem of Richman games considers one additional setting, where the
turn function is a Bernoulli trial: for each stage of play, an r -biased coin is tossed to
decidewhose turn it is. A playerwins a given coin tossing game if and only if the player
with budget $(1− r) wins the corresponding Richman game. A rule to resolve ties is

2 In the continuous setting, any positive bidding amount is worth more than the marker.
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required, but since ties occur with probability 0, in the continuous setting, the main
result holds for any standard tie breaking rule, with open or sealed (simultaneous)
bids. In games with zugzwangs (games where no player wants to move first), it is
customary to let the winner of a bid decide who is to play next. In games with a
nonnegative incentive (such as the games we will study), it suffices to have the players
bidding for the opportunity to take the next turn.

Develin and Payne (2010) study win-loss games, with discrete Richman bidding,
and they use a modified tie resolution method: the player with the marker may either
keep themarker and let the other player pay the bid andmove in the game, or give away
the marker together with the bid and make their desired move in the game. This is not
just a subtle difference in approach; namely, we emphasize that our simpler approach
has the benefit of generalizing alternating play. Namely, in our setting, alternating play
corresponds to TB = 0 (with both players having a respective individual budget of 0
as a result). Another obvious difference is that we study games with numeric results, in
contrast to the traditional CGTwin-loss situation. This leads to an interesting question
about uniqueness of bidding equilibrium. Note that uniqueness of equilibria implies
that optimal players are indifferent to bidding sequentially or simultaneously. Hence,
we will not dwell further on the particular bidding convention.

Combinatorial games are often viewed in the light of so-called normal play, where
it is always good to be able to move (an idea, which recently leads to an ‘absolute
combinatorial game theory’; Larsson et al. 2016b, 2018a). Here, we may have a
situation where the player who wins the bid is the normal play loser. Thus, for our
most general setting, we are motivated to include a certain penalty function, τ , with
input Left and Right terminal positions. If a player wins a bid that has nomove, there is
some consequence of this final auction; indeed in Guaranteed Scoring games (Larsson
et al. 2016a, 2018b) a ‘terminal penalty’ is invoked for a player who cannot move
(and this penalty corresponds to the maximum score that the other player can still
achieve by playing out all remaining move options). We include this short discussion
here, since we want to emphasize that the proposed move convention in this work
generalizes game settings in the literature.

All literature on combinatorial games assumes a unique equilibrium, which defines
a game value under optimal play; see for example (Milnor 1953;Hanner 1959; Ettinger
1996; Larsson et al. 2016a, 2018b; Johnson 2014; Siegel 2013).

1.2 Our contribution

In this paper, we first analyze a general setting of discrete Richman bidding adapted
for any standard combinatorial scoring game. We show that if the ruleset satisfies
some basic and intuitive monotonicity properties, then each such game exhibits a
unique equilibrium. Then in the rest of the paper, we focus on a simple class of
Bidding Cumulative Games (defined in Sect. 3) named unitary games. Our theoretical
contribution can be summarized in three main results.

In Sect. 3.1, we show that every unitary game has a unique equilibrium described
recursively by maximin functions of the game positions (Theorem 17). We prove this
result by showing that the ruleset of unitary games satisfies sufficient properties for

123



Discrete Richman-bidding scoring games 699

uniqueness. Then we prove further monotonicity properties of unitary games, which
helps us to prove a convergence result. In Sect. 3.3, we prove that the equilibrium out-
comes of unitary games converge for heap sizes of the same parity, i.e. the sequence is
eventually periodic with period 2 (Theorem 30). Moreover, aided by a certain ‘bidding
automaton’, in Sect. 3.4, we show that the convergence to this periodicity is quadratic
in the size of the total budget (Theorem 33). In addition, we provide a conjecture on
the corresponding closed formula expression for the equilibrium outcomes in the limit
(Conjecture 34). And lastly, if true, Conjecture 36 would connect general BCS with
CS, with respect to asymptotic behavior.

2 Equilibrium properties

Let us first elaborate on the fundamental properties of discrete Richman bidding, for
any combinatorial scoring (zero-sum) game. For a given total budget TB ∈ N0, let
TB = p + q, where p is Left’s part of the budget, and unless otherwise stated, Left
has the tie-breaking marker. Moreover, let∅ �= B ⊆ {0, . . .TB}, be the set of possible
Richman bids.3 A player may not be able to bid on their turn; for example, if 0 /∈ B
and the player’s budget has been exhausted. In this case, the player who is able to
place a bid moves and transfers a valid bid amount b ∈ B to the other player. In case
there is a position such that no player can bid, the ruleset is invalid. We will assume
valid rulesets, i.e. some player is able to place a bid at every turn.4

In this section, we consider acyclic combinatorial rulesets of the form Γ =
(X ,L,R,B), where X is a set of positions (nodes), and L,R : X → 2X are the
move functions for players Left and Right respectively, with discrete Richman B-
bidding, and with given weight functions wL , wR : X × X → R on the set of move
edges, for each player. Here X denotes a possibly infinite set of ‘starting’ positions,
in a usual sense of CGT: any game state may be considered as a starting position, but
each play sequence is finite. A Left move is of the form x ∈ X → y ∈ L(x), and
similarly for Right. The final score (or utility) of a terminating play sequence σ is

u(σ ) = τ(t) +
∑

wL(eL) − wR(eR),

where Left played the moves eL and Right played the moves eR . The weighted move
edges are chosen at each stage of play by the winner of the Richman bidding. The
terminal penalty scores are given by a function τ : TL ∪ TR → R, where TL , TR ⊂ X
is the set of terminal positions for Left and Right respectively. The game ends when
the player who wins the Richman bidding cannot move.

Throughout the paper, given a total budget TB, for a given position x ∈ X , a
Richman-position is denoted by (x, p̂), where Left has p dollars and the tie-break
marker, or by (x, p), where Left has p dollars but Right has the marker. A note on
terminology: we will abbreviate ‘Richman-position’ to position, since the generalized

3 For ease, we let the bidding set be symmetric.
4 A ruleset for which B = {TB} is not valid, unless one of the players has all the budget.
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CGT ‘move-flag’, the current budget partition (sometimes denoted simply by p̂ or p),
is mandatory information to play.5

A player may have move options, but not being able to access them even if the other
player does not have any move options. For example, if Left has no remaining budget,
and Right has the marker, then if Left is the only player with move options, the game
will end, because Right will win that bid. Combinatorial games are often viewed in
the light of so-called normal play, where it is always good to be able to move. Here,
we may have a situation where the player who wins the bid is the normal play loser.

This is the motivation for the penalty function, τ ; if a player wins a bid that has no
move, there is some consequence of this final auction.

For symmetric games, where L = R and wL = wR , this discussion is obsolete,
and we may set τ(t) = 0, for all terminal positions t . In the symmetric case, there is
no bidding when one of the players runs out of options, because then both players run
out of options, and there is no possibility that the game may continue.

Our games generalize standard combinatorial scoring games; namely, by taking
TB = 0, we obtain the standard alternating play mechanics. As mentioned, combina-
torial games have unique equilibria, which defines game values under optimal play,
and depending on who starts the game. We will demonstrate that we do have unique-
ness of equilibrium in our generalization, under a natural set of axioms. In those cases,
we may refer to unique ‘game values’.

Let us first define the relevant maximin functions. The maximin function induces
a bid-action pair that offers the greatest value of a set of minima: Left declares bids
and notes Right’s bid-action responses in each case. Then Left chooses the bid that
maximizes the value, and given that Left can choose action if shewins the bid.Minimax
is the reverse situation.

Definition 1 (Maximin functions) Consider a total budget TB ∈ N0 and a ruleset
(X ,L,R,B). The maximin functions ν̂, ν : X → R

TB+1 are defined on positions
(x, p̂) and (x, p), respectively.

For all p ∈ {0, . . . ,TB}, for terminal positions tL , tR ∈ X , ν̂p(tL) = τ(tL),
νp(tR) = τ(tR), and recursively, for non-terminal positions x ∈ X ,

ν̂p(x) = max
�,y

min
r ,z

{̂νp−�(y)|�>r + wL , νp−�(y)|�=r + wL , ν̂p+r (z)|�<r + wR},

and

νp(x) = max
�,y

min
r ,z

{νp−�(y)|�>r + wL , ν̂p+r (z)|�=r + wR, νp+r (z)|�<r + wR},

where � ∈ B ∩ {0, . . . , p}, r ∈ B ∩ {0, . . . , q}, y ∈ L(x), z ∈ R(x), wL = wL(x, y)
and wR = wR(x, z).

Minimax functions are defined analogously, and denoted by μ̂ (Left has the marker)
and μ respectively. See Sect. 3.1 for some examples.

5 This is consistent with standard CGT terminology, which often omits the notion of who is to move, since
the theory requires analysis of all players as starting players.
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The classical ‘CGT outcome’ in alternating play from position x corresponds to
TB = 0, and it is the ordered pair o(x) = (̂ν0(x), ν0(x)) = (μ̂0(x), μ0(x)), the
optimal play scorewhenLeft andRight starts, respectively. Note that, since the bidding
is trivial, for this case, there is a unique equilibrium. In general, if, for all positions x ,
each entry has a unique equilibrium, the generalized CGT-outcome, for TB ∈ N, is
the vector o(x) = (̂νTB(x), . . . , ν̂0(x), ν0(x), . . . , νTB(x)). Whenever applicable, we
call this vector o(x) the (optimal play) outcome of x . For symmetric games, i.e. when
the move sets L = R are the same, it suffices to store half this vector, and so we drop
the marker notation, and write o(x) = (̂νTB(x), . . . , ν̂0(x)) (i.e. symmetric outcomes
assume that Left has the marker).

Let us provide a few intuitive properties of a ruleset Γ .

Definition 2 (Value function properties) Let (ζ̂ , ζ ) ∈ {(ν̂, ν), (μ̂, μ)}. The maximin
and minimax functions of a given ruleset may satisfy, for each position x , for all
p ∈ {0, . . . ,TB}:
(A) ‘Budget Monotonicity.’ ζ̂p(x) ≥ ζ̂π (x) and ζp(x) ≥ ζπ (x), if p > π ;
(B) ‘Marker Monotonicity.’ ζ̂p(x) ≥ ζp(x);
(C) ‘Marker Worth.’ ζ̂p(x) ≤ ζp+1(x).

By (A) the players weakly prefer to win by smaller bids, by (B) Right weakly
prefers to tie a Left winning bid, and by (C), given a Right bid, Left weakly prefers to
tie before winning strictly (themarker is worth at most a dollar). These properties seem
fairly intuitive in our setting to come, of unitary games. But it turns out non-trivial
to prove, in particular item (C), marker worth, even in this stripped down case. See
Sect. 3.2.

The concept of a zugzwang is fundamental to the theory and practice of combina-
torial games. In normal play it corresponds to P-positions, and Milnor (1953) notably
avoided zugzwangs in the first theory on partizan games. In our setting, if property
(B) does not hold, the ruleset contains some zugzwang situation. In the coming, we
will refer to this property as Z(B). See also Example 9.

Proposition 3 (Zugzwang) Consider a ruleset for which 0 ∈ B. Then Definition 2 (B),
i.e. Z(B), does not hold if and only if the ruleset contains a zugzwang.

Proof Say that ν̂p(x) < νp(x). This means that Left prefers not to have the marker.
Since the marker resolves a tie to let the player with the marker move, the meaning of
the inequality is that the player with the marker does not want to move. In essence,
Right can bid 0, to assure that Left moves. Hence the position is a zugzwang. For the
other direction, if the inequality holds, then Left cannot lose by winning the bid at
(0, 0) bidding. On the other hand, if Right raises the bid to gain by winning the move,
the position is not a zugzwang. Minimax is similar. ��

In Example 10, we see that if 0 /∈ B, then existence of zugzwang might not imply
Z(B), but instead U(A) adapts its role.
Definition 4 (Uniqueness properties) The ruleset Γ ∈ U if it satisfies (A) and (C) in
Definition 2. These will be referred to as the uniqueness properties U(A) and U(C)

respectively.
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Given the uniqueness properties, we may assume that if a player has two indis-
tinguishable bidding strategies, then they prefer bidding less, i.e. if in U(A) ν̂p(x) =
ν̂π (x), with p > π , then Left prefers p before π , or in U(C), if ν̂p(x) = νp+1(x),
then Left prefers budget p + 1 before budget p and the marker.

Within this mild assumption, we now show that the ruleset Γ exhibits unique
equilibria.

Theorem 5 (Uniqueness of equilibrium) If a ruleset Γ ∈ U , then for all positions and
for all budget partitions, the game has a unique equilibrium.

Proof Consider any non-empty heap size. We assume with no loss of generality that
Left has the marker; a symmetric argument holds when Right has the marker. To high-
light the idea, we give the proof for the symmetric case whenever B = {0, . . . ,TB},
and the general case is similar.

By properties U(A) and U(C), if Left wins by bidding 0, then Left cannot improve,
with respect to either maximin or minimax, and hence, we need only consider the
possibility of Right deviating from (0, 0). If Right does not want to deviate, this
corresponds to maximin = minimax. Suppose that Right deviates. Then, by property
U(A), we may assume that he overbids Left’s 0-bid by one dollar, and not more. If
Left does not want to deviate from (0, 1)-bidding, then this corresponds to maximin
= minimax. If Left wants to deviate, then by U(A) and U(C), she bids to obtain a tie.
This process continues, until, at some pair of bids (�, �) or (�, � + 1) both players
lack incentive to deviate. At this point, by maximin = minimax, we arrive at a unique
equilibrium. ��

Uniqueness in our setting, for unitary cumulative games, will be provided by The-
orem 17 in Sect. 3.

For the special case of symmetric games, we simplify the notations, and denote
L = R = M. In Proposition 6, we define maximin function for symmetric games
which is a special case of the maximin function defined in the Definition 1.

Proposition 6 (Symmetric maximin) Consider a symmetric ruleset. For all terminal
positions t ∈ X, for all p, ν̂p(t) = νp(t) = 0. For non-terminal x ∈ X,

ν̂p(x) = max
0≤�≤p,y∈M(x)

min
0≤r≤q,z∈M(x)

{ν̂p−�(y)|�>r + w(x, y),

νp−�(y)|�=r + w(x, y), ν̂p+r (z)|�<r − w(x, z)},

where, for all x, p,

νp(x) = −ν̂q(x). (1)
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Proof We express the equality (1) as

νp(x) = − max
0≤�≤q

min
0≤r≤p

{̂νq−�(y)|�>r + wy, νq−�(y)|�=r + wy, ν̂q+r (z)|�<r − wz}
= − max

0≤�≤q
min

0≤r≤p
{−νp+�(y)|�>r + wy,−ν̂p+�(y)|�=r

+ wy,−νp−r (z)|�<r − wz}
= max

0≤�≤p
min
0≤r≤q

{νp−�(y)|�>r + wy, ν̂p+r (z)|�=r + wz, νp+r (z)|�<r − wz}

where the middle equality is by induction, and the last equality follows by relabeling
and adjusting for negatives. Here wy = w(x, y), corresponds to the edge chosen by
the maximizer, and wz = w(x, z), corresponds to the edge chosen by the minimizer.
Thus Definition 1 is satisfied. ��

And even simpler, by the restriction to symmetric games, and in view of (1), we
may leave out the function ν.

Observation 7 (Simplifiedmaximin) The tuple of maximin functions ν̂ : X×{0, 1} →
R
TB+1 is, for all p ∈ {0, . . . ,TB}, if t ∈ X is terminal, ν̂p(t) = 0, and, for non-

terminal x ∈ X, given �, r ∈ B,

ν̂p(x) = max
0≤�≤p,y∈M(x)

min
0≤r≤q,z∈M(x)

{ν̂p−�(y)|�>r + w(x, y),

−ν̂q+�(y)|�=r + w(x, y), ν̂p+r (z)|�<r − w(x, z)}.

If a ruleset satisfies the uniqueness properties, by the proof of Theorem 5, we may
simplify the maximin function a bit further. For example, if the game is symmetric,
we get the following convenient simplification of Observation 7.

Corollary 8 If the rulesetΓ ∈ U is symmetric, then for all non-terminal game positions
and for all budget partitions, the unique equilibrium value is given by: for all p ∈
{0, . . . ,TB}, if t ∈ X is terminal, ν̂p(t) = 0, and, for non-terminal x ∈ X, given
�, r ∈ B,

ν̂p(x) = max
0≤�≤p,y∈M(x)

min
0≤r≤q,z∈M(x)

{−ν̂q+�(y)|�=r + w(x, y), ν̂p+r (z)|�<r≤q

−w(x, z)}. (2)

Proof This follows by combining Observation 7 with Theorem 5, since given any
Right bid, by U(C), Left prefers a tie, before winning strictly. ��
This simplifies the analysis of equilibrium, because if a ruleset satisfies U then the
cases where Left (who has the marker) wins strictly need not be considered because
Left prefers a tie before winning strictly, and, wheneverZ(B) is satisfied, Right would
prefer to tie a Left winning bid.

We note that if a ruleset has negative Left-weights and/or positive Right-weights,
then there exist zugzwang games for which property Z(B) does not hold.
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Example 9 Consider a ruleset Γ , where X = {x1, x2}, R(x1) = {x2}, R(x1) =
L(x1) = L(x2) = ∅ and 0 ∈ B. Suppose that wR(x1, x2) = 1, and τ(x2) = 0,
i.e. that there is no penalty for not being able to move from the terminal position
x2. If the current score c(x1) = 0 and Right has the marker but no budget, then if
Left bids 0 at position x1, Right must move to the terminal position x2, and the game
ends at the final score c(x2) = 1, which is good for Left. If Right does not have the
marker (independently of the budget partition), he is better off, because he will bid
0, and the game will end at c(x1) = 0 (if there were a penalty at this terminal, that
would have been a Left penalty, but Right would not have been able to benefit). Thus,
0 = ν̂1(x1) < ν1(x1) = 1, and property Z(B) is not satisfied.

If U(C) is not satisfied, the uniqueness property might fail.

Example 10 Suppose that 0 /∈ B, and otherwise with Γ as in Example 9. A player
does not want to have any budget, because then the other player is forced to bid a
winning bid (the marker becomes irrelevant), and thus U(A) may not hold. Similarly,
one can see that the marker can be worth more than a dollar; if TB = 1 and you have
the marker but not the dollar, then if you exchange the marker for the dollar, you are
worse off. Hence U(C) may not be satisfied if 0 /∈ B.
However, when 0 ∈ B, we have not found any game that violates property U(A) or
U(C).

Conjecture 11 Consider a ruleset Γ . If 0 ∈ B, then Γ ∈ U .

3 Bidding cumulative subtraction

In this section, games are symmetric, i.e. the move options are the same for both
players; see Cohensius et al. (2019) for the motivation on similar alternating play
games. We now define the ruleset Bidding Cumulative Subtraction.

Definition 12 (Bidding cumulative subtraction, BCS) There is a subtraction setS ⊂ N,
a total budget TB ∈ N0, a bidding set B ⊂ {0, . . .TB}, and a heap of finitely many,
x ∈ N0, objects (pebbles). There are two players, Left and Right, who take turns
removing objects from the heap. The total budget TB ∈ N0 (a game constant) is
partitioned between the players, as (p, q), with p + q = TB. Exactly one of the
players has a tie-break marker m ∈ {0, 1}, where m = 1 if Left has the marker. A
complete game configuration is of the form (S,B; x, p,m, c), where c ∈ Z is the
current score. If Left has the marker and c = 0, we abbreviate a position by (x, p̂),
and otherwise, when Right has the marker, we write (x, p). At each stage of play, the
players (make closed) bid of who is to take an action, Left bids � and Right bids r .
The player with the highest bid wins the move. If the bids are equal, the player with
the marker wins the move. The winning bidder transfers the bidding amount (together
with the marker in case of a tie) to the other player. If Left has the marker, a typical
bid is (�̂, r). A player who wins the bid acts by collecting s ∈ S objects, which adds s
to a current score c, if Left wins the bid, and otherwise, it subtracts s. The game ends
when the number of objects in the heap is smaller than min S. Left seeks to maximize
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the final score (utility) whereas Right seeks to minimize it. A removal of s ∈ S, in
case Left has the marker, is of one of the forms:

• (TB; x, p, 1; c) → (TB; x − s, p − �, 1; c + s), s ∈ S, if Left bids � ≤ p and
wins a non-tie.

• (TB; x, p, 1; c) → (TB; x − s, p − �, 0; c + s), s ∈ S, if Left bids � ≤ p and
wins a tie.

• (TB; x, p, 1; c) → (TB; x − s, p + r , 1; c − s), s ∈ S, if Right wins by bidding
r ≤ q.

In view of Sect. 2, we have the ruleset Γ = (N0,M), where , for all x ≥ min S,
M(x) = {x − s ≥ 0 | s ∈ S}. In rest of this section, we focus on unitary games,
which is a BCS with subtraction set S = {1}. We illustrate bidding in such games in
Sect. 5.

3.1 Unitary games

If S = {1} and B = {0, . . . ,TB}, we call BCS unitary. In this section, we prove
that for each heap size and each budget partition, there is a unique equilibrium
outcome, given by the maximin function (Theorem 5). That is, by using the nota-
tion in Sect. 2, we prove that the symmetric ruleset Γ = (N0,M) ∈ U , if for all
x ∈ N,M(x) = {x − 1}. In the spirit of Definition 12, for unitary games, we write
(TB; x, p,m; c):=({1}, {0, . . . ,TB}; x, p,m; c). Unitary games simplify quite a lot
and allow us to prove simple properties such as bounds of game values, uniqueness of
equilibria and convergence bounds. We start with a simple result.

Lemma 13 (Parity) For unitary games, the utility of any sequence of play from a heap
is odd if and only if the size of the heap is odd.

Proof For an odd heap size x , if we divide the total wins between Left and Right, it
has to be even for one player and odd for the other. If x is even, the number of wins for
the players will either both be even or both will be odd. Thus, the difference is even. ��

Since unitary games are symmetric, wemay assume that Left has themarker, unless
otherwise stated, so m = 1 will be the default. We define the maximin function for
unitary games in Definition 14 which is a special case of Observation 7.

Definition 14 (Unitary maximin) The maximin function ν̂ : X × {0, 1} → R
TB+1 is,

for all p ∈ {0, . . . ,TB}, ν̂p(0) = 0, and for x > 0,

ν̂p(x) = max
0≤�≤p

min
0≤r≤q

{ν̂p−�(x − 1)|�>r + 1,

−ν̂q+�(x − 1)|�=r + 1, ν̂p+r (x − 1)|�<r − 1}.

Theorem 17 will establish the second main result of the paper: unique equilibria
in unitary games. We will also show that unitary games have no zugzwangs, a conse-
quence of marker monotonicity. Before proving these results, we use some motivating
examples, to illustrate maximin/minimax play in unitary games. Let us revisit the
example in the first paragraph, in view of maximin.
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Example 15 (Maximin play) We illustrate Definition 14 with an example where TB =
5, and x = 2, displaying the values ν̂p(x) for TB = 5 and the heap sizes x = 0, 1, 2.
Let us explain the entry with the question mark in the table. If the position is (2, 1̂),

x \ p̂ 5 4 3 2 1 0

0 0 0 0 0 0 0
1 1 1 1 − 1 − 1 − 1
2 2 2 0 0 ‘?’ − 2

then � ∈ {0, 1} and r ∈ {0, 1, 2}, by the reduced form equivalent. If � = 0, then Right’s
minimum ismin{−ν̂4+0(1)+1, ν̂1+1(1)−1} = −2. If � = 1, then Right’s minimum is
min{̂ν1−1(1)+1, ν1−1(1)+1, ν̂1+2(1)−1} = min{̂ν0(1)+1,−ν̂5(1)+1, ν̂3(1)−1} =
0. Hence, Left will bid � = 1 and ν̂1(2) = max{−2, 0} = 0.

Example 16 (Maximin vs. minimax) Consider TB = 9. We computed maximin and
minimax values for heap sizes x ≤ 8, and gain the following bidding tables for heap
size x = 9. Left bids � and Right bids r . The lower right corners show the equilibrium
values, i.e. the maximin = minimax value; see Theorem 5. Note that everything to the
right of the bold is smaller than or equal the diagonal in bold, but by the second table,
the bold does not bound the below area (as in the proof of Theorem 5).

r \ � 0 1 2 3 4 5 6 max

0 1 1 1 1 − 1 − 1 − 3 1
1 1 1 1 1 − 1 − 1 − 3 1
2 3 3 1 1 − 1 − 1 − 3 3
3 3 3 3 − 1 − 1 − 1 − 3 3
min 1 1 1 − 1 − 1 − 1 − 3 1

r \ � 0 1 2 3 4 max

0 1 1 − 1 − 1 − 1 1
1 − 1 1 − 1 − 1 − 1 1
2 − 1 − 1 − 1 − 1 − 1 − 1
3 1 1 1 − 1 − 1 1
4 1 1 1 1 − 3 1
5 3 3 3 3 3 3
min − 1 − 1 − 1 − 1 − 3 − 1

For unitary games, we aim to prove
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“−”

(x, 8) (x, 7) (x, 6) (x, 5) (x, 4) (x, 3) (x, 2) (x, 1) (x, 0)

x even

+5 +3 +3 +1 +1 −1 −1 −3 −3x odd

+4 +4 +2 +2 0 0 −2 −2 −4

Fig. 1 The value table for TB = 8 and sufficiently large heap sizes x , even and odd respectively. The blue
arrow indicates a shift of sign in the representation of (x, 8̂) → (x − 1, 8), x odd; that is, both players bid
0, and Left wins the bid by tie-breaking. This bidding is equilibrium play, since 5 = 1 − (−4)

(x, 9) (x, 8) (x, 7) (x, 6) (x, 5) (x, 4) (x, 3) (x, 2) (x, 1) (x, 0)

x even

+5 +5 +3 +3 +1 −1 −1 −3 −3 −5x odd

+6 +4 +4 +2 +2 0 −2 −2 −4 −4

Fig. 2 The value table for TB = 9 and sufficiently large heap sizes x , even and odd respectively. The arrow
indicates a Left win by the bid � = 3, from (x, 9̂), on a large even heap size x . This bid is not in equilibrium.
In fact, the bid is dominated by Left bidding 1, which is in equilibrium, since 5 + 1 = 6. Note also that
bidding zero is in equilibrium. Indeed 0-ties are in equilibrium for all sufficiently large heap sizes

Theorem 17 (Equilibrium for unitary games) If BCS is unitary, then for all positions,
it has a unique equilibrium. It is given by, for all p, op(0) = 0, and if x > 0, then

op(x) = max
0≤�≤p

min
0≤r≤q

{−oq+�(x − 1)|�=r + 1, op+r (x − 1)|�<r≤q − 1}. (3)

As demonstrated inCorollary 8, the proof of the theoremwill follow, by establishing
properties U(A) and U(C) in Definition 2 for unitary games. In Sect. 3.2, we prove
all three properties in Definition 4 for unitary games, and the maximin functions. The
proofs for minimax are analogous. Property Z(B) says roughly that unitary games do
not have zugzwangs; it is never bad to win a bid without losing budget.

After this, in Sect. 3.3, we prove a certain monotonicity result on increasing heap
sizes (Lemma 29), which leads to a main result of this paper, Theorem 30, an eventual
period 2 of equilibrium outcomes in case of unitary games.

In Figs. 1 and 2, we show the equilibrium outcomes for all sufficiently large heap
sizes for the special cases of TB = 8 and 9 respectively. This eventual stabilization of
the outcomes and bids is later formalized via an independent bidding automaton, and
we conjecture that these are generic examples.

3.2 PropertyU for unitary games

Webegin by provingmonotonicity ofmaximin values for fixed heap sizes, i.e. property
U(A), ‘budget monotonicity’ in Lemma 18.
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Lemma 18 (Budget monotonicity, U(A)) For all games, ν̂p(x) ≥ ν̂π (x) if p ≥ π .

Proof The proof is by induction over the heap sizes, and note that νp(0, 1) = 0 ≥
0 = νπ (0, 1). Suppose that the statement holds for all heap sizes smaller than x > 0.
In row x , Left has all the bidding options with budget p as she has with budget π .
Since, by induction, the values are non-decreasing in row x − 1, if she can force a win
(perhaps using a tie) with budget π , she is assured at least as good value in column p
as in column π . If she cannot force a win with budget π , the only difference is that
with budget p she could perhaps force a win, and again, the budget monotonicity of
the smaller heaps imply the result. ��
Remark 19 By combining (1) with Lemma 18, we get νp(x) ≥ νπ (x) if p ≥ π .

Thus, by combining Lemma 18 and Remark 19, we show that unitary games satisfy
Definition 4 property (A). However, we have some direct consequences of budget
monotonicity. We may condition maximin values on given bids. If the players tie �

from position (x, p̂), we write ν̂p(x)|T (�) = −ν̂q+�(x − 1) + 1, and so on, for the
result, given an �-tie at (x, p̂ ) and subsequent maximin play.

In Lemma 20, we prove the tie monotonicity property of for unitary games which
shows that Left weakly prefers the tie ( ˆ� − 1, � − 1) over (�̂, �). This property will be
useful to prove that unitary games satisfies U(B) property.

Lemma 20 (Tie monotonicity) At any position, with x, p, � > 0, the tie (�̂, �) is
maximin weakly worse for player Left, than the tie (�̂ − 1, � − 1).

Proof The proof follows by heap monotonicity (Lemma 18). In particular, we have
ν̂q+�(x) ≥ ν̂q+�−1(x). On the other hand ν̂p(x)|T (�) = 1 − ν̂q+�(x − 1) and
ν̂p(x)|T (�−1) = 1 − ν̂q+�−1(x − 1). Hence, ν̂p(x)|T (�) ≤ ν̂p(x)|T (�−1). ��
This innocent consequence of heap monotonicity implies that Right can assure the
outcome of the 0-tie, namely all entries in the upper right area weakly bounded by
the main diagonal (in the game value matrix described in Example 16), are weakly
smaller than the value at the 0-tie. (This property is implicit in the proof of Theorem
5.)

In Lemma21,we prove a natural bounds on game value of the equilibriumoutcomes
when Left has marker in term of the game value at equilibrium when Left does not
have a marker. This result precisely prove that unitary games satisfies Definition 4 (B).
As a bonus, we get a bound on how good the marker can be.

Lemma 21 (Marker monotonicity) Consider any unitary ruleset. Then, for all heap
sizes x and all Left budgets p,

νp(x) ≤ ν̂p(x) ≤ νp(x) + 2. (4)

Proof The proof is by induction on the inequalities (4) (and they clearly hold for
x = 0). Suppose that there is a position such that νp(x) > ν̂p(x), i.e. Left does not
want to win a tie at (x, p̂ ). By Lemma 20, we assume that Left bids 0. Then, if Right
accepts the 0-tie, induction gives a contradiction, namely

1 + νp(x − 1) < ν̂p(x − 1) − 1,
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which is equivalent with

2 + νp(x − 1) < ν̂p(x − 1).

Suppose next that 2+ νp(x) < ν̂p(x), which means that a tie-win is worth more than
2 points. Suppose that Left bids 0. Then 2 + ν̂p(x − 1) − 1 < νp(x − 1) + 1, which
contradicts the first inequality in (4). ��
Proposition 22 Unitary games have no zugzwangs.

Proof This is a direct consequence of Lemma 21. ��
The next lemma, a consequence of Marker Monotonicity, will be convenient later.

Lemma 23 For all heap sizes x, all Left budgets p and all Left bids 0 ≤ � ≤ p,
ν̂p(x) ≥ −ν̂q+�(x).

Proof We have that, for all x , and all p,

ν̂p(x) ≥ νp(x) = −ν̂q(x) ≥ −ν̂q+�(x),

by Lemma 21, because Lemma 18 gives ν̂q+�(x) ≥ ν̂q(x). ��
In Lemma 24, we show that unitary games (rules) satisfies U(C). That is, the

marker is never worth more than $1. This will complete our argument for the proof of
Theorem 17.

Lemma 24 (Marker worth) Consider a unitary ruleset. Then, for all heap sizes x and
all Left budgets p,

ν̂p(x) ≤ νp+1(x)

Proof We prove this theorem by an induction argument on heaps of size x , and analyze
the values for all budget partitions. Consider the base case when x = 1. If Left can
force a win with budget p and the marker, then p ≥ q, and hence p+1 > q −1 gives
that ν̂p(1) = 1 implies νp+1(1) = 1. Therefore ν̂p(1) ≤ νp+1(1).

Suppose next that the theorem is true for all heap sizes smaller than x . To complete
the induction, we need to show that ν̂p(x) ≤ νp+1(x). We will prove the induction
step for three different cases of maximin ν̂p(x):

Case 1. Left wins with tie at (x, p̂ ) by bidding �;
Case 2. Left wins without tie at (x, p̂ ) by bidding �;
Case 3. Right wins at (x, p̂ ) by bidding r .

Case 1. Right maximin weakly prefers losing an item at tie � rather than winning it
by bidding � + 1. Therefore,

− 1 + ν̂p+�+1(x − 1) ≥ 1 + νp−�(x − 1) (5)

There are two subcases.
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The first subcase is whenever 0 ≤ � ≤ q−1.We claim that Right does not maximin
prefer winning if Left bids � + 1 at position (x, p + 1). If Right wins at (x, p + 1) by
bidding � + 1 with marker, then

−1 + ν̂p+�+2(x − 1) ≥ −1 + ν̂p+�+1(x − 1) ≥ 1 + νp−�(x − 1)

The first inequality holds by heap monotonicity and the second follows from inequal-
ity (5).

Now assume that Right bids r > � + 1 at (x, p + 1), and wins. Then,

−1 + νp+r+1(x − 1) ≥ −1 + νp+�+2(x − 1)

≥ −1 + ν̂p+�+1(x − 1) ≥ 1 + νp−�(x − 1)

The first inequality holds by heap monotonicity, the second by induction and the third
follows from inequality (5).

Altogether this implies that, for this subcase, νp+1(x) ≥ 1+νp−�(x −1) = ν̂p(x).
Consider the other subcase, when � ≥ q. In this case, Left can secure a win by

bidding � at (x, p + 1), as Right cannot over bid. This implies that

νp+1(x) ≥ 1 + νp−�+1(x − 1) ≥ 1 + νp−�(x − 1) = ν̂p(x)

(by heap monotonicity). This completes the proof for Case 1.

Case 2. Left wins the bid, without a tie, by bidding �, and therefore, at (x, p̂ ), Right
maximin weakly prefers losing the bid. We get

− 1 + ν̂p+�+1(x − 1) ≥ 1 + ν̂p−�(x − 1) = ν̂p(x) (6)

Consider first the subcase, � ≤ q − 1. We claim that, if Left bids �, then she maximin
wins at position (x, p + 1). If not, then either Right maximin wins by bidding � with
a marker or by bidding r > �. Now, if Right bids � and wins using a marker, we study
the inequalities

−1 + ν̂p+�+1(x − 1) ≥ 1 + ν̂p−�(x − 1) ≥ 1 + νp−�(x − 1)

The first inequality holds by (6) and the second inequality follows frommarker mono-
tonicity. Hence, at νp+1(x), Right would prefer losing if Left bids � over winning by
bidding � with marker.

Now, if Right bids r > � and maximin wins the bid, we study the inequalities

−1 + νp+r+1(x − 1) ≥ −1 + ν̂p+�+1(x − 1)

≥ 1 + ν̂p−�(x − 1)

≥ 1 + νp−�(x − 1)
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The first inequality holds by induction, the second follows from inequality (6), and
the third follows from marker monotonicity. Hence, at νp+1(x), Right would prefer
losing if Left bids � over winning by bidding r > �.

The subcase � ≥ q is similar to Case 1. Altogether,

νp+1(x) ≥ 1 + νp−�+1(x − 1) ≥ 1 + ν̂p−�(x − 1) = ν̂p(x),

which completes the proof of Case 2.

Case 3. As Right maximin wins at (x, p̂ ) by bidding r , we get

ν̂p(x) = ν̂p+r (x − 1) − 1 ≤ νp−r+1(x − 1) + 1 (7)

In other words, at (x, p̂ ), Right prefers winning, by bidding r , over losing for marker,
by bidding r − 1.

In order to prove this case, we claim that if Left bids � = r − 1 at (x, p + 1), then
Right prefers winning by a tie. This follows by the inequalities

1 + νp−r+2(x − 1) ≥ 1 + νp−r+1(x − 1) ≥ ν̂p+r (x − 1) − 1

The first inequality holds by budgetmonotonicity and the second follows from inequal-
ity (7). Hence, playing from (x, p + 1), Left can force at least the value where Right
ties, i.e. νp+1(x) ≥ ν̂p+r (x − 1) − 1 = ν̂p(x). This completes the proof of Case 3.

Thus, the lemma holds. ��
We have established the three properties of Definition 4. Therefore we conclude

with the proof of Theorem 17.

Proof of Theorem 17 Combine Lemma 18 with Lemma 24. Thus Definition 4 applies:
unitary games are in U , and we may apply Corollary 8. ��

From now onward we use outcome, i.e. o-notation, instead of ν̂, and in proofs, we
may fix the bid of either player to prove inequalities as required by a given context.
By fixing the bid of player Left (Right), we may obtain a lower (upper) bound of the
outcome, corresponding to maximin (minimax) evaluation.

3.3 A sign border and bounded game values

In the last subsection, we have already shown that, for each position, unitary games
exhibit a unique equilibrium. Now, in this subsection, we discuss the bounds on game
values for given TB, x and budget partition. First, we establish the sign border of the
game value for a given total budget of TB. In Lemma 25, we show that if Left has
more money than Right, i.e.p ≥ TB/2� then the game value op(x) ≥ 0. Moreover,
we show that the sign of the outcome is sensitive to the sign border TB/2�
Lemma 25 (Sign border) For a given TB and all heap sizes x, 2p ≥ TB implies
op(x) ≥ 0, and 2p < TB implies op(x) ≤ 0.
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Proof We prove that, if p ≥ TB/2� then op(x) ≥ 0. If p < TB/2� then op(x) ≤ 0.
By the 0-sum property (1) combined with the first inequality in Lemma 21, we have

op(x) ≥ −oq(x). Adding op(x) on both sides gives,

2op(x) ≥ op(x) − oq(x)

As p ≥ q, using heap monotonicity lemma, 2op(x) ≥ 0, which proves op(x) ≥ 0.
For the second part when p < TB/2, we use the second inequality in Lemma 21

combined with the 0-sum property (1), we have op(x) ≤ −oq(x) + 2. Adding op(x)
on both sides, we get

2op(x) ≤ op(x) − oq(x) + 2.

Hence,

op(x) ≤ (op(x) − oq(x))/2 + 1.

If x is even, this implies that op(x) ≤ 0, by heap monotonicity and Lemma 13; if x is
odd then op(x) ≤ 1.

Thus we may assume that, for some p < TB/2, op(x) = 1. If op−1(x − 1) = 0,
then if Left wins by bidding 1, Right increases to either get a tie by bidding 1 or to win
by bidding 2. More precisely, if oTB/2+2(x − 1) = 0 then he 1-ties, and otherwise, he
bids 2. In either case this gives op(x) = −1.

If Left 0-ties at (x, p) and oTB/2�(x − 1) = 0, then Right bids 1 and obtains
op(x) ≤ −1, with equality if p = �TB/2�. ��
Observation 26 Note that if the heap size x is odd, then, by Lemma 13, the inequalities
in Lemma 25 are strict.

The previous Lemma 25 is extensively useful to obtain an upper and lower bound
on the game value. In the next Lemma 27, by adapting Lemma 25, we prove an upper
and a lower bound of the game values.

Lemma 27 (Bounded outcome)For all x and all p,−�TB/2� ≤ op(x) ≤ TB/2�+1.

Proof Consider first p ≥ TB/2�. We define a Right strategy, such that Left cannot
get better than TB/2� + 1. Right bids 0 until (possibly) the first time Left’s budget
partition becomes smaller than TB/2�. In the case where Left has the marker and bids
0, the budget partition will stay the same, but Right gets the marker. Hence, unless Left
bids 1 in the next bid, the change in score would be 1 − 1 = 0. When, at some point,
Left bids 1, she keeps the marker, and gets a point, but the budget partition is one unit
closer to the sign border. Since the sign border is at TB/2�, the result follows, by the
similar bound for the case p < TB/2�. ��

The following result in Proposition 28 proves the relation between change in the
game value with added extra one dollar to Left’s budget. We prove this result, even
though we do not explicitly use it in order to prove other results. We wonder how this
result generalizes for arbitrary subtraction sets.
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Proposition 28 For all TB, for all x, for all p, op(x) + 2 ≥ op+1(x).

Proof Assume for a contradiction that Left can obtain

op+1(x) = op(x) + 4 (8)

(or more), where the outcome at (x, p̂ ) is given. If Right wins at (x, ˆp + 1 ), then he
will decrease bid, to possibly a tie. But Left prefers a smaller tie, so she can decrease
and perhaps Right wins again. If so, if the gain is only 2 points we are done, so assume
gain is 4 points. Then he decreased again and Left still prefers smaller tie, and so on.

By Theorem 5we do not need to consider cases where Left wins. Hence those cases
where Right wins at (x, ˆp + 1 ) reduce to study of cases where Left wins by a 0-tie at
position (x, ˆp + 1 ) and with (8). Thus, only two cases remain.

1. Left wins an �-tie at (x, p̂ ), and she wins a 0-tie at (x, ˆp + 1 ).
2. Right wins at (x, p̂ ) by bidding r , and Left wins a 0-tie at (x, ˆp + 1 ).

Case 1: we have op(x) = −oq+�(x − 1) + 1 and op+1(x) = −oq−1(x − 1) + 1, and
hence, by (8)

4 − oq+�(x − 1) = −oq−1(x − 1) (9)

Thus, by induction, � > 0. This means that Left must avoid a Right win with 1 ≤ r =
�− 1 at (x, ˆp + 1 ). Hence op+r (x − 1) < −oq+�(x − 1)+ 1 = −oq−1(x − 1)− 3 ≤
op+1(x − 1) − 3, by (9) and marker monotonicity.

Case 2: we have op(x) = op+r (x − 1) − 1 and op+1(x) = −oq−1(x − 1) + 1, and
hence

4 + op+r (x − 1) − 1 = −oq−1(x − 1) + 1, (10)

That is, op+r (x − 1) + oq−1(x − 1) = −2. If q − 1 is to the left of the sign border,
then op+r (x − 1) − op+1(x − 1) ≤ −2, which is impossible, by budget monotonicity
and since r ≥ 1. If q − 1 is to the right of the sign border, then p+ r is to the left, and
we get oq−1(x − 1) − oq−r (x − 1) ≤ −2, which is impossible, by r ≥ 1 and budget
monotonicity. ��

Next, in Lemma 29 we prove that the equilibrium outcomes are monotone, non-
decreasing or non-increasing as reflected by the sign border, for heap sizes of the same
parity.

Lemma 29 (Heap monotonicity) Fix a total budget TB and a Left budget p̂, and
consider unitary games with heap sizes of the same parity. If 2p ≥ TB, then the value
is monotonically non-decreasing, and otherwise it is monotonically non-increasing.

Proof The base case concerns heap sizes x = 0 and 2. Since the outcomes are all 0 at
x = 0, this case is covered by Lemma 25 (Sign Border).

We study the outcome at heap size x . The value op(x − 2) satisfies (at least) one
out of three definitions:
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L: op(x − 2) = op−�(x − 3) + 1.6

R: op(x − 2) = op+r (x − 3) − 1.
T: op(x − 2) = −oq+�(x − 3) + 1.

In case L, Left wins the bid; in case R, Right wins the bid, and in case T, there is a tie,
so Left, who has the marker, wins the bid.

The proof splits into 10 distinct cases, depending on how the bid is won,

1. Tie and 2p ≥ TB, q + � < TB/2�
2. Tie and 2p < TB, q + � ≥ TB/2�
3. Right wins and 2p ≥ TB, 2(p + r) ≥ TB
4. Left wins and 2p ≥ TB, 2(p − �) ≥ TB
5. Left wins and 2p < TB, 2(p − �) < TB
6. Right wins and 2p < TB, 2(p + r) < TB

A. Left wins and 2p ≥ TB, 2(p − �) < TB
B. Right wins and 2p < TB, 2(p + r) ≥ TB
C. Tie and 2p ≥ TB, q + � ≥ TB/2�
D. Tie and 2p < TB, q + � < TB/2�

The case (D) cannot happen, because q ≥ TB/2� and � ≥ 0.
In cases 1-6 and several subcases we use induction. Suppose for example that

2p ≥ TB, and we wish to prove, by induction, that for all x > 1,

op(x) ≥ op(x − 2). (11)

Hence, we show that Right cannot do better in (x, p) than in (x − 2, p). As induction
hypothesis, we may assume op+r (x − 1) ≥ op+r (x − 3), and hence, if Right wins
at x by bidding r , then inequality (11) holds. We will refer to similar situations by
saying ‘by induction’. For some more detail, to contradict the inequality (11), Right
must change strategy at x . That is he must lower his bid to r − 1 or smaller. If he
lowers to r − 1, then we may assume that this is now a tie, and this situation has to be
considered. In case the decrease of bid is successful for Right, then Left might deviate,
etc; the particular context will determine.

In cases of tie, the argument will be by induction in cases where the relevant
budget partition crosses the Sign Border. For example in case (1), Left wins, and
TB − p + � < TB/2. Since 2p ≥ TB, we wish to prove a non-decreasing outcome,
and induction thus applies when signs for non-decreasing outcomes change. Note that
in case of tie bids, the player who tries to contradict the inequality, could do this either
by lowering, or raising the bid, and thus several sub-cases may need to be considered.
Since there are significant variations to why the contradicting player will not succeed,
we will treat all cases.

Case 1. The players �-tie at heap size x − 2 and where 2p ≥ TB. We have

op(x − 2) = −oq+�(x − 3) + 1, (12)

6 Note that by the proof of Theorem 5, it is not required to study the cases where Lefts wins a bid strictly.
However, for the flow of the proof we find it somewhat nicer when those cases are included.
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where q + � < TB/2�, i.e. 2(p − �) > TB. We need to prove that

op(x) ≥ op(x − 2). (13)

We use induction to assume that

−oq+�(x − 1) ≥ −oq+�(x − 3) (14)

By way of contradiction, (14) and (13), Right deviates at x :

(1) If Right decreases his bid, Left wins by bidding �. Hence, by p − � ≥ TB/2,
induction gives op(x)|L(�) = 1+op−�(x −1) ≥ 1+op−�(x −3). By Lemma 20,
TieMonotonicity, op−�(x−3) ≥ −oq+�(x−3) and 1−oq+�(x−3) = op(x−2).
Thus, op(x)|L(�) ≥ op(x − 2).

(2) If Right increases his bid, he wins and we get op(x)|R(r) = op+r (x −1)−1, with
r = � + 1. As Right does not benefit by increasing his bid at ‘x − 3’, he cannot
benefit by increasing his bid at ‘x − 1’. This follows by induction, because, by
assumption (12), op(x − 2) ≤ op+r (x − 3)− 1 ≤ op+r (x − 1)− 1 = op(x)|R(r).

Case 2. The players �-tie at heap size x − 2 and where 2p < TB. We have

op(x − 2) = −oq+�(x − 3) + 1, (15)

where q + � ≥ TB/2�, i.e. 2(p − �) ≤ TB. We need to prove that

op(x) ≤ op(x − 2). (16)

We use induction to assume that

−oq+�(x − 1) ≤ −oq+�(x − 3) (17)

By way of contradiction of (16), Left deviates at x .

(1) If Left decreases her bid, Right wins by bidding �. Hence, op(x)|R(l) = op+�(x −
1) − 1. If 2(p + �) < TB, by induction, Left cannot contradict (16). Since the
relative loss for Left is 2, when Right wins the bid, by heap monotonicity, Left
requires a relative 4-gap in outcomes at ‘x − 3’ and ‘x − 1’, with 2(p+ �) ≥ TB.
That is, Left requires

−oq+�(x − 3) + 4 ≤ op+�(x − 1) (18)

By the assumption 2p < TB, we get p + � < q + �. Therefore, by heap mono-
tonicity, oq+�(x − 3) ≥ 2. Moreover, if oq+�(x − 3) = 2, by heap monotonicity
and (18), this forces 0 = op+�(x − 3) < op+�(x − 1) = 2. We will refer to this
situation as the 4-gap principle.
Hence, Right can decrease the bid to � − 1, and still satisfy oq+�−1(x − 3) = 2,
and the argument can be repeated with � − 1 instead of �, until at some point
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op+�′(x − 1) = 0; this must happen for some �′ ≥ 0, by 2p < TB and Sign
Border. The case oq+�(x − 3) ≥ 4 need not be considered, since 2(p + �) ≥ TB
and the Sign Border implies that Left should have decreased the bid to � − 1 at
‘x−3’ (shewould have been strictly better off losing the bid and if Right decreases
then by Tie Monotonicity, she benefits by a smaller tie).

(2) If Left increases her bid, by induction, she cannot increase the outcome. Namely,
op(x)|L(�+1) = op−�−1(x − 1) + 1 ≤ op−�−1(x − 3) + 1 ≤ oq+�(x − 3) + 1, by
assumption.

Case 3. Right wins at heap size x − 2, by bidding r , and where 2p ≥ TB. Then
2(p + r) > TB. We have op(x − 2) = op+r (x − 3) − 1, and need to prove that

op(x) ≥ op(x − 2). (19)

If Right keeps the samewinning bid, by induction, he cannot contradict this inequality.
Hence he decreases the bid to r − 1 at x . We may assume this is a tie, so the relative
loss for Right is 2 points. By induction, we may assume that q + r − 1 ≥ TB/2�,
and that

−oq+r−1(x − 1) < −oq+r−1(x − 3) (20)

Suppose first that op+r (x−3)−1 = op(x−2) = 0. Then (20) forces q+r−1 > p+r .
This contradicts the assumption 2p ≥ TB.

Suppose next that op+r (x − 3) − 1 = op(x − 2) = 1. Then

2 = op+r (x − 3) ≤ op+r (x − 1), (21)

by induction.
Claim: p + r > q + r − 1. Proof of Claim: If p + r ≤ q + r − 1, then, by (21),

heap monotonicity and the 4-gap principle, Right instead prefers to tie at ‘x − 3’.
Therefore, by (20), (21) and heap monotonicity, we get 2 = op+r−1(x − 1) >

op+r−1(x − 3) = 0.
But then, Left will decrease her bid at x , below r −1, and Right will win. However,

the argument gives the same outcome as when he wins by bidding r . Thus, we may
repeat the argument, and Right cannot contradict (19).

Case 4. Left wins by bidding � > 0, 2p ≥ TB and 2(p−�) ≥ TB. Thus, op(x −2) =
op−�(x − 3) + 1. We need to prove that

op(x) ≥ op(x − 2). (22)

If Right keeps the same bid at x , by induction, he cannot contradict this inequality. If
he can increase the bid to � at x , there is a tie (otherwise we are done). If the tie remains
to the left of the Sign Border, and there is an increase of outcome, i.e. 2(q + �) ≥ TB
and oq+�(x − 1) > oq+�(x − 3), then he will gain the sufficient amount to contradict
(19). But by the third assumption, this can only happen if 2(p − �) = TB. Hence TB
is even. Hence, 2 = oq+�(x − 1) > oq+�(x − 3) = 0, which would give outcome -1
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at x instead of +1. But, since the bids q + � = p − �, Left can deviate and let Right
win the bid, to produce an outcome at least +1, since p + � > p − �.

Case 5. Left wins by bidding � > 0 and 2p < TB. We have op(x − 2) = op−�(x −
3) + 1. We need to prove that

op(x) ≤ op(x − 2). (23)

By induction,

op−�(x − 1) ≤ op−�(x − 3).

Therefore, to contradict (23), Left must change her bid, and she can decrease to ‘�−1’,
to get a tie. But,

op(x)|T (�−1) = −oq+�−1(x − 1) + 1 ≤ −oq+�−1(x − 3) + 1 (24)

≤ op−�(x − 3) + 1 = op(x − 2), (25)

since p < TB/2� implies that q+�−1 ≥ TB/2�. If she tries to decrease further, to
makeRight win the bid to gain a higher outcome, thenRight can respond by decreasing
his bid, and the sequence of inequalities still holds.

Case 6. Right wins by bidding r and 2(p + r) < TB. That is, op(x − 2) = op+r (x −
3) − 1 < 0. We need to prove that

op(x) ≤ op(x − 2). (26)

And assume, by induction,

op+r (x − 1) ≤ op+r (x − 3).

Hence Left must change bid, to contradict (26). If Left can increase her bid to ‘r ’ at
‘x’, we get

op(x)|T (r) = −oq+r (x − 1) + 1 ≤ −oq+r (x − 3) + 1

≤ op+r (x − 3) − 1 = op(x − 2),

since p < TB/2� implies that q + r ≥ TB/2�. If she can increase her bid to
‘r + 1’, since 2p < T B, right can also raise his bid to r + 1, and the sequence of
inequalities still holds.

Case A. Left wins, by bidding �, 2p ≥ TB and 2(p − �) < TB. We have

op(x − 2) = op−�(x − 3) + 1, (27)
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and we must prove that

op(x) ≥ op(x − 2). (28)

By induction,

op−�(x − 1) ≤ op−�(x − 3). (29)

If the inequality is strict, then −2 ≥ op−�(x − 1), and Left must change her bid.
Suppose she decreases her bid to a ‘0’ tie. Then

op(x)|T (0) = −oq(x − 1) + 1 ≥ 1,

by the assumption p ≥ TB/2�, which suffices to justify (27). If Right instead wins
by bidding 1, then this only contradicts (28) if op+1(x − 1) = 0. In this case Left can
raise the bid to get a 1-tie, and indeed, oq+1(x − 1) ≤ op+1(x − 1) = 0, by heap
monotonicity, since q ≤ p; this implies −oq+1(x − 1) ≥ 0. This argument can be
repeated (Right instead wins by bidding 2 and perhaps Left raises to a 2-tie etc.) until
one of the assumptions fails to hold.

Case B. Right wins, by bidding r , 2p < TB and 2(p + r) ≥ TB. Thus,

op(x − 2) = −op+r (x − 3) − 1 ≤ −1, (30)

and we need to prove that

op(x) ≤ op(x − 2). (31)

By induction,

op+r (x − 1) ≥ op+r (x − 3) (32)

If this is a strict inequality, then Right must change his bid to satisfy (31). He decreases
to r − 1, and gets a tie:

op(x)|T (r−1) = −oq+r−1(x − 1) + 1

Note that q + r − 1 ≥ p + r . Therefore, by assumption of strict inequality in (31),
Right obtains the desired 4-gap, which implies that the inequality (31) holds. Thus

Left could decrease, and let Right win by r − 1, but this could only help him, and
we could either repeat the argument, or go to Case 6. Suppose that Left can increase
to win by bidding r . But Right can ‘r ’-tie, and this is weakly better for him than the
assumed ‘r − 1’ tie.

Case C. Tie, 2p ≥ TB and q + � ≥ TB/2�. We have

op(x − 2) = −oq+�(x − 3) + 1, (33)
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We need to prove that

op(x) ≥ op(x − 2). (34)

We use induction to assume that

−oq+�(x − 1) ≤ −oq+�(x − 3) (35)

If the inequality is strict, then Left must change her bid. If she decreases so Right
wins by bidding �, then

op(x)|R(�) = op+�(x − 1) − 1. (36)

By the assumption of strict inequality, together with Lemma 23, we get 2 ≤
oq+�(x − 1) ≤ op+�(x − 1), which gives the desired 4-gap. Then, if Right decreases,
Lemma 20 gives that Left cannot be worse off by tie ‘� − 1’. The argument can be
repeated, or we are in Case 1.

If the inequality (35) is not strict, then Right must change his bid to contradict (34).
Induction shows that he cannot benefit by increasing his bid. Suppose he decreases so
Left wins by bidding �. By Lemma 23, op−�(x − 1) ≥ −oq+�(x − 1), which does not
worsen Left’s result. ��

We are now ready to prove the second main theorem of the paper. In Theorem 30,
we show that the game value of a given budget partition is constant for large heapsizes.
The proof of the theorem follows from Lemmas 27 and 29.

Theorem 30 (Eventual period 2 of equilibrium outcomes) The game value of a given
budget partition is constant, for all sufficiently large heaps of the same parity.

Proof Fix any parity for the heap sizes. By Lemma 29, the game values are column-
wise non-decreasing weakly to the left of TB/2, and non-increasing to the right of
TB/2. Therefore, since, for each column, by Lemma 27 their absolute values are
bounded, they converge to a finite constant. ��

3.4 A bidding automaton and a quadratic bound

In this subsection, we analyze the convergence of the game value for unitary games.
Wewill determine a quadratic bound in the total budget TB for the demonstrated game
value ‘convergence’. We will do this via explicit bounds of the outcome vector.

We make use of functions defined on the even and odd integers, that later will
represent the possible budget partitions for even and odd total budgets, respectively.
See Lemma 31 below. Define nearest integer functions αeven and αodd (the indexes
will correspond to the parities of the heap sizes) on the even integers (for TB even
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inputs will correspond to p − q = 2p − TB), by

αeven(δ) =

⎧
⎪⎨

⎪⎩

�∗� δ+1
2 , if δ ≡ 0 (mod 4);

∗� δ+1
2 , otherwise.

αodd(δ) =

⎧
⎪⎨

⎪⎩

∗� δ+1
2 , if δ ≡ 0 (mod 4);

�∗� δ+1
2 , otherwise.

Let ι : Z → {0, 1} be the function ι(x) = 1 if and only if x > 0. Define a
nearest integer function, β on the odd integers (for TB odd inputs will correspond to
p − q = 2p − TB), by

β(δ) =

⎧
⎪⎨

⎪⎩

�∗� δ
2 + ι(δ), if δ ≡ 1 (mod 4).

∗� δ
2 + ι(δ), otherwise.

For any fixed (budget) TB ∈ N0, we define an automatonAwith TB+1 nodes and 2
states per node, such that, for all states j ∈ {even, odd}, for all nodes p ∈ {0, . . . ,TB}

( j, p)
A−→ ( j c, q),

with updates, for all j, p,

A( j, p) = 1 − A( j c, q),

where j c is the complement of j , and where initial values are assigned to say all
even states. Note that, by definition, independently of initial values, the even states are
reflexive, and so are the odd ones. In Lemma 31, we show that the α and β functions
are automaton A duals in the following sense.

Lemma 31 For all p, letA(even, p) = αeven(2p−TB). Then, for all p,A(odd, p) =
αodd(2p−TB). For all p, letA(even, p) = β(2p−TB). Then, for all p,A(odd, p) =
β(2p − TB).

Proof In case of even TB,wewant to justify thatαeven(2p−TB) = 1−αodd(TB−2p),
which holds since, for all δ,  δ+1

2 �+ �−δ+1
2 � = 1. Namely, if δ is odd, then we cancel

the nearest integer functions and the equality holds; if δ = 2m is even, then we get
m + 1/2� − m + �1/2� = 1.

In case of odd TB, we want to justify that β(2p−TB) = 1−β(TB−2p). Suppose
first that p > TB/2. Then β(2p − TB) + β(TB − 2p) = �δ/2� + 1 + −δ/2� or
δ/2� + 1 + �−δ/2�; in either case these expressions equal one. Because TB is odd,
the other case is i < TB/2, and so the argument is analogous. ��
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A (generic) TB-bidding automaton is a finite state machine with ‘TB + 1’ states,
directed edges between the states, and an update rule for each directed edge. Each
state has an outgoing edge corresponding to a feasible winning bid from one of the
players. Clearly, for any TB,A is a bidding automaton where the winning bid is 0, i.e.
Left wins a 0-tie. We improve on Theorem 30, by describing an explicit bound, and
begin with a lemma.

Lemma 32 For any given total budget TB, and any Left budget p̂, the entries of
automaton A bound the outcome op(·). If p ≥ TB/2, then op(x) ≤ A( j, p), where
the parity of x is j , and otherwise op(x) ≥ A( j, p).

Proof We prove, by induction that the values as prescribed by automatonA cannot be
exceeded.

Consider first even TB. In this case we are concerned with the α functions. For odd
heap sizes x , and 2p ≥ T B, we show that

1. op+r (x) − 1 ≥ αeven(2p − TB), r > 0,
2. op−�(x) + 1 ≤ αeven(2p − TB), � > 0, and
3. −oq+�(x) + 1 ≤ αeven(2p − TB), � ≥ 0.

That is, by induction, we show,

1. αodd(2(p + r) − TB) − 1 ≥ αeven(2p − TB), r > 0,
2. αodd(2(p − �) − TB) + 1 ≤ αeven(2p − TB), � > 0, and
3. −αodd(2(q + �)) − TB) + 1 ≤ αeven(2p − TB).

Note that Case 3 has already been justified for � = 0 in Lemma 31, and when � > 0
obviously the inequality still holds.

For Case 2, the tightest situation is when � = 1 i.e. when 2(p − 1) − TB ≡ 2
(mod 4), i.e. if the outcome equals �∗� 2(p−1)−TB+1

2 + 1 and we see that it equals

�∗� 2p−TB+1
2 , i.e., this is the case when 2p−TB ≡ 0 (mod 4) and 2(p−1)−TB ≡ 2

(mod 4). If � = 2 then the outcome equals ∗� 2(p−2)−TB+1
2 +1 = ∗� 2p−TB+1

2 −1 ≤
�∗� 2p−TB+1

2 . If � > 2 the inequality is immediate.
The remaining case for even TB and the cases for odd TB are justified analogously.

��
We say that a game converges at heap size x if, for all p, then op(x) = op(x + 2),

but there is a p such that op(x) �= op(x − 2). Observe that convergence at x implies
that op(x + 1) = op(x + 3), for all p. We say that a game converges if it converges
at some x < ∞.

Theorem 33 (Convergence bound) The upper bound for convergence is the sum of the
entries in the 0-bidding automaton, and it is of order of magnitude O(TB2).

Proof We use the bounds of the outcomes for each budget partition as prescribed by
the 0-bidding automaton A. By Lemma 32 if the game did not converge before the
entries of A have been reached, it converges at the first occurrence of the A entries.
We use Theorem 35 to see that (nearly) half the entires change by going from heap
size 0 to heap size 2.
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Thus, for an even total budget TB,we bound themaximal number of rounds induced
by the 0-bidding automaton A, as

1 +
∑

δ∈{0,2,...,TB}

(
δ + 1

2
+ δ + 1

2

)
− TB = 1 + (TB/2 + 1)TB/2 − TB/2 = O(TB2),

and a similar convergence bound holds for the odd sized total budgets,

1 + TB/2 +
∑

δ∈{1,3,...,TB}

(
δ

2
+ δ

2

)
− TB = 1 + ∗�TB/22 − TB/2 = O(TB2),

��
If the upper bounds are obtained, then this proves that the equilibrium bids are

zero-ties. Namely, the edges of the automatonA correspond to 0-bids. (There may be
other optimal bids as well, but we do not classify those here.) In the next section, we
illustrate some feasible bids for automaton A.

Conjecture 34 (Automaton game correspondence) Consider any unitary game. The
entries of the corresponding automaton A are obtained as outcomes, for all heaps of
size at least O(TB2).

3.5 The number of forced wins

As an independent result, we count the number of forced wins a player with a larger
budget can have.

Theorem 35 (Budget advantage) Consider any game (TB; x, p,m; c), with TB =
p+q. Suppose that Left has the marker. Then Left can force a win of the x final moves
if p ≥ (2x − 1)q + 2x−1 − 1. If Right has the marker, then Left can force a win of the
x final moves if p ≥ (2x − 1)(q + 1).

Proof We start with the case when the configuration of the game is (TB; x, p, 1; c),
where p + q = TB and p ≥ q. To win the first move Left should at least bid q
dollars, i.e. p ≥ q. So, Right has now at least 2q dollars and so Left to win the second
round he must bid 2q + 1 dollars. He must have q + (2q + 1) = 3q + 1 dollars
to win 2 consecutive moves. Right has now at least 4q + 1 dollars. Left must bid
4q + 2 dollars to win the third consecutive round and in total he must have at least
q + (2q + 1) + (4q + 2) = 7q + 3 dollars. Similarly, he should bid 8q + 4 and
16q + 8 dollars to win the fourth and fifth consecutive moves. In total, he must have
at least q + (2q + 1) + (4q + 2) + (8q + 4) + (16q + 8) = 31q + 15 dollars to win
5 consecutive moves.

We prove this by induction. We take the base case of x = 1 move and we get p ≥ q
which is true since if the budget is equal, Left wins by the marker. We assume it to be
true for x = k moves and prove it for x = k + 1 moves.

To win x = k consecutive moves, Left’s budget should be at least (2k − 1)q +
2k−1 − 1. To win (k + 1)st move, Left should bid at least ‘1’ more than that of Right
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budget after kmovewhich is (2k−1)q+2k−1−1+q, which is equal to 2kq+2k−1−1.
Hence Left must bid 2kq+2k−1. Hence total budget whichmust be available with Left
after k+1 move is {(2k −1)q +2k−1 −1}+{2kq +2k−1} = 2 = (2k+1 −1)q +2k −1.
Hence induction holds.

When we have the configuration of the game (TB; x, p, 0; c), Left should at least
bid q + 1 dollars. Right now has 2q + 1 dollars. So, Left must have at least (q + 1) +
(2q + 2) = 3q + 3 dollars to win 2 consecutive moves. Right now has 4q + 3 dollars
for the third round and so Left must have at least (q+1)+(2q+2)+(4q+4) = 7q+7
dollars to win 3 consecutive moves.

We prove this by induction. We take the base case of x = 1 move and we get
p ≥ q +1 which is true since if budgets are equal, Left wins by bidding ‘1’ more than
that of the bid of Right, which can be at most q. We assume it to be true for x = k
moves and prove it for x = k + 1 moves.

To win x = k consecutive moves, Left’s budget should be at least (2k − 1)(q + 1).
To win (k + 1)st move, Left should bid at least ‘1’ more than that of Right budget
after k move which is (2k − 1)(q + 1) + q, which is equal to 2k(q + 1) − 1. Hence
Left must bid 2k(q + 1). Hence total budget which must be available with Left after
k + 1 move is {2k(q + 1)} + {(2k − 1)(q + 1)} = (2k+1 − 1)(q + 1). Hence induction
holds. ��

4 Discussion

Note that one can deduce neat formulas for the upper bounds of convergence of the
outcomes, by using the explicit bounds of outcome values as prescribed by the α and β

functions. The remaining question is if this worst possible convergence bound is tight.
We believe so, because of the elegance of the 0-bidding automatonA. But currently, we
do not have an argument to show that earlier convergence could not happen, for some
large total budget. There are other open questions: 1) Prove or disprove periodicity of
outcomes for any TB, but with an arbitrary finite subtraction set. Our methods indicate
that if we restrict the allowed bids of the two players, then we still have convergence,
but how do restricted bidding sets affect the strategies? In particular, what happens
if 0-bids are not allowed? Classify asymmetric (partizan) bidding sets according to
(asymptotic) player strength.

On another note, an interesting paper on ‘general sum’ Richman games has recently
appeared (Meir et al. 2018). They show budget monotonicity for games on binary
trees, but find a counterexample if a node may have three children (a threat provokes
a situation where a player prefers a smaller budget). Our setting readily generalizes
to general sum, or more specifically to so-called self interest games, by instead of the
zero-sum definition, letting both players maximize their individual final scores. The
discrete Richman bidding scheme would stay the same, and one would need to expand
on various questions of monotonicity, and for example existence of a unique PSPE
and Pareto efficiency.
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Suppose that the removal of objects is any number in the given set S, say S = {2, 3}.
A player who wins the bid, must decide which action to take. Consider a heap of size
7. Of course, by following up on the idea in the example in the first paragraph of the
paper, if a player can figure out a safe way to secure win of the two first bids but not
more, then this player should remove 3 objects twice. But if they have sufficient part
of the budget to win all bidding rounds, then they should instead remove 2 twice and
3 once. Such CS games were studied for alternating play in Cohensius et al. (2019),
which corresponds to a total budget of $ 0 in this setting. In that case, the first player
must remove 2 in the first round, to get a total of 4 against 3 pebbles.

There is a much richer variety of strategies in BCS than in CS, and much of the
complexity appears already in the bidding phase of the game. Since, this is the first
issue to resolve, and since this is the first paper in this setting, we adapted the unitary
setting. Since we are able to give a near complete solution of this setting, we phrase the
following conjecture, that would connect the main result in Cohensius et al. (2019),
with the current work.

Conjecture 36 Consider BCS, with unrestricted bidding, i.e. B = {0, . . . ,TB}, and
equilibrium play. Then, for all sufficiently large heap sizes, the players bid 0 and the
player with the marker removes max S.

If true, it would asymptotically reduce the seemingly higher strategic complexity
of BCS to that of CS.

It is natural to think of a continuation of our discrete bidding setting to n ≥ 2
players, and self-interest play (Larsson et al. 2020). In this case, each player has a
labeled marker, and thus the tuple of markers, may be viewed as a permutation on
the players. Say n = 3. Then the marker configuration (2, 1, 3) describes a situation
where player 2 is favored and will win any tie. However if players 1 and 3 will tie, then
player 1 wins. If all players tie, then the markers get permuted, with, in our example
(2, 1, 3) → (1, 3, 2). Every player, except the winner of the bid increases their marker
ranking one step. In this way, the total budget 0 corresponds to cyclic play order, and so
the bidding version for n players generalizes the standard combinatorial game setting
for n players. We propose that the player who wins the bid distributes the bid between
the other players, as he/she pleases, but many variations are possible.

Questions of equilibria, monotonicity, and ‘convergence’ properties remain to be
resolved for any number of n ≥ 3 players.
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5 Illustration of feasible, dominated and relevant bids

Consider (symmetric) BCS.We illustrate the feasible bids for total budget 5, including
a short discussion of dominated bids. Such bids are also feasible arrows for automaton
A. In Fig. 3, we show the possible tie bids (and here domination is never an issue). In
Fig. 4,we show the possibleLeftwinning bids, and inFig. 5,we show the samebids, but
without dominated bids. Note that whenever property U holds, then Left winning bids
may be ignored, in optimal play. In Fig. 6, we illustrate the corresponding situations
for Right winning bids, and here the pictures (where dominated bids have been erased)
are relevant. By relevant, we mean that, in general, one cannot exclude the possibility
that a bid may be a unique equilibrium (in some specific setting).

012345

0T

0T

0T

012345

1T

1T

012345

2T

2T

Fig. 3 The pictures represent Left’s wins via tie bids, for TB = 5; Left has the marker together with the
indicated number of dollars. Note that only in the case of both players bidding “0” all nodes have outgoing
edges. In either case, they are all negative, indicated with the color blue in the picture. For example, if Left
has $4, and wins by bidding 0, then the next state is that Right gets the marker and $1. Of course none of
the bids are dominated in the case of a win by using the marker. Dominated bids only appear because the
other player does not have enough budget to motivate such a bid. Compare this situation with Figs. 4 and 5
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012345

1W 1W 1W 1W 1W

012345

2W 2W 2W 2W

012345

3W 3W 3W

012345

4W 4W

012345

5W

Fig. 4 Non-reduced bidding, for TB = 5, where a right (left) pointing edge indicates that left (right) wins
the bidding. As before the default is that left has the marker together with the indicated number of dollars.
Note the increasing number of nodes without outgoing edges

012345

1W 1W 1W 1W 1W

012345

2W 2W 2W

012345

3W

Fig. 5 The remaining Left winning bids from Fig. 4 when dominated bids have been erased, for TB = 5.
These bids are not relevant whenever property U is satisfied
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012345

1W 1W 1W 1W 1W

012345

2W 2W 2W

012345

3W

Fig. 6 The remaining right winning bids from Fig. 4 when dominated bids have been erased, for TB = 5.
These bids are relevant, even when property U holds
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