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Abstract
Given a set of combinatorial games, the children are all those games that can be 
generated using as options the games of the original set. It is known that the partial 
order of the children of all games whose birthday is less than a fixed ordinal is a 
distributive lattice and also that the children of any set of games form a complete lat‑
tice. We are interested in the converse. In a previous paper, we showed that for any 
finite lattice there exists a finite set of games such that the partial order of the chil‑
dren, minus the top and bottom elements, is isomorphic to the original lattice. Here, 
the main part of the paper is to extend the result to infinite complete lattices. An 
original motivating question was to characterize those sets whose children generate 
distributive lattices. While we do not solve it, we show that if the process of taking 
children is iterated, eventually the corresponding lattice is distributive.
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1 Introduction

Combinatorial games are games where two players move alternately, there are no 
chance moves, and there is perfect information (Albert et al. 2007; Berlekamp et al. 
2001; Conway 1976; Siegel 2013). Using the normal-play convention, the loser is 
the first player who cannot move—that convention is the only one considered in 
this paper. The two players are called Left (female) and Right (male). Combinato‑
rial games are determined recursively by their options. That is, G = {GL |GR} is 
given by its set of Left and Right options, GL and GR , respectively, where GL ∈ GL 
( GR ∈ GR ) is a typical Left (Right) option of G. The followers of G are the nodes in 
the game tree, including the game G, the options, the options of the options, etc. The 
sets GL and GR can be empty or infinite.

The possible outcomes of a game are L  , P , N  , and R : L eft can force a win, 
regardless of moving first or second; Right can force a win, regardless of moving 
first or second; N ext player can force a win regardless of whether this is Left or 
Right; Previous player can force a win regardless of whether this is Left or Right. 
The outcome function o(G) is used to denote the outcome of G. By definition, the 
outcomes are partially ordered (Fig. 1).

The outcome classes L,N,R,P are the sets of all games with the indicated out‑
come, so that we can write G ∈ L when o(G) = L .

In game practice, games often decompose into components during play. In those 
situations, a player has to choose a component in which to play. This concept is 
called disjunctive sum: G + H = {GL + H,G + HL |GR + H,G + HR} . With the 
notions of outcome and disjunctive sum, the relations inequality and equivalence of 
games are defined by

The first means that replacing H by G can never hurt Left, no matter what the sum 
is; the second means that G acts like H in any sum. In keeping with the literature, we 
will use = for equivalence of games. The context will indicate if the symbol is being 
used for games or outcomes.

The negative of a game is obtained by “turning the game around”. Formally, 
−G = {−GR

1
,−GR

2
,… | − GL

1
,−GL

2
,…}. It is well known that the class of games 

under the normal‑play convention with the disjunctive sum + and modulo equiva‑
lence = is a partially ordered abelian group (Albert et  al. 2007; Berlekamp et  al. 
2001; Conway 1976; Siegel 2013). The identity is 0 = {� | �} or any equivalent 
game (that is, any game in P ), and the inverse of a game is its negative.

G ≽ H if and only if o(G + X) ⩾ o(H + X) for all games X;

G ∼ H if and only if o(G + X) = o(H + X) for all games X.

Fig. 1  Partial order of outcomes L

P N

R
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Also, regarding normal‑play,

– G = H iff G − H ∈ P;
– G ≻ H iff G − H ∈ L;
– G ≺ H iff G − H ∈ R;
– G‖H iff G − H ∈ N .

There are two reductions: domination and reversibility. Given a game G, after all 
possible reductions, we get a unique simplest representative of the equivalence class 
[G], the canonical form of G (Albert et al. 2007; Berlekamp et al. 2001; Conway 
1976; Siegel 2013).

Games, as mathematical objects, can be defined recursively, starting from the 
empty set. The game {� | �} = 0 is the only game of day zero. Then, on day one, 
the “available material” is ∅ and 0. So, 1 = {0 | �} , −1 = {� | 0} , and ∗= {0 | 0} are 
born on day one. Because of that, 0, 1, −1 , ∗ are the games born by day one, the first 
on day zero, and the others on day one. In Conway (1976), Conway observed that 
certain games are numbers. A positive integer n, for example, means that Left is n 
moves ahead in the game. There are also games that are not numbers.

Conway’s recursion starts from the empty set, so that the only game of day zero is 
{� | �} = 0 . Here we are interested in different initial sets (not only the empty set). In 
general, the recursion is formalized in the following definitions.

Definition 1 Let S be a set of games. The set �(S) of children of S is the set of games 
G = {GL |GR} with GL ⊆ S and GR ⊆ S.

Observation 1 “Children” in this context means the opposite to what it means in 
game trees. Also, it has nothing to do with the partial order of the lattice. Consider 
S = {∗, 1} . The children of S are the games “made” with ∗ , 1, and ∅ , that is, 
�(S) = {{ | }, {∗ | }, { | ∗}, { |1}, { | ∗, 1}, {∗ | ∗}, {∗ | 1}, {∗ | ∗, 1}} ∪ {{1 | ∗},

{1, ∗ | ∗}, {1, ∗ | 1, ∗}} ∪ {{1 | 1}, {1, ∗ | 1}} ∪ {{1 | }, {1, ∗ | }} . After reductions, 
�(S) = {0, {1 | ∗}, 1 ∗, 2} . The Hasse diagram of �(S) is shown in Fig. 2.

Definition 2 Let �rd be the ordinal numbers. Let S be a set of games. We define 

Fig. 2  �({∗, 1})

0

{1 | ∗}

1∗

2
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1. �
0(S) = �(S);

2. �
� (S) = �(U) where U = {G ∈ �

𝛿(S) ∶ 𝛿 < 𝛾 and �, � ∈ �rd}.

Observation 2 Conway’s recursion considers S = � (Conway 1976).

Observation 3 In this paper, as usual in the literature, we consider �� modulo = ; for 
example, the games { ∣ } and {{0 ∣ 0} ∣ {0 ∣ 0}} may be representatives of the same 
element of �� modulo =.

Observation 4 For purposes of induction, we say that G has birthday � , and write 
b(G) = � , if � is the least index of the days on which G is born. A game G is said to 
be born by day � if b(G) ⩽ �.

1.1  State of the art

A natural question is the following:

A seminal problem related to this question was to describe the poset of games 
born by day n. Or, equivalently, describe the structure of �n(�) . The answer was 
not given in Berlekamp et al. (2001) and Conway (1976). Figure 3 shows the day 1 
poset and the left diagram in Fig. 4 the day 2 poset as given in Guy (1991, 1996), 
where ∗ = {0 ∣ 0} , 2 = {1 | } , 1 = {0 | } , 1∗ = {1 ∣ 1} , 1

2
= {0 ∣ 1} , ↑ = {0 ∣ ∗} , 

↑∗ = {0, ∗ ∣ 0} , ±1 = {1 ∣ −1}.
The Hasse diagram of �2(�) given in Guy (1991) (shown on the left in Fig. 4) is 

incorrect; the game {1 ∣ 0} should be strictly larger than {1 ∣ 0, ∗} . The actual poset 
is given on the right side of Fig. 4, which some readers will recognize as the free 
distributive lattice on 3 generators plus 4 more elements. The error was corrected in 
Calistrate et al. (2002), as stated in Theorem 5 below. We use the following notions 
from lattice theory:

– A lattice is a partially ordered set in which every two elements have a unique 
supremum ( a ∨ b , also called “least upper bound” or “join”) and a unique infi‑
mum ( a ∧ b , also called “greatest lower bound” or “meet”). A lattice is distribu-
tive if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

– A complete lattice is a poset in which all subsets have both a join and a meet.
– A modular lattice is a lattice that satisfies x ⩽ b ⇒ x ∨ (a ∧ b) = (x ∨ a) ∧ b.

Given S, what can be said about the partial order of �(S)?

Fig. 3  �1(�) 1

0 ∗
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Theorem 5 (Calistrate et  al. 2002) The set of games born by day n ∈ ℕ0 is a dis-
tributive lattice.

Also, the final theorem of Calistrate et  al. (2002) states that the union of all 
day n games does not form a lattice.

In Albert and Nowakowski (2012), the ordered structure of �(S) was studied 
for any set S of games. Given a game G and a set of games S (G not necessarily in 
S), two important subsets are ⌊G⌋ = {J ∈ S ∶ J ⋡ G} and ⌈G⌉ = {J ∈ S ∶ J ⋠ G} . 
The ideas of Calistrate et al. (2002) were extended and the following more gen‑
eral result was proved.

Theorem 6 (Albert and Nowakowski 2012) For any set of games S we have

– �(S) is a complete lattice;
– if G ∈ �(S) then G = { ⌊G⌋ � ⌈G⌉};
– G ∨ H = {⌊G⌋ ∪ ⌊H⌋ � ⌈G⌉ ∩ ⌈H⌉};
– G ∧ H = {⌊G⌋ ∩ ⌊H⌋ � ⌈G⌉ ∪ ⌈H⌉}.

2

1 1∗

1
2 {1 1|0}|∗} {

↑ ↑∗ {1|0, ∗}

0 ∗ ∗2 ±1

↓ ↓∗ {0, ∗| − 1}

− 1
2 {∗| − 1} {0| − 1}

−1 −1∗

−2

Fig. 4  Left: �2(�) , as given in Guy (1991); Right: �2(�) , corrected in Calistrate et al. (2002)
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The question “Which S give rise to distributive lattices?” was posed in Albert 
and Nowakowski (2012) and, based on limited evidence, the following conjecture 
seemed natural: If �n(S) is modular then it is distributive (Nowakowski 2011).

1.2  Our contributions

The conjecture is false, as can be seen in Carvalho et al. (2014). In that paper, it was 
shown that for a given finite lattice L, there is a set of games S such that L is isomor‑
phic to �(S) ⧵ {⊥,⊤} . The method used the meet irreducibles of the lattice.

In this paper, we present in Sect. 2 a more general method for infinite complete 
lattices (the method needs the Axiom of Choice Jech 2003). In that section, we prove 
Theorem 8, which states that all complete lattices can be generated when allowing 
for an extra top and an extra bottom element. The proof requires games that have 
infinite number of options but we show that the games in the base set S need only be 
of the form −1 and {2 ∣ { nimbers ∣ −2}} . The nimbers are possibly transfinite (infi‑
nite nim heaps, see the end of Sect. 1).

We note that games with infinite numbers of options are not just abstract objects. 
For example, in the game sylver coinageSicherman (2002), on their turn, a player 
names a positive integer that is not a sum of multiples of previously named integers. 
A theorem of Sylvester’s implies that eventually the number of options becomes 
finite but there is no bound on how many turns that may take.

In Sect. 3, we give two examples that illustrate the techniques for infinite lattices.
In Sect.  4, we examine the difference between starting with the empty set and 

with an arbitrary set.
During their research, the authors of Albert and Nowakowski (2012) found sets 

such that �n(S) ≠ �
m(�) for any finite n and m. This motivated the following general 

question:

An affirmative answer would mean that Conway’s recursive construction is essential 
in the sense that every recursive process that begins with S ≠ ∅ produces exactly the 
same games as the process that begins with the empty set. In Theorem 10, we prove 
that the answer is affirmative.

In the last section we include a brief discussion of other lattices that arise in com‑
binatorial game theory, and pose some open questions.

1.3  Background and terminology

We finish this introductory section with some background to Set Theory (see Jech 
2003) and its implications for Combinatorial Game Theory (Siegel 2013).

Definition 3 Let � ∈ �rd . If there is � ∈ �rd such that � = � + 1 , then � is a suc-
cessor ordinal. If � is not a successor ordinal, then 𝛼 = sup{𝛽 ∶ 𝛽 < 𝛼} is a limit 
ordinal. Also, 0 is a limit ordinal and sup � = 0.

For every set of games S, is there � ∈ �rd such that�� (S) = �
� (�)?
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Definition 4 � ∈ �rd is additively indecomposable if it is not a sum of two smaller 
ordinals � and � , i.e., 𝛽, 𝜉 < 𝛼 ⇒ 𝛽 + 𝜉 < 𝛼 . The class ℍ (for “Hauptzahl” in Ger‑
man) is the proper class of the additively indecomposable ordinals.

Proposition 1 (See Pohlers 1992, p 48) The proper class ℍ is unbounded.

�rd is not a set (by an argument similar to Russell’s paradox); it is a proper class, 
that is, a class that is not a set. More, every unbounded part of �rd , in particular ℍ , 
is a proper class. If A is a proper class, and f ∶ A ⟶ B is an embedding, then B is 
also a proper class. This will be needed in Sect.  4.

A set {𝜉 ∈ �rd ∶ 𝜉 < 𝛼} is an initial segment of �rd . In order to prove Theo‑
rem 8, our main contribution, we need to relabel a complete lattice (L,⩾) , maintain‑
ing the order, and using the elements of an initial segment of ordinals for labels. It is 
well known that a one‑to‑one correspondence is possible if we accept the Axiom of 
Choice, which is equivalent to the following theorem (Jech 2003, p 48).

Theorem  7 (Zermelo’s Well‑Ordering Theorem) Every set S can be well‑
ordered, i.e., there is � ∈ �rd and a one‑to‑one correspondence (enumeration) 
𝜁 ∶ S ↦ {𝜉 ∈ �rd ∶ 𝜉 < 𝛼}.

Important Note: Instead of 𝜁 ∶ S ↦ {𝜉 ∈ �rd ∶ 𝜉 < 𝛼} , we will use the one‑to‑
one correspondence 𝜆 ∶ S ↦ {𝜉 + 1 ∈ �rd ∶ 𝜉 < 𝛼} , where �(s) = �(s) + 1.

Considering the classic game nim (Bouton 1901), the value of a finite heap of size 
n is called ∗n and formally ∗n = {0, ∗1,… , ∗n−1 | 0, ∗1,… , ∗n−1} . Central to our con‑
structions are the transfinite nimbers. Let � ∈ �rd and set ∗𝛼= {∪𝛽<𝛼 ∗𝛽 |∪𝛽<𝛼 ∗𝛽} . 
In this paper, when the word nimber occurs, it may be a transfinite nimber. Even 
though 0 is a nimber, our constructions have to avoid it. Note that any two different 
nimbers are not comparable and that ∗1 is often shortened to ∗.

Notation: We write � = {∗� ∣ � is a non-zero ordinal } to designate the proper 
class of the fuzzy nimbers.

Our representation theorems use games such as G = {{2|{∗, ∗2| − 2}}| − 1} , 
where GL = {2 | {∗, ∗2 | − 2}} is the Left only option of G. Using the above‑men‑
tioned reversibility, it is possible to argue that G = {∗, ∗2 | − 1} , that is, GL may be 
replaced by ∗, ∗2.

2  Complete lattice representation theorem

In this section, we prove our main result.

Theorem 8 (Representation Theorem of CGT) Let (L,⩾) be a complete lattice. Then, 
for some set of games S, we have L ≅ �(S) ⧵ {⊥,⊤}.

First, we present some results needed to prove the theorem. The basic idea is to 
establish the following composition:
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The second part of the composition is based on results from Carvalho et al. (2014) 
that are true regardless of the cardinalities of the sets. We give these in Proposi‑
tions 2, 3, 4, and 9.

Proposition 2 1 Consider a family {JA = {A ∣ −1} ∶ A ⊂ 𝛥} . Then,

– JA = JB if and only if A = B;
– JA ≻ JB if and only if B is strictly contained in A;
– JA‖JB if and only if B ⧵ A ≠ ∅ and A ⧵ B ≠ ∅.

Proof Let us start with the second item. Consider B ⫋ A , subsets of � . It is easy to 
check that JA − JB ≽ 0 because, in the game {A ∣ −1} + {1 ∣ B} , Left has a sym‑
metric reply against every Right move. The inequality is strict because there is ∗� 
such that ∗� ∈ A and ∗� ∉ B . Hence, if Left goes first, she wins with ∗� + {1 ∣ B}.

On the other hand, if JA ≻ JB , B must be contained in A. Also, there is a Left win‑
ning move in JA − JB that must be some ∗� + {1 ∣ B} with ∗� ∉ B . Hence, B ⫋ A.

The argument for the third item is similar because Left and Right winning moves 
are ∗� + {1 ∣ B} and ∗� + {A ∣ −1} , with ∗� ∈ A and ∗� ∉ B , and ∗� ∉ A and 
∗� ∈ B.

The first item complements the second and third items.   ◻

Example 1 {∗, ∗2, ∗5 ∣ −1} ≻ {∗, ∗5 ∣ −1} — Left wins going first in 
{∗, ∗2, ∗5 ∣ −1} + {1 ∣ ∗, ∗5} with ∗2 +{1 ∣ ∗, ∗5}.

Example 2 {∗, ∗2, ∗5 ∣ −1}‖{∗, ∗2, ∗6 ∣ −1} — Left wins going first in 
{∗, ∗2, ∗5 ∣ −1} + {1 ∣ ∗, ∗2, ∗6} with ∗5 +{1 ∣ ∗, ∗2, ∗6} ; Right wins going first in 
{∗, ∗2, ∗5 ∣ −1} + {1 ∣ ∗, ∗2, ∗6} with {∗, ∗2, ∗5 ∣ −1}+ ∗6.

The following definition points for the replacement of a set of options A by a sin‑
gle game GA.

Definition 5 Let F  be a family of subsets of � closed under unions. 
Then, F∗ is the set of games {GA ∶ GA = {2 | {A | − 2}} and A ∈ F} , and 
UF = {JA ∶ JA = {GA | − 1} and GA ∈ F

∗}.

Example 3 Let F = {{∗, ∗2, ∗3}, {∗, ∗2, ∗4}, {∗, ∗3, ∗4}, {∗, ∗2, ∗3, ∗4}} ( F  is closed 
under unions). Then,

F
∗ = {{2 | {∗, ∗2, ∗3 | − 2}}, {2 | {∗, ∗2, ∗4 | − 2}}, {2 | {∗, ∗3, ∗4 | − 2}},

{2 | {∗, ∗2, ∗3, ∗4 | − 2}}};

Lattice L → Family of sets
(closed under unions)

→Lattice �(S) ⧵ {⊥,⊤}

1 The proof of this proposition is not presented in Carvalho et al. (2014).



663

1 3

On lattices from combinatorial game theory: infinite case  

UF = {{{2 ∣ {∗, ∗2, ∗3∣ −2}} ∣ −1}, {{2 ∣ {∗, ∗2, ∗4∣ −2}} ∣ −1}, {{2 ∣ {∗, ∗3, ∗4∣ −2}} ∣ −1},

{{2 ∣ {∗, ∗2, ∗3, ∗4∣ −2}} ∣ −1}}.
After reductions (see Conway 1976; Berlekamp et al. 2001; Albert et al. 2007; 

Siegel 2013), we have
UF = {{∗, ∗2, ∗3∣ −1}, {∗, ∗2, ∗4∣ −1}, {∗, ∗3, ∗4∣ −1}, {∗, ∗2, ∗3, ∗4∣ −1}}.

The proofs of the next three results can be found in Carvalho et al. (2014). The 
results are still valid when extended to the transfinite case (similar proofs). In each 
of the next three results, F  is a family of subsets of � closed under unions.

Proposition 3 Let S = F
∗ ∪ {−1} . Then, �(S) = {−2, 0} ∪

(
{−1∗} ∪ UF

)
.

Proposition 4 Consider the set S = F
∗ ∪ {−1} . Then, {−1∗} ∪ UF  is a sublattice of 

�(S).

Following, a rough sketch of the Hasse diagram of �(S) (Fig. 5).

Example 4 Let F = {{∗, ∗2, ∗3}, {∗, ∗2, ∗4}, {∗, ∗3, ∗4}, {∗, ∗2, ∗3, ∗4}} and
S = F

∗ ∪ {−1} . Then, the Hasse diagram of �(S) is the following (Fig. 6):

Theorem 9 Consider the set of games S = F
∗ ∪ {−1} and the family of sets F ∪ {�} . 

Consider the lattices 
(
{−1∗} ∪ UF,⩽

)
 , and (F ∪ {�},⊆) . Define the map

where �(−1∗) = � ; and �({GA1∪A2∪…∪Ak
| − 1}) = A1 ∪… ∪ Ak. Then � is a order‑

preserving isomorphism.

� ∶ {−1∗} ∪ UF → F ∪ {�}

Fig. 5  Hasse diagram of �(S) 0

{F∗ | − 1}

UF \ {F∗ | − 1}

−1∗

−2



664 A. Carvalho et al.

1 3

Example 5 Let F = {{∗, ∗2, ∗3}, {∗, ∗2, ∗4}, {∗, ∗3, ∗4}, {∗, ∗2, ∗3, ∗4}} . 

{∗,∗2,∗3,∗4 | −1}

{∗,∗2,∗3 | −1} {∗,∗3,∗4 | −1}{∗,∗2,∗4 | −1}

−1∗

∼=
(ψ)

( 1 , )

{∗,∗2,∗3,∗4}

{∗,∗2,∗3 ∗{} ,∗3,∗4}{∗,∗2,∗4}

∅

( , )

A game like {{2 | {∗, ∗2, ∗3 | − 2}} | − 1} reduces to {∗, ∗2, ∗3 | − 1} and, as 
mentioned before, �n is considered modulo =.

In Carvalho et al. (2014), the first part of the composition used a result involv‑
ing the meet‑irreducibles elements of (L,⩾) . Regarding the infinite case, there 
may be no meet‑irreducibles elements at all (see next section) and, so, we can‑
not use the same result. Fortunately, the concept of interior system comes to the 
rescue.

Definition 6 A family I  of subsets of L is said to be an interior system if I  is 
closed under unions, which means that, for all H ⊆ I  , we have 

⋃
H ∈ I  . Note that ⋃

� = � ∈ I .

Fig. 6  Hasse diagram of �(S) 
(Example 4)

0

{∗,∗2,∗3,∗4 | −1}

{∗,∗2,∗3 | −1 ∗{} ,∗3,∗4 | −1}{∗,∗2,∗4 | −1}

−1∗

−2
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Proposition 5 If I  is an interior system then (I,⊆) is a complete lattice.

Proof Let A be a set of elements of I  . The following items are immediate. 

1. 
⋁

A =
⋃

A

2. 
⋀

A =
⋃
(B ∈ I ∶ B ⊆

⋂
A)

  ◻

Proposition 6 Let (L,⩾) be a complete lattice. Then,

is an interior system.

Proof To prove that 
⋃

a∈A⊆L{x ∈ L ∶ x  a} is in I  , it is enough to prove that ⋃
a∈A⊆L{x ∈ L ∶ x  a} = {x ∈ L ∶ x 

⋁
A} ∈ I  . This follows because: (i) 

x 
⋁

A if and only if for some b ∈ A , x  b ; and (ii) the existence of 
⋁

A ∈ L is 
guaranteed because L is a complete lattice.   ◻

Proposition 7 Let (L,⩾) be a complete lattice and

Then, (L,⩾) is isomorphic to the lattice structure (I,⊆).

Proof By Proposition  6, I = {{x ∈ L ∶ x  a} ∶ a ∈ L} is an interior system and, 
by Proposition 5, with ⊆ , it is a complete lattice.

Define the map � : a ∈ L ↦ {x ∈ L ∶ x  a} ∈ I  . The map � is an order‑preserv‑
ing isomorphism because of the following facts. 

1. Suppose a ⩽ b . If x  a then it follows that x  b . On the other hand, if b ⩽ x then 
a ⩽ x . Therefore, 

 that is, a ⩽ b ⇒ 𝜑(a) ⊆ 𝜑(b).
2. Suppose 𝜑(a) ⊆ 𝜑(b) , i.e., {x ∈ L ∶ x  a} ⊆ {x ∈ L ∶ x  b} implies a ⩽ b.
  If a  b then a ∉ {x ∈ L ∶ x  a} and a ∈ {x ∈ L ∶ x  b} , a contradiction. 

Thus a ⩽ b.

  ◻

I = {{x ∈ L ∶ x  a} ∶ a ∈ L}

I = {{x ∈ L ∶ x  a} ∶ a ∈ L}.

𝜑(a) = {x ∈ L ∶ x  a} ⊆ {x ∈ L ∶ x  b} = 𝜑(b),
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Example 6 We are ready to prove the main theorem.

5

24 3

1

∼=
(ϕ)

{1,2,3,4}

{1,2,3 {} 1,3,4}{1,2,4}

∅

Proof (Representation Theorem.) First, we use the Axiom of Choice to relabel (L,⩾) . 
There is � ∈ �rd and a one‑to‑one correspondence 𝜆 ∶ L ↦ {𝜉 + 1 ∈ �rd ∶ 𝜉 < 𝛼} . 
We consider (�(L),⩾) instead of (L,⩾) , defining the order of (�(L),⩾) so that 
�(l1) ⩾ �(l2) in (�(L),⩾) iff l1 ⩾ l2 in (L,⩾).

Second, using Proposition 7, we have the isomorphism defined by

We have now the isomorphic lattice (𝜑𝜆(L),⊆).
Third, let � be the trivial isomorphism defined by

Note that ∗x are nimbers and (𝜒𝜑𝜆(L),⊆) is an interior system of sets of nimbers.
Fourth, by Theorem 9,

is an isomorphism.
Let F = ���(L)�{�} , and S = F

∗ ∪ {−1} . Then, �−1��� is an isomorphism 
mapping L to �(S) ⧵ {⊥,⊤}.  ◻

3  Two examples (infinite lattices)

In this section, we exemplify the application of Theorem  8 to infinite complete 
lattices.

Example 7 Consider the nonnegative integers with a partial order based on standard 
divisibility; y ⩾ x when y divides x. We have x ∨ y = gcd(x, y) and x ∧ y = lcm(x, y).

�(a) = {x ∈ �(L) ∶ x  a} (a ∈ �(L)).

�({x ∈ �(L) ∶ x  a}) = {∗x∶ x ∈ �(L) and x  a}.

𝜓−1 ∶ (𝜒𝜑𝜆(L),⊆) ↦
(
{−1∗} ∪ U𝜒𝜑𝜆(L)�{�},⩾

)
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Applying Proposition 7, we have �(a) = {x ∈ ℕ0 ∶ x ∤ a} . For every a ∈ ℕ , let 
Ga = {2 � {⋃x∤a{∗x+1} � − 2}} . Considering S = (

⋃
a∈ℕ{Ga}) ∪ {−1} , we obtain 

�(S) where {
⋃

x∤a{∗x+1} � − 1} is at the “place” of a ∈ ℕ , −1 ∗ is at the place of 0, 
an extra top (0), and an extra bottom ( −2 ) (Fig. 7).

Example 8 The lattice ℚ = ℚ ∪ {−∞,+∞} with the standard total order is an infi‑
nite lattice, but not complete. For instance, {r ∈ ℚ ∶ r2 < 2} has no join or meet. 
The family I = {{x ∈ ℚ ∶ x < a} ∶ a ∈ ℚ} is not an interior system, and the 
representation presented in the last section fails. On the other hand, the lattice 
ℝ = ℝ ∪ {−∞,+∞} is complete and I = {{x ∈ ℝ ∶ x < a} ∶ a ∈ ℝ} is an interior 
system. Note that +∞ is identified with ℝ ∪ {−∞} and −∞ is identified with ∅.

Applying Zermelo’s Well‑Ordering Theorem, the reals are identified with 
𝛺 = {𝜉 ∈ �rd ∶ 𝜉 < 𝜔1} , where �1 is the first uncountable ordinal. Each 
r ∈ ℝ is identified with an ordinal �r ∈ � . For every r ∈ ℝ , consider the game 
Gr = {2 � {⋃𝜉<𝜌r

{∗𝜉+1} � − 2}} . Let

The following �(S) is obtained (Fig. 8).

S = (
⋃

r∈ℝ

{Gr}) ∪ {{2 | {
⋃

𝜉<𝜔1

{∗𝜉+1} | − 2}}} ∪ {−1}.

1

2 3 5 7

4 6

8

10 51419

12 18

21

20 27 28 30 42 44 45 50 52

(. . . )

(. . .)

(. . .)

(. . .)

0

Fig. 7  Nonnegative integers — y ⩾ x when y divides x 
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4  Convergence to Conway’s construction

Starting the recursion from S ≠ ∅ raises the question of whether �� (S) = �
� (�) 

for some � ∈ �rd . Consider S = {0} ; if n ∈ ℕ0 then �n(S) ≠ �
n(�) . That happens 

because, considering k ∈ ℕ , k ∈ �
k−1(S) and k ∉ �

k−1(�) . However, the next result 
establishes a general convergence to Conway’s construction.

Theorem  10 (Convergence Theorem) Let S be a set of games. Then, for some 
� ∈ �rd , �� (S) = �

� (�).

Proof Let S be a set of games, and

i.e., the set of birthdays of the elements of S. There is a natural embedding of B 
into S. The images may be obtained applying the Axiom of Choice to the family 
{G ∈ S ∶ b(G) = �}�∈B . Therefore, B must be a set because S is a set. Also, B is 
bounded (an unbounded class of ordinals is not a set).

Consider � ∈ �rd such that b(G) ⩽ � for all G ∈ S . Let � be an indecomposable 
ordinal such that 𝛾 > 𝛼 . We observe that � exists because ℍ is unbounded.

Let us prove that �� (S) = �
� (�).

(⊇ ) Consider J ∈ �
� (�) . By definition, J ∈ �(U) where U is the set of games with 

birthday smaller than � . Because 0 ∈ �
0(S) , if the recursion starts with S, all games 

in U are born before the day � . So, J ∈ �
� (S).

B = {� ∈ �rd ∶ ∃G ∈ S such that b(G) = �},

Fig. 8  Real numbers—represen‑
tation with games

0

−1 ∗ (−∞ ∈ R)

−2

ξ<ρs
{∗ξ+1} | − 1 (s ∈ R)

ξ<ρr
{∗ξ+1} | − 1 (r ∈ R)

ξ<ω1
{∗ξ+1} | − 1 (+∞ ∈ R)

(. . .)

(. . .)

(. . .)
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(⊆ ) Consider J ∈ �
� (S) . By definition, J ∈ �(U) where U is the set of games 

born on day 𝛽 < 𝛾 , considering the recursion that starts with S. Because b(G) ⩽ � 
for all G ∈ S , all games in S are in ��(�) . Therefore, J ∈ �(U�) where U′ is the set 
of games born on day � + � starting with ∅ . Due to the fact that � is additively inde‑
composable, 𝛼 + 𝛽 < 𝛾 and, so, U′ is contained in the set of games born before the 
day � , if we consider the recursion that starts with ∅ . Thus, J ∈ �

� (�) .   ◻

Example 9 If S = {1, ∗7, {20 | − 30}} then ��(S) = �
�(�) . More, if S is a set of 

short games then ��(S) = �
�(�).

Example 10 If S = {1, ∗7, ∗�+1} then ��2

(S) = �
�2

(�).

5  Other questions

The original question still remains open:

Question 1 Characterize the sets of games S such that �0(S) is a distributive lattice.

Other authors have shown that lattices come from different generation schemes.
Cincotti (2012) has shown that distributive lattices are generated when consid‑

ering coalitions of multi‑player combinatorial games.
Siegel (2013) considers dicot games, where either both players have a move 

or the game is over. These are recursively defined by (i) S = 0 , and (ii) in 
�
n(S) = �(�n−1) =

{
{GL |GR} ∶ GL,GR ⊆ �

n−1
}
 , requiring GL ≠ ∅ ≠ GR . On 

(Siegel 2013, p 166), Siegel asks as an open problem/exercise to show that �n(S) 
is not a lattice but, with the addition of a maximum and a minimum element, it is 
a distributive lattice.

Hereditary transitive games have the property that each option is also heredi‑
tary transitive and for each game G, (GL)L ⊆ GL and (GR)R ⊆ GR . The works of 
Siegel (2011), and McKay (2016), together, show that the games born on day n 
do not form a distributive, but a planar lattice.

Very little is known about the partial order of misère games, that is, games in 
which the first player who cannot move wins. The games born by day n do not 
form a lattice. However, two subsets of misère games have been shown to have 
nice algebraic properties (McKay et al. 2016; Milley and Renault 2013; Renault 
2018). Note that there has not been a paper published on misère games with infi‑
nite options.

Question 2 Describe the partial order of the dicot misère games born by day �.

Dead ending games have the property that if Left has no moves in G then there 
is no sequence of Right moves that will result in Left having a move. Similarly 
for Right.
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Question 3 Describe the partial order of the dead ending misère games born by 
day �.
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