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Abstract
Recent advances in information and communication technologies have increased the
incentives for firms to acquire information about rivals. These advances may have
major implications for market entry because they make it easier for potential entrants
to gather valuable information about, for example, an incumbent’s cost structure.
However, little theoretical research has actually analyzed this question. This paper
advances the literature by extending a one-sided asymmetric information version of
Milgrom and Roberts’ (1982) limit pricing model. Here, the entrant is allowed access
to an intelligence system (IS) of a certain precision that generates a noisy signal on
the incumbent’s cost structure. The entrant thus decides whether to enter the market
based on two signals: the price charged by the incumbent and the signal sent by the
IS. Crucially, for intermediate values of IS precision, the set of pooling equilibria with
ex-ante profitable market entry is non-empty. Moreover, the probability of ex-ante
non-profitable entry is strictly positive. In classical limit pricing models, an entrant
never enters in a pooling equilibrium, so this result suggests that the use of an IS may
potentially increase competition.

Keywords Entry deterrence · Asymmetric information · Limit pricing · Pooling
equilibria

JEL Classification C72 · D82 · L10 · L12

1 Introduction

Information is a valuable resource for all firms because it allows them to improve
the quality of their decisions. Of particular importance is information about other
firms with which interaction occurs both directly and indirectly. Key information
aspects include other firms’ infrastructures, technologies, manufacturing processes,
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cost structures, product pipelines, and strategies. When this information is deemed
crucial but is difficult to find through public sources (“open sources”), firms sometimes
push the limits of competitive intelligence, resorting to industrial espionage (Roche
2016).1 For example, Roche (2006) reported that “when General Motors learned that a
competitor had purchased property to construct a very large factory, but did not know
for what purpose, it set up a ‘spy center’ to determine what its competitor was doing”
(Roche 2006, p. 61).2

In recent years, industrial espionage has become even more important (Bhatti
and Alymenko 2017). Initially, this rise in importance might have occurred because
thousands of professionals in information gathering were seeking employment in the
private sector after the end of the Cold War (Solberg 2016). However, the real driver
has been the recent advances in information and communication technologies. These
advances have increased the incentive for firms to engage in this illegal information
gathering. Not only have they meant that a huge amount of firms’ information is elec-
tronically stored and that information systems are connected to the Internet, but they
have also made cyber espionage activities “far safer and less risky” (Solberg 2016,
p. 52). Many tools can be used in modern cyber industrial espionage to collect other
firms’ confidential information. Trojan horses, adware, and cookies are just some
examples. These instruments can provide unauthorized access and remote control of
devices (“Botnets”), which enables the extraction of the desired information (Bederna
and Szadeczky 2020).

Just as in the past, companies today are poor at detecting and preventing espionage
and prefer to hide such cases, considering them negative publicity. As stated by Sol-
berg (2016, p. 52), “there is always a fear that admission of breach may lead to loss
of confidence and lower share price. So the stories seldom become public, if they
are not leaked by state intelligence organizations or spread as anecdotes by retired
executives at cocktail parties.”3 Accordingly, reliable knowledge about real espionage
cases is scarce (Bhatti and Alymenko 2017). Moreover, when information about an
industrial espionage case is obtained for research purposes, a restrictive confidentiality
agreement must typically be signed, meaning that the real names of the implicated
companies are not revealed and that the narrative is one-sided (Solberg 2016).

This situation is unfortunate because theoretical work in the field cannot be inspired
or tested with real-life examples. Nevertheless, a few recent cases have become public.
For instance, in 2015, it was discovered that cyber espionage tools had been employed
some years ago to extract confidential information slowly and methodically from two
U.S. tech companies, Avago and Skywords. The objective of the attackers was to
collect relevant data to start their own business in the industry. The extracted informa-

1 Ferdinand and Simm (2007) conceptualized knowledge resulting from industrial espionage as part of
organizational external learning, calling it illegal “larcenous learning.” Solberg (2016) considers this con-
ceptualization coherent with the historical patterns of industrial espionage.
2 Perhaps the most famous case of industrial espionage is reported by Solberg (2016). Between 1989 and
1997, a chemical engineer, Tenhong Lee from Taiwan (also known as the glue man), at the U.S. glue
manufacturer Avery Dennison stole confidential information that allowed his other employer in Taiwan,
Four Pillars Enterprise Co., to become the leading competitor of Avery Dennison in Asia.
3 One of the reasons the glue man’s case is well known is that Tenhong Lee was taken to court, where the
motives of his actions were revealed (Solberg 2016).
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tion included recipes, product designs, equipment and facilities specifications, project
plans, and performance data (Securonix 2015).

One of the most crucial business decisions is whether to start operating in a cer-
tain industry. As the previous case of industrial cyber espionage shows, there is a
huge incentive to gather valuable confidential information, including performance
data, from incumbents in the target industry before making an entry decision. In fact,
incomplete information about incumbents’ cost structures is considered an important
aspect in the theoretical explanation of market entry behavior. Milgrom and Roberts
(1982) initiated this strand of research in the theoretical literature on market entry,4

but little theoretical research has analyzed the implications of a potential entrant’s
attempts to reduce such an information disadvantage.

The goal of this paper is to advance in this direction by considering these potential
entrant’s attempts in the context of modern cyber espionage. This paper extends a
one-sided asymmetric information version of Milgrom and Roberts’ (1982) model.
In this extended version, the entrant has access to an intelligence system (IS) of a
certain precision. This IS, which consists of some of the cyber espionage instruments
discussed earlier, is then employed to better detect the cost structure of an incumbent
monopolist before deciding whether to enter the market (as in the case study discussed
by Securonix 2015).5 The IS generates a noisy signal on the incumbent’s cost structure.
The entrant thus decides whether to enter the market based on two signals: the price
charged by the incumbent and the signal sent by the IS.

It is assumed that the precision of the IS is exogenously given. This assumption is
consistent with the fact that the entrant already had access to the spying technology
before considering whether to enter the market. Under this assumption, we show that
gathering information about the cost structure of the incumbent produces two results:
(1) for intermediate values of IS precision, the set of pooling equilibria with ex-ante
profitable market entry is non-empty and (2) there exist pooling equilibria in which
the probability of ex-ante non-profitable entry is strictly positive.

A body of theoretical literature explores the role of incomplete information about
an incumbent’s cost structure as a crucial aspect in explaining market entry behavior.
This literature stems from the long-standing question in industrial organization regard-
ing whether an incumbent firm can set prices to deter entry that would otherwise be
profitable. Bain (1949) provided an early argument that an incumbent could deter entry
by limit pricing. Subsequent analysis, however, suggested that early economists exag-
gerated the entry-deterring effects of incumbent pricing. As Needham (1976) argued,
the incumbent’s pre-entry behavior deters entry only if some link exists between this
behavior and the potential entrant’s expected post-entry profit. This would be the case
if the incumbent could commit to maintaining its pre-entry price in the event of entry,
but such an assumption seems implausible.

Later research used game-theoretic models to reconsider whether limit pricing can
deter entry. Several studies have proposed an information link between the incumbent’s
pre-entry behavior and the entrant’s expected post-entry profit. In a classic paper
by Milgrom and Roberts (1982), the authors (referred to as MR hereafter) assumed

4 This seminal paper and some subsequent developments are reviewed later.
5 In the words of Ferdinand and Simm (2007), the entrant uses the IS for “larcenous learning.”.
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that the incumbent has private information about its costs of production and thus
endogenously generates an interdependence between the pre-entry output rate and the
potential entrant’s expected post-entry profits and entry decision. MR showed that
a separating equilibrium may exist, in which the incumbent sets a below monopoly
price (limit price) and thereby signals that its costs are low. The potential entrant then
infers the incumbent’s cost type and enters exactly when entry would be profitable
under complete information. Pooling equilibria only exist when entry is not profitable
because profitable entry cannot be deterred. Therefore, in the setting considered by
MR, there exists no pooling equilibrium inwhich the potential entrant enters themarket
with positive probability.

Bagwell and Ramey (1988) extended theMRmodel to allow the incumbent to have
two signals: price and advertising.6 In their model, the incumbent is privately informed
as to whether its costs are high or low, the potential entrant’s costs are commonly
known, and entry is profitable if and only if the incumbent has high costs. In a refined
separating equilibrium, the low-cost incumbent engages in “cost-reducing distortion,”
meaning that it adopts the same price and advertising selection as it hypothetically
would in an uncontested monopoly with even lower costs. The low-cost incumbent
thus limits prices and distorts its demand-enhancing advertising upward. Once again,
due to signaling, profitable entry is not deterred. However, once pooling equilibria
are considered, Bagwell and Ramey (1988) showed that for some parameters, refined
pooling equilibria exist in which the high-cost incumbent uses limit pricing and an
upward distortion in advertising to deter entry that would be profitable under complete
information. The MR result is in the benchmark model of Bagwell (2007), where both
prices and advertising expenditure are signals of the incumbent monopolist’s costs.
Bagwell (2007) extended the benchmark game to include two dimensions of private
information. Specifically, the incumbent is privately informed of its cost type and its
level of patience and selects price and advertising in the pre-entry period. Bagwell
(2007) finds pooling equilibrium (satisfying the intuitive criterion) associated with the
behavior of the patient high-cost incumbent, which pools with the impatient low-cost
incumbent.

In this paper, we consider a monopolist engaged in R&D activity with the aim of
reducing its cost of production. The outcome of the R&Dproject is private information
belonging to the incumbent. A potential entrant assigns a certain probability that the
monopolist fails to reduce its cost of production. If the project fails and the entrant
enters, it will have a positive profit. If the project succeeds and the entrant enters, it
will not be able to cover the entry costs. As already mentioned, we consider the case
in which the entrant has access to an IS, which consists of some of the modern cyber
espionage tools discussed above. This IS is used to collect (noisy) information about
the incumbent’s cost structure before deciding whether to enter the market. The IS
sends out one of two signals. Signal h indicates that the investment was not successful,
in which case we refer to the incumbent as having high cost (type H), whereas signal
l indicates that the investment was successful and the incumbent reduces its cost of
production (type L).

6 For other extensions, see Albaek and Overgaard (1992a,b), Bagwell (1992), Bagwell and Ramey (1990,
1991), Linnemer (1998), and Orzach et al. (2002).
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Consistent with the entrant having access to the spying device (e.g., having the
ability to plant one or several cyber espionage instruments in the information system
of the incumbent firm) before considering whether to enter the market, we assume that
the precision of the IS is exogenously given. The entrant decides whether to enter the
market based on a pair of signals: the price charged by the incumbent for its product
and the signal sent by the IS. If the entrant enters the market, it competes with the
incumbent (under Cournot competition, Bertrand competition, or any other mode of
competition).

The interaction between the entrant and the monopolist is described as a three-stage
game. In the first stage, the incumbent, which knows the outcome of the R&D project,
sets a price, and the IS sends a signal. Based on this pair of signals, the entrant decides
whether to enter the market in the second stage. If it enters, it will be engaged in a
certain mode of competition with the incumbent in the third stage of the game. The
game is of incomplete information. Following Harsanyi (1967, 1968), we analyze it as
a three-player game, where the players are the two types of incumbent and the entrant.
We analyze the sequential equilibria of this game. The case where the IS precision is
1
/
2 (not informative) is the limit pricing model of MR for the case where the entrant’s

cost is common knowledge.
We distinguish between two cases. The first is the case with separating equilibrium

where the two types of incumbent charge different prices; the second is the case with
pooling equilibrium where both types charge the same price.

The analysis provides several interesting findings. First, the entrant’s best response
entails two different threshold entry prices, one for each IS signal. That is, for each
signal, there is a threshold price such that the entrant enters if and only if the observed
price is higher than the signal-related threshold price. The threshold price associated
with signal l (i.e., when the incumbent is of type L) is higher than the one associated
with the other signal (signal h). This result means that the entrant will stay out for a
higher range of priceswhen l is observed thanwhen h is observed. Second, the analysis
supports the separating equilibria in MR and Bagwell and Ramey (1988). Namely,
the low-cost incumbent separates itself from the high-cost type, and separation is
achieved through a cost-reducing distortion if the cost difference is not too far apart. In
other words, at any separating equilibrium, the low-cost incumbent limits prices. This
behavior enables the potential entrant to infer the incumbent’s cost so that profitable
entry is not deterred. We show that the separating equilibria of our model coincide
with those of MR and Bagwell and Ramey (1988), and the IS makes no difference for
either the entrant or the incumbent. This result is unsurprising because the entrant in a
separating equilibrium identifies the incumbent’s typewith orwithout the use of the IS.
The only difference between our separating equilibria and those of the aforementioned
papers is in the behavior of the entrant when observing prices off the equilibrium path.

Third, we show that the IS plays an important role in pooling equilibria. As already
mentioned, a classical game-theoretical result is that limit pricing cannot deter prof-
itable entry. Thus, the set of pooling equilibria when the entrant’s expected profits
are positive is empty. The same result is obtained in our model if the IS precision is
sufficiently low to affect the entrant’s decision. In the other extreme, if the IS precision
is very accurate (close to 1), then, contrary to the MR model, no pooling equilibrium
exists, even when entry is not profitable ex-ante. In this case, the entrant identifies
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the incumbent’s type with high probability and enters the market if the IS sends sig-
nal h but stays out if the signal is l. The high-cost monopolist, which knows that its
type is detected with high probability, benefits from a deviation to its monopoly price,
upsetting a pooling equilibrium.

However, the results change for intermediate values of the IS precision (i.e., when
the precision of the IS is bounded away from 1 and from 1

/
2). We show that the set

of pooling equilibria is non-empty, even under ex-ante profitable entry. The entrant’s
decision is to follow the signal, entering if the signal is h and staying out if the signal
is l. Thus, when the IS precision is bounded away from 1, the high-cost monopolist
knows with a high probability that the entrant will obtain the wrong signal and will
stay out. Hence, it has a positive probability of succeeding in “fooling” the entrant
about its type.

To compare this result with the result obtained in the MR model, let us first sup-
pose that, prior to the completion of the R&D project, the expected payoff of E from
entering the market is positive. Then no pooling equilibrium exists in the MR model.
Moreover, the entrant never enters in a pooling equilibrium when the expected profit
of entry is negative. Contrary to the MR model, the entrant in our model enters the
market with positive probability (when the IS signal is h), even if its ex-ante expected
profit is negative. This scenario suggests the positive competitive effects of industrial
espionage in contrast to the negative ones that would emerge when a non-spied incum-
bent operated in more than one market (Pires and Jorge 2012). Moreover, an IS with
intermediate values of precision allows for pooling equilibria with ex-ante profitable
entry.

In our model, the incumbent only signals its costs by price; the other signal is
generated by the IS operated by the entrant. In contrast, in the model of Bagwell
and Ramey (1988), the incumbent signals its costs with both price and advertisement.
Bagwell (2007) found an (intuitive) pooling equilibrium, where the incumbent has two
dimensions of private information: costs and level of patience. In contrast, our model
also shows the existence of pooling equilibria under ex-ante profitable entry even with
only one dimension of private information by the incumbent. Nevertheless, there are
two IS signals correlated with price. These signals provide additional (probabilistic)
information to the entrant about the incumbent’s type and help the entrant to smooth
the best response. The entrant’s best response is completely smooth in Matthews and
Mirman (1983) in a limit pricing model where demand is stochastic. Accordingly,
prices reveal only statistical information about the incumbent’s private information.
Their (separating) equilibrium differs from standard signaling equilibria in that it can
be unique, it depends on prior beliefs, and it is rich in comparative statics.

This paper is also closely related to a recent strand in the theoretical literature
(Barrachina et al. 2014; Barrachina 2019) that analyzes the effects of gathering noisy
information (through an IS like the one considered in this paper) in the context of
entry deterrence. Barrachina et al. (2014) elaborated on the general game-theoretic
framework to analyze espionage games, as suggested by Solan and Yariv (2004).
They considered the case in which a potential entrant can gather noisy information
about the incumbent’s decision regarding capacity expansion. As in the present paper,
their results suggest that market competition is likely to increase under the entrant’s
industrial espionage. Alternatively, Barrachina (2019) considered the case in which
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the owner of the IS is the incumbent. He identified the conditions under which com-
municating that the entrant’s strength can be detected is an effective entry deterrence
strategy. As in the present paper, Barrachina (2019) considered espionage in the con-
text of asymmetric information, much like Perea and Swinkels (1999) and Ho (2008).
However, in the model of Perea and Swinkels (1999) and Ho (2008), the espionage
was carried out by a decision maker who could act strategically.

This theoretical literature on espionage in an economic and industrial context is
somewhat sparse. In a recent paper, Barrachina and Forner-Carreras (2020) also con-
sidered amarket entry context but focused on the interaction of one country’s noiseless
espionage with another country’s counter-espionage. The analysis shows that the opti-
mal counter-espionage effort, concerned with social welfare in the target market, is
always positive but decreases with the level of competition in that market. Counter-
espionage has also been analyzed byWhitney and Gaisford (1999), Grabiszewski and
Minor (2019), and Fan et al. (2019).

The expected increase in the level of market competition showed in the research by
Barrachina et al. (2014) and in the present paper is likely to improve social welfare. The
theoretical studies by Sakai (1985), Billand et al. (2016), and Kozlovskaya (2018) are
more focused on the effect of industrial information gathering on social welfare. As in
our paper, Sakai (1985) analyzed two firms and information gathering to ascertain the
cost structure of the opponent firm. However, unlike us, Sakai (1985) considered two
firms already competing in the market that knew neither the costs of their opponent
nor their own costs.

The remainder of the paper is organized as follows. Section 2 presents the model.
The entrant’s strategy is described in Sect. 3. Section 4 presents the pooling equilibria,
and Sect. 5 analyzes the separating equilibria of the game. Section 6 concludes the
paper. Most of the proofs are presented in the Appendix.

2 Themodel

We consider a monopolist M and a potential entrant E. The monopolist M is engaged
in R&D activity to reduce its cost of production from CH (q) to CL(q), where q is the
production level. The outcome of the R&D project is information that is the private
property of M. The potential entrant, E, assigns a certain probability μ > 0 that M
fails to reduce its cost, with probability 1 − μ > 0 indicating that the project was
successful. Therefore, the cost function of M is private information that can be of
one of two types: L (low cost) or H (high cost). The potential entrant, E, assigns the
probability μ that M is of type H. If the project fails and E enters, it obtains positive
profit. If the project succeeds and E enters, it will not be able to cover its entry cost
and will end up with a negative profit.

The entrant has access to an IS that allows it to gather (noisy) information about
the cost structure of M. The IS sends out one of two signals. Signal h indicates that
the investment was not successful, in which case we refer to M as having type H,
whereas signal l indicates that the investment was successful, so M is of type L. The
precision of the IS is α, 1

/
2 ≤ α ≤ 1. That is, the signal sent by the IS is correct with

probability α. The case where α � 1
/
2 is equivalent to the case where E does not
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use an IS. The case where α � 1 is the case where E knows the exact outcome of the
project. It is assumed that the precision α of the IS is exogenously given.

The interaction between E and M is described as a three-stage game G(α). In the
first stage, M chooses a price as a function of its type. The entrant decides whether to
enter based on a pair of signals: the price, p, that M charges for its product and the
signal, s (h or l), sent by the IS. If E enters, it will incur an entry cost, K , and compete
withM (whether it is Cournot competition, Bertrand competition, or any othermode of
competition). The form of competition (Cournot, Bertrand, or otherwise) is commonly
known, and once E enters, the outcome of the competition is assumed to be uniquely
determined. It is assumed that the above information is commonly known (including
the precision, α, of the IS).

The game G(α) is a game of incomplete information. Using Harsanyi’s approach,
we analyze it as a three-player game where the players are the two types, H and L, of
the monopolist, M, and the entrant, E. The case where α � 1

/
2, namely where the IS

has no value (and may therefore be ignored), is exactly the limit pricing model MR
when the entrant only has an entry cost type. Therefore, our model is an extension of
the MR model where the entrant has access to an intelligence system with precision
1
/
2 < α < 1.
Let Q(p) be the demand function and Ct (q) be the cost function of the t-type

monopoly. Let DH and DL be the duopoly profits of the H-type and the L-typemonop-
olists, respectively. For short, we denote the H-type and the L-type monopolists by H
and L, respectively. Let �H (p) be the profit of H and let �L(p) be the profit of L
when the price is set at p and when E does not enter. We denote by DE (H) and DE

(L) the duopoly profits of E when E competes with H and L, respectively. We denote
by pMH and pML the monopoly prices of H and L, respectively (and by qM

H and qM
L the

monopoly quantities). The following assumptions are standard in the literature.
Assumptions

1. DE (L) − K ≡ �E (L) < 0 and DE (H) − K ≡ �E (H) > 0.
2. �t (p), t ∈ {H , L}, is increasing in p whenever p ≤ pMt and is decreasing in p

whenever p ≥ pMt .
3. �L

(
pML

) − DL > �H
(
pMH

) − DH . Namely, L loses from entry more than H.
4. The cost functions Ct (x), t ∈ {H , L}, are differentiable, C ′

H (q) > C ′
L(q) and CH

(0) ≥ CL(0).
5. Q(p) is differentiable and Q′(p) < 0 for all p ≥ 0.
6. All parameters of the model and the above five assumptions are commonly known.

Let p̂ be the price for H and let p0 be the price for L that yields the duopoly profits
for H and L respectively, i.e.,

�H
(
p̂
) � DH and p̂ < pMH .

and
�L(p0) � DL and p0 < pML .
Lemma 1. (i) �L(p) − �H (p) is decreasing in p.
(ii) pMH > pML .
(iii) p̂ > p0.
Proof: See Appendix.
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We restrict our study to sequential equilibria of G(α). A sequential equilibrium is
a combination of strategies and beliefs such that strategies are sequentially rational
given the players’ beliefs, and beliefs are consistent in all information sets.

A strategy for the entrant E is an entry rule, σE : {h, l} × R → {0, 1}. After
observing a first period price p ∈ R+ and a signal s ∈ {h, l}, E enters if σE (s, p) � 1
and does not enter if σE (s, p) � 0. A strategy for firm M is a pricing rule, p :
{H , L} → R that specifies a price pt , t � {H , L}.

Given α, for every pair of signals (s, p), s ∈ {h, l} and p ∈ R+, let Prob(H |s, p )

and Prob(L|s, p ) � 1− Prob(H |s, p ) be the conditional probability that E assigns
to the event that M is of type H and of type L, respectively.

It is assumed that, conditional on the type of M, the signals are mutually indepen-
dent. Namely, M chooses price p independently of the choice of the IS. Nevertheless,
the signals p and s are correlated. If E observes a very high price, it will be more
likely to observe signal h. If, however, E observes a low price, it will be more likely
to observe signal l. The Bayesian posterior belief that E assigns to the types of M is

Prob(H |h, p ) � Prob(h, p|H )Prob(H)

Prob(h, p|H )Prob(H) + Prob(h, p|L )Prob(L)

� Prob(h|H )Prob(p|H )Prob(H)

Prob(h|H )Prob(p|H )Prob(H) + Prob(h|L )Prob(p|L )Prob(L)

Equivalently,

Prob(H |h, p ) � μα f (p|H )

μα f (p|H ) + (1 − μ)(1 − α) f (p|L )
(1)

Similarly,

Prob(H |l, p ) � μ(1 − α) f (p|H )

μ(1 − α) f (p|H ) + (1 − μ)α f (p|L )
(2)

where f (p|t ) is the (density) probability that E assigns to the event that M of type t ,
t ∈ {H , L}, sends the signal p.

In a pure strategy equilibrium, if H assigns probability 1 to the event that p � pH ,
then f (pH |H ) � 1 and f (p|H ) � 0 if p 	� pH . In this case, f (p|H ) is identified
with the probability that H selects p. Similarly, f (pL |L ) � 1 and f (p|L ) � 0,
∀p 	� pL . Hence, for p 	� pH and p 	� pL , (1) and (2) are not well defined (the
numerators and denominators are zero). To apply the sequential equilibrium concept,
weneed to consistently definebeliefs for anyobserved p. Therefore, off the equilibrium
path, we approach f (p|t ) by a sequence ( fn(p|t ))∞n�1, such that fn(p|t ) > 0 and
lim
n→∞ fn(p|t ) � f (p|t ) for all p ∈ R+. Let

Probn(H |h, p ) ≡ μα fn(p|H )

μα fn(p|H ) + (1 − μ)(1 − α) fn(p|L )
(3)

Probn(H |l, p ) ≡ μ(1 − α) fn(p|H )

μ(1 − α) fn(p|H ) + (1 − μ)α fn(p|L )
(4)
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Now Probn(H |h, p ) is well defined for all p ∈ R+, and (1) can be modified to be

Prob(H |h, p ) ≡ lim
n→∞

μα fn(p|H )

μα fn(p|H ) + (1 − μ)(1 − α) fn(p|L )

We modify (2) in the same way. Note that different sequences of ( fn(p|t ))∞n�1
generate different conditional probabilities Prob(t |s, p ), t ∈ {H , L}, s ∈ {h, l},p ∈
R+.

Let �E (s, p) be the expected payoff of E given its on- and off-equilibrium beliefs,
namely

�E (s, p) ≡ Prob(H |s, p )�E (H) + Prob(L|s, p )�E (L) (5)

In a sequential equilibrium, if �E (s, p) < 0, E does not enter the market, and if
�E (s, p) > 0, E enters. To simplify the analysis, we assume that E also stays out
when �E (s, p) � 0. Namely, E stays out if and only if it observes (s, p) such that

�E (s, p) ≡ Prob(H |s, p )�E (H) + Prob(L|s, p )�E (L) ≤ 0

3 Conditions for limit pricing: the entry rule

For firm M to engage in limit pricing, entry should be more likely when prices are
high rather than when they are low for any observed signal. This is the case if σE (s, p)
specifies entry if and only if for each signal s the observed price exceeds the entry
price. The following assumptions help ensure that σE (s, p) is of this form for any p
and for each s ∈ {h, l}.

Assumption 7

(1) For each t ∈ {H , L} and each n, fn(p|t ) is differentiable in p for all p ≥ 0.
(2) Let

gn(p) � fn(p|H )
/
fn(p|L )

Then gn(p) is increasing in n for each p, and is increasing in p for each n.
Furthermore, for every n, lim

p→0
gn(p) � 0 and lim

p→∞ gn(p) � ∞.

(3) Let g(p) � lim
n→∞ gn(p). Then g(p) is continuous in p.

Note that, f (p|H )
/
f (p|L ) is the likelihood ratio. To be increasing in p or, equiv-

alently, to satisfy the Monotone Likelihood Ratio Property in p (MLRP, Milgrom
1981) implies that a high price is more likely to come from H than from L. Most of
the common densities such as the uniform, normal, and exponential satisfy the MLRP.
Assumption 7 guarantees continuity and monotonicity of the conditional probability
Prob(t |s, p ), t ∈ {H , L}, s ∈ {h, l}, p ∈ R+. The next lemma shows the continuity
andmonotonicity of such conditional probabilities. The proof is given in theAppendix.

Lemma 2. (i) For each s ∈ {h, l} and t ∈ {H , L}, Prob(t |s, p ) is continuous in p
and Prob(H |s, p ) is non-decreasing in p, p ≥ 0.
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(ii) For every p ≥ 0, Prob(H |h, p ) > Prob(H |l, p ).
By the above lemma, �E (s, p) is continuous and non-decreasing in p. This result

follows from the fact that Prob(H |s, p ) is continuous and non-decreasing in p, �E

(H) > 0, Prob(L|s, p ) � 1 − Prob(H |s, p ) and �E (L) < 0. Moreover,
Lemma 3. Let Js � { p ≥ 0|�E (s, p) ≤ 0}. Then Js and R+\Js are both non-

empty sets. In other words, �E (s, p) < 0 for sufficiently small p, and �E (s, p) > 0
when p is sufficiently large.

Proof: See Appendix.
Recall that by Assumption 1, DE (L) − K ≡ �E (L) < 0,DE (H) − K ≡ �E

(H) > 0.
Proposition 1. Suppose that Assumption 1 holds. Then any beliefs of E that satisfy

Assumption 7 imply that�E (s, p) is continuous and non-decreasing in p and uniquely
determines ph and pl . In every sequential equilibrium with these beliefs, ph < pl and
E enters the market if and only if it observes signal (h, p)with p > ph or signal (l, p)
with p > pl .

Proof: See Appendix.
Because pl > ph , the best response entry rule of E when it observes the pair of

signals (s, p) is given by Fig. 1 below.
The correlation between signals and prices gives rise to the ordering of the threshold

prices associated with signals. Accordingly, the threshold price associated with signal
l is higher than the threshold price associated with signal h. Thus, for instance, the
entrant will stay out for a higher range of prices when observing l than when observing
h. This conclusion is intuitive because the signal sent by the IS is informative (albeit
noisy), and E will be more inclined to enter the market when receiving signal h than
when receiving signal l.

Our next goal is to characterize the sequential equilibrium of G(α) given the above
decision rule of E.

4 Conditions for entry deterrence: pooling equilibria

We first analyze the existence of sequential pooling equilibria, which is our main con-
tribution. We claim that the set of pooling equilibria with ex-ante profitable market
entry is non-empty and that the probability of ex-ante non-profitable entry is strictly
positive (specifically, when the IS signal is h) if the cost function of H is not substan-
tially higher than that of L and the IS precision belongs to some intermediate level.

Fig. 1 The entry rule
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This result is observed in our model, in which the incumbent only has one dimension
of private information, because the entrant receives one of the two IS signals correlated
with price. This signal provides the entrant with additional (probabilistic) information
about the incumbent’s type. This result also offers support to the predictions of the
earlier literature, where Bain (1949) describes the condition under which limit pricing
may deter entry.

4.1 The conditional-to-signal entry rule

Pooling equilibria refer to triples of the form (σE , pH , pL), where σE is the strategy
of E and pH � pL ≡ p∗.

We first calculate the entrant’s expected payoff conditional on receiving a signal
from the IS and observing price p∗. Recall that, by Assumption 1, DE (L)− K ≡ �E

(L) < 0 and DE (H) − K ≡ �E (H) > 0, where DE (H) and DE (L) denote the
duopoly profits of E when it competes with H and L, respectively.

Given signal l of the IS, the expected payoff of E conditional on receiving such a
signal is

�E ( l|α) ≡ Prob(H |l )�E (H) + Prob(L|l )�E (L)

Equivalently,

�E ( l|α) � μ(1 − α)

μ(1 − α) + (1 − μ)α
�E (H) +

(1 − μ)α

μ(1 − α) + (1 − μ)α
�E (L)

Hence, if the IS sends signal l, E does not enter the market when observing price
p∗ if and only if �E ( l|α) ≤ 0.

Let

αl � μ�E (H)

μ�E (H) − (1 − μ)�E (L)
(6)

Therefore, suppose that the entrant’s expected profits conditional on receiving signal
l are non-positive. Then the entrant does not enter when observing price p∗ if and only
if the IS precision is sufficiently high (i.e., α ≥ αl ).

Since, in our model, 1/2 < α < 1, and 0 < αl < 1, we wish to know when
αl < 1/2. From (6) and recalling that μ�E (H) + (1 − μ)�E (L) is the entrant’s
expected profit without the IS, then αl < 1/2 if and only if

μ�E (H) + (1 − μ)�E (L) < 0 (7)

Therefore, E does not enter when receiving signal l if and only if the entrant’s
unconditional expected payoffs are negative (i.e., (7) is satisfied).

Next, suppose that the IS sends signal h. Then the expected payoff of E conditional
on receiving h is

�E (h|α) ≡ Prob(H |h )�E (H) + Prob(L|h )�E (L)
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Equivalently,

�E (h|α) � μα

μα + (1 − μ)(1 − α)
�E (H) +

(1 − μ)(1 − α)

μα + (1 − μ)(1 − α)
�E (L)

Hence, if the IS sends signal h, E does not enter the market when observing price
p∗ if and only if �E (h|α) ≤ 0.

Let

αh � −(1 − μ)�E (L)

μ�E (H) − (1 − μ)�E (L)
(8)

Note that �E (h|α) ≤ 0 if and only if the IS precision is sufficiently low (i.e.,
α ≤ αh).

As above, 0 < αh < 1 and, from (8), αh > 1
/
2 if and only if (7) is satisfied (i.e.,

the entrant’s expected profit without signals is negative).
Corollary 1. Suppose that 1

/
2 < α < 1 and

μ�E (H) + (1 − μ)�E (L) < 0

Then E stays out if and only if it observes signal l or receives signal h and the IS
precision is low enough (i.e., α ≤ αh).

Alternatively,when the entrant’s expected profitwithout signals is negative, E enters
the market if and only if it receives signal h and the IS precision is sufficiently high
(i. e., α > αh).

When μ�E (H) + (1 − μ)�E (L) > 0, then αh < 1/2 < αl < 1. Hence, α > αh

∀α, 1/2 < α < 1. Namely, if the IS sends signal h, E enters the market when price
p∗ is observed, irrespective of the precision α of the IS. Also, αl > 1/2, so we may
have 1/2 < α < αl or αl ≤ α < 1. In the former case, E enters the market when
price p∗ is observed, irrespective of the signal sent by the IS. In the latter, when price
p∗ is observed, E enters the market if the IS sends signal h but does not enter if the IS
sends signal l. Therefore,

Corollary 2. Suppose that 1/2 < α < 1 and

μ�E (H) + (1 − μ)�E (L) > 0

Then the entrant stays out if and only if it observes signal l and the IS precision is
high enough (i.e., α ≥ αl ).

Alternatively, when the entrant’s expected profit without signals is positive, then it
enters the market when price p∗ is observed if and only if it observes signal h or an
imprecise signal l (i.e., α < αl ).

In the classical threshold price model, pooling equilibria entail a pooling price
smaller than or equal to such a threshold. Here, however, by the entry rule, there are
two threshold prices, ph and pl , such that E enters the market if and only if it observes
signal (h, p) with p > ph or signal (l, p) with p > pl . Moreover, a key factor for
entry is the sign of the entrant’s expected payoff conditional on receiving signal s ∈
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{h, l}. ByCorollary 1, this sign depends on the entrant’s expected profitwithout signals
and IS precision.

Proposition 2 below characterizes the set of pooling equilibria of the game G(α).
The proof is long and tedious because the incentive compatibility conditions must
account for the entrant’s positive and negative expected payoffs, the different bounds
on α, the differences of the incumbent’s cost technology, and the different orderings
of the entrant’s threshold prices ph and pl with respect to the monopoly and duopoly
prices. Therefore, most of it is shown in the Appendix. Nevertheless, we first motivate
the approach, show some general results, and provide some notation.

We describe next some useful properties and the incentive compatibility conditions
of the monopolist types that any pooling equilibrium of G(α) must satisfy.

4.2 Properties of pooling equilibria

Let Al � {α|�E ( l|α) ≤ 0 } and Ah � {α|�E (h|α) ≤ 0 }. First, suppose that μ�E

(H) + (1 − μ)�E (L) < 0. In this case, αl < 1
/
2 < αh < 1. Hence, α > αl and

α ∈ Al∀α, 1
/
2 < α < 1. Namely, if the IS sends signal l, E does not enter the market

when price p∗ is observed, irrespective of the precision α of the IS. This case is split
into two subcases: a) 1

/
2 < α ≤ αh and b) αh < α < 1.

(a) We start with the subcase 1
/
2 < α ≤ αh . Here, α ∈ Al ∩ Ah . That is, E does

not enter the market when price p∗ is observed, irrespective of the signal sent by the
IS. Hence, belief consistency (see Proposition 1) implies that p∗ ≤ ph . The following
lemma, proven in the Appendix, establishes a useful result.

Lemma 4. Suppose that μ�E (H)+ (1 − μ)�E (L) < 0 and 1
/
2 < α ≤ αh . Then,

in every pooling equilibrium, pMH > pML ≥ ph .
Using Lemma 4, we now offer the incentive compatibility conditions of the two

types of incumbent for low values of IS precision.

4.3 The incentive compatibility condition of H (ICCH) when 1/2 < ˛ ≤ ˛h.

By belief consistency, p∗ ≤ ph , and by Lemma 4, pMH > ph . Thus, it suffices for the
ICCH to consider only deviations to p > ph . In this case, when observing such a p,
E may enter the market with some probability, and H may be better off choosing pMH .
Conditional on the monopolist of type H and for any p ∈ (ph, pl ], E receives signal h
with probability α and enters yet receives signal l with probability (1 − α) and does
not enter. If p > pl , then E always enters.

Let
�
pH (α) be the only p whose profits are equal to the expected profits of H when

E enters with probability α. That is, α, i.e.,

�H (p) � αDH + (1 − α)�H

(
pMH

)
� DH + (1 − α)

(
�H

(
pMH

)
− DH

)
> DH

And let p̃H (α) be the (unique) solution for p of the following equation

�H (p) � α�H

(
pMH

)
+ (1 − α)DH > DH
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In other words, p̃H (α) is the unique pwhose profits are equal to the expected profits
of H when E enters with probability (1 − α). Note that p̃H (α) >

�
pH (α) > p̂.

Both
�
pH (α) and p̃H (α) play a key role in the relevant ICCH when 1

/
2 < α ≤ αh ,

summarized by the following lemma.
Lemma 5. If μ�E (H) + (1 − μ)�E (L) < 0 and 1

/
2 < α ≤ αh , then the ICCH

requires that at any pooling equilibrium p∗.
(1) pMH > p∗ ≥ �

pH (α) if ph < pMH ≤ pl ;
(2) pMH > p∗ ≥ p̂ if pMH > pl , with p̃H (α) ≥ pl .
Proof: See Appendix.
The incentive compatibility conditions for H state that for p∗ to be a pooling equi-

librium price, it should provide profits that are greater than or equal to those from E
entering with probability α when ph < pMH ≤ pl (part (1) of Lemma 5) and greater
than or equal to those of the duopoly profits when pMH > pl , provided that p̃H (α) ≥ pl
(part (2) of Lemma 5).

The role of p̃H (α) is the following. For any value of IS precision α ∈ (
1
/
2, αh

]
,

the second-period expected profits after a first-period pooling are the monopoly prof-
its. Those following a deviation to pl are a linear combination of the duopoly and
monopoly expected profits, weighted by probability α. Therefore, a pooling p∗ ≥ p̂
avoids a deviation to pl whenever, for example, first-period profits from p∗ � p̂ plus
the difference between second-period expected profits from the pooling and those from
the deviation are greater than or equal to the profits from pl . Hence, p̃H (α) ≥ pl .

4.4 The incentive compatibility condition of L (ICCL) when 1/2 < ˛ ≤ ˛h.

For the specification of the relevant ICCL when 1
/
2 < α ≤ αh , it must again be

considered that, by Lemma 4, pML ≥ ph . Hence, when pML � ph , the only possible
pooling equilibrium price that satisfies belief consistency is p∗ � pML , and L would
have no incentive to deviate. When pML > ph , L may consider deviations to pML .
Note that, conditional on having the monopolist of type L and for any p ∈ (ph, pl ],
E receives signal l with probability α and does not enter yet receives signal h with
probability (1 − α) and enters. Also, for any p > pl , E always enters.

Define p̃L(α) as the unique price solving

�L(p) � α�L

(
pML

)
+ (1 − α)DL � DL + α

(
�L

(
pML

)
− DL

)
> DL

In other words, p̃L(α) is the only p whose profits are equal to the expected profits
of L when E enters with probability (1 − α). Let

�
pL(α) be the unique price solving

�L(p) � αDL + (1 − α)�L

(
pML

)
> DL

That is,
�
pL(α) is the only p whose profits are equal to the expected profits of L

when E enters with probability α. Note that p̃L(α) >
�
pL(α) > p0.
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Both p̃L(α) and
�
pL(α) play a key role in the relevant ICCL when 1

/
2 < α ≤ αh ,

as specified in the following lemma.
Lemma 6. If μ�E (H) + (1 − μ)�E (L) < 0 and 1

/
2 < α ≤ αh , then the ICCL

requires that at any pooling equilibrium p∗.
(1) pML > p∗ ≥ p̃L(α) if ph < pML ≤ pl ;

(2) pML > p∗ ≥ p0 if pML > pl , with
�
pL(α) ≥ pl .

Proof: See Appendix.
Similarly to ICCH in Lemma 5, the incentive compatibility conditions for L indi-

cate that for p∗ to be a pooling equilibrium price, it should give profits that are
greater than or equal to those from when E enters with probability (1 − α) when
ph < pML ≤ pl (part (1) of Lemma 6) and greater than or equal to those of the

duopoly profits when pML > pl , provided that
�
pL(α) ≥ pl (part (1) of Lemma 6).

Notice that part (2) in Lemmas 5 and 6 imply that ph and pl have to be sufficiently
close to each other.

(b) We now analyze the incentive compatibility conditions of the two types of
incumbent for high values of IS precision. Let us consider that αh < α < 1. In this
case α ∈ Al\Ah . Thus, when price p∗ is observed, E enters the market if the IS
sends signal h and does not enter if the IS sends signal l. Hence, by belief consistency
(see Proposition 1), ph < p∗ ≤ pl . There are some useful properties of the pooling
equilibria in this case. First, a useful result is established by the following lemma. The
proof is provided in the Appendix.

Lemma 7. If μ�E (H) + (1 − μ)�E (L) < 0 and αh < α < 1, then at any p∗,
pMH > pML ≥ pl .

The above lemma allows us to present the incentive compatibility conditions for
the two types of incumbent when IS precision is high.

4.5 The incentive compatibility condition of H (ICCH) when˛h < ˛ < 1

By Lemma 7, pMH > pl . This result, together with the fact that αh < α < 1 and hence
that E enters if it observes signal h, is behind the ICCH summarized in Lemma 8.
Further details are given in the proof of this lemma in the Appendix.

Lemma 8. If μ�E (H) + (1 − μ)�E (L) < 0 and αh < α < 1, then the ICCH

requires that at any pooling equilibrium p∗, p∗ ≥ p̃H (α) > p̂ and p̂ ≥ ph .
The intuition of this lemma is that at any pooling p∗ ∈ (ph, pl ] p∗ ∈, by Proposition

1, the entrant will enter with positive probability when signal h is received, and the
second-period expected profits for H are

αDH + (1 − α)�H

(
pMH

)
� �H

(
pMH

)
− α

(
�H

(
pMH

)
− DH

)

where α � Prob(s � h/H) or the entry probability when the monopoly is of type H.
In otherwords, for anyvalue of ISprecisionα ∈ (αh, 1), the second-period expected

profits after a first-period pooling are the monopoly profits minus the probability of
entry times the difference between the monopoly and duopoly profits. By Lemma
7,pMH > pl , so any pooling p∗ ∈ (ph, pl ] requires that the inequality
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�H
(
p∗) + αDH + (1 − α)�H

(
pMH

)
≥ �H

(
pMH

)
+ DH

is satisfied, which is equivalent to satisfying

�H
(
p∗) ≥ DH + α

(
�H

(
pMH

)
− DH

)

Thus, the profits from the first-period pooling must compensate for the second-
period expected loss fromentry,which, for theH-typemonopoly, implies that p∗ ≥ p̃H
(α), as shown above.

Also, the pooling profits must be higher than the duopoly profits. This condition is
met whenever p∗ ≥ p̃H (α) > p̂ with p̂ ≥ ph , where p̂ is the price for H that yields
the duopoly profits.

4.6 The incentive compatibility condition of L (ICCL) when˛h < ˛ < 1

By Lemma 7, pML ≥ pl . Hence, when pML � pl , the only possible pooling equilibrium
price satisfying belief consistency is p∗ � pML , and L would have no incentive to
deviate. Consequently, the relevant ICCL is specified in Lemma 9 (proven in the
Appendix).

Lemma 9. If μ�E (H) + (1 − μ)�E (L) < 0 and αh < α < 1, then the ICCL

requires that at any pooling equilibrium pML > p∗ ≥ �
pL(α) and p0 ≥ ph .

The intuition of Lemma 9 is similar to that of Lemma 8 but for the monopoly of
type L. Specifically, the second-period expected profits for the L-type monopoly after
the pooling p∗, for any value of IS precision α ∈ (αh, 1) are

α�L

(
pML

)
+ (1 − α)DL � �L

(
pML

)
− (1 − α)

(
�L

(
pML

)
− DL

)

where (1 − α) � Prob(s � h/L) or the probability of market entry when the
monopoly is of type L. By Lemma 7 pML ≥ pl . Thus, any pooling p∗ ∈ (ph, pl ]
requires

�L
(
p∗) + α�L

(
pML

)
+ (1 − α)DL ≥ �L

(
pML

)
+ DL

to be satisfied, which is equivalent to satisfying

�L
(
p∗) ≥ αDL + (1 − α)�L

(
pML

)
� DL + (1 − α)

(
�L

(
pML

)
− DL

)

Thus, again, the profits from the first-period pooling must compensate for the
second-period expected loss from entry. The above implies that p∗ ≥ �

pL(α) for the
L-type monopoly. Additionally, the pooling profits must be higher than the duopoly
profits. This condition is met whenever pML > p∗ ≥ �

pL(α) with p0 ≥ ph , where p0
is the price for L that yields the duopoly profits.

We now consider the case in which the entrant’s expected profit without signals
is positive, such that μ�E (H) + (1 − μ)�E (L) > 0. By Corollary 2, the relevant
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threshold for E to assess the precision of the IS and hence the entry decision is αl . It
is easy to show that the properties and incentive compatibility conditions that must be
satisfied in every pooling equilibrium here are equivalent to those analyzed for the case
in which μ�E (H)+ (1 − μ)�E (L) < 0. Further details are offered in the Appendix.

We now present the pooling equilibria of G(α). Essentially, given the entrant’s
entry rule, the two incentive compatibility conditions must be compatible and sequen-
tially rational at equilibrium, and the entry rule must be consistent with equilibrium
prices. Let δ � (

�H
(
pML

) − DH
)/(

�H
(
pMH

) − DH
)
be a threshold to bound the IS

precision by above.
Proposition 2. Consider the gameG(α), where 1

/
2 < α < 1. Let SPEP be the set

of all sequential pooling equilibrium prices and SPE the set of all sequential pooling
equilibria of G(α).

(1) Suppose that expected profits (not conditioned on the IS signals) from entry are
negative, such that μ�E (H) + (1 − μ)�E (L) < 0. Then

(i) If pML < p̂ (the cost technology is quite far apart), then SPE � ∅,
(ii) If pML � p̂ and α ≤ αh , then SPEP � {

pML
}
. If α > αh , then SPE � ∅,

(iii) If pML > p̂ (intermediate cost technology) then

(iii.1) For α ≤ αh , in every equilibrium in SPE , E stays out, irrespective of the signal
s, and SPEP � [

p̂, pML
]
.

(iii.2) If αh < δ, then, for all α, αh < α ≤ δ, E enters if and only if s � h, SPE 	� ∅,
and SPEP �

[
max

(
p̃H (α),

�
pL(α)

)
, pML

]
.

(iii.3) For α > δ, SPE � ∅.
(2) Suppose that expected profits (not conditioned on the IS signals) from entry are

positive, such that μ�E (H) + (1 − μ)�E (L) > 0. Then,

(i) If pML ≤ p̂ (the cost technology is quite far apart), then SPE � ∅,
(ii) If pML > p̂ (intermediate cost technology) then

(ii.1) For α < αl , SPE � ∅.
(ii.2) (If αl ≤ δ, then, for all α, αl ≤ α ≤ δ, E enters if and only if s � h, SPE 	� ∅,

and SPEP �
[
max

(
p̃H (α),

�
pL(α)

)
, pML

]
.

(ii.3) (For α > δ, SPE � ∅.
(3) Suppose that δ < max(αl , αh) � αl , then SPE � ∅. Suppose that δ < max

(αl , αh) � αh , then SPE � ∅ whenever α > αh .7

Proof: See Appendix.
Proposition 2 asserts that a sequential pooling equilibrium does not exist if either

pML < p̂ or if α > δ. The first condition, pML < p̂, implies that the cost function of H
is substantially higher than that of L. Even the duopoly price p̂ when H competes with
E is above the monopoly price of L. In this case, it is too costly for H to mimic L and
to “fool” E about its type. The other condition, α > δ, means that the IS is sufficiently
accurate so that when E observes signal h, it has a high probability of knowing that
the true type of M is H and is better off entering the market. In this case, H, which

7 It is easy to verify that if δ � αh , then SPE � ∅ whenever α > αh .
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knows that there is a high probability that its type is detected, has no reason to pool
and is better off charging the monopoly price pMH , upsetting the pooling equilibrium.

When the cost technology is not too far apart and for intermediate values of α (i.e.,
αh < α ≤ δ or αl ≤ α ≤ δ), the set of pooling equilibria is non-empty, even under
profitable entry. The decision of E is to enter the market if and only if the signal sent
by the IS is h. In this case, M of type H knows that α is sufficiently low, and therefore,
E has a high probability (1 − α) of obtaining the wrong signal l and will stay out.

The meaning of set SPEP �
[
max

(
p̃H (α),

�
pL(α)

)
, pML

]
is the following. As

already explained, p∗ ≥ p̃H (α) gives H the first-period profits from pooling that
compensate for the second-period expected loss from entry. Similarly, p∗ ≥ �

pL(α)

plays the same role for L. Therefore any pooling p∗ ∈
[
max

(
p̃H (α),

�
pL(α)

)
, pML

]

satisfies the ICCs of the two types of monopoly and sequential rationality with the
entry rule.

Proposition 2 also asserts that for pML > p̂ (intermediate cost technology), the
existence of these pooling equilibria with a positive likelihood ofmarket entry requires
a not too low precision α of the IS. If μ�E (H) + (1 − μ)�E (L) > 0 (in which case
αh < 1/2 < αl ) and if α is relatively small (α < αl ), then SPE � ∅. In other words,
no pooling equilibrium exists because E enters the market, irrespective of the signal s,
and both types of M are better off deviating to their monopoly price. In contrast, when
μ�E (H) + (1 − μ)�E (L) < 0 and α is relatively small (α ≤ αh), then SPE 	� ∅.
More precisely, SPEP � [

p̂, pML
]
. However E stays out irrespective of the signal s.

This result is so because the IS is not accurate enough for the entrant to trust signal h,
but the pooling prevents the entrant from guessing the true type of M, and M of type
H mimics type L.

Nevertheless, the incumbent can deter profitable entry with a high probability
for intermediate values of the IS precision. Namely, for αl ≤ α ≤ δ, μ�E (H) +
(1 − μ)�E (L) > 0, entry will be deterred if the signal sent by the IS is l. This
probability is α > 1

/
2 when M is of type L and (1 − α) when M is of type H.

Remark 1. Note that when α � δ, then max
(
p̃H (α),

�
pL(α)

)
� p̃H (α) � pML and

SPEP � {
pML

}
. Also note that the relationship between δ and αs , where s ∈ {h, l},

in game G(α) is not obvious and is generally complex.
Remark 2. This relationship between δ andαs , and therefore the existence of pooling

equilibria in which there is a positive likelihood of market entry, is highly sensitive
not only to the entrant’s beliefs about the success of the incumbent’s R&D project
(determined by μ), but also to the characteristics of the market demand, the firms’
cost structures, and the mode of competition if the entrant enters the market. This
situation is illustrated in the following example.

Example: This example is used to study the statement in Remark 2 under Cournot
and Bertrand competition in a market with linear demand and linear cost functions.
Suppose that p � a − Q is the total demand function and suppose that the cost
functions are given by,

CL(q) � CE (q) � cLq, CH (q) � cHq, where cL < cH <
�
c,

�
c � (a + cL)

/
2.
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In this linear model,

pML � a+cL
2 , pMH � a+cH

2 and �L
(
pML

) � ( a−cL
2

)2
, �H

(
pMH

) � ( a−cH
2

)2
.

We characterize the existence of pooling equilibria in which there is a positive
likelihood of market entry in this linear version of G(α) under Cournot and Bertrand
competition. More specific details can be found in the Appendix.

4.6.1 Cournot competition

Let us focus on the case in which cH < c̃H , where

c̃H �
(
5a +

(
3
√
14 − 4

)
cL

)/(
1 + 3

√
14

)
<

�
c. Let K̃1 be the solution to

δ � αl and let K̃2 be the solution to δ � αh , where K̃1 > (a − cL)2
/
9 and

K̃2 < (a − 2cL + cH )2
/
9 since cL < cH <

�
c. Moreover,

K̃1 < μ(a − 2cL + cH )2
/
9 + (1 − μ)(a − cL)2

/
9 < K̃2

since cH < c̃H . Therefore, in terms of the entry cost K , there are two interesting cases
in which there is a positive likelihood of market entry under pooling equilibrium.

Case 1: K̃1 ≤ K < μ(a − 2cL + cH )2
/
9 + (1 − μ)(a − cL)2

/
9 (intermediate-

low entry cost). Note that in this case μ�E (H) + (1 − μ)�E (L) > 0 and δ ≥ αl >

1/2. Therefore, there exists some α such that αl ≤ α ≤ δ for which E enters if
and only if s � h (i.e., with probability α if M is of type H). Then, SPEP �[
max

(
p̃H (α),

�
pL(α)

)
, pML

]
. These pooling equilibria do not exist when the entry

cost is too low, more specifically when 0 < K < K̃1 because, in this case, δ < αl .
Case 2: μ(a − 2cL + cH )2

/
9 + (1 − μ)(a − cL)2

/
9 < K < K̃2 (intermediate-

high entry cost). Note that, in this case, μ�E (H) + (1 − μ)�E (L) < 0 and δ >

αh > 1/2. Therefore, there exists some α such that αh < α ≤ δ for which E enters
if and only if s � h (i.e., with probability α if M is of type H). Again, SPEP �[
max

(
p̃H (α),

�
pL(α)

)
, pML

]
. These pooling equilibria do not exist when the entry

cost is too high, more specifically when K̃2 ≤ K < (a − 2cL + cH )2
/
9 because, in

that case, δ ≤ αh .

4.6.2 Bertrand competition

Let us focus on the case in which cH < cH , where cH �
(
a +

√
2cL

)/(
1 +

√
2
)

<

�
c. Let K 1 be the solution to δ � αl and let K 2 be the solution to δ � αh , where
K 1 > 0 and K 2 < (cH − cL)(a − cH ) since cL < cH <

�
c. Moreover, K 1 < μ

(cH − cL)(a − cH ) < K 2 since cH < cH . Therefore, in terms of the entry cost, K ,
there are two interesting cases in which there is a positive likelihood of market entry
under pooling equilibrium.

Case 1: K 1 ≤ K < μ(cH − cL)(a − cH ) (intermediate-low entry cost). Note that,
in this case, μ�E (H) + (1 − μ)�E (L) > 0 and δ ≥ αl > 1/2. Therefore, there
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exists some α such that αl ≤ α ≤ δ for which E enters if and only if s � h (i.e., with

probability α if M is of type H). Then, SPEP �
[
max

(
p̃H (α),

�
pL(α)

)
, pML

]
. These

pooling equilibria do not exist when the entry cost is too low, more specifically when
0 < K < K 1 because, in this case, δ < αl .

Case 2: μ(cH − cL)(a − cH ) < K < K 2 (intermediate-high entry cost). Note
that, in this case, μ�E (H)+ (1 − μ)�E (L) < 0 and δ > αh > 1/2. Therefore, there
exists some α such that αh < α ≤ δ for which E enters if and only if s � h (i.e., with

probability α if M is of type H), and again SPEP �
[
max

(
p̃H (α),

�
pL(α)

)
, pML

]
.

These pooling equilibria do not exist when the entry cost is too high, more specifically
when K 2 ≤ K < (cH − cL)(a − cH ) because, in that case, δ ≤ αh .

This example illustrates the statement in Remark 2. For instance, in this example,
pooling equilibria in which there is a positive likelihood of market entry do not exist if
c̃H ≤ cH <

�
c when themode of competition is à laCournot and if cH ≤ cH <

�
c when

the mode of competition is à la Bertrand. Hence, the mode of competition directly
determines the characteristics of the market demand and the firms’ cost structures for
which there exist pooling equilibria in which espionage is likely to increase market
competition.

4.7 Comparison with the case in which the IS is not informative (˛ � 1/2)

Anatural benchmark of comparison iswhen the IS precision isα � 1
/
2. This situation

is a modification of the MR set up, when the entrant only has a cost type and does not
have access to an IS onM. This game is denoted by GMR . Recall that p̂ is the price for
H and that p0 is the price for L yielding the duopoly profits for H and L, respectively.
In this game, the entrant’s strategy, σE (p), is a threshold strategy,

σE (p) �
{
Stay out, p ≤ p

Enter , p > p

where the threshold p is the choice by E, given E’s beliefs Prob(H |p ) and Prob
(L|p ) for any p. Trivially, for α � 1/2, pl � ph � p. Therefore, for any α > 1/2.

�E (l, pl) � �E (h, ph) � �E (p) > �E (l, ph),
which implies that �E (l, pl) > �E (l, ph), �E (h, ph) > �E (l, ph), and hence

that p � ph < pl .
Therefore, when α � 1/2, the game G(α) collapses to GMR , and the entrant’s

expected profit is now μ�E (H) + (1 − μ)�E (L). We provide the pooling equilibria
of GMR .

Proposition 3. Consider the game GMR . Let SPEPMR be the set of all sequential
pooling equilibrium prices and SPEMR the set of all sequential pooling equilibria of
GMR . Then,

(1) When μ�E (H) + (1 − μ)�E (L) < 0.
(i) SPEPMR � {pH � pL � p∗ � p}, and
(ii) p̂ ≤ p∗ ≤ pML .
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(2)Whenμ�E (H)+(1 − μ)�E (L) > 0, the set of all sequential pooling equilibria
in GMR is the empty set: SPEMR � ∅.

Proposition 3 shows that, in GMR , there exists no pooling equilibrium in which
the potential entrant enters the market with positive probability. Moreover, when the
entrant’s expected profit is positive, such that μ�E (H) + (1 − μ)�E (L) >0, the
entrant will enter when it observes price p∗. Hence, both types, H and L, of monopolist
should select their monopoly prices pMH and pML , respectively, destroying the pooling
equilibria. Therefore, profitable entry is never deterred. This result holds even when
the incumbent monopolist does not know the entry costs of the entrant (see MR). It
also holds in the benchmark model of Bagwell and Ramey (1988), where prices and
advertising are both signals for the incumbent monopolist. Bagwell (2007) extended
the benchmarkgame to include twodimensions of private information. Specifically, the
incumbent is privately informed as to its cost type and its level of patience and selects
price and advertising in the pre-entry period. Bagwell (2007) found an (intuitive)
pooling equilibrium associated with the behavior of the patient high-cost incumbent,
who pools with the impatient low-cost incumbent.

In contrast, our model also offers the existence of pooling equilibria under ex-ante
profitable entry with only one dimension of private information by the incumbent but
with two IS signals correlated with price. These signals provide additional (probabilis-
tic) information about the incumbent’s type. In fact, by Proposition 2, when the cost
technology is intermediate, the entrant’s expected profits without the IS are positive,
and the IS is of intermediate accuracy, pooling equilibria with a positive likelihood
of market entry exist. More precisely, when the entrant receives signal h. Moreover,
entry may also occur when, under the same technology, the entrant’s expected profits
without the IS are negative, and the IS is accurate enough for the entrant to trust signal
h.

However, by comparing the pooling equilibria of game G(α) with those of GMR ,
the use of a relatively inaccurate but informative IS has no impact on either entry
or entry deterrence. Thus, for intermediate cost technology, positive expected profits
without the IS of the entrant, and an uninformative or relatively small α, SPE � ∅
in both games. In other words, no pooling equilibrium exists because E will enter the
market and both types of M are better off deviating to their monopoly price. Similarly,
if, for the same technology, the expected profits without the IS of the entrant are
negative and the IS is uninformative or is informative but relatively inaccurate, then
SPE 	� ∅ in both games but E always stays out. Finally, as discussed earlier, the
existence of pooling equilibria requires the IS precision to be not so high that type-H
of M, knowing that there is a high probability that it has been detected, is better off
deviating and upsetting the pooling equilibrium.

5 Separating equilibrium

The analysis in this section captures the central theme of the classic limit pricing paper
by MR in that limit pricing occurs and yet profitable entry is never deterred. Bagwell
and Ramey (1988) presented a related model but assumed that the probability of entry
jumps from 0 to 1 once the belief rises above a critical value. In our model, signals
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help the entrant smooth the best response. Nevertheless, the difference between our
sequential separating equilibria and those of MR and Bagwell and Ramey (1988) is
only in the behavior of the entrant for prices off the equilibrium path.

A separating equilibrium consists of a pair of prices (pH , pL ) with pH 	� pL , and
an entry rule, σE (s, p), which is sequentially rational given consistent beliefs Prob
(H |h, p ) and Prob(H |l, p ) for any pair (s, p). In this equilibrium, E identifies the
type of M with probability 1. Hence, E enters the market when observing the price
pH , irrespective of the signal of the IS, and E stays out when observing pL , again
irrespective of s. Therefore, by the entrant’s strategy pH > pl and pL ≤ ph .

The following proposition characterizes the sequential separating equilibrium
prices of G(α). The proof is also quite long. Because the results are not too different
from those in the literature, we offer only a sketch in the Appendix.8

Proposition 4. Consider the game G(α) for 1
/
2 < α < 1 and let SSE be the set

of all sequential separating equilibrium points of G(α). Let SSEt be the set of all
equilibrium prices of the t-type monopolist in SSE . Then, given consistent beliefs
Prob(H |h, p ) and Prob(H |l, p ), for any p and s,

(1) SSEL � {
pL

∣∣p0 ≤ pL ≤ min
(
pML , p̂

)}
and SSEH � {

pMH
}
.

(2) Let pL ∈ SSEL . If pL < pML , then pL � ph . If pL � pML , then pML ≤ ph .

Note that when the cost functions are not too far apart (i.e. p̂ < pML ), all the
separating equilibria limit price: p0 ≤ pL < pML . By contrast, when the cost function
of H is substantially higher than that of L in the sense that pML ≤ p̂, then pL ≤ pML .
Therefore limit pricing is more likely in sequential separating equilibria when the
cost technology is not too far apart because, in this case, L needs a reduction of its
monopoly price pML to separate from H. When the cost function of H is substantially
higher than that of L in the sense that pML ≤ p̂, limit pricing will only occur when
the monopoly price pML is not too low in the sense that either ph < pl < pML or
ph < pML < pl .

One crucial question is whether some of these separating equilibria exist in the
same parameter region as some of the pooling equilibria with a positive likelihood
of market entry (characterized in Proposition 2 in the previous section) and dominate
them. As stated above, in a separating equilibrium, E identifies with probability 1 the
type ofM.Knowing that Ewill enter themarket when price pH is observed, the H-type
monopoly is better off choosing its monopoly price. Therefore, SSEH � {

pMH
}
, as

stated in Proposition 4. The fact that pH � pMH > pl implies that, in every possible
separating equilibrium, ph < p̂ and pl < p̃H (α) must hold. Otherwise, H might
have incentives to deviate to ph or pl , respectively. The key implication of this last
constraint, pl < p̃H (α), is that pooling equilibrium prices for intermediate values of
α, where αh < α ≤ δ if μ�E (H) + (1 − μ)�E (L) < 0 and αl ≤ α ≤ δ if μ�E

(H) + (1 − μ)�E (L) > 0, ensure that no separating equilibrium exists in the same
parameter region, which leads to the following important result.

Corollary 3. No pooling equilibrium price of the form p̃H (α) < p∗ � pl ≤ pML
can be dominated by any separating equilibrium. Therefore, the existence of pooling
equilibrium with a positive likelihood of market entry is ensured.

8 The complete proof is available from the authors upon request.
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We characterize the separating equilibria in GMR in the following proposition to
compare them with those of game G(α).

Proposition 5. Consider the game GMR and let SSEMR be the set of all sequential
separating equilibrium points of GMR . Then, given consistent beliefs Prob(H |h, p )

and Prob(H |l, p ), for any p,

(1) SSEMR
L � {

pL
∣∣p0 ≤ pL ≤ min

(
pML , p̂

)}
and SSEMR

H � {
pMH

}
.

(2) Let pL ∈ SSEMR
L . If pL < pML , then pL � p. If pL � pML , then pML ≤ p.

Remark 3. By Lemma 1, p̂ > p0, and SSEMR is non-empty.
The combination of Proposition 5 and Proposition 4 enables comparison of the

separating equilibria of both GMR and G(α). This comparison is summarized in the
following corollary.

Corollary 4. (1) The set SSE coincides with SSEMR , the set of all sequential
separating equilibrium points of GMR .

(2) Let pL ∈ SSEL and suppose that pL < pML . Let ph and p be the equilibrium
cutoff price for entry when in G(α) (when s � h) and in GMR , respectively. Then,
p � ph .

(3) Let pL ∈ SSEL and suppose that pL < pML . Then the equilibrium strategy of E
in G(α) coincides with the equilibrium strategy of E in GMR for all pL /∈ (ph, pl ]. If
pL ∈ (ph, pl ], then E enters the market in G(α) with positive probability, which is α

if M is of type H and (1− α) if M is of type L, and always enters the market in GMR .
Part (3) of the corollary asserts that E is less inclined to enter themarket inG(α). For

all prices below p � ph , E stays out of the market in both games GMR and G(α). For
prices above pl , E always enters in both games. However, for prices p, ph < p ≤ pl , E
enters the market in game G(α) if and only if the signal sent by the IS is h. In contrast,
in this region, E always enters the market in gameGMR . The difference betweenG(α)

and GMR with regard to sequential separating equilibria is only in the behavior of E
off the equilibrium path. Therefore, for prices off the equilibrium path, the monopolist
is better off with an entrant with access to an IS of commonly known precision.

6 Conclusions

Recent advances in information and communication technologies have increased the
incentive for firms to acquire information about rivals by pushing the limits of com-
petitive intelligence and engaging in industrial espionage. This situation may have
important implications for market entry because potential market entrants can find it
easier to gather valuable information about incumbents in the target market. From a
theoretical point of view, incomplete information about incumbents’ cost structures
has been cited as a relevant aspect in explaining market entry behavior. However, little
theoretical research has analyzed situations in which a potential entrant attempts to
reduce such an information disadvantage.

This paper advances in this direction by studying a potential entrant’s activities in
the context of modern cyber espionage. Specifically, it extends a one-sided asymmet-
ric information version of Milgrom and Roberts’ (1982) model, considering that a
potential market entrant, E, does not observe the outcome of an R&D project by an
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incumbent monopolist aimed at reducing its cost of production. The potential entrant
develops an intelligence system (IS) of precision α that allows it to gather noisy infor-
mation about the cost structure of M. Based on this information and the price that M
charges for its product, E decides whether to enter the market. We assume that α is
exogenously given and is known by both firms.

Our main contribution, considering only one dimension of private information
belonging to the incumbent, is twofold. First, we show the pooling equilibria, even
under ex-ante profitable entry. Second, we show the positive likelihood of market
entry, even in pooling equilibria under ex-ante non-profitable entry. These pooling
equilibria exist for intermediate values of IS precision, where E enters the market if
the IS indicates that the cost of M is high. Thus, there is a high probability that spying
on incumbent firms increases market competition. If the precision α of the IS is suf-
ficiently low to affect the entrant’s decision to stay out, then no pooling equilibrium
exists. Likewise, no pooling equilibrium exists when α is very accurate.

Finally, the separating equilibria of our model are not affected by espionage by E.
This finding is unsurprising because, in a separating equilibrium, E identifies the type
of M with or without the use of an IS.
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Appendix

Proof of Lemma 1
(i)

�L(p) − �H (p) � CH (Q(p)) − CL(Q(p))

∂

∂p
[�L(p) − �H (p)] � Q′(p)

[
C ′
H (Q(p)) − C ′

L(Q(p))
]

By Assumptions 4 and 5, the right-hand side of the above expression is negative.
(ii)

pML qM
L − CL

(
qM
L

)
≥ pMH qM

H − CL

(
qM
H

)

pMH qM
H − CH

(
qM
H

)
≥ pML qM

L − CH

(
qM
L

)
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Adding the two inequalities gives

CH

(
qM
L

)
− CL

(
qM
L

)
≥ CH

(
qM
H

)
− CL

(
qM
H

)

By Assumption 4, we have that qM
L ≥ qM

H and hence pML ≤ pMH .
Let us show that pML < pMH . If not, then pML � pMH . Since the first-order condition

(FOC) for M of type t is

∂�t

∂p
(Q(p)) � 0 ↔ C ′

t (Q(p)) � p +
Q(p)

Q′(p)

the solution does not depend on t , namely C ′
L

(
Q

(
pML

)) � C ′
H

(
Q

(
pML

))
. However,

this contradicts Assumption 4.
(iii) By Assumption 3,

�L

(
pML

)
− DL > �H

(
pMH

)
− DH

Note that DL � ∏
L(p0) and DH � ∏

H

(
p̂
)
. Hence, this inequality can be written

as

�L

(
pML

)
− �L(p0) > �H

(
pMH

)
− �H

(
p̂
)

Thus,

�L

(
pML

)
− �H

(
pML

)
+ �H

(
pML

)
− �H

(
pMH

)

︸ ︷︷ ︸
<0

> �L(p0) − �H
(
p̂
)

Hence,

�L

(
pML

)
− �H

(
pML

)
> �L(p0) − �H

(
p̂
)

(A1)

Since p0 ≤ pML , we have by section (i) of Lemma 1

�L(p0) − �H (p0) > �L

(
pML

)
− �H

(
pML

)

Together with (A1), this implies that

�H
(
p̂
)

> �H (p0)

But p0 < pMH and p̂ < pMH and by Assumption 2 p0 < p̂.
Proof of Lemma 2
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(i) By (3) in the main text,

Probn(H |h, p ) � μα
fn(p|H )
fn(p|L )

μα
fn(p|H )
fn(p|L )

+ (1 − μ)(1 − α)

Hence,

Prob(H |h, p ) � μαg(p)

μαg(p) + (1 − μ)(1 − α)
(A2)

and by Assumption 7, Prob(H |h, p ) is continuous in p.
The proof that Prob(H |l, p ) is continuous is similarly derived from (4) in themain

text.
Since Prob(L|s, p ) � 1− Prob(H |s, p ), then Prob(L|s, p ) is also continuous.
Next, note that g(p) is non-decreasing in p since gn(p) is increasing in p for all n.

Therefore, Theorem 1 in Milgrom (1981) implies that if p1 > p2, the posterior Prob
(H |s, p1 ) dominates Prob(H |s, p2 ), s � {h, l}, in the sense of first-order stochastic
dominance. In fact, it is easy to verify by (A2) that ∂

∂p Prob(H |h, p ) ≥ 0 if and only
if g′(p) ≥ 0 and thus Prob(H |h, p ) is non-decreasing in p. The proof that Prob
(H |l, p ) is non-decreasing is similar.

(ii) Let

xn(p) � Probn(H |h, p )

Probn(H |l, p )

By (3) and (4) in the main text,

xn(p) − 1 �
α

1−α
[μ(1 − α) fn(p|H ) + (1 − μ)α fn(p|L )]

μα fn(p|H ) + (1 − μ)(1 − α) fn(p|L )
− 1

� (1 − μ) α2

1−α
fn(p|L ) − (1 − μ)(1 − α) fn(p|L )

μα fn(p|H ) + (1 − μ)(1 − α) fn(p|L )

� (1 − μ) fn(p|L )(2α − 1)

(1 − α)[μα fn(p|H ) + (1 − μ)(1 − α) fn(p|L )]

� (1 − μ)(2α − 1)

(1 − α)[μαgn(p) + (1 − μ)(1 − α)]

Hence,

lim
n→∞[xn(p) − 1] � (1 − μ)(2α − 1)

(1 − α)[μαg(p) + (1 − μ)(1 − α)]
> 0

Hence lim
n→∞ xn(p) > 1 and, consequently, for every p ≥ 0,

Prob(H |h, p ) > Prob(H |l, p )
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Proof of Lemma 3. By (5) in the main text,

�E (s, p) � Prob(H |s, p )�E (H) + Prob(L|s, p )�E (L)

� Prob(L|s, p )

[
Prob(H |s, p )

Prob(L|s, p )
�E (H) + �E (L)

]
(A3)

Let s � h. For every p,

Prob(H |h, p )

Prob(L|h, p )
� lim

n→∞
μα fn(p|H )

(1 − μ)(1 − α) fn(p|L )
� μα

(1 − μ)(1 − α)
g(p)

We claim that g(p) → 0 as p → 0. This follows from Dini’s theorem, as gn(p)
is increasing in n, gn(p) is continuous in p, and g(p) is also continuous. Hence, for
every γ > 0, lim

n→∞ gn(p) � g(p) uniformly on
[
0, γ

]
. Since, for every n, gn(p) → 0

as p → 0, we have g(p) → 0 as p → 0. Consequently,
lim
p

Prob(H |h,p )
Prob(L|h,p )

� 0, as p → 0 (A4).

Inequality (A4) also holds when h is replaced by l (the proof is similar).
Next, let us show that Prob(L|h, p ) > 0 for small p.

Probn(L|h, p ) � (1 − μ)(1 − α) fn(p|L )

μα fn(p|H ) + (1 − μ)(1 − α) fn(p|L )

� 1

1 + μαgn(p)
(1−μ)(1−α)

(A5)

Again, since gn(p) → g(p) as n → ∞ uniformly in any interval
[
0, γ

]
, γ > 0,

and since g(p) → 0 as p → 0,

Prob(L|h, p ) � lim
n

Probn(L|h, p ) → 1, as p → 0.

In particular, Prob(L|h, p ) > 0 for p sufficiently small. Similarly, we can prove
that Prob(L|l, p ) > 0 for p sufficiently small.

Now, (A3), (A4), and the fact that �E (L) < 0 and Prob(L|s, p ) > 0 for small p,
imply that for sufficiently small p, �E (s, p) < 0 and Js 	� ∅.

Let us show that for p sufficiently large,�E (s, p) > 0.We use the following claim.
Claim 1. lim

p
Prob(L|s, p ) � 0 as p → ∞.

Proof: Let n � 1 and s � h. By Assumption 7.2, lim f1(p|H )
f1(p|L )

� ∞. By (A5),
Prob1(L|h, p ) → 0 as p → ∞.
Hence, for every ε > 0, there exists P such that for all p > P ,

Prob1(L|h, p ) < ε

By (3) in the main text,

Probn(H |h, p ) � μα

μα + (1 − μ)(1 − α)
fn(p|L )
fn(p|H )
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By Assumption 7.2, Probn(H |h, p ) is increasing in n and, hence, Probn(L|h, p )

is decreasing in n for every p. Thus, for all p > P ,

Probn(L|h, p ) < Prob1(L|h, p ) < ε

Hence, for every ε > 0 and for all p > P ,

Prob(L|h, p ) � lim
n→∞ Probn(L|h, p ) ≤ ε

implying that

lim
p→∞ Prob(L|h, p ) � 0

The proof that Prob
p

(L|l, p ) � 0, as p → ∞ is similarly derived.

Claim 1 together with (5), in the main text, imply that for p sufficiently large, �E

(s, p) > 0, and the proof of Lemma 3 is completed.

Proof of Proposition 1. By part (i) of Lemma 2 and by (5), �E (s, p) is continuous
and non-decreasing in p. This follows from the fact that Prob(H |s, p ) is continuous
and non-decreasing in p, �E (H) > 0, Prob(L|s, p ) � 1 − Prob(H |s, p ) and �E

(L) < 0.
By Lemma 3, �E (s, p) < 0 for small p and �E (s, p) > 0 for sufficiently large

p.
Let

ph � max{p ≥ 0|�E (h, p) ≤ 0 }

pl � max{p ≥ 0|�E (l, p) ≤ 0 }

By the continuity of �E (s, p) in p,

�E (h, ph) � �E (l, pl) � 0 (A6)

and E enters the market if and only if it observes either (h, p) such that p > ph or
(l, p) such that p > pl .

By part (ii) of Lemma 2, it is easy to verify that

�E (h, p) > �E (l, p) (A7)

By (A6) and (A7)

�E (l, pl) � �E (h, ph) > �E (l, ph)

and since �E (s, p) is non-decreasing in p, we have pl > ph .
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Proof of Lemma 4. First, suppose that pMH ≤ ph . Then also pML < ph and,
according to Proposition 1, E stays out whether it observes pML or pMH . Hence, both
types of M will set their (different) monopoly prices, giving a contradiction.

Next, suppose that pML < ph and pMH > ph . Since α ≤ αh , E stays out and
p∗ ≤ ph . Therefore, p∗ � pML . In this case, H is better off by deviating to ph since

�H

(
pML

)
+ �H

(
pMH

)
≥ �H (ph) + �H

(
pMH

)

implies that pML ≥ ph , which is a contradiction.
The incentive compatibility condition when μ�E (H) + (1 − μ)�E (L) < 0 and

1
/
2 < α ≤ αh .
Proof of Lemma 5 ( ICCH ). Considering the discussion about the relevant ICCH

in the main text, for p∗ to be a pooling equilibrium price of H, the following should
hold,

�H
(
p∗)

+ �H

(
pMH

)
≥ �H

(
pMH

)
+

⎧
⎨

⎩

αDH + (1 − α)�H

(
pMH

)
, i f ph < pMH ≤ pl

DH , i f pMH > pl

The first inequality implies that

�H
(
p∗) ≥ αDH + (1 − α)�H

(
pMH

)

Recalling that DH � �H
(
p̂
)
and the definition of

�
pH (α) in the main text, �H

(p∗) ≥ �H

(
�
pH (α)

)
implies that p∗ ≥ �

pH (α).

The second inequality requires that �H (p∗) ≥ DH or that p∗ ≥ p̂.
Additionally, another potential deviation is the following. When pMH > pl H may

deviate to pl , where E enters with probability α. To avoid this deviation,

�H
(
p∗) + �H

(
pMH

)
≥ �H (pl) + αDH + (1 − α)�H

(
pMH

)

Since pMH > pl and, by above, p∗ ≥ p̂, take without loss of generality p∗ � p̂.
Then

DH + �H

(
pMH

)
≥ �H (pl) + αDH + (1 − α)�H

(
pMH

)
(A8)

Recalling the definition of p̃H (α) in the main text, inequality (A8) is satisfied
whenever p̃H (α) ≥ pl .
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Proof of Lemma 6 ( ICCL ). Considering the discussion about the relevant ICCL

in the main text, to avoid deviations, and, therefore, for p∗ be a pooling equilibrium
price of L, the following should hold,

�L
(
p∗) + �L

(
pML

)
≥ �L

(
pML

)
+

⎧
⎨

⎩
α�L

(
pML

)
+ (1 − α)DL , i f ph < pML ≤ pl

DL , i f pML > pl

Recall that DL � �L(p0) and the definition of p̃L(α) in the main text. Then the
first inequality above is satisfied whenever pML > p∗ ≥ p̃L(α).

For the second inequality, it suffices that p∗ ≥ p0. To deter deviation to pl , when
pML > pl , take p∗ � p0, then

DL + �L

(
pML

)
≥ �L(pl) + α�L

(
pML

)
+ (1 − α)DL (A9)

Therefore, a pooling p∗ ≥ p0 avoids a deviation to pl whenever, for example, first-
period profits from p∗ � p0, plus the difference between second-period expected
profits from the pooling and those from the deviation are greater than or equal to the
profits from pl . Taking into account the definition of

�
pL(α) in the main text, this

implies that (A9) is satisfied whenever
�
pL(α) ≥ pl .

Proof of Lemma 7. Suppose first that pMH ≤ ph . Then also pML < ph and both L
and H are better off deviating to their monopoly prices. Hence pMH > ph .

Now suppose that pML � ph , then for any p∗ ∈ (ph, pl ],

�L
(
p∗) + α�L

(
pML

)
+ (1 − α)DL ≥ �L

(
pML

)
+ �L

(
pML

)

which is a contradiction. Consider that pl > pML > ph and pMH ≤ pl , then for any
p∗,

�L
(
p∗) + α�L

(
pML

)
+ (1 − α)DL ≥ �L

(
pML

)
+ α�L

(
pML

)
+ (1 − α)DL

The above is impossible unless p∗ � pML . Therefore, L will deviate to pML . This is
similarly true for H, which will deviate to pMH .

Finally, consider that ph < pML < pl and pMH > pl , then L will deviate to pML , and
H will be better off deviating to pl . Therefore, pML ≥ pl , and Lemma 7 follows.

The incentive compatibility condition when μ�E (H) + (1 − μ)�E (L) < 0 and
αh < α < 1.

Proof of Lemma 8 ( ICCH ).We have that αh < α < 1 and hence that E enters if it
observes signal h. Also, pMH > pl (according to Lemma 7). Then, for H not to deviate
to pMH at a pooling p∗ ∈ (ph, pl ],

�H
(
p∗) + αDH + (1 − α)�H

(
pMH

)
≥ �H

(
pMH

)
+ DH
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or

�H
(
p∗) ≥ α�H

(
pMH

)
+ (1 − α)DH � �H ( p̃H (α))

where p̃H (α) is defined in the main text. Then, p∗ ≥ p̃H (α).
Notice that H might have incentives to deviate to ph . To deter this deviation, let us

assume that p∗ � p̃H (α). Then

�H ( p̃H (α)) + αDH + (1 − α)�H

(
pMH

)
≥ �H (ph) + �H

(
pMH

)

By the definition of p̃H (α) in the main text, the above inequality is equivalent to
DH ≥ �H (ph) or p̂ ≥ ph . The result of Lemma 8 follows.

Proof of Lemma 9 ( ICCL ). To deter deviations by L to pML when pML > pl , a
pooling price has to satisfy,

�L
(
p∗) + α�L

(
pML

)
+ (1 − α)DL ≥ �L

(
pML

)
+ DL

or

�L
(
p∗) ≥ (1 − α)�L

(
pML

)
+ αDL � �L

(
�
pL(α)

)

where
�
pL(α) is defined in the main text. Then, p∗ ≥ �

pL(α).

To avoid a deviation to ph , consider that p∗ � �
pL(α). Then,

�L

(
�
pL(α)

)
+ α�L

(
pML

)
+ (1 − α)DL ≥ �L(ph) + �L

(
pML

)

By the definition of
�
pL(α) in the main text, the above inequality implies DL ≥ �L

(ph) or p0 ≥ ph and Lemma 9 follows.
The incentive compatibility condition when μ�E (H) + (1 − μ)�E (L) > 0.

By the discussion before Corollary 2 in the main text, αh < 1
/
2 < αl < 1. Hence

α > αh and α /∈ Ah , ∀α, 1
/
2 < α < 1. Namely, if the IS sends signal h, E enters the

market when price p∗ is observed, irrespective of the precision α of the IS. This case
is also split into two subcases: 1) 1

/
2 < α < αl and 2) αl ≤ α < 1.

(1) Consider that 1
/
2 < α < αl . In this case α /∈ Al ∪ Ah . Namely, E enters the

market when price p∗ is observed, irrespective of the signal sent by the IS. Therefore,
both H and L should select the prices pMH and pML , respectively. Together with pML <

pMH , this leads to the following corollary:
Corollary A1.No pooling equilibrium exists when μ�E (H)+ (1 − μ)�E (L) > 0

and 1
/
2 < α < αl .

(2) Suppose now that αl ≤ α < 1. In this case α ∈ Al\Ah . Namely, similarly to
the case (b) in the main text, E enters the market when price p∗ is observed if the IS
sends the signal h and does not enter if the IS sends signal l. Hence,

Corollary A2. The properties of the pooling equilibria and the incentive compati-
bility conditions of H and L when μ�E (H) + (1 − μ)�E (L) > 0 and αl ≤ α < 1
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are the same as in the case in which μ�E (H) + (1 − μ)�E (L) < 0 and αh < α < 1,
but the relevant threshold for α is αl , not αh .

Proof of Proposition 2. Let us consider the four cases analyzed in the main text.
(a) Recall that in this case μ�E (H) + (1 − μ)�E (L) < 0 and 1

/
2 < α ≤ αh .

First, consider that pML < p̂. The next lemma proves part 1.(i) of Proposition 1
when 1

/
2 < α ≤ αh .

Lemma A1. If μ�E (H) + (1 − μ)�E (L) < 0,1
/
2 < α ≤ αh and pML < p̂, then

SPE � ∅.
Proof: As stated in the main text, in every possible pooling equilibrium satisfying

belief consistency p∗ ≤ ph . Together with Lemma 4, this implies that pML ≥ ph ≥ p∗,
which is incompatible with the ICCH , since either p∗ ≥ �

pH (α) > p̂ (see Lemma

5 (1)) or p∗ ≥ p̂ (see Lemma 5 (2)). Hence pML ≥ p∗ � ph ≥ �
pH (α) > p̂ > pML ,

giving a contradiction.
The next lemma proves the first part of case 1.(ii) of Proposition 1.
Lemma A2. Suppose that μ�E (H) + (1 − μ)�E (L) < 0, 1

/
2 < α ≤ αh and

pML � p̂. Then if p∗ ∈ SPEP , p∗ � {
pML

}
.

Proof: First we prove that pML ∈ SPEP . By Lemma 4 pML ≥ ph . Suppose that
ph � pML < pl < pMH . On the one hand, as stated in the main text, the only possible
pooling equilibrium price satisfying belief consistency in this case is p∗ � pML . On
the other hand, by Lemma 5 (2) pMH > p∗ ≥ p̂ and H has no incentive to deviate to
pMH in this case since pML � p̂.

To avoid deviations by H to pl , it suffices that p̃H (α) ≥ pl (see Lemma 5 (2)).
For configurations pML > ph , belief consistency requires p∗ � ph which is incom-

patible with the ICCH , where either p∗ ≥ �
pH (α) > p̂ if ph < pMH ≤ pl , or p∗ ≥ p̂

if pMH > pl (see Lemma 5 (1) and Lemma 5 (2) respectively), since pML � p̂. Hence,
SPE � ∅ in these cases.

We now deal with the case pML > p̂, and prove part 1.(iii.1) of Proposition 1.
Lemma A3 below proves this result. We show that SPEP � {

p∗∣∣ p̂ ≤ p∗ ≤ pML
}
for

all α, 1
/
2 < α ≤ αh .

Lemma A3. Suppose that μ�E (H) + (1 − μ)�E (L) < 0, 1
/
2 < α ≤ αh and

pML > p̂. Then SPEP � [
p̂, pML

]
.

Proof: First, note that the set

{
p∗

∣∣∣ p̂ ≤ p∗ ≤ pML

}
⊆ SPEP

To see that this is the case, consider any configuration such that pML � ph and
pMH > pl . As stated in the main text, the only possible pooling equilibrium price
satisfying belief consistency in this case is p∗ � pML . Note that by the ICCH , pMH >

p∗ ≥ p̂ (see Lemma 5.(2)), H has no incentive to deviate to pMH in this case since
pML > p̂.

To avoid deviations by H to pl , by Lemma 5 (2) any p∗ > p̂ deters these deviations
whenever p̃H (α) ≥ pl . Since p∗ � pML > p̂, then no deviation takes place.
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Next consider configurations such that p̂ ≤ ph and pl < pML < pMH . Clearly in this
case (by belief consistency) p∗ � ph . By the ICCH , p∗ ≥ p̂ so that H does not deviate
to pMH (see Lemma 5 (2)) and by the ICCL , p∗ ≥ p0 so that L does not deviate to
pML (see Lemma 6 (2)). Both incentive compatibility conditions are compatible since
p̂ > p0 (see Lemma 1).

To avoid deviations by both H and L to pl , it suffices that, by Lemma 5 (2) p̃H
(α) ≥ pl , and by Lemma 6 (2)

�
pL(α) ≥ pl , respectively.

Hence, p̂ ≤ p∗ � ph < pl < pML for min
(
p̃H (α),

�
pL(α)

)
≥ pl is an incentive

compatible pooling equilibrium that satisfies belief consistency.
Therefore,

{
p∗∣∣ p̂ ≤ p∗ ≤ pML

} ⊆ SPEP as claimed.
Next, we prove that SPEP ⊆ [

p̂, pML
]
. On the one hand, for any configuration

p̂ ≤ ph < pML , if a pooling exists, by belief consistency p∗ � ph and therefore p∗ ∈[
p̂, pML

]
. On the other hand, note that whenever p̂ > ph no equilibrium exists since

by belief consistency p∗ � ph . This is not compatible with the ICCH , p∗ ≥ �
pH

(α) > p̂ (see Lemma 5 (1)) or p∗ ≥ p̂ (see Lemma 5 (2)).
Therefore, if p∗ ∈ SPEP , then p∗ ∈ [

p̂, pML
]
as claimed.

(b) Recall that in this second caseμ�E (H)+ (1 − μ)�E (L) < 0 and αh < α < 1.
The next lemma completes the proofs of parts 1. (i) and 1.(ii) of Proposition 1.
Lemma A4. Suppose that μ�E (H) + (1 − μ)�E (L) < 0, αh < α < 1 and

pML ≤ p̂, then SPE � ∅.
Proof: As stated in the main text, in every possible pooling equilibrium satisfying

belief consistency in this case, ph < p∗ ≤ pl . Together with Lemma 7, this implies
that pML ≥ p∗, which is incompatible with the ICCH , p∗ ≥ p̃H (α) > p̂ (see Lemma
8).

Now suppose that p̂ < pML . Let us prove next that if αh < α ≤ δ, then.

SPEP �
[
max

(
p̃H (α),

�
pL(α)

)
, pML

]
,

i.e., part 1.(iii.2) of Proposition 1.
LemmaA5.Suppose thatμ�E (H)+(1 − μ)�E (L) < 0,αh < α < 1and p̂ < pML .

Then

SPEP �
{
p∗

∣∣∣max
(
p̃H (α),

�
pL(α)

)
≤ p∗ ≤ pML

}

and this set is non-empty if δ > αh for all α, αh < α ≤ δ.
Proof: First, consider the case pML � pl . As stated in themain text, the only possible

pooling equilibrium price satisfying belief consistency in this case is p∗ � pML . Note
that the ICCH requires that p∗ ≥ p̃H (α) > p̂ (see Lemma 8), which in this case is
equivalent to pML ≥ p̃H (α) > p̂. Note that pML ≥ p̃H (α) implies

�H

(
pML

)
+ αDH + (1 − α)�H

(
pMH

)
≥ �H

(
pMH

)
+ DH

or that

α ≤ �H
(
pML

) − DH

�H
(
pMH

) − DH
� �H

(
pML

) − �H
(
p̂
)

�H
(
pMH

) − �H
(
p̂
) ≡ δ
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Clearly, 0 < δ < 1.
To avoid deviations by H and L to ph , by Lemmas 8 and 9, it suffices that p0 ≥ ph

(see Lemma 1 (iii)). Hence p∗ � pML > p̂, for p0 ≥ ph and αh < α ≤ δ, is an
incentive compatible pooling equilibrium that satisfies belief consistency.

Notice now that if pML > pl , then, as stated in the main text, the unique pooling
equilibrium guaranteeing belief consistency is p∗ � pl . The ICCH requires that
p∗ ≥ p̃H (α) > p̂ (see Lemma 8), and the ICCL requires that p∗ ≥ �

pL(α) (see

Lemma 9). Therefore max
(
p̃H (α),

�
pL(α)

)
≤ pl � p∗ < pML should hold, where

p̃H (α) < pML implies α < δ.
To deter deviations by both H and L to ph , the ICCH given by Lemma 8 and the

ICCL givenbyLemma9again apply.Hencemax
(
p̃H (α),

�
pL(α)

)
≤ pl � p∗ < pML ,

for p0 ≥ ph and αh < α < δ, is an incentive compatible pooling equilibrium that
satisfies belief consistency.

Hence set SPEP �
[
max

(
p̃H (α),

�
pL(α)

)
, pML

]
as claimed.

Notice that the above implies part 1.(iii.3) of Proposition 1, i.e., for α > δ, SPE �
∅.

(c) In this case μ�E (H) + (1 − μ)�E (L) > 0 and 1
/
2 < α < αl . By Corollary

A1, SPE � ∅ in this case (part 2.(ii.1) of Proposition 1).
(d) In this case μ�E (H) + (1 − μ)�E (L) > 0 and αl ≤ α < 1. By Corollary A2,

this case is equivalent to the case (b) above, but the relevant threshold for α is αl , not
αh . Hence, if p̂ < pML , then.

SPEP �
{
p∗

∣∣
∣max

(
p̃H (α),

�
pL(α)

)
≤ p∗ ≤ pML

}
,

and this set is non-empty if δ ≥ αl and for all α, αl ≤ α ≤ δ. This proves part
2.(ii.2) of Proposition 1. As above, note that 2.(ii.3) of the Proposition (i.e., for α > δ,
SPE � ∅) is satisfied.

As in the proofs of parts 1.(i) and 1.(ii) of the Proposition (see Lemmas A1 and A2
above), if pML ≤ p̂, then SPE � ∅, which proves part 2.(i).

Finally, note that parts 2.(ii.1) and 2.(ii.3) of the Proposition imply the first part of
point (3), while parts 1.(iii.1) and 1.(iii.3) imply the second part.

Example

Cournot competition

The equilibrium under Cournot competition in between L and E is characterized by
p0 � (a + 2cL)

/
3 and DL � DE (L) � (a − cL)2

/
9; and the competition in between

H and E is characterized by p̂ � (a + cL + cH )
/
3, DH � (a − 2cH + cL)2

/
9 and

DE (H) � (a − 2cL + cH )2
/
9. Note that pML � (a + cL)

/
2 > p̂ � (a + cL + cH )

/
3

since cH <
�
c.

Consequently, under Cournot competition, Assumption 1, according to which DE

(L)−K < 0 and DE (H)−K > 0, is satisfied for all K such that (a − cL)2
/
9 < K <
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(a − 2cL + cH )2
/
9. Moreover, Assumption 3, according to which �L

(
pML

) − DL >

�H
(
pMH

) − DH is satisfied given that cL < cH <
�
c.

Bertrand competition

The equilibrium under Bertrand competition in between L and E is characterized
by p0 � cL and DL � DE (L) � 0; and the competition in between H and E is
characterized by p̂ � cH , DH � 0 and DE (H) � (cH − cL)(a − cH ). Note that
pML � (a + cL)

/
2 > p̂ � cH since cH <

�
c.

Consequently, under Bertrand competition, Assumption 1, according to which DE

(L) − K < 0 and DE (H) − K > 0, is satisfied for all K such that 0 < K <

(cH − cL)(a − cH ). Moreover, Assumption 3, according to which �L
(
pML

) − DL >

�H
(
pMH

) − DH is satisfied given that cL < cH <
�
c.

A sketch of the proof of Proposition 4.As stated in themain text, in this equilibrium, E
identifies the type of M with probability 1. Hence, E enters the market when price pH
is observed, irrespective of the signal of the IS, and E stays out when pL is observed,
again irrespective of s. Therefore, by the entrant’s strategy, pH > pl and pL ≤ ph .
See Fig. 1 in the main text.

Knowing that entry will occur, the H-type monopoly is better off choosing the
price pMH . Thus SSEH � {

pMH
}
and E enters for sure when it observes price pMH . In

particular, pMH > pl .
We need to prove that SSEL � {

pL
∣∣p0 ≤ pL ≤ min

(
pML , p̂

)}
for all α, 1

/
2 <

α < 1. Hence, there are two relevant cases: when pML ≤ p̂ and when p̂ < pML .
The proof follows two steps. The first step consists of showing that pL ∈[

p0,min
(
pML , p̂

)]
in both cases pML ≤ p̂ and p̂ < pML .

In the first case, when pML ≤ p̂, pL � pML can be supported as a separating
equilibrium price (no type of M has incentives to deviate), for instance when

pL � pML ≤ ph ≤ p̂ < pl ≤ p̃H (α) < pMH

And pL ∈ [
p0, pML

)
can also be supported as a separating equilibrium price, for

instance when
pL � ph < pl < pML ≤ p̂ < p̃H (α) < pMH .
Similarly, in the second case p̂ < pML pL ∈ [

p0, p̂
]
can be supported as a separating

equilibrium price, for instance when

pL � ph ≤ p̂ < pl < min
(
pML , p̃H (α)

)
< pMH

The second step of the proof is to show that if pL /∈ [
p0,min

(
pML , p̂

)]
, then

pL /∈ SSEL , which is easy to show considering the relevant positions of ph and pl .
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