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Abstract
We consider a bilateral oligopoly version of the Shapley window model with large 
traders, represented as atoms, and small traders, represented by an atomless part. 
For this model, we provide a general existence proof of a Cournot–Nash equilib-
rium that allows one of the two commodities to be held only by atoms. Then, we 
show, using a corollary proved by Shitovitz (Econometrica 41:467–501, 1973), that 
a Cournot–Nash allocation is Pareto optimal if and only if it is a Walras allocation.
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JEL Classification C72 · D43 · D51

1 Introduction

Gabszewicz and Michel (1997) introduced the so-called model of bilateral oligop-
oly, which consists of a two-commodity exchange economy where each trader holds 
only one of the two commodities available for trade. In this framework, strategic 
interaction among traders was modeled as in strategic market games à la Shapley 
and Shubik (see Giraud (2003) for a survey of this literature). This model was ana-
lyzed, in the case of a finite number of traders, by Bloch and Ghosal (1997), Bloch 
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and Ferrer (2001), Dickson and Hartley (2008), Amir and Bloch (2009), among 
others.

In this paper, we consider the mixed bilateral oligopoly model introduced by 
Codognato et al. (2015). Following Shitovitz (1973), this model analyzes a mixed 
economy with large traders, represented as atoms, and small traders, represented 
by an atomless part. Noncooperative exchange is formalized as in the Shapley win-
dow model, a strategic market game which was first proposed informally by Lloyd 
S. Shapley and further analyzed by Sahi and Yao (1989), Codognato and Ghosal 
(2000), Busetto et al. (2011), Busetto et al. (2018), among others.

The first goal of the paper is to prove the existence of a Cournot–Nash equilib-
rium for the mixed bilateral oligopoly version of the Shapley window model. Busetto 
et al. (2011) provided an existence proof for the mixed version of the Shapley win-
dow model with any finite number of commodities. Their proof is based on the same 
assumptions as the proof provided by Sahi and Yao (1989) for the case of exchange 
economies with a finite number of traders. In particular, it requires that there are at 
least two atoms with strictly positive endowments, continuously differentiable utility 
functions, and indifference curves contained in the strict interior of the commodity 
space: these restrictions are stated by Busetto et al. (2011) in their Assumption 4. 
Clearly, this proof does not apply to the bilateral oligopoly case where all atoms 
hold only one of the two commodities. Busetto et  al. (2018) proposed an alterna-
tive existence proof which is essentially based on restrictions on endowments and 
preference of the atomless part of the economy rather than on atoms. In particular, 
they kept all the assumptions made by Busetto et al. (2011) with the exception of 
their Assumption 4, which was replaced by a new restriction requiring that the set 
of commodities is strongly connected through the characteristics of traders in the 
atomless part. The existence proof in Busetto et  al. (2018) used a theorem which 
shows that any sequence of prices corresponding to a sequence of Cournot–Nash 
equilibria has a subsequence which converges to a strictly positive price vector and 
it requires that each commodity is held by a subset of the atomless part with positive 
measure. An appealing feature of our existence result is that it allows a commodity 
to be held only by atoms. The case of atoms, oligopolists, on one side of the market, 
facing an atomless part, on the other side, is the one closest to the basic oligopoly 
model considered by Cournot (1838). In order to cover this case, we cannot directly 
use the price convergence theorem shown by Busetto et al. (2018) but we have to 
combine that proof with the price convergence result proved by Dubey and Shubik 
(1978), which holds for a strategic market game with a finite number of traders, i.e., 
for a purely atomic exchange economy. This is one reason why our existence proof 
is not just a two-commodity case of that provided by Busetto et al. (2018). There is 
one more difference between the two results. A step in the proof of both existence 
theorems consists in showing that the aggregate bid matrix, obtained as the limit of 
a sequence of perturbed Cournot–Nash equilibria, is irreducible. In Busetto et  al. 
(2018), obtaining this result requires that the two ordered pairs generated by the two 
traded commodities are connected through traders’ characteristics. Here, instead, 
we impose that there is a coalition of traders in the atomless part with differenti-
able and additively separable utility functions which have infinite partial derivatives 
along the boundary of the consumption set. This can be seen as an atomless version 
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of an assumption on utility functions made by Bloch and Ferrer (2001) to prove 
the existence of a Cournot–Nash equilibrium in their finite, purely atomic, bilateral 
framework.

In the second main theorem of the paper, we provide a characterization of the 
Pareto optimality of Cournot–Nash allocations. The issue of Pareto optimality in 
strategic market games was raised since the seminal paper by Shapley and Shubik 
(1977). This first analysis was mainly an intuitive discussion of Pareto optimality in 
the Edgeworth box. Then, more formal results on this issue were obtained by Dubey 
(1980), Dubey et  al. (1980), Aghion (1985), Dubey and Rogawski (1990), among 
others. These results were obtained using the approach to general equilibrium based 
on differential topology and hold generically. Our second theorem is a general result 
stating that a Cournot–Nash allocation is Pareto optimal if and only if it is a Walras 
allocation. This result establishes a relationship among the Cournotian tradition of 
oligopoly, the Walrasian tradition of perfect competition, and the Paretian analysis 
of optimality. Some examples computed by Codognato et  al. (2015) provide evi-
dence that this characterization holds non-vacuously.

The paper is organized as follows. In Sect.  2, we introduce the mathematical 
model. In Sect. 3, we prove the existence of a Cournot–Nash equilibrium. In Sect. 4, 
we characterize the Pareto optimality of Cournot–Nash equilibria. In Sect. 5, we dis-
cuss the model. In Sect. 6, we draw some conclusions and we sketch some further 
lines of research.

2  Mathematical model

We consider a pure exchange economy with large traders, represented as atoms, 
and small traders, represented by an atomless part. The space of traders is denoted 
by the measure space (T , T,�) , where T is the set of traders, T  is the �-algebra of 
all �-measurable subsets of T, and � is a real valued, non-negative, countably addi-
tive measure defined on T  . We assume that (T , T,�) is finite, i.e., 𝜇(T) < ∞ . This 
implies that the measure space (T , T,�) contains at most countably many atoms. Let 
T1 denote the set of atoms and T0 the atomless part of T. We assume that 𝜇(T1) > 0 
and 𝜇(T0) > 0.1 A null set of traders is a set of measure 0. Null sets of traders are 
systematically ignored throughout the paper. Thus, a statement asserted for “each” 
trader in a certain set is to be understood to hold for all such traders except possibly 
for a null set of traders. A coalition is a nonnull element of T  . The word “integra-
ble” is to be understood in the sense of Lebesgue.

In the exchange economy, there are 2 different commodities. A commodity bun-
dle is a point in R2

+
 . An assignment (of commodity bundles to traders) is an integra-

ble function � : T → R2
+
 . There is a fixed initial assignment � , satisfying the follow-

ing assumption.

1 The symbol 0 denotes the origin of R2
+
 as well as the real number zero: no confusion will result.
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Assumption 1 There is a coalition S such that �1(t) > 0 , �2(t) = 0 , for each t ∈ S , 
�1(t) = 0 , �2(t) > 0 , for each t ∈ Sc . Moreover, card (S ∩ T1) ≥ 2 , whenever 
�(S ∩ T0) = 0 , and card (Sc ∩ T1) ≥ 2 , whenever �(Sc ∩ T0) = 0.2

An allocation is an assignment � such that ∫
T
�(t) d� = ∫

T
�(t) d� . The prefer-

ences of each trader t ∈ T  are described by a utility function ut ∶ R2
+
→ R , satisfying 

the following assumptions.

Assumption 2 ut ∶ R2
+
→ R is continuous, strongly monotone, and quasi-concave, 

for each t ∈ T .
Let B denote the Borel �-algebra of R2

+
 . Moreover, let T

⨂
B denote the �-algebra 

generated by the sets E × F such that E ∈ T  and F ∈ B.

Assumption 3 u ∶ T × R2
+
→ R , given by u(t, x) = ut(x) , for each t ∈ T  and for each 

x ∈ R2
+
 , is T

⨂
B-measurable.

The following assumption is an atomless version of the second assumption on 
utility functions made by Bloch and Ferrer (2001) in their finite, purely atomic, 
bilateral framework.

Assumption 4 There is a coalition T̄  , with T̄ ⊂ T0 , such that ut(⋅) is differentiable, 
additively separable, i.e., ut(x) = v1

t
(x1) + v2

t
(x2) , for each x ∈ R2

+
 , and dv

j
t(0)

dxj
= +∞ , 

j ∈ {1, 2} , for each t ∈ T̄ .3
A price vector is a nonnull vector p ∈ R2

+
 . We say that a price vector p is normal-

ized if p ∈ Δ where Δ = {p ∈ R2
+
∶
∑2

i=1
pi = 1}.

Let �0 ∶ T0 × R2
++

→ P(R2
+
) be a correspondence such that, for each t ∈ T0 and 

for each p ∈ R2
++

 , �0(t, p) = argmax {ut(x) ∶ x ∈ R2
+
and px ≤ p�(t)} . For each 

p ∈ R2
++

 , let ∫
T0
�0(t, p) d� = {∫

T0
�0(t, p) d� ∶ �0(⋅, p) is integrable and 

�0(t, p) ∈ �0(t, p), for each t ∈ T0} . Finally, let �0 ∶ R2
++

→ P(R2) be a correspond-
ence which associates with each p ∈ R2

++
 the Minkowski difference between the set 

∫
T0
�0(t, p) d� and the set {∫

T0
�(t) d�}.4 According to Debreu (1982), let 

�x� =
∑2

i=1
�xi� , for each x ∈ R2 , and let d[0,V] = infx∈V |x| , for each V ⊂ R2 . The 

next proposition, which we shall use in the proof of the existence theorem in Sect. 3, 
is based on Property (iv) in Debreu (1982), p. 728.

Proposition 1 Under Assumptions 1, 2, and 3, let {pn} be a sequence of normal-
ized price vectors such that pn ≫ 0, for each n ∈ {1, 2,…}, which converges  
to a normalized price vector p̄. Then, p̄1 = 0 and 𝜇(Sc ∩ T0) > 0, or, p̄2 = 0 and 
𝜇(S ∩ T0) > 0, imply that the sequence {d[0,�0(pn)]} diverges to +∞.

2 card (A) denotes the cardinality of a set A.
3 In this paper, differentiability means continuous differentiability and is to be understood to include the 
case of infinite partial derivatives along the boundary of the consumption set (for a discussion of this 
case, see, for instance, Kreps (2012), p. 58).
4 For a discussion of the properties of the correspondences introduced above and their proofs see, for 
instance, Debreu (1982), Sect. 4.
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Proof Let {pn} be a sequence of normalized price vectors such that pn ≫ 0 , for 
each n ∈ {1, 2,…} , which converges to a normalized price vector p̄ . Suppose that 
p̄1 = 0 and 𝜇(Sc ∩ T0) > 0 . Then, we have that p̄2 = 1 . But then, the sequence 
{d[0,�0(t, pn)]} diverges to +∞ as p̄2�2(t) > 0 , for each t ∈ Sc ∩ T0 , by Lemma 4 in 
Debreu (1982), p. 721. Therefore, {d[0,�0(pn)]} diverges to +∞ as 𝜇(Sc ∩ T0) > 0 , 
by the argument used in the proof of Property (iv) in Debreu (1982), p. 728. Sup-
pose that p̄2 = 0 and 𝜇(S ∩ T0) > 0 . Then, {d[0,�0(pn)]} diverges to +∞ , by using 
symmetrically the previous argument. Hence, p̄1 = 0 and 𝜇(Sc ∩ T0) > 0 , or, p̄2 = 0 
and 𝜇(S ∩ T0) > 0 , imply that the sequence {d[0,�0(pn)]} diverges to +∞ .   ◻

A Walras equilibrium is a pair (p, �) , consisting of a price vector p and an allocation 
� , such that p�(t) = p�(t) and ut(�(t)) ≥ ut(y) , for all y ∈ {x ∈ R2

+
∶ px = p�(t)} , 

for each t ∈ T  . A Walras allocation is an allocation � for which there exists a price 
vector p such that the pair (p, �) is a Walras equilibrium.

Borrowing from Codognato et  al. (2015), we introduce now the two-
commodity version of the Shapley window model. A strategy corre-
spondence is a correspondence � ∶ T → P(R4

+
) such that, for each t ∈ T  , 

�(t) = {(bij) ∈ R4
+
∶
∑2

j=1
bij ≤ �i(t), i ∈ {1, 2}} . With some abuse of notation, 

we denote by b(t) ∈ �(t) a strategy of trader t, where bij(t) , i, j ∈ {1, 2} , represents 
the amount of commodity i that trader t offers in exchange for commodity j. A 
strategy selection is an integrable function � ∶ T → R4

+
 , such that, for each t ∈ T  , 

�(t) ∈ �(t) . Given a strategy selection � , we call “aggregate matrix” the matrix �̄ 
such that �̄ij = (∫

T
�ij(t) d𝜇) , i, j ∈ {1, 2} . Moreover, we denote by � ⧵ b(t) the strat-

egy selection obtained from � by replacing �(t) with b(t) ∈ �(t) and by �̄ ⧵ b(t) the 
corresponding aggregate matrix.

Consider the following two further definitions (see Sahi and Yao (1989)).

Definition 1 A nonnegative square matrix A is said to be irreducible if, for every 
pair (i, j), with i ≠ j , there is a positive integer k such that a(k)

ij
> 0 , where a(k)

ij
 denotes 

the ij-th entry of the k-th power Ak of A.

Definition 2 Given a strategy selection � , a price vector p is said to be market clear-
ing if

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar multiple, 
price vector p satisfying (1) if and only if �̄ is irreducible. Then, we denote by p(�) 
a function which associates with each strategy selection � the unique, up to a scalar 
multiple, price vector p satisfying (1), if �̄ is irreducible, and is equal to 0, other-
wise. For each strategy selection � such that p(�) ≫ 0 , we assume that the price 
vector p(�) is normalized.

Given a strategy selection � and a price vector p, consider the assignment deter-
mined as follows:

(1)p ∈ R2
++

,

2∑

i=1

pi�̄ij = pj

(
2∑

i=1

�̄ji

)
, j ∈ {1, 2}.
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j ∈ {1, 2} , for each t ∈ T .
Given a strategy selection � and the function p(�) , traders’ final holdings are 

determined according to this rule and consequently expressed by the assignment

for each t ∈ T .5 It is straightforward to show that this assignment is an allocation.
We are now able to define a notion of Cournot–Nash equilibrium for this refor-

mulation of the Shapley window model (see Codognato and Ghosal (2000) and 
Busetto et al. (2011)).

Definition 3 A strategy selection �̂ such that ̄̂� is irreducible is a Cournot–Nash 
equilibrium if

for each b(t) ∈ �(t) and for each t ∈ T .
A Cournot–Nash allocation is an allocation �̂ such that �̂(t) = �(t, �̂(t), p(�̂)) , for 

each t ∈ T  , where �̂ is a Cournot–Nash equilibrium.
Finally, we introduce the same type of perturbation of the strategic market game 

which was used by Sahi and Yao (1989) and Busetto et  al. (2011) to prove their 
existence theorems. Given 𝜖 > 0 and a strategy selection � , we define the aggregate 
matrix �̄𝜖 as the matrix such that �̄𝜖ij = (�̄ij + 𝜖) , i, j ∈ {1, 2} . Clearly, the matrix 
�̄𝜖 is irreducible. The interpretation is that an outside agency places fixed bids of � 
for each pair of commodities 1 and 2. Given 𝜖 > 0 , we denote by p�(�) the function 
which associates, with each strategy selection � , the unique, up to a scalar multiple, 
price vector which satisfies

For each strategy selection � , we assume that the price vector p�(�) is normalized.

Definition 4 Given 𝜖 > 0 , a strategy selection �̂𝜖 is an �-Cournot–Nash equilibrium 
if

for each b(t) ∈ �(t) and for each t ∈ T .

�j(t, �(t), p) =�j(t) −

2∑

i=1

�ji(t) +

2∑

i=1

�ij(t)
pi

pj
, if p ∈ R2

++
,

�j(t, �(t), p) =�j(t), otherwise ,

�(t) = �(t, �(t), p(�)),

ut(�(t, �̂(t), p(�̂))) ≥ ut(�(t, b(t), p(�̂ ⧵ b(t)))),

(2)
2∑

i=1

pi(�̄ij + 𝜖) = pj

(
2∑

i=1

(
�̄ji + 𝜖

)
)
, j ∈ {1, 2}.

ut(�(t, �̂
𝜖(t), p𝜖(�̂𝜖))) ≥ ut(�(t, b(t), p

𝜖(�̂𝜖 ⧵ b(t)))),

5 In order to save in notation, with some abuse we denote by � both the function �(t) and the function 
�(t,�(t), p(�)).
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3  Existence

In this section, we state and prove our first main theorem, establishing the existence 
of a Cournot–Nash equilibrium for the two-commodity version of the Shapley win-
dow model presented above.

Theorem 1 Under Assumptions 1, 2, 3, and 4, there exists a Cournot–Nash equilib-
rium �̂.

Proof The first step in the proof of Theorem 1 requires that we show the existence 
of an �-Cournot–Nash equilibrium. To this end, we use a result already proved by 
Busetto et al. (2011) by applying the Kakutani–Fan–Glicksberg theorem. It is stated 
in the following lemma.

Lemma 1 For each 𝜖 > 0, there exists an �-Cournot–Nash equilibrium �̂𝜖.

Proof See the proof of Lemma 3 in Busetto et al. (2011).   ◻

Then, we have to show that there exists the limit of a sequence of �
-Cournot–Nash equilibria and that this limit is a Cournot–Nash equilibrium. 
Let �n =

1

n
, n ∈ {1, 2,…} . By Lemma  1, for each n ∈ {1, 2,…} , there is an �

-Cournot–Nash equilibrium �̂𝜖n . The next step consists in showing that any sequence 
of normalized prices generated by the sequence of �-Cournot–Nash equilibria corre-
sponding to the sequence {�n} has a convergent subsequence whose limit is a strictly 
positive normalized price vector. In order to prove this result, we cannot use the 
price convergence theorem proved by Busetto et al. (2018) as the proof of this theo-
rem requires that each commodity is held by a subset of the atomless part with posi-
tive measure whereas, in our framework, one of the two commodities may be held 
only by atoms. Therefore, we have to combine the price convergence proof provided 
by Busetto et al. (2018) with another price convergence proof, proposed by Dubey 
and Shubik (1978), which holds for a purely atomic exchange economy. To this end, 
we need to introduce the following preliminary lemma, based on the uniform mono-
tonicity lemma proved by Dubey and Shubik (1978).

Lemma 2 Consider an atom � ∈ T1 and a commodity j ∈ {1, 2}. For each real 
number H > 0, there is a real number 0 < h(u𝜏(⋅), j,H) < 1, depending on u�(⋅) , 
j, and H, such that if x ∈ R2

+
 , ‖x‖ ≤ H , y ∈ R2

+
 and ‖y − x‖ ≤ h(u�(⋅), j,H), then 

u𝜏(y + ej) > u𝜏(x).6

6 ‖ ⋅ ‖ denotes the Euclidean norm and ej denotes the vector whose jth coordinate is 1 and whose other 
coordinate vanishes.
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Proof It is an immediate consequence of Lemma C (the uniform monotonicity 
lemma) in Dubey and Shubik (1978) as u�(⋅) is continuous and strongly monotone, 
by Assumption 2.   ◻

We can now state and prove the price convergence lemma.

Lemma 3 Let {p̂𝜖n} be a sequence of normalized prices such that {p̂𝜖n} = p(�̂𝜖n ) 
where �̂𝜖n is an �-Cournot–Nash equilibrium, for each n ∈ {1, 2,…}. Then, there 
exists a subsequence {p̂𝜖kn } of the sequence {p̂𝜖n} which converges to a normalized 
price vector p̂ ≫ 0.

Proof Let {p̂𝜖n} be a sequence of normalized prices such that {p̂𝜖n} = p𝜖n (�̂𝜖n) , where 
�̂𝜖n is an �-Cournot–Nash equilibrium, for each n ∈ {1, 2,…} . Then, there is a subse-
quence {p̂𝜖kn } of the sequence {p̂𝜖n} which converges to a price vector p̂ ∈ Δ , as the 
unit simplex Δ is a compact set. Consider the case where 𝜇(S ∩ T0) > 0 and 
𝜇(Sc ∩ T0) > 0 . Suppose, without loss of generality, that p̂1 = 0 . Then, the sequence 
{d[0,�0(p̂𝜖kn )]} diverges to +∞ as 𝜇(Sc ∩ T0) > 0 , by Proposition 1. We adapt now 
to our framework the argument used by Busetto et al. (2018) to prove their Theo-
rem 1. Let �̂𝜖n(t) = �(t, �̂𝜖n (t), p𝜖n(�̂𝜖n)) , for each t ∈ T  , and for each n ∈ {1, 2,…} . 
Then, �̂𝜖n(t) ∈ �0(t, p𝜖n ) , for each t ∈ T0 , and for each n ∈ {1, 2,…} , by the same 
argument used by Codognato and Ghosal (2000) to prove their Theorem 2. But then, 
(∫

T0
�̂𝜖n(t) d𝜇 − ∫

T0
�(t) d𝜇) ∈ �0(p̂𝜖n ) , for each n ∈ {1, 2,…} . We have that

as ∫
T
�̂𝜖n(t) d𝜇 ≤ ∫

T
�(t) d𝜇 + 𝜖ne

1 + 𝜖ne
2 , for each n ∈ {1, 2,…} . Then,

as − ∫
T1
�i(t) d𝜇 − 1 ≤ ∫

T0
�̂i𝜖n(t) d𝜇 ≤ 2 ∫

T0
�i(t) d𝜇 + ∫

T1
�i(t) d𝜇 + 1 , i ∈ {1, 2} , 

for each n ∈ {1, 2,…} . But then,

for each n ∈ {1, 2,…} . Moreover, there exists an n0 such that

for each n ≥ n0 , as the sequence {d[0,�0(p̂𝜖kn )]} diverges to +∞ . Then,

�T0

�̂𝜖n(t) d𝜇 ≤ �T0

�(t) d𝜇 + �T1

�(t) d𝜇 + e1 + e2

|||||�T0

�̂i𝜖n (t) d𝜇 − �T0

�i(t) d𝜇
|||||
≤ �T0

�i(t) d𝜇 + �T1

�i(t) d𝜇 + 1

2∑

i=1

|||||�T0

�̂i𝜖n(t) d𝜇 − �T0

�i(t) d𝜇
|||||
≤

2∑

i=1

(

�T0

�i(t) d𝜇 + �T1

�i(t) d𝜇 + 1

)
,

d[0,�0(p̂𝜖kn )] >

2∑

i=1

(

∫T0

�i(t) d𝜇 + ∫T1

�i(t) d𝜇 + 1

)
,
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as 
∑2

i=1
� ∫

T0
�̂i𝜖kn (t) d𝜇 − ∫

T0
�i(t) d𝜇� ≥ d[0,�0(p̂𝜖kn )] , for each n ≥ n0 , a contradic-

tion. Therefore, we must have that p̂1 > 0 . Consider the case where �(S ∩ T0) = 0 or 
�(Sc ∩ T0) = 0 . Suppose, without loss of generality, that �(S ∩ T0) = 0 . Then, we 
have that 𝜇(Sc ∩ T0) > 0 as 𝜇(T0) > 0 . Moreover, there are at least two atoms 
�, � ∈ S ∩ T1 , by Assumption 1. We have that p̂1 > 0 , as 𝜇(Sc ∩ T0) > 0 , by the same 
argument used in the proof of the previous case. In order to prove that p̂2 > 0 , we 
now show that there is a real number 𝜂 > 0 such that

for each n ∈ {1, 2,…} . To this end, we adapt to our framework the proof of Lemma 
2 in Dubey and Shubik (1978). In what follows, we shall use the fact that (2) and the 
normalization rule imply straightforwardly that (3) holds if and only if

for each n ∈ {1, 2,…} . Consider any n. We now prove that �̂𝜖n
12
(𝜏) ≤ ̄̂

�
𝜖n
12

2
 or 

�̂
𝜖n
12
(𝜌) ≤ ̄̂

�
𝜖n
12

2
 . Suppose, by way of contradiction, that �̂𝜖n

12
(𝜏) >

̄̂
�
𝜖n
12

2
 and �̂𝜖n

12
(𝜌) >

̄̂
�
𝜖n
12

2
 . 

Then, we have that �̂𝜖n
12
(𝜏) + �̂

𝜖n
12
(𝜌) >

̄̂
�
𝜖n
12

 , a contradiction. Therefore, we must have 

that �̂𝜖n
12
(𝜏) ≤ ̄̂

�
𝜖n
12

2
 or �̂𝜖n

12
(𝜌) ≤ ̄̂

�
𝜖n
12

2
 . Suppose that �̂𝜖n

12
(𝜏) ≤ ̄̂

�
𝜖n
12

2
 . Moreover, suppose that 

�1(𝜏) − �̂
𝜖n
12
(𝜏) ≥ �1(𝜏)

2
 . Let 0 < 𝛾 < min{𝜖n,

�1(𝜏)

2
, 2

̄̂
�
𝜖n
12
+𝜖n

̄̂
�
𝜖n
21
+𝜖n

} and let 

b𝛾 (𝜏) = �̂𝜖n(𝜏) + 𝛾e2 . Then, we have

and

2∑

i=1

|||||∫T0

�̂i𝜖kn (t) d𝜇 − ∫T0

�i(t) d𝜇
|||||
>

2∑

i=1

(

∫T0

�i(t) d𝜇 + ∫T1

�i(t) d𝜇 + 1

)

(3)
p̂2𝜖n

p̂1𝜖n
> 𝜂,

̄̂
�
𝜖n
12
+ 𝜖n

̄̂
�
𝜖n
21
+ 𝜖n

> 𝜂,

�1(𝜏, b𝛾 (𝜏), p𝜖n (�̂𝜖n ⧵ b𝛾 (𝜏))) − �1(𝜏, �̂𝜖n (𝜏), p𝜖n(�̂𝜖n))

= (�1 − �̂
𝜖n
12
− 𝛾) − (�1 − �̂

𝜖n
12
)

= −𝛾 ,
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as �̂𝜖n
12
(𝜏) ≤ ̄̂

�
𝜖n
12

2
 and 𝛾 < 𝜖n . Then, we obtain

Let us define

Then, we have the vector inequality

where the inequality is strict for the second component by (4). Let 
H =

√
2max{∫

T
�1(t) d� + 1, ∫

T
�2(t) d� + 1} and let y = �(𝜏, �̂𝜖n(𝜏), p𝜖n(�̂𝜖n)) + z . 

It is straightforward to verify that �(𝜏, �̂𝜖n(𝜏), p𝜖n(�̂𝜖n)) ∈ R2
+
 and 

‖�(𝜏, �̂𝜖n(𝜏), p𝜖n(�̂𝜖n ))‖ ≤ H . Suppose that y ∈ R2
+
 and ‖z‖ ≤ h(u�(⋅), 2,H) . Then, by 

Lemma 2, we obtain that

But then, we have that

as 0 <
1

2

̄̂
�
𝜖n
21
+𝜖n

̄̂
�
𝜖n
12
+𝜖n

𝛾 < 1 and the function u�(⋅) is quasi-concave, by Assumption 2. There-

fore, it follows that

�2(𝜏, b𝛾 (𝜏), p𝜖n (�̂𝜖n ⧵ b𝛾 (𝜏))) − �2(𝜏, �̂𝜖n (𝜏), p𝜖n(�̂𝜖n))

= (�̂
𝜖n
12
(𝜏) + 𝛾)

̄̂
�
𝜖n
21
+ 𝜖n

̄̂
�
𝜖n
12
+ 𝜖n + 𝛾

− �̂
𝜖n
12
(𝜏)

̄̂
�
𝜖n
21
+ 𝜖n

̄̂
�
𝜖n
12
+ 𝜖n

=

̄̂
�
𝜖n
12
+ 𝜖n − �̂

𝜖n
12
(𝜏)

̄̂
�
𝜖n
12
+ 𝜖n + 𝛾

̄̂
�
𝜖n
21
+ 𝜖n

̄̂
�
𝜖n
12
+ 𝜖n

𝛾

>

̄̂
�
𝜖n
12

2
+

𝜖n

2
+

𝛾

2

̄̂
�
𝜖n
12
+ 𝜖n + 𝛾

̄̂
�
𝜖n
21
+ 𝜖n

̄̂
�
𝜖n
12
+ 𝜖n

𝛾 ,

(4)�2(𝜏, b𝛾 (𝜏), p𝜖n (�̂𝜖n ⧵ b𝛾 (𝜏))) − �2(𝜏, �̂𝜖n(𝜏), p𝜖n (�̂𝜖n)) >
1

2

̄̂
�
𝜖n
21
+ 𝜖n

̄̂
�
𝜖n
12
+ 𝜖n

𝛾 .

z = −2

̄̂
�
𝜖n
12
+ 𝜖n

̄̂
�
𝜖n
21
+ 𝜖n

e1.

(5)

�(𝜏, b𝛾 (𝜏), p𝜖n (�̂𝜖n ⧵ b𝛾 (𝜏)))

≥ �(𝜏, �̂𝜖n(𝜏), p𝜖n (�̂𝜖n)) +
1

2

̄̂
�
𝜖n
21
+ 𝜖n

̄̂
�
𝜖n
12
+ 𝜖n

𝛾(z + e2),

u𝜏(�(𝜏, �̂
𝜖n(𝜏), p𝜖n (�̂𝜖n)) + z + e2) > u𝜏(�(𝜏, �̂

𝜖n(𝜏), p𝜖n(�̂𝜖n))).

u𝜏(�(𝜏, �̂
𝜖n(𝜏), p𝜖n(�̂𝜖n)) +

1

2

̄̂
�
𝜖n
21
+ 𝜖n

̄̂
�
𝜖n
12
+ 𝜖n

𝛾(z + e2)) ≥ u𝜏(�(𝜏, �̂
𝜖n(𝜏), p𝜖n (�̂𝜖n))),
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as (5) holds strictly for its second component and u�(⋅) is strongly monotone, by 
Assumption 2, a contradiction. Thus, it must be that y ∉ R2

+
 or ‖z‖ > h(u𝜏(⋅), 2,H) . 

Suppose that y ∉ R2
+
 . Then, it follows that

as y = �(𝜏, �̂𝜖n(𝜏), p𝜖n(�̂𝜖n)) + z and �(𝜏, �̂𝜖n(𝜏), p𝜖n(�̂𝜖n)) ∈ R2
+
 . But then, it must be 

that

as �1(𝜏, �̂𝜖n(𝜏), p𝜖n (�̂𝜖n)) = �1(𝜏) − �̂
𝜖n
12
(𝜏) ≥ �1(𝜏)

2
 . Suppose that ‖z‖ > h(u𝜏(⋅), 2,H) . 

Then, we have that

Suppose now that �1(𝜏) − �̂
𝜖n
12
(𝜏) <

�1(𝜏)

2
 . Then, we have that �̂𝜖n

12
(𝜏) >

�1(𝜏)

2
 . But 

then, it must be that

Let

Thus, we have that

Suppose that �̂𝜖n
12
(𝜌) ≤ ̄̂

�
𝜖n
12

2
 . Let

Thus, by the same argument used in the previous case, we have that

u𝜏(�(𝜏, b
𝛾 (𝜏), p𝜖n(�̂𝜖n ⧵ b𝛾 (𝜏)))) > u𝜏(�(𝜏, �̂

𝜖n (𝜏), p𝜖n(�̂𝜖n))),

�1(𝜏, �̂𝜖n(𝜏), p𝜖n (�̂𝜖n)) − 2

̄̂
�
𝜖n
12
+ 𝜖n

̄̂
�
𝜖n
21
+ 𝜖n

< 0,

̄̂
�
𝜖n
12
+ 𝜖n

̄̂
�
𝜖n
21
+ 𝜖n

>
�1(𝜏)

4
,

̄̂
�
𝜖n
12
+ 𝜖n

̄̂
�
𝜖n
21
+ 𝜖n

>
h(u𝜏(⋅), 2,H)

2
.

̄̂
�
𝜖n
12
+ 𝜖n

̄̂
�
𝜖n
21
+ 𝜖n

>
�1(𝜏)

2(∫
T
�2(t) d𝜇 + 1)

.

� = min

{
�1(�)

4
,
h(u�(⋅), 2,H)

2
,

�1(�)

2(∫
T
�2(t) d� + 1)

}
.

p̂2𝜖n

p̂1𝜖n
> 𝛼.

� = min

{
�1(�)

4
,
h(u�(⋅), 2,H)

2
,

�1(�)

2(∫
T
�2(t) d� + 1)

}
.
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Let � = min{�, �} . Therefore, we can conclude that

for each n ∈ {1, 2,…} . Consider the sequence {p̂𝜖kn } . From (3), we obtain that

for each n ∈ {1, 2,…} . Then, we obtain that

as the sequence {p̂𝜖kn } converges to p̂ . But then, we have that p̂2 > 0 as 𝜂 > 0 and 
p̂1 > 0 . Hence, having considered all possible cases, we can conclude that p̂ ≫ 0 .  
 ◻

We now follow the argument used by Busetto et al. (2018) to prove their Theo-
rem 2. In the next part of the proof, we apply a generalization of the Fatou lemma in 
several dimensions provided by Artstein (1979). By Lemma  1, there is an �
-Cournot–Nash equilibrium �̂𝜖n , for each n ∈ {1, 2,…} . The fact that the sequence 
{
̄̂
�𝜖n} belongs to the compact set {(bij) ∈ R4

+
∶ bij ≤ ∫

T
�i(t) d�, i, j ∈ {1, 2}} and 

the sequence {p̂𝜖n} , where p̂𝜖n = p𝜖n(�̂𝜖n) , belongs to the unit simplex Δ , for each 
n ∈ {1, 2,…} , implies that there is a subsequence { ̄̂�𝜖kn } of the sequence { ̄̂�𝜖n} which 
converges to an element of the set {(bij) ∈ R4

+
∶ bij ≤ ∫

T
�i(t) d�, i, j ∈ {1, 2}} and a 

subsequence {p̂𝜖kn } of the sequence {p̂𝜖n} which converges to a price vector p̂ ∈ Δ , 
with p̂ ≫ 0 , by Lemma  3. Since the sequence {�̂𝜖kn } satisfies the assumptions of 
Theorem A in Artstein (1979), by this theorem there is a function �̂ such that �̂(t) is 
a limit point of the sequence {�̂𝜖kn (t)} , for each t ∈ T  , and such that the sequence 
{
̄̂
�𝜖kn } converges to ̄̂� . Moreover, p̂ and ̄̂� satisfy (1) as p̂𝜖kn and ̄̂�

𝜖kn
𝜖kn

 satisfy (2), for 
each n ∈ {1, 2,…} , the sequence {p̂𝜖kn } converges to p̂ , the sequence { ̄̂�𝜖kn } con-
verges to ̄̂� , and the sequence {�kn} converges to 0. Suppose, without loss of general-
ity, that 𝜇(Sc ∩ T̄) > 0 . We now show that ̄̂�21 > 0 . Suppose that ̄̂�21 = 0 . Then, we 
have that ∫

Sc∩T̄
�̂21(t) d𝜇 = 0 as 𝜇(Sc ∩ T̄) > 0 . Consider a trader 𝜏 ∈ Sc ∩ T̄  . We can 

suppose that �̂21(𝜏) = 0 as we ignore null sets. Since �̂(𝜏) is a limit point of the 
sequence {�̂𝜖kn (𝜏)} , there is a subsequence {�̂𝜖hkn (𝜏)} of this sequence which con-
verges to �̂(𝜏) . Let �̂𝜖n(𝜏) = �(𝜏, �̂𝜖n(𝜏), p𝜖n(�̂𝜖n)) , for each n ∈ {1, 2,…} , and 
�̂(𝜏) = �(𝜏, �̂(𝜏), p̂) . Then, the subsequence {�̂𝜖hkn (𝜏)} of the sequence {�̂𝜖n(𝜏)} con-
verges to �̂(𝜏) as the sequence {�̂𝜖hkn (𝜏)} converges to �̂(𝜏) and the sequence {p̂𝜖hkn } 
converges to p̂ , with p̂𝜖hkn ≫ 0 , for each n ∈ {1, 2,…} , and p̂ ≫ 0 . But then, it must 
be that �̂1(𝜏) = 0 as �̂21(𝜏) = 0 and �̂(𝜏) ∈ �0(𝜏, p̂) as �̂𝜖hkn (𝜏) ∈ �0(𝜏, p̂

𝜖hkn ) , for 
each n ∈ {1, 2,…} , and the correspondence �0(�, ⋅) is upper hemicontinuous, by the 
argument used in Debreu (1982), p. 721. Therefore, we have that 𝜕u𝜏 (�̂(𝜏))

𝜕x1
= +∞ by 

Assumption 4 and 𝜕u𝜏 (�̂(𝜏))
𝜕x1

≤ 𝜆p̂1 , by the necessary conditions of the Kuhn-Tucker 

p̂2𝜖n

p̂1𝜖n
> 𝛽.

p̂2𝜖n

p̂1𝜖n
> 𝜂,

p̂2𝜖kn > 𝜂p̂1𝜖kn ,

p̂2 > 𝜂p̂1,
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theorem. Moreover, it must be that �̂2(𝜏) = �2(𝜏) > 0 as u�(⋅) is strongly monotone, 
by Assumption 2, and p̂�(𝜏) > 0 . Then, 𝜕u𝜏 (�̂(𝜏))

𝜕x2
= 𝜆p̂2 , by the necessary conditions 

of the Kuhn-Tucker theorem. But then, 𝜕u𝜏 (�̂(𝜏))
𝜕x2

= +∞ as � = +∞ , contradicting the 
assumption that u�(⋅) is continuously differentiable. Therefore, we can conclude that 
̄̂
�21 > 0 . It is straightforward to verify that (2) and the normalization rule imply that

for each n ∈ {1, 2,…} . Then, we must have that ̄̂�12 > 0 as the sequence {p̂𝜖kn } 
converges to p̂ , the sequence { ̄̂�𝜖kn } converges to ̄̂� , the sequence {�kn} converges 
to 0, p̂ ≫ 0 , and ̄̂�21 > 0 . But then, ̄̂� is irreducible. Consider a trader � ∈ T1 . The 
matrix ̄̂� ⧵ b(𝜏) is irreducible as ̄̂�21 ⧵ b(𝜏) > 0 , by the previous argument. Con-
sider a trader � ∈ T0 . The matrix ̄̂� ⧵ b(𝜏) is irreducible as ̄̂� =

̄̂
� ⧵ b(𝜏) . Then, the 

matrix ̄̂� ⧵ b(t) is irreducible, for each t ∈ T  . But then, from the same argument 
used by Busetto et al. (2011) in their existence proof (Cases 1 and 3), it follows that 
ut(�(t, �̂(t), p(�̂))) ≥ ut(�(t, b(t), p(�̂ ⧵ b(t)))) , for each b(t) ∈ �(t) and for each t ∈ T  . 
Hence, �̂ is a Cournot–Nash equilibrium.   ◻

4  Optimality

In this section, we study the Pareto optimality properties of a Cournot–Nash 
allocation for the two-commodity version of the Shapley window model. Shap-
ley and Shubik (1977) first raised the question of the Pareto optimality features 
of Cournot–Nash allocations in the context of the prototypical strategic mar-
ket games they proposed in that work. Nevertheless, their analysis was mainly 
based on examples drawn in an Edgeworth box. Then, some more general results 
about the Pareto optimality properties of Cournot–Nash allocations of strategic 
market games were obtained, both for exchange economies with a finite number 
of traders and with an atomless continuum of traders, by Dubey (1980), Dubey 
et al. (1980), Aghion (1985), Dubey and Rogawski (1990), among others. Their 
theorems were obtained in a framework of differential topology and hold generi-
cally.7 Here, we extend the Pareto optimality analysis to our mixed version of the 
Shapley window model and we obtain a general result which characterizes Pareto 
optimal Cournot–Nash allocations as Walras allocations. To this end, we need 
to introduce the following further definitions. An allocation � is said to be indi-
vidually rational if ut(�(t)) ≥ ut(�(t)) , for each t ∈ T  . An allocation � is said to 
be Pareto optimal if there is no allocation � such that ut(�(t)) > ut(�(t)) , for each 
t ∈ T  . An efficiency equilibrium is a pair (p, �) , consisting of a price vector p and 
an allocation � , such that ut(�(t)) ≥ ut(y) , for all y ∈ {x ∈ R2

+
∶ px = p�(t)} , for 

each t ∈ T  . We can now state and prove our optimality theorem, which establishes 

̄̂
�
𝜖kn
12

+ 𝜖kn

̄̂
�
𝜖kn
21

+ 𝜖kn

=
p̂2𝜖kn

p̂1𝜖kn
,

7 For a discussion of this literature, see Giraud (2003), p. 359 and p. 365.
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an equivalence between the set of Pareto optimal Cournot–Nash allocations and 
the set of Cournot–Nash allocations, whenever the latter are also Walrasian.

Theorem 2 Under Assumptions 1, 2, 3, and 4, let �̂ be a Cournot–Nash equilibrium 
and let p̂ = p(�̂) and �̂(t) = �(t, �̂(t), p(�̂)), for each t ∈ T . Then, �̂ is Pareto optimal 
if and only if the pair (p̂, �̂) is a Walras equilibrium.

Proof Let �̂ be a Cournot–Nash equilibrium and let p̂ = p(�̂) and 
�̂(t) = �(t, �̂(t), p(�̂)) , for each t ∈ T  . Suppose that �̂ is Pareto opti-
mal. We adapt to our framework the argument used by Shitovitz (1973) 
to prove the corollary to his Lemma  2. It is straightforward to verify that 
�̂ is individually rational. Let �̂ → P(R2) be a correspondence such that 
�̂(t) = {x − �̂(t) ∶ x ∈ R2

+
and ut(x) > ut(�̂(t))} , for each t ∈ T  . Moreover, let 

∫
T
�̂(t) d𝜇 = {∫

T
�̂(t) d𝜇 ∶ �̂(t) is integrable and �̂(t) ∈ �̂(t), for each t ∈ T}  . 

The set {x ∈ R2
+
∶ ut(x) ≥ ut(�̂)} is convex as ut(⋅) is quasi-concave, by Assump-

tion 2, for each t ∈ T1 . Then, it is straightforward to verify that the set �̂(t) is convex, 
for each t ∈ T1 . But then, ∫

T
�̂(t) d𝜇 is convex, by Theorem 1 in Shitovitz (1973). 

We now prove that 0 ∉ ∫
T
�̂(t) d𝜇 . Suppose that 0 ∈ ∫

T
�̂(t) d𝜇 . Then, there is an 

assignment � such that ut(�(t)) > ut(�̂(t)) , for each t ∈ T  , which is an allocation as 
∫
T
�(t) d𝜇 = ∫

T
�̂(t) d𝜇 = ∫

T
�(t) d𝜇 . But then, �̂ is not Pareto optimal, a contradic-

tion. Therefore, it must be that 0 ∉ ∫
T
�̂(t) d𝜇 . Then, there exists a vector p̃ such that 

p̃ ∈ R2 , (p̃ ≠ 0) , and p̃ ∫
T
�̂(t) d𝜇 ≥ 0 , by the supporting hyperplane theorem. But 

then, the pair (p̃, �̂) is an efficiency equilibrium, by Lemma 2 in Shitovitz (1973). 
We have that �̂(t) ∈ �0(t, p̂) , by the same argument used by Codognato and Ghosal 
(2000) to prove their Theorem 2, for each t ∈ T0 . Consider a trader 𝜏 ∈ T̄  and sup-
pose that either �̂1(t) = 0 or �̂2(t) = 0 . Then, the necessary Kuhn-Tucker conditions 
lead, mutatis mutandis, to the same contradiction as in the proof of our Theorem 1, 
by Assumption 4. But then, we have that �̂(t) ≫ 0 . Therefore, it must be that

for each t ∈ T̄  . It must also be that

 
as the pair (p̃, �̂) is an efficiency equilibrium, for each t ∈ T̄  . Then, there exists a real 
number 𝜃 > 0 such that p̂1 = 𝜃p̃1 and p̂2 = 𝜃p̃2 . But then, �̂ is such that p̂�̂(t) = p̂�(t) 
and ut(�̂(t)) ≥ ut(y) , for all y ∈ {x ∈ R2

+
∶ p̂x = p̂�(t)} , for each t ∈ T  . Therefore, 

the pair (p̂, �̂) is a Walras equilibrium. Suppose now that the pair (p̂, �̂) is a Walras 
equilibrium. Then, �̂ is Pareto optimal, by the first fundamental theorem of welfare 
economics. Hence, �̂ is Pareto optimal if and only if the pair (p̂, �̂) is a Walras equi-
librium.   ◻

𝜕ut(�̂(t))

𝜕x1

𝜕ut(�̂(t))

𝜕x2

=
p̂1

p̂2
,

𝜕ut(�̂(t))

𝜕x1

𝜕ut(�̂(t))

𝜕x2

=
p̃1

p̃2
,
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We study now the relationship between the set of Cournot–Nash allocations, 
the core, and the set of Walras allocations.

We say that an allocation � dominates an allocation � via a coalition S if 
ut(�(t)) > ut(�(t)) , for each t ∈ S , and ∫

S
�(t) d� = ∫

S
�(t) d� . The core is the set of 

all allocations which are not dominated via any coalition. The following corollary 
is a straightforward consequence of Theorem 2.

Corollary 1 Under Assumptions 1, 2, 3, and 4, let �̂ be a Cournot–Nash equilibrium 
and let p̂ = p(�̂) and �̂(t) = �(t, �̂(t), p(�̂)), for each t ∈ T . Then, �̂ is in the core if 
and only if the pair (p̂, �̂) is a Walras equilibrium.

Proof Let �̂ be a Cournot–Nash equilibrium and let p̂ = p(�̂) and 
�̂(t) = �(t, �̂(t), p(�̂)) , for each t ∈ T  . Suppose that �̂ is in the core. Then, �̂ is Pareto 
optimal. But then, the pair (p̂, �̂) is a Walras equilibrium, by Theorem 2. Suppose 
that the pair (p̂, �̂) is a Walras equilibrium. Then, �̂ is in the core, by the same argu-
ment used by Aumann (1964) in the proof of his main theorem. Hence, �̂ is in the 
core if and only if the pair (p̂, �̂) is a Walras equilibrium.   ◻

The next proposition provides a characterization of Pareto optimal Cournot-
Nash allocations. To prove it, we use a result obtained in Codognato et al. (2015) 
which provides a necessary and sufficient condition for a Cournot–Nash alloca-
tion to be a Walras allocation. This characterization result requires the following 
assumption.

Assumption 5 ut ∶ R2
+
→ R is differentiable, for each t ∈ T1.

Our characterization of Pareto optimal Cournot–Nash allocations is the following.

Proposition 2 Under Assumptions 1, 2, 3, 4, and 5, let �̂ be a Cournot–Nash equi-
librium and let p̂ = p(�̂) and �̂(t) = �(t, �̂(t), p(�̂)), for each t ∈ T . Then, �̂ is Pareto 
optimal if and only if �̂1(t) = 0 or �̂2(t) = 0, for each t ∈ T1.

Proof Let �̂ be a Cournot–Nash equilibrium and let p̂ = p(�̂) and 
�̂(t) = �(t, �̂(t), p(�̂)) , for each t ∈ T  . Suppose that �̂ is Pareto optimal. Then, the 
pair (p̂, �̂) is a Walras equilibrium, by Theorem 2. But then, �̂1(t) = 0 or �̂2(t) = 0 , 
for each t ∈ T1 , by Theorem 4 in Codognato et  al. (2015). Suppose that �̂1(t) = 0 
or �̂2(t) = 0 , for each t ∈ T1 . Then, the pair (p̂, �̂) is a Walras equilibrium, by The-
orem  4 in Codognato et  al. (2015). But then, �̂ is Pareto optimal, by Theorem  2. 
Hence, �̂ is Pareto optimal if and only if �̂1(t) = 0 or �̂2(t) = 0 , for each t ∈ T1 .   ◻

The following corollary provides a characterization of Cournot–Nash alloca-
tions which are in the core.

Corollary 2 Under Assumptions 1, 2, 3, 4, and 5, let �̂ be a Cournot–Nash equilib-
rium and let p̂ = p(�̂) and �̂(t) = �(t, �̂(t), p(�̂)), for each t ∈ T . Then, �̂ is the core if 
and only if �̂1(t) = 0 or �̂2(t) = 0, for each t ∈ T1.
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Proof Let �̂ be a Cournot–Nash equilibrium and let p̂ = p(�̂) and 
�̂(t) = �(t, �̂(t), p(�̂)) , for each t ∈ T  . Suppose that �̂ is in the core. Then, �̂ is Pareto 
optimal. But then, �̂1(t) = 0 or �̂2(t) = 0 , for each t ∈ T1 , by Proposition 2. Suppose 
that �̂1(t) = 0 or �̂2(t) = 0 , for each t ∈ T1 . Then the pair (p̂, �̂) is a Walras equilib-
rium, by Theorem 4 in Codognato et al. (2015). But then, �̂ is in the core, by the 
same argument used by Aumann (1964) in the proof of his main theorem.   ◻

Examples 6, 7, 8, and 9 in Codognato et al. (2015) show that Theorem 2, Proposi-
tion 2, and Corollaries 1 and 2 hold non-vacuously.

5  Discussion of the model

This section is devoted to a discussion of some issues related to the existence and 
optimality of Cournot–Nash equilibria.

It is straightforward to show, using Theorem 5 in Codognato et al. (2015), that, 
in our mixed bilateral oligopoly framework, under Assumptions 1, 2, and 3, the set 
of Cournot–Nash allocations of the Shapley window model coincides with the set 
of the Cournot–Nash allocations of the model with commodity money proposed by 
Dubey and Shubik (1978) and of its generalization to complete markets proposed 
by Amir et al. (1990). Therefore, all the results obtained in this paper also hold for 
these models.

Let us further discuss now some features of the models in this class, when con-
sidered in a bilateral oligopoly framework, and their relationships with the results 
obtained in this paper.

Busetto et al. (2018) considered a mixed version of the Shapley window model 
for exchange economies with any finite number of commodities and, in their Theo-
rem 2, they proved the existence of a Cournot–Nash equilibrium. In this paper, we 
have considered a bilateral oligopoly version of the model analyzed by Busetto et al. 
(2018). Nevertheless, our existence result, Theorem 1, is not just a two-commodity 
case of Theorem 2 in Busetto et al. (2018). While Assumptions 2 and 3 are the same 
in Busetto et al. (2018) and here, Assumptions 1 and 4 differ. Let us analyze in more 
detail the difference between the two versions of Assumptions 1 and 4 and the role 
they play in the two existence proofs.

To be applied to our bilateral framework, Assumption 1 in Busetto et al. (2018) 
could be restated as follows.   ◻

Assumption �′ . There is a coalition S such that 𝜇(S ∩ T) > 0 , 𝜇(Sc ∩ T) > 0 , 
�1(t) > 0 , �2(t) = 0 , for each t ∈ S , �1(t) = 0 , �2(t) > 0 , for each t ∈ Sc . Moreover, 
∫
T0
�(t) d𝜇 ≫ 0.
It is clear that if an initial assignment � satisfies Assumption 1′ , then it also sat-

isfies our Assumption 1. Assumption 1′ rules out the cases where �(S ∩ T0) = 0 or 
�(Sc ∩ T0) = 0 , that is those in which only the atoms hold one of the two commodi-
ties. Therefore, the price convergence theorem proved by Busetto et al. (2018), their 
Theorem 1, that holds only under Assumption 1′ , cannot be used in the proof of our 
existence theorem. In order to cover the case where one of the two commodities is 
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held only by atoms, we have proved a price convergence lemma which combines the 
argument used by Busetto et al. (2018) in the proof of their Theorem 1 with another 
argument used by Dubey and Shubik (1978) in the proof of their convergence result 
for the purely atomic case, their Lemma 2. Moreover, we had to extend the proof 
of Dubey and Shubik (1978), which holds under the assumption of concave utility 
functions, to cover the case of quasi-concave utility functions, as required by our 
Assumption 2.

Assumption 4 in Busetto et  al. (2018) imposes a relation between commodi-
ties based on traders’ characteristics, called relation C, and it requires that the set 
of commodities is strongly connected in terms of relation C, i.e., through trad-
ers’ characteristics. It could be recasted, in the bilateral framework, as follows. 
We say that commodities i,  j stand in relation C if there is a coalition Ti such that 
Ti ⊂ {t ∈ T0 ∶ �i(t) > 0, �j(t) = 0} , ut(⋅) is differentiable, additively separable, i.e., 
ut(x) = vi

t
(xi) + v

j

t(x
j) , for each x ∈ R2

+
 , and dv

j
t(0)

dxj
= +∞ , for each t ∈ Ti . Assumption 

4 in Busetto et al. (2018) can then be restated as follows.
Assumption �′ . Commodities 1 and 2 and commodities 2 and 1 stand in relation C.

It is immediate to verify that neither our Assumption 4 implies Assumption 4′ nor 
the converse holds. Therefore, we can conclude that our existence theorem is not a 
special case of the existence theorem in Busetto et al. (2018).

Finally, let us notice that, in Sect.  2, we have provided a definition of a 
Cournot–Nash equilibrium referring explicitly to irreducible matrices. This defini-
tion applies only to active Cournot–Nash equilibria according to the definition of 
Sahi and Yao (1989). Nevertheless, in the Shapley window model, as in all other 
strategic market games, the strategy selection �̂ such that �̂(t) = 0 , for each t ∈ T  , 
is a Cournot–Nash equilibrium, usually called trivial equilibrium. This raises the 
question whether, under Assumptions 1, 2, 3, 4, the allocation corresponding to the 
trivial Cournot–Nash equilibrium, namely the initial assignment � , may be Pareto 
optimal. The following proposition provides a negative answer to this question.

Proposition 3 Under Assumptions  1,  2,  3, and 4, the allocation � is not Pareto 
optimal.

Proof Suppose that � is Pareto optimal. Then, there exists a price vector p̃ such that 
the pair (p̃,�) is an efficiency equilibrium, by the same argument used in the proof 
of Theorem 2. But then, the pair (p̃,�) is a Walras equilibrium. Therefore, the neces-
sary Kuhn–Tucker conditions lead to the same contradiction as in the proof of Theo-
rem 1. Hence, the allocation � is not Pareto optimal.   ◻

6  Conclusion

In Theorem 1, we have shown the existence of a Cournot-Nash equilibrium for 
the mixed bilateral oligopoly version of the Shapley window model first analyzed 
by Codognato et al. (2015). Then, in Theorem 2, we have proved that a Cournot-
Nash allocation is Pareto optimal if and only if it is a Walras allocation. The proof 
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of this theorem is crucially based on a corollary in Shitovitz (1973), showing that 
the first and second welfare theorem still hold in mixed exchange economies. In 
their main theorem, Codognato et al. (2015) proved that, under a further differen-
tiability assumption on atoms’ utility functions, the condition which characterizes 
the nonempty intersection of the sets of Walras and Cournot-Nash allocations 
requires that each atom demands a null amount of one commodity. Combining 
this result with our Theorem 2 we have obtained, as a proposition, a characteriza-
tion of the optimality property of Cournot-Nash equilibria, which requires that at 
a Pareto optimal Cournot-Nash equilibrium each atom demands a null amount of 
one commodity. Recasting antitrust analysis in the bilateral oligopoly framework, 
we could use these results in further research as a first step to analyze competition 
policy in a general equilibrium framework.

In the previous section, we have already stressed that the results we have 
obtained for the bilateral version of the Shapley window model also hold for other 
prototypes of strategic market games in the line inspired by Shapley and Shubik 
(1977). Moreover, we have pointed out some issues connected with existence 
and Pareto optimality which in our opinion deserve to be considered for future 
research. A further question we propose to answer in forthcoming work is if the 
results obtained in this paper hold for another type of strategic market game, that 
is the one with fiat money first introduced by Postlewaite and Schmeidler (1978) 
and further analyzed by Peck et al. (1992), Koutsougeras and Ziros (2008), Kout-
sougeras (2009), among others.
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