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Abstract
The purpose of this paper is to study which coalition structures have stable distribu-
tions. We employ the projective core as a stability concept. Although the projective
core is often defined only for the grand coalition, we define it for every coalition struc-
ture. We apply the core notion to a variety of economic models including the public
goods game, the Cournot and Bertrand competition, and the common pool resource
game. We use a partition function to formulate these models. We argue that symmetry
is a common property of these models in terms of a partition function. We offer some
general results that hold for all symmetric partition function form games and discuss
their implications in the economic models. We also provide necessary and sufficient
conditions for the projective core of the models to be nonempty. In addition, we show
that our results hold even in the presence of small perturbations of symmetry.

Keywords Core · Externalities · Oligopoly · Public goods

1 Introduction

Most economic/political situations include both competition and cooperation among
players. Although competition and cooperation influence each other, they are often
separately analyzed in two different models: noncooperative game theory and cooper-
ative game theory. While dividing a situation into the two different models enables us
to focus on their respective specialties, it eliminates rich interactions between cooper-
ation and competition. Thrall (1961) and Thrall and Lucas (1963) are early attempts
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to address this problem. These authors introduced partition function form games, also
known as games with externalities, to describe the competition among coalitions and
cooperation within each coalition.

In partition function form games, the worth of a coalition depends on both the
coalition and the coalition structure of the other coalitions. This complexity causes a
problem when we generalize one of the solution concepts for cooperative games to
gameswith externalities: the core. The core is a set of payoff allocations fromwhich no
coalition has an incentive to deviate, where a deviation means that a group of players
forms their own coalition and splits off from an allocation to improve the payoff of
the deviating coalition. In order to determine the worth of the deviating coalition, one
must also know the coalition structure that the non-deviating players form after the
deviation.

The literature handles this difficulty by various assumptions on the coalition struc-
ture. von Neumann and Morgenstern (1944) and Hart and Kurz (1983) consider that
non-deviating players will be separate into one-person coalitions. Aumann (1967) and
Hart and Kurz (1983) assume that the non-deviating players reorganize their coalitions
to minimize the worth of the deviating coalition. Shenoy (1979) proposes maximizing
the worth of the deviating coalition. Bloch and van den Nouweland (2014) offer a gen-
eral function called an expectation formation rule that generalizes these assumptions
and axiomatically characterize those expectation formation rules in a general frame-
work. Moreover, Chwe (1994), Xue (1997), Ray and Vohra (1997) , and Diamantoudi
and Xue (2003) developed the theory of farsightedness. They consider a sequence of
deviations: a deviation causes another deviation, and the (second) deviation causes
another deviation, and the sequence of deviations continues. Abe (2018) shows that
the farsighted stable set and a certain type of myopic core coincide in some coalition
structures in symmetric majority games. Kóczy (2007) proposes a recursive form of
farsightedness and defines recursive optimism and pessimism. Kóczy (2018) also pro-
vides a comprehensive survey on these models. However, most authors say little about
the projection core, which is studied in our paper.

In the projective core, a coalition S deviates from a coalition structureP , projecting
the original partition P onto N\S. The projective core is special in the sense that it
focuses on the coalition structure that forms immediately after the deviation, which
represents the anticipations of a shortsighted player. One could argue that this is the
only approach that deals with myopic players. Moreover, the projective core differs
from other approaches in that the post-deviation coalition structure depends on the pre-
deviation coalition structure. Because of this dependence, the partition function cannot
be translated to the coalition function. This makes it difficult to offer general results.
We address this problem by focusing on certain classes of symmetric games with
important applications. We employ the symmetry notion proposed by de Clippel and
Serrano (2008). The applications include the Cournot/Bertrand oligopoly, the public
goods game (Ray and Vohra 1997; Yi 1997), and the common pool resource game
(Funaki and Yamato 1999). Some general propositions that hold for every symmetric
game are also offered.

The rest of the paper is organized as follows. In Sect. 2, we define games with
externalities and the projective core. The class of symmetric games and its subclasses
are also introduced. In Sect. 3, we offer some general results that hold for all symmetric
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games. The public goods game is discussed in this section. The class of the largest
coalition games, which includes the Bertrand oligopoly, is analyzed in Sect. 4. In
Sect. 5, we consider the class of games with partition cardinality properties; this class
includes the Cournot oligopoly and the common pool resource game. We conclude
this paper with some remarks in Sect. 6.

2 Preliminaries

Let N = {1, . . . , n} be the set of players. A coalition S is a subset of N . Let |S| denote
the number of players in S. We typically use P or Q to denote a partition of N . Let
|P| denote the number of coalitions inP . For any i ∈ N , P(i) denotes the coalition in
P that contains player i . For any coalition S ⊆ N , let Π(S) be the set of all partitions
of S. For any S ⊆ N , let PS be the projection of P on S, formally

PS = {S ∩ C |C ∈ P, S ∩ C �= ∅}.

Hence,PS is a partition of S. For example, ifP = {{1, 2}, {3, 4, 5}} and S = {2, 3, 4},
then PS = {{2}, {3, 4}}. For simplicity, we define

P S := {S} ∪ (PN\S).

For example, if P = {{1, 2}, {3, 4, 5}} and S = {2, 3, 4}, then we have P S =
{{2, 3, 4}, {1}, {5}}. For any partition P , [P] represents a multiset of cardinalities that
admits multiple instances for each element. For example, if P = {{1, 2}, {3, 4}, {5}},
then [P] = {2, 2, 1}.

Wedefine an embedded coalitionof N by (S,P) satisfying∅ �= S ⊆ N ,P ∈ Π(N ),
and S ∈ P . The set of all embedded coalitions of N is given by

E(N ) = {(S,P) | ∅ �= S ⊆ N , P ∈ Π(N ), and S ∈ P}.

A game with externalities is a pair (N , v) in which a partition function v assigns a
real number to each embedded coalition, namely, v : E(N ) → R. By convention, we
define v(∅,P) = 0 for all P ∈ Π(N ). We sometimes call a game with externalities
simply a game. Let GN be the set of all games with externalities whose player set is
N .

We now introduce the notion of the projective core. In the literature on cooperative
game theory, the formation of the grand coalition is often implicitly assumed, and
the core is defined for the grand coalition. In this paper, we define the core for each
partition. Greenberg (1994), Kóczy (2007, 2009) and Koczy and Lauwers (2004)
consider a solution as a pair of payoff distributions and a partition. Our definition
fits into this context. Let v ∈ GN . For each P ∈ Π(N ), let F(v,P) be the set
of feasible allocations for partition P , formally F(v,P) = {x ∈ R

N | ∑ j∈S x j ≤
v(S,P) for any S ∈ P}. We similarly define the set of efficient allocations for P:
X(v,P) = {x ∈ R

N | ∑ j∈S x j = v(S,P) for any S ∈ P}. The projective core for P

123



170 T. Abe, Y. Funaki

is defined as follows:

Cproj(v,P) =
⎧
⎨

⎩
x ∈ X(v,P)|

∑

j∈S
x j ≥ v(S,P S) for any S ⊆ N

⎫
⎬

⎭
.

We say that a partition has a nonempty projective core if the projective core for P is
nonempty.1

As described in Sect. 1, the projective core can be thought of as the most myopic
core in the sense of reaction to a deviating coalition. The partition resulting from the
deviation of coalition S is given as the combination of coalition S and the projection
of P on the remaining players N\S, namely PN\S . Therefore, the resulting partition
P S(= {S} ∪ PN\S) depends on S and the original partition P .

Now, we introduce three classes of games.

– Let σ : N → N be a permutation. We define σ(S) = {σ(i)|i ∈ S}, and simi-
larly, σ(P) = {σ(S)|S ∈ P}. A game v is symmetric if for any σ , v(S,P) =
v(σ (S), σ (P)). A symmetric game can be also defined as follows: for any (S,P)

and (T ,Q) in E(N ), if |S| = |T | and [P] = [Q], then v(S,P) = v(T ,Q). Let
GS
N be the set of symmetric games.2

– A game v satisfies partition cardinality property (a PCP game) if for any (S,P)

and (T ,Q), if |P| = |Q|, then v(S,P) = v(T ,Q). Let GPCP
N be the set of PCP

games. In a PCP game, v no longer depends on S. The number of coalitions in P
determines the worth of the coalitions in P that is the same for all the coalitions
in P .

– A game is called a largest coalition game if there exists a function f such that
for any (S,P) ∈ E(N )\(N , {N }),

v(S,P) =
{
f (|S|, [P]) ≥ 0 if |S| ≥ |S′| for every S′ ∈ P,

0 otherwise,

v(N , {N }) > 0.

In a largest coalition game, for each partition P , the largest coalition in P obtains
the worth f (|S|, [P]). Each coalition that is not the largest in P obtains zero. If
two or more coalitions have the largest cardinality, each of them obtains the same
worth f (|S|, [P]). Let GLC

N be the set of largest coalition games.

1 We define the core by inequalities, while one may use domination: for any partition P ∈ Π(N ) and any
allocation x ∈ X(v,P), we say that (y,Q) dominates x if there exists an S ⊆ N such that (i) y j > x j
for any j ∈ S, (ii) Q = {S} ∪ PN\S , and (iii) y ∈ X(v,Q). The core for P is the set of allocations x
in X(v,P) that are not dominated by any such (y,Q). Similar to the traditional core for a game without
externalities, the inequality core becomes a subset of the dominance core.
2 We say that a game satisfies strong symmetry if for any (S,P) and (T ,Q),

|S| = |T | and |P| = |Q| ⇒ v(S,P) = v(T ,Q).

Note that the class of strong symmetry games GSS
N is different from that of symmetry games: GSS

N ⊆ GS
N .

For the relationship among some symmetry definitions, see Sect. 6.
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We have GPCP
N ⊆ GS

N and GLC
N ⊆ GS

N . Note that each game in the intersection
GPCP
N ∩ GLC

N is described as follows: v(N , {N }) > 0 and v(S,P) = 0 for any
(S,P) ∈ E(N )\(N , {N }).

In this paper, we consider public good games as applications of symmetric partition
function form games. Largest coalition games are illustrated by Bertrand competition
and a simple example of common goods competition. We also present two models in
the class of PCP games: Cournot oligopoly and the common pool resource game of
Funaki and Yamato (1999).

3 Symmetric games

3.1 General symmetric games

We begin with the basic property of a projection.

Lemma 3.1 Let P ∈ Π(N ) and S∗ ∈ P . Let permutation σ S∗ : N → N satisfy
σ(i) = i for any i ∈ N\S∗. For any S ⊆ N,

Pσ S∗
(S) = σ S∗

(P S).

Lemma 3.1 simply shows that the projective partition resulting from the rearranged
coalition coincides with the partition that is rearranged after the deviation. Now, we
define the equal division of an arbitrary partition: for any game v ∈ GN , ei (v,P) :=
v(P(i),P)

|P(i)| for every i ∈ N .

The following proposition is an extension of the necessary and sufficient condition
for the core of symmetric games without externalities to be nonempty.

Proposition 3.2 Let v be a symmetric game. Let P ∈ Π(N ). Then,

Cproj(v,P) �= ∅ ⇐⇒ e(v,P) ∈ Cproj(v,P)

The necessary and sufficient condition above is equivalent to the following statement:
for any S ⊆ N ,

∑
j∈S

v(P( j),P)
|P( j)| ≥ v(S,P S). Proposition 3.2 is a generalization in

the following two senses. The first is regarding the scope of coalition structures. For
a game without externalities, the core and its nonemptiness condition are provided
for the grand coalition, whereas Proposition 3.2 is a condition for each partition. The
second is regarding the multiplicity of cores. For games without externalities, the core
is uniquely defined. However, in the presence of externalities, multiple reactions are
studied because of the deviations, as introduced in Sect. 1. Multiplicity yields multiple
definitions of the core. The pessimistic core, the optimistic core, the disintegrating
core, and the merging core are well-known core concepts. Hafalir (2007) calls the
disintegrating core the s-core (singleton-core) and the merging core the m-core. It is
relatively straightforward to analyze these core concepts because they do not depend
on the partition fromwhich a coalition deviates. In contrast, the projective core inherits
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the feature of projective reaction and, unlike the cores above, depends on the partition
for which the projective core is defined.

The following proposition is useful for finding a partition with an empty projective
core and will play an important role in analyzing the economic applications.

Proposition 3.3 Let v be a symmetric game. Let P ∈ Π(N ). If there exist coalitions
S, S′ ∈ P such that |S| > |S′| and v(S,P)

|S| >
v(S′,P)

|S′| , then Cproj(v,P) = ∅.
Proposition 3.3 shows that if a partition has two different coalitions in the senses

of both size and average worth, then the partition has no core element. Therefore,
this can be thought of as a necessary condition for a partition to have a nonempty
core. Except for some “special” partitions such as the grand coalition and the partition
that consists of n one-person coalitions, many partitions contain different sizes of
coalitions. The proposition states that such normal partitions must obey an additional
condition to have a nonempty projective core in terms of average worth. For example,
let P = {{1}, {2, 3}} and v({1},P) = 1. We must have v({2, 3},P) ≤ 2 for P to be
able to have a nonempty projective core.

The intuition behind this result lies in the relationship between a deviation and
symmetric partitions. For example, we consider a partition {{1, 2, 3, 4}, {5, 6}}. For
this partition, there exists a four-person coalition that contains {5, 6}, e.g., {3, 4, 5, 6}.
After such a coalition deviates, its resulting partition, namely {{3, 4, 5, 6}, {1, 2}},
must be symmetric to the initial partition {{1, 2, 3, 4}, {5, 6}}. Similarly, some four-
person coalitions exist and deviate from the resulting partition {{3, 4, 5, 6}, {1, 2}},
which leads to another symmetric partition that may be the first partition. In general,
for each partition that contains different sizes of coalitions, there exists a coalition
for which the deviation yields a partition that is symmetric to the original partition.
Therefore, some cycles of deviations can be found among symmetric partitions. Such
cycles make the projective cores empty for a group of symmetric partitions.

These general conditions become more informative in some specific subclasses.
We first analyze the class of public goods games.

3.2 Public goods games

Some models of public goods games are provided by Ray and Vohra (1997) and
Yi (1997) . In this paper, we introduce a variation of those models and analyze its
projective core.

Every player i ∈ N is endowed with one unit of private good, e.g., time or labor.
We focus on a coalition S in a partition P . Every member i ∈ S contributes xi ≤ 1 to
produce public goods for S. Let y be the level of public goods and ȳ be its maximal
level. We use c(y) to denote the cost of producing y public goods. Every member of S
enjoys benefit b(y) from consuming the public goods and equally shares the cost c(y)
within S. The members choose the optimal level of public goods and equally share
the cost. Therefore, every member of S enjoys I (|S|) := max0≤y≤ȳ b(y) − c(y)

|S| .
The benefit of the public goods produced by coalition S may spill over from S to

other coalitions inP . We use E(|S|) ≥ 0 to denote the external benefit that each player
in N\S derives from S. Therefore, for any P ∈ Π(N ) and any S ∈ P , player i ∈ S
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enjoys I (|S|)+∑
T∈P\{S} E(|T |). A public goods game is defined as follows: for any

P ∈ Π(N ) and any S ∈ P

v(S,P) = |S| ·
⎡

⎣I (|S|) +
∑

T∈P\{S}
E(|T |)

⎤

⎦ .

If one considers amodelwith purely local public goods (or amodelwithout spillovers),
then E(k) = 0 for any k = 1, . . . , n.

We can consider I to be a function given by I : {0, . . . , n} → R+, and similarly
E to be E : {0, . . . , n} → R+. We assume that I (0) = E(0) = 0. We define
ΔI (k) = I (k) − I (k − 1) and ΔE (k) = E(k) − E(k − 1) for any k = 1, . . . , n and
assume that a marginal internal effect is larger than a marginal external effect:

ΔI (k) > ΔE (k)

for any k = 1, . . . , n. This assumption indicates that a change in the size of a coalition
affects the members more than the nonmembers.

Lemma 3.4 Let v be a public goods game and let P ∈ Π(N ). If there exist coalitions
S, S′ ∈ P such that |S| > |S′|, then Cproj(v,P) = ∅.

The proof is straightforward in view of Proposition 3.3. This lemma implies that
for a partition to have a nonempty projective core, every coalition in the partition must
have the same cardinality. Moreover, note that Lemma 3.4 does not depend on I (·) and
E(·): the emptiness is valid for any form of internal/external effect functions. What
condition guarantees the nonemptiness of the projective core? To determine this, we
now focus on convex I (·). The following proposition shows that the convexity gives
the grand coalition a nonempty projective core and gives the other partitions empty
projective cores.

Proposition 3.5 If ΔI (k) ≤ ΔI (k + 1) for every k = 1, . . . , n − 1, then
Cproj(v, {N }) �= ∅ and Cproj(v,P) = ∅ for any P ∈ Π(N )\{N }.

Note that spillover effect E is not conditioned in this proposition: E does not influ-
ence the nonemptiness of the core under the above condition of I . In the presence
of a spillover, each member of every coalition benefits from their own public goods
and the spillovers from other coalitions. Therefore, one might consider that a partition
consisting of multiple coalitions can also be seen as a stable coalition structure. How-
ever, Proposition 3.5 shows that the grand coalition, in which there is no such spillover
from another coalition, is the only stable coalition structure. This result occurs because
of the convexity of I . In view of ΔI (k) > ΔE (k), the internal effect surpasses the
external effect, and the convexity of I benefits a larger coalition, which provides play-
ers with a larger incentive to cooperate and jointly produce public goods rather than
enjoying the public goods as free riders.

If I is concave, namely, ΔI (k) ≥ ΔI (k + 1) for every k = 1, . . . , n − 1, and
ΔI (1) ≤ ΔE (1), then the partition of the player set into singletons has a nonempty
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projective core in a way that is similar to Proposition 3.5. Given the results above, one
may consider that if there is k∗ such that I (k) is convex for 1 ≤ k ≤ k∗ − 1 and is
concave for k∗ ≤ k ≤ n − 1, then a partition P satisfying k∗ = |S| for every S ∈ P
has a nonempty projective core. However, this conjecture is not true. For example,
let n = 10 and P = {S1, S2} with S1 = {1, . . . , 5} and S2 = {6, . . . , 10}. Consider
T = {2, . . . , 8}. We suppose that I (k) = k for k = 1, . . . , 5, I (k) = 5 + 3k/7
for k = 6, . . . , 10, and E(k) = k/2 for every k = 1, . . . , 10. Then, ei (v,P) =
I (5) + E(5) = 7.5, while v(T , {T } ∪ PN\T ) = I (7) + E(1) + E(2) = 9.5. Hence,
coalition T has an incentive to deviate fromP , and the projective core for the partition
P is empty.

If I is convex, the public goods game should also satisfy a sort of convexity. Since
the convexity of games with externalities is not unique, belowwe consider the convex-
ity notion proposed by Hafalir (2007) . A game with externalities is convex if for any
S, T ⊆ N and any P ′ ∈ Π(N\(S ∪ T )), we have v(S ∪ T , {(S ∪ T )} ∪ P ′) + v(S ∩
T , {(S\T ), (S ∩ T ), (T \S)} ∪P ′) ≥ v(S, {(S), (T \S)} ∪P ′) + v(T , {(T ), (S\T )} ∪
P ′). As long as I is convex, the public goods game also satisfies this convexity defi-
nition. However, any game with this convexity notion does not necessarily satisfy the
condition of Proposition 3.3 even if it is symmetric. In other words, even a symmetric
convex game may have a partition P that contains a pair of coalitions S, S′ ∈ P with
|S| > |S′| and v(S,P)

|S| >
v(S′,P)

|S′| . Therefore, a partition that is not the grand coalition
mayhave anonemptyprojective core.However,we canobtain the same result as Propo-
sition 3.5 by assuming a strict efficiency requirement: for every P ∈ Π(N )\{{N }},
v(N , {N }) >

∑
S∈P v(S,P). If a symmetric game satisfies both the convexity notion

above and this strict efficiency condition, then the equal division at the grand coalition
lies in the projective core, and any other partition does not have a projective core
allocation.

4 Largest coalition games

4.1 General largest coalition games

In this section, we focus on the class of largest coalition games defined in Sect. 2. Note
that this is a subclass of the class of symmetric games.We briefly recall its intuition: for
each partition P , the largest coalition in P obtains the worth f (|S|, [P]), while each
coalition that is not the largest in P obtains zero. The importance of this subclass lies
in the fact that some important economic scenes can be modeled as a largest coalition
game. As preparation, we begin with the following general result that is similar to
Lemma 3.4.

Corollary 4.1 Let v be a largest coalition game andP ∈ Π(N ). If there exist coalitions
S, S′ ∈ P such that |S| > |S′|, then Cproj(v,P) = ∅.

Although the resulting appearance is the same as Lemma 3.4, the reasoning behind
Corollary 4.1 is different from that of Lemma 3.4. In a large coalition game, the
second largest coalition in a partition obtains zero. Therefore, the second condition of
Proposition 3.3, namely, v(S,P)

|S| >
v(S′,P)

|S′| , always holds for the largest coalition S and
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another coalition S′ as long as v(S,P) is positive. If partition P satisfies v(S,P) = 0
for all S ∈ P , then the partition (even if it contains some coalitions with different sizes)
does not violate Proposition 3.3. However, all players have an incentive to deviate
by forming N and obtain v(N , {N }) > 0. Hence, the projective core for partitions
satisfying v(S,P) = 0 for all S ∈ P is also empty. If we focus on the equal division
on the grand coalition, coalition S has no incentive to deviate from the equal division
of v(N , {N }) if and only if 1

|N | f (|N |, [n]) ≥ 1
|S| f (|S|, [|S|, |N\S|]) since a deviation

from the grand coalition projects {N } onto the set of the non-deviating players N\S,
which results in the partition {S, N\S}.

The class of largest coalition games is suitable for describing competition among
coalitions. To see this, we first apply Corollary 4.1 to the following simple example.

Example 1 (Common goods competition) Consider that some identical and divisible
goods are to be distributed. Let x > 0 be the amount of the goods. For anyP ∈ Π(N ),
the largest coalition in P wins all x goods. If two or more coalitions have the largest
cardinality, they equally share x . Therefore, every common goods competition game
is a largest coalition game.

In this game, the projective core is empty for all partitions including the grand
coalition. To see this, given Corollary 4.1, we focus on partition P , which consists of
coalitions of the same size. Let P = {S1, . . . , Sm}, with |S1| = · · · = |Sm |.

We first consider P �= {N }. Let T ⊆ N be |T | = |S1| + 1. Then, T is the largest
coalition in PT (= {T } ∪ PN\T ). Hence, v(T ,PT ) = x , and we have

∑

j∈T
e j (v,P) = |T | x

n
< x = v(T ,PT ).

Thus, in view of Proposition 3.2, Cproj(v,P) = ∅.
We now consider P = {N }. For every i ∈ N , we have

∑

j∈N\{i}
e j (v, {N }) = (n − 1)

x

n
< x = v(N\{i}, {{i}, N\{i}}).

Hence, similarly, Cproj(v, {N }) = ∅.
This example shows that the projective core can be empty even for such a simple

setting. However, some economic games have a nonempty projective core. We now
analyze Bertrand competition in the framework of largest coalition games. This must
be the first formulation of Bertrand competition in partition function form.

4.2 Bertrand oligopoly with size-dependent cost functions

Let c be a cost function. Coalition S produces one unit of identical goods with cost
c(|S|): the cost function assigns a real number to each natural number 1, . . . , n. We
assume that as a coalition becomes larger, the cost monotonically decreases: c(k) >

c(k + 1) for any k = 1, . . . , n − 1. We assume c(n) ≥ 0. The demand function is
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given by q(p), where p is a price. We assume that q ′(p) ≤ 0 and q(p) ≥ 0 for any
p ≥ 0.

Given partition P , coalitions in P simultaneously determine the price of the good.
The coalition that offers the lowest price, say p∗, obtains all the demand at that price,
q(p∗). Since the cost function depends on the size of the coalition, the largest unique
coalition obtains all the demand q(p∗). If some coalitions tie in the senses of size and
cost, they receive zero profit, as indicated by the typical Bertrand oligopoly. Let S be
the largest unique coalition in P , and let S′ be the second largest coalition in P . As a
result of the competition, coalition S chooses a price so as to maximize its profit:

max
p≤c(|S′|)

q(p)(p − c(|S|)).

The largest coalition S must choose p ≤ c(|S′|) to win the price competition and
p > c(|S|) to obtain positive profit. We assume that a coalition withdraws from the
competition if its profit is zero. We consider the profit above as the worth of coalition
S in P:

v(S,P) =
{

max
p≤c(|S′|)

q(p)(p − c(|S|)) if |S| > |T |∀T ∈ P\{S},
0 otherwise.

If P = {N }, the grand coalition N obtains the monopoly profit, where the monopoly
price pm solves q ′(pm) · (pm − c(n)) + q(pm) = 0. Let πm denote monopoly profit.
We assume that πm > 0. Note that every Bertrand oligopoly with size-dependent cost
functions is a large coalition game. We first obtain the following result.

Proposition 4.2 For any P ∈ Π(N )\{N }, Cproj(v,P) = ∅.
The proof is straightforward in view of Corollary 4.1. In addition to partitions contain-
ing different sizes of coalitions, some partitions consisting of the same size coalitions
also lack projective cores. Therefore, we restrict our attention to the grand coalition
to find a nonempty projective core. We first define h(n) as follows:

h(n) =
{

n+1
2 if n is odd,

n
2 + 1 if n is even.

For notational simplicity, we simply write h instead of h(n). Now, for cost function c
and demand function q, we define dc,q as follows: for any s = 1, . . . , n,

dc,q(s) = max
p≤c(n−s)

q(p)(p − c(s)).

Proposition 4.3 The projective core for the grand coalition Cproj(v, {N }) is nonempty
if and only if for every s = h, . . . , n − 1,

dc,q(s)

s
≤ πm

n
.
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Proposition 4.3 is a necessary and sufficient condition for the projective core to be
nonempty. Note that we do not have to check dc,q(s) for s = 1, . . . , h− 1. This result
contributes to the literature on oligopolies in partition function form in three ways.

– One is the generality of the cost function and the demand function.Most preceding
works employ a linear demand function and constant marginal costs, while the
proposition holds for general demand and cost functions.

– Another novelty is that we formally show that the partitions other than the grand
coalition are not stable in terms of the core. The formation of the grand coalition
has been often assumed in this context. Proposition 4.2 offers the reasons for this
implicit assumption.

– As elaborated in the next section, in a Cournot oligopoly, the projective core of
the grand coalition is empty even under the linear setting, and it is also empty for
the other partitions. Proposition 4.3 shows that the core can be nonempty for some
demand functions and cost functions in a Bertrand oligopoly.

Below, as instances of the third issue discussed above, we offer two numerical
examples. In Example 2, we show that the grand coalition can have a nonempty
core with a simple (linear) demand function and a (linear) cost function. Example 3
describes an empty projective core.

Example 2 Let N = {1, 2, 3, 4, 5}. Consider q(p) = max{12− p, 0} for p ∈ R
+ and

c(s) = 6−s for s = 1, . . . , 5. Note that h = 3. Themonopoly profit v(N , {N }) = πm

is given by

πm = max
p≥0

q(p)(p − c(5)) = max
p≥0

(12 − p)(p − 1) = 30.25.

As Proposition 4.3 shows, it suffices to check dc,q(3) and dc,q(4). We have

dc,q(3) = max
p≤c(2)

q(p)(p − c(3)) = max
p≤4

(12 − p)(p − 3) = 8

dc,q(4) = max
p≤c(1)

q(p)(p − c(4)) = max
p≤5

(12 − p)(p − 2) = 21.

Hence, we have 8/3 = 2.666 · · · < 6.05 = 30.25/5 for dc,q(3) and 21/4 = 5.25 <

6.05 = 30.25/5 for dc,q(4), and the projective core for the grand coalition is nonempty.
The projective cores for the other partitions are empty, as Proposition 4.2 describes.

Example 3 We now consider another (decreasing) cost function with c(5) = 1, c(3) =
2, and c(2) = 7.Weuse the samedemand functionq(p) = max{12−p, 0} for p ∈ R

+.
The monopoly profit is the same, πm = 30.25. For dc,q(3), we have dc,q(3) =
maxp≤c(2) q(p)(p− c(3)) = maxp≤7(12− p)(p− 2) = 25. Hence, we have 25/3 =
8.333 · · · > 6.05 = 30.25/5 for dc,q(3). The necessary and sufficient condition is
violated, and the projective core for the grand coalition is empty. Therefore, in this
example, every partition has an empty projective core.

123



178 T. Abe, Y. Funaki

5 Games with partition cardinality property

We recall the definition of a PCP game and its intuition. We say that a game v is a PCP
game if for any (S,P) and (T ,Q), if |P| = |Q|, then v(S,P) = v(T ,Q). Therefore,
worth v depends on the number of coalitions in P . The worth of the coalitions in P is
the same for all the coalitions in P .

Although a PCP game seems more restrictive than the other symmetric games, this
class contains two important economic applications: the Cournot oligopoly proposed
by Ray and Vohra (1997) and Yi (1997) and the common pool resource game studied
by Funaki and Yamato (1999) and Abe and Funaki (2017). The rich results of these
two games can be ascribed to the simplification of the partition function. A PCP game
v ∈ GPCP

N is represented by function f such that for any (S,P) ∈ E(N ),

f (|P|) = v(S,P).

In other words, the worth of an embedded coalition only depends on the cardinality
of the partition. In this section, we use f instead of v to denote a PCP game.

As we have already seen in the previous sections, the projective core often becomes
empty for partitions other than the grand coalition because of Proposition 3.3 and its
corollaries. Moreover, in some specific instances, the projective core is empty even for
the grand coalition. However, in the class of PCP games, every partition might have a
nonempty projective core. Below, we offer a necessary and sufficient condition for a
partition to have a nonempty projective core.

We define PCP game f and partition P ∈ Π(N ). For every k ≥ 0, we define

g f ,P (k) =
{

(|P| − k + 1) f (|P|) if k ≤ |P|,
1

|Smax(P)| f (|P|) if k > |P|,

where Smax(P) is one of the largest coalitions inP: |Smax(P)| ≥ |S′| for every S′ ∈ P .

Proposition 5.1 Let f be a PCP game and setP ∈ Π(N ). Assume f (|P|) ≥ 0. Then,

Cproj( f ,P) �= ∅ ⇐⇒ f (k) ≤ g f ,P (k) for every k = 1, . . . , |P| + 1.

Game f is a function with an input of natural number and an output of real number,
and so is g f ,P . The proposition states that the projective core is nonempty if and only
if g f ,P is located “above” f for each natural number k. Moreover, we can derive some
implications from Proposition 5.1.

– If f (k) is nondecreasing in k, partition {{i}|i ∈ N } is the only partition that has
a nonempty projective core. If f (k) is nonincreasing in k, the nonemptiness of
the core is more complicated. The following two games are the PCP games with
nonicreasing f .

– The common pool resource game has a nonincreasing f . Moreover, this game
satisfies k · f (k) > k′ · f (k′) if k < k′. In view of this inequality, Proposi-
tion 5.1 is not satisfied for each partition, which implies that every common
pool resource gamewith n ≥ 3 has an empty projective core for every partition.
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– The Cournot oligopoly is another example. This game is explicitly given as
f (k) = 1

(k+1)2
, which immediately violates the necessary and sufficient con-

dition and causes there to be an empty projective core for every partition.

– The observations above show that if f is constant, the partition consisting of
singletons {{i}|i ∈ N } is the only partition that has a nonempty projective core.
Moreover, if f is partially constant and increases at some k∗, a partition whose
cardinality is k∗ may have a nonempty projective core. For example, let f (k) = c
for k ≤ k∗ and f (k) = d for k > k∗ (c �= d). If some partitionP satisfies |P| = k∗
and c · 1

|Smax(P)| ≥ d, then this partition P has a nonempty projective core.
– In regards to any single-peaked function, according to our proposition it readily
follows that the left side of the peak (namely, the coarse partitions or the partitions
for which worth is increasing) lacks a projective core. Similarly, for any single-
dipped function, the right side of the dip (namely, the finer partitions) lacks a
projective core, except for the partition {{i}|i ∈ N }.
Moreover, the following result follows for “adjacent” partitions.

Corollary 5.2 For any pair of partitions P,Q ∈ Π(N ) with |P| + 1 = |Q|, if
Cproj( f ,P) �= ∅ and Cproj( f ,Q) �= ∅, then |Smax(P)| = 2 and f (|P|) = 2 f (|Q|).
We call the partitions P,Q ∈ Π(N ), satisfying |P| + 1 = |Q|, adjacent partitions (in
the sense of cardinality). This corollary indicates that the adjacent partitions seldom
have nonempty projective cores simultaneously. For example, consider partition Q.
Assume that the core for Q is nonempty. Then, we have to find partition P , which
consists of only two-person coalitions and one-person coalitions and satisfies |P|+1 =
|Q|. Furthermore, the worth of partition P , f (|P|), must be exactly equal to 2 f (|Q|).
In most games, such a partition P does not exist, which shows how difficult it can be
for two adjacent partitions to simultaneously have nonempty projective cores.

6 Remarks

Remark 1 (Approximate symmetry) The results we discussed in the previous sections
are robust to small perturbations: we allow v(S,P) to vary within a certain value
±ε for ε > 0. We say that a game v ∈ GN satisfies ε-approximate symmetry (an
ε-AS game) if there is a symmetric game μ ∈ GS

N such that for every (S,P) ∈ E(N ),
μ(S,P)−ε ≤ v(S,P) ≤ μ(S,P)+ε. Considering Proposition 3.3, it should be clear
that for every ε > 0, every ε-AS game v and every P ∈ Π(N ), if there are coalitions
S, S′ ∈ P such that |S| > |S′| and v(S,P)

|S| − v(S′,P)
|S′| > 2ε

|S′| , then C
proj(v,P) = ∅. This

observation shows that if ε is small enough, Proposition 3.3 holds even in the presence
of perturbations, and we can straightforwardly apply the condition above to the two
subclasses with perturbations. Therefore, this generalizes our result to a wider range
of classes that admit asymmetry.

Remark 2 (Other symmetry definitions) In this paper, we define a symmetric game as
a game v satisfying v(S,P) = v(σ (S), σ (P)) for any permutation σ . We now define
strong symmetry (SS) as follows: for any (S,P) and (T ,Q), |S| = |T | and |P| =
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|Q| ⇒ v(S,P) = v(T ,Q). In view of the definition of strong symmetry, one may
immediately define twoweaker variations, coalition symmetry and partition symmetry,
as follows. A game v satisfies coalition symmetry (CS) if for any (S,P) and (T ,Q),
|S| = |T | and P = Q ⇒ v(S,P) = v(T ,Q). A game v satisfies partition symmetry
(PS) if for any (S,P) and (T ,Q), S = T and |P| = |Q| ⇒ v(S,P) = v(T ,Q).
From the definitions above, it readily follows that

SS ⇒ Symmetry ⇒ CS; SS ⇒ PS.

Note that symmetry does not imply PS as another equivalent definition of symmetry
is given as |S| = |T | and [P] = [Q] ⇒ v(S,P) = v(T ,Q).

Appendix

Proof of Lemma 3.1 First, we have σ S∗
(P S) = σ S∗

({S} ∪ PN\S) = {σ S∗
(S)} ∪

σ S∗
(PN\S). We now focus on σ S∗

(PN\S). Then, we have

σ S∗
(PN\S) = σ S∗

({(N\S) ∩ C |C ∈ P})
= {σ S∗

((N\S) ∩ C)|C ∈ P}
= {σ S∗

(N\S) ∩ σ S∗
(C)|C ∈ P}

= {(N\σ S∗
(S)) ∩ σ S∗

(C)|C ∈ P}
S∗∈P= {(N\σ S∗

(S)) ∩ C |C ∈ P} = PN\σ S∗
(S).

Therefore, we obtain {σ S∗
(S)} ∪ PN\σ S∗

(S) = Pσ S∗
(S). ��

Proof of Proposition 3.2 The proof of ⇐ is clear. Below, we show ⇒. Let P =
{S1, . . . , S|P |}. For every S ∈ P , let σ S satisfy σ S(i) = i for every i ∈ N\S,
i .e., σ S denotes a permutation only for the members in S. Let x ∈ Cproj(v,P).
From the definition of Cproj, it follows that

∑
j∈S x j ≥ v(S,P S) for any S ⊆ N , and∑

j∈S x j = v(S,P) for any S ∈ P . For any σ , we define σ(x)i := xσ(i) for any i ∈ N .

Then, for any S ⊆ N , we have
∑

j∈S σ S1(x) j = ∑
j∈S xσ S1 ( j) = ∑

j∈σ S1 (S) x j ≥
v(σ S1(S),Pσ S1 (S)), by Lemma 3.1, which equals v(σ S1(S), σ S1(P S)) = v(S,P S).

Similarly, it follows from Lemma 3.1, and v ∈ GS
N that for every S ∈ P ,

∑
j∈S σ S1(x) j = v(S,P). Hence, σ S1(x) ∈ Cproj(v,P). This holds for every permu-

tation σ S1 . Note that there are |S1|! permutations that arrange the members in S1. We
denote the set of the |S1|! permutations by AS1 .We define y := 1

|S1|!
∑

σ S1∈AS1 σ S1(x).

For any player i ∈ S1, we have yi = 1
|S1|!

∑
σ S1∈AS1 σ S1(x)i = 1

|S1|! (|S1| −
1)!

(∑
j∈S1 x j

)
. This is equivalent to 1

|S1|! (|S1| − 1)!v(S1,P), and we obtain v(S1,P)
|S1| .

Hence, allocation y is given as follows: yi := v(S1,P)
|S1| for every i ∈ S1, yi := xi for

every i ∈ N\S1; and, in view of the convexity of the core, belongs to Cproj(v,P),
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namely, with slightly abusing the notation, y = (eS1 , x S2 , . . . , x S|P|) ∈ Cproj(v,P).
We repeat this process for each S2, . . . , S|P | and obtain e(v,P) ∈ Cproj(v,P). ��
Proof of Proposition 3.3 We show that e(v,P) /∈ Cproj(v,P). Let S and S′ inP satisfy
|S| > |S′| and v(S,P)

|S| >
v(S′,P)

|S′| . There exists a coalition T ⊆ N such that |T | = |S|
and T = S′ ∪ R for some ∅ �= R � S. We have |S\T | = |S′|. Since v ∈ GS

N , we have
v(T , {T } ∪ PN\T ) = v(T , {T , S\T } ∪ PN\(T∪S)}) = v(S, {S, S′} ∪ PN\(S∪S′)) =
v(S,P). Hence, we obtain

∑

j∈T
e j (v,P) = |R|v(S,P)

|S| + |S′|v(S′,P)

|S′| < |R|v(S,P)

|S| + |S′|v(S,P)

|S|

= |T |v(S,P)

|S|
= |T |v(T , {T } ∪ PN\T )

|T | = v(T , {T } ∪ PN\T ) = v(T ,PT ).

Thus, e(v,P) /∈ Cproj(v,P). ��
Proof of Proposition 3.5 We first show that Cproj(v,P) = ∅ for any P ∈ Π(N )\{N }.
In view of Lemma 3.4, consider P �= {N } satisfying k∗ := |S′| for every S′ ∈ P .
We have ei (v,P) = I (k∗) + (|P| − 1)E(k∗) for every i ∈ N . Consider S ⊆ N with
|S| = k∗ + 1. We have

v(S,P S}) −
∑

j∈S
e j (v,P)

= s[I (k∗ + 1) + E(k∗ − 1) + (|P| − 2)E(k∗)] − s[I (k∗) + (|P| − 1)E(k∗)]
= s[I (k∗ + 1) − I (k∗) − (E(k∗) − E(k∗ − 1))] = s[ΔI (k∗ + 1) − ΔE (k∗)]
> s[ΔI (k∗ + 1) − ΔI (k∗)] ≥ 0.

Hence, e(v,P) /∈ Cproj(v,P). From Proposition 3.2, Cproj(v,P) = ∅ follows.
Now, we show that Cproj(v, {N }) �= ∅. For any i ∈ N , ei (v, {N }) = I (n). For any

S ⊆ N , v(S, {S, N\S}) = s[I (s) + E(n − s)]. Hence, for any S ⊆ N , we have

∑

j∈S
e j (v,P) − v(S, {S, N\S}) = s[I (n) − I (s) − E(n − s)]

= s

[
n∑

k=s+1

ΔI (k) −
n−s∑

k=1

ΔE (k)

]

≥ s

[
n−s∑

k=1

ΔI (k) −
n−s∑

k=1

ΔE (k)

]

> 0,

which implies Cproj(v, {N }) �= ∅. ��
Proof of Proposition 4.3 If-part: For any coalition S with |S| =: s, we have

v(S, {S, N\S}) =
{
maxp≤c(n−s) q(p)(p − c(s)) for h ≤ s ≤ n − 1,
0 for 1 ≤ s ≤ h − 1.

(1)

123



182 T. Abe, Y. Funaki

Hence, for any S ⊆ N with h ≤ s ≤ n − 1, we obtain
∑

j∈S e j (v, N ) = s πm

n ≥
dc,q(s)

(1)= v(S, {S, N\S}). For any S ⊆ N with 1 ≤ s ≤ h − 1, we have
∑

j∈S e j (v, N ) = s πm

n ≥ 0
(1)= v(S, {S, N\S}). Thus, e(v, N ) ∈ Cproj(v, {N }).

Only-if-part: From Proposition 3.2, it follows that e(v, N ) ∈ Cproj(v, {N }). We
have v(S, {S, N\S}) ≤ |S|πm

n for every S ⊆ N . Hence, in view of (1), for every

s = h, . . . , n − 1, dc,q(s) ≤ s πm

n . ��
Proof of Proposition 5.1 We fix a PCP game f and a partition P ∈ Π(N ). For conve-
nience, we offer the definition of g f ,P again:

g f ,P (k) =
{

(|P| − k + 1) f (|P|) k ≤ |P|,
1

|Smax(P)| f (|P|) k > |P|. (2)

Proof of ⇐: Assume that Cproj(v,P) = ∅. Since f (|P|) ≥ 0, X+(v,P) := {x ∈
X(v,P)|x j ≥ 0 for any j ∈ N } is not empty. Let x ∈ X+(v,P). As the projective
core for P is empty, there exists a coalition S ⊆ N such that

∑

j∈S
x j < v(S,P S) = f (k), (3)

where k = |P S|. For the coalition S, define T S = {T ∈ P| T ∈ PS}. Note that
|T S| = |P| − k + 1. If |T S| ≥ 1, then k ≤ |P|. We have

∑
j∈S x j = |T S| · f (|P|) +

∑
j∈S\(∪T∈T S T ) x j ≥ |T S| · f (|P|) = (|P| − k + 1) f (|P|). Hence, from (3), it

follows that f (k) > (|P| − k + 1) f (|P|). However, in view of (2), for any k ≤ |P|,
f (k) ≤ g f ,P (k) implies that f (k) ≤ (|P| − k + 1) f (|P|). This is a contradiction.
Next, if |T S| = 0, then k = |P| + 1. Since for any x ∈ X+(v,P) there exists

S ⊆ N satisfying (3), such a coalition S also exists for the equal division e( f ,P) ∈
X+(v,P), i .e., e j ( f ,P) = f (|P |)

|P( j)| for every j ∈ N . Note that e j ( f ,P) ≥ 0 for
every j ∈ N as f (|P|) ≥ 0. Hence, there exists a player i ∈ S such that ei ( f ,P) ≤
∑

j∈S e j ( f ,P) < f (k) by (3). Moreover, ei ( f ,P) = f (|P |)
|P(i)| ≥ f (|P |)

|Smax(P)| . Hence, we
have f (|P |)

|Smax(P)| < f (k). However, in view of (2), for any k > |P|, f (k) ≤ g f ,P (k)

implies that f (k) ≤ f (|P |)
|Smax(P)| . This is a contradiction.

Proof of ⇒: We show that if there exists k ∈ {1, . . . , |P| + 1} such that f (k) >

g f ,P (k), then Cproj(v,P) = ∅. Assume x ∈ Cproj(v,P). If k ≤ |P|, we have
f (k) > (|P| − k + 1) f (|P|) = ∑|P |−k+1

a=1

∑
j∈Sa x j , where S1, . . . , S|P |−k+1 are

arbitrary |P| − k + 1 coalitions in P . Hence, |P| − k + 1 coalitions in P have an
incentive to jointly deviate by merging and obtain f (k) in total after the deviation. If
k > |P|, then (2) implies f (k) > 1

|Smax(P)| f (|P|). Moreover, there exists i ∈ Smax(P)

such that xi < f (k), because otherwise for any j ∈ Smax(P) we have x j ≥ f (k),
which implies

∑
j∈Smax(P) x j ≥ |Smax(P)| f (k) and ∑

j∈Smax(P) x j = f (|P|): a con-
tradiction. Hence, there exists i ∈ Smax(P) such that xi < f (k), and the player i has
an incentive to deviate. ��
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