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Abstract
We consider the game of properNim, in which two players alternately move by taking
stones from n piles. In one move a player chooses a proper subset (at least one and at
most n−1) of the piles and takes some positive number of stones from each pile of the
subset. The player who cannot move is the loser. Jenkyns and Mayberry (Int J Game
Theory 9(1):51–63, 1980) described the Sprague–Grundy function of these games. In
this paper we consider the so-called selective compound of proper Nim games with
certain other games, and obtain a closed formula for the Sprague–Grundy functions
of the compound games, when n ≥ 3. Surprisingly, the case of n = 2 is much
more complicated. For this case we obtain several partial results and propose some
conjectures.
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1 Introduction

In the classical gameofNim there aren piles of stones and twoplayersmove alternately.
A move consists of choosing a nonempty pile and taking some positive number of
stones from it. The player who cannot move is the loser.

In this paper we consider the following generalization ofNim, calledHypergraph
Nim (Boros 2019a; Boros et al. 2019b; Boros 2019c). LetH ⊆ 2I \{∅} be a hypergraph
on vertex set I = {1, . . . , n}. We denote by Z+ the set of nonnegative integers, and
by Z

I+ the set of positions of the associated Hypergraph Nim game. Starting from
a position x = (x1, . . . , xn) ∈ Z

I+ two players alternate in choosing a hyperedge
H ∈ H and decreasing xi to a smaller nonnegative integer for every vertex i ∈ H .
In particular, H cannot be chosen if xi = 0 for some i ∈ H . The player who cannot
move is losing. We denote the obtained game by NimH and call the corresponding
class of games Hypergraph Nim

This class generalizes several families of games considered in the literature. For
instance, the case of H = {{1}, . . . , {n}} is the classical Nim. The case of H = {S ⊆
I | 1 ≤ |S| ≤ k}, where k < n, was considered by Moore (1910). He called this game
Nimk . Jenkyns and Mayberry (1980) analyzed further the special case of k = n − 1.
In these games an arbitrary proper subset of the piles can be chosen in a move. For
this reason, we refer to these games as proper Nim. In Boros et al. (2018) the case of
H = {S ⊆ V | |S| = k} was considered and called exact k-Nim.

Hypergraph Nim belongs to the family of impartial games, studied e.g., in (Albert
et al. 2007; Berlekamp 2001–2004; Conway 1976; Grundy 1939; Sprague 1935–1936,
1937; Smith 1966). It is known that the set of positions of an impartial game can
uniquely be partitioned into sets of winning and losing positions. Every move from
a losing position goes to a winning one, while from a winning position there always
exists a move to a losing one. This partition shows how to win the game whenever
possible. The so-called Sprague–Grundy (in short, SG) function GΓ of an impartial
game Γ provides a refinement of the above partition. Namely, for x ∈ Z

I+ we have
GΓ (x) = 0 if and only if x is a losing position. The notion of the SG function for
impartial games was introduced by Sprague (1935–1936, 1937); Grundy (1939); it
plays a fundamental role in the analysis of composite impartial games. We recall the
precise definition of the SG function in the beginning of Sect. 2.

Bouton (1901–1902) solved the classical Nim and described the winning strategy
for it. Moore (1910) characterized the set of losing positions of Nimk . Jenkyns and
Mayberry (1980) described also the set of positions in which the SG value is 1, and
provided an explicit formula of the SG function for proper Nim. Let us note that it
seems difficult to extend this result for Nimk such that 1 < k < n − 1. For instance,
no closed formula is known for the SG function when n = 4 and k = 2. In Boros et al.
(2018) the SG function of exact k-Nim was determined by a closed formula whenever
2k ≥ n. Let us add that even winning/losing positions are not known when 2k < n,
e.g., for n = 5 and k = 2.

To state our main result we need a few more definitions. To a position x ∈ Z
I+ we

associate
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On the Sprague–Grundy function. . . 637

m(x) = min
i∈I xi and s(x) =

∑

i∈I
xi . (1)

Furthermore, we say that a hypergraph H ⊆ 2I satisfies the min-sum property, if for
the SG function GH of NimH we have

GH(x) = F(m(x), s(x)) (2)

for some function F : Z
2+ → Z+. We call H hereditary if for all H ∈ H and

∅ �= H ′ ⊆ H we have H ′ ∈ H. We call it non-isolated if each element i ∈ I is
contained in a hyperedge of size at least 2.

Let us consider a finite set J , disjoint from I and a hypergraph K ⊆ 2J . We define
the extension of H ⊆ 2I by K as follows:

H � K = H ∪ K ∪ (H × K),

where H × K = {H ∪ K | H ∈ H, K ∈ K} is the usual direct product. The
game NimH�K is called the selective compound of the games NimH and NimK. The
selective compound of two games is defined as the game in which a player on its turn
can make a move in either one of the two games, or in both (Conway 1976; Smith
1966). We denote by (x J ; x I ) a position of the compound game, where x J ∈ Z

J+ and
x I ∈ Z

I+.
For NimK and a position x J ∈ Z

J+ the maximum number of consecutive moves
the players could make in NimK starting form x J is called the height of x J and is
denoted by hK(x J ).We call a hypergraphK SG-decreasing if the SG function ofNimK
coincides with hK, in other words, when the SG value can only decrease in a move.
There aremanySG-decreasing hypergraphs, for instance intersecting hypergraphs, and
recognizing if a hypergraph is SG-decreasing is an NP-hard problem Boros (2019a).

Theorem 1 Assume that n = |I | ≥ 3, and H ⊆ 2I is a hereditary non-isolated
hypergraph satisfying the min-sum property (2). Assume further thatK ⊆ 2J (I ∩ J =
∅) is an SG-decreasing hypergraph. Then for the SG function of the selective compound
NimH�K we have

GH�K(x J ; x I ) = F(m(x I ), s(x I ) + hK(x J )).

We can apply this theorem to the selective compound of a proper Nim game with
any of the SG-decreasing Hypergraph Nim games, and obtain a closed formula for
its SG function using the result of Jenkyns and Mayberry (1980). For instance, we can
derive the following statement.

Corollary 1 For n ≥ 3 let us consider hypergrahs H = 2I \{I ,∅} and K = {{0}}.
To positions x ∈ Z

I+ of NimH and x0 ∈ Z+ of NimK we associate y = y(x0; x) =
s(x) + x0 − n and z = z(x0; x) = (y+1

2

)
. Then we have

GH�K(x0; x) =
{
s(x) + x0 if m(x) < z,

(z − 1) + ((m(x) − z) mod (y + 1) if m(x) ≥ z.
(3)
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Remark 1 Let us recall that besides selective compounds, disjunctive and conjunctive
compounds of impartial games were also considered in Conway (1976) and Smith
(1966). In a disjunctive compound players can move in exactly one of the games,
while in the conjunctive compound they have to move in all. The SG-theory was
developed for disjunctive compounds. Let us note that Moore’s Nimk is a disjunctive
compound only for k = 1. In particular, proper Nim is not a disjunctive compound,
unless n = 2.

The rest of the paper is organized as follows. In Sect. 2 we prove Theorem 1. In
Sect. 3 we study the case of n = 2. In this case the SG function behaves in a chaotic
way, and we only obtain some partial results and state some conjectures. Finally, in
the Appendix we consider the SG function of a related game, the so-called slow Nim
in which the size of a pile in a move can be reduced by at most one.

2 Proof of Theorem 1

For our proof let us recall first the definition of the SG function of an impartial game.
For a subset S ⊆ Z+ of nonnegative integers we associate the value of the smallest
integer, not belonging to S:

mex(S) = min
v∈Z+\S v.

In particular, mex(∅) = 0.
To an impartial game Γ we associate its Sprague–Grundy function GΓ that assigns

to everyposition x of the gameanonnegative integer definedby the following recursion

GΓ (x) = mex{GΓ (x ′) | there is a move x → x ′}.

Equivalently, a nonnegative integer valued function g coincides with the SG function
GΓ if and only if:

(i) For any move x → x ′ we have g(x ′) �= g(x).
(ii) For any position x with g(x) > 0 and for any integer 0 ≤ v < g(x) there is a

move x → x ′ such that g(x ′) = v.

Lemma 1 It is enough to prove Theorem 1 for the case when the second game is the
classical Nim with a single pile.

Proof Let us consider an arbitrary move (x J ; x I ) → ((x ′)J ; (x ′)I ) in the compound
game. SinceNimK is SG-decreasing we have hK(x J ) ≥ hK((x ′)J ). Thus substituting
x0 = hK(x J ), and x ′

0 = hK((x ′)J ) we get that (x0; x I ) → (x ′
0; (x ′)I ) is a move in

the selective compound of NimH and the single pile Nim. Since we use only hK from
the game NimK this substitution proves the lemma, because NimK is SG-decreasing.

�
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In the rest of the proof we assume that J = {{0}}. To simplify notation we introduce
I+ = J ∪ I = {0, 1, . . . , n}, and use (x0; x) ∈ Z

I++ to denote a position in the
compound game, i.e., x0 ∈ Z+ and x ∈ Z

I+. Finally, we denote byH+ = H � {{0}}.
For a position (x0; x) ∈ Z

I++ , let k ∈ I be an index such that xk = m(x), where
m(x) is defined in (1). To such a position we associate a set of positions of NimH as
follows

Z(x0; x) = {z ∈ Z
I+ | zk = xk, zi ≥ xi (∀i �= k), s(z) = s(x) + x0}. (4)

By the above definition, it holds that

m(z) = m(x) = xk and s(z) = s(x) + x0 for all z ∈ Z(x0; x). (5)

Let us further define

A(x0; x) = {(m(z′), s(z′)) | ∃z ∈ Z(x0; x), ∃ a move z → z′ in NimH}. (6)

Lemma 2 Assume that H satisfies the min-sum property (2). Then, for any position
(x0; x) of NimH+ , we have

(I) F(m(x), s(x) + x0) /∈ F(A(x0; x)), and
(II) {0, 1, . . . , F(m(x), s(x) + x0) − 1} ⊆ F(A(x0; x)),
where F(A(x0; x)) = {F(m′, s′) | (m′, s′) ∈ A(x0; x)}.
Proof This follows from (5) and the min-sum property of H. �

Lemma 3 Assume thatH is a hereditary hypergraph, and (x0; x) ∈ Z
I++ is a position

of NimH+ . For any z ∈ Z(x0; x) and any move z → z′ in NimH, there exists a move
(x0; x) → (x ′

0; x ′) in NimH+ such that m(x ′) = m(z′) and s(x ′) + x ′
0 = s(z′).

Proof Assume that k ∈ I is the index we used in the definition of Z(x0; x). Let
zi = xi + αi for i ∈ I such that αk = 0,

∑
i∈I αi = x0, and αi ≥ 0 for all i ∈ I . Let

us define x ′ ∈ Z
I+ by

x ′
i =

{
xi if z′i ≥ xi ,

z′i otherwise,

and set x ′
0 = ∑

i∈I max{z′i − xi , 0}. Then (x ′
0; x ′) ∈ Z

I++ , x ′ ≤ x and x ′
0 ≤ x0. Define

S = {i ∈ I | x ′
i < xi }, and note that S is contained in the hyperedge {i ∈ I | z′i < zi }

of H by the above construction. Thus, if S �= ∅ then (x0; x) → (x ′
0; x ′) is a move in

NimH+ by the hereditary property of H. If S = ∅, then x ′
0 < x0 because the move

z → z′ reduces at least one component strictly, and thus (x0; x) → (x ′
0; x ′) is also a

move in NimH+ . �
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Lemma 4 Assume that n ≥ 3 and the hypergraph H ⊆ 2I is non-isolated and
hereditary. Let us consider a position (x0; x) ∈ Z

I++ of NimH+ . For any move
(x0; x) → (x ′

0; x ′) in NimH+ , there exist a z ∈ Z(x0; x) and a move z → z′ in
NimH such that z′ ∈ Z(x ′

0; x ′).

Proof Assume that k ∈ I is the index we used in the definition of Z(x0; x). Further-
more, let � denote an index such that x ′

� = m(x ′) and � ∈ I . We consider separately
four cases.

Case 1: x ′
0 < x0 and x ′

i = xi for all i ∈ I . For an arbitrary index j ∈ I , we define
positions z, z′ ∈ Z

I+ by

zi =
{
x j + x0 if i = j,

xi otherwise,
z′i =

{
x ′
j + x ′

0 if i = j,

x ′
i otherwise.

(7)

Note that { j} ∈ H by the assumption onH. Since z′j < z j and z′i = zi for all i ∈ I\{ j},
we have z ∈ Z(x0; x) and z → z′ is a move in NimH.

Case 2: There is an index j ∈ I such that j �= k, � and x ′
j < x j . In this case, we

again can use positions z, z′ ∈ Z
I+, defined in (7), since

{i ∈ I | z′i < zi } = {i ∈ I | x ′
i < xi } ∈ H, (8)

implies that z ∈ Z(x0; x) and z → z′ is a move in NimH.
Case 3: k = �, x ′

k < xk and x ′
i = xi for all i ∈ I\{k}. Since H is non-isolated and

hereditary, there must exist an index j ∈ I\{k} such that {k, j} ∈ H. Similarly to the
previous case we consider the positions z, z′ ∈ Z

I+ as defined in (7). Then we have
again z ∈ Z(x0; x) and that z → z′ is a move in NimH, since {i | z′i < zi } ⊆ {k, j}
and H is hereditary.

Case 4: k �= � and x ′
i = xi for all i ∈ I\{k, �}. Note that in this case we must have

x ′
� < x�, because ∅ �= {i ∈ I | x ′

i < xi } ⊆ {k, �}, xk = m(x), and x ′
� = m(x ′). Since

n ≥ 3, there is an index j such that j ∈ I\{k, �}. Let us define positions z, z′ ∈ Z
I+

by

zi =

⎧
⎪⎨

⎪⎩

x� + (x0 − x ′
0) if i = �,

x j + x ′
0 if i = j,

xi otherwise,

z′i =
{
x ′
j + x ′

0 if i = j,

x ′
i otherwise.

Then we have z ∈ Z(x0; x) and z → z′ is a move in NimH, because (8) holds in this
case, too.

Finally note that in all four cases we have z′ ∈ Z(x ′
0; x ′) by the definitions of z′

and Z(x ′
0; x ′). �

Proof of Theorem 1 For a position (x0; x) of NimH+ , let B(x0; x) = {(x ′
0; x ′) |

(x0; x) → (x ′
0; x ′)}. Then we have

{(m(x ′), s(x ′) + x ′
0) | (x ′

0; x ′) ∈ B(x0; x)} = A(x0; x),
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On the Sprague–Grundy function. . . 641

where A(x0; x) is as defined in (6). This is because {(m(x ′), s(x ′) + x ′
0) | (x ′

0; x ′) ∈
B(x0; x)} ⊇ A(x0; x) follows by Lemmas 2 and 3, and the opposite inclusion follows
from Lemmas 2 and 4.

This completes the proof. �
Example 1 Let us illustrate Theorem 1 and Corollary 1 by some numerical examples
for the proper Nim with n = 3. Let us introduce Γ =NimH and Γ+ =NimH+ .

Consider first the position (x0; x) = (0; 3, 3, 4). In this case we have m = m(x) =
3, y = y(0; x) = 1 and thus z = z(0; x) = (y(0;x)+1

2

) + 1 = 2, where y(x0; x) and
z(x0; x) are as defined in Corollary 1. Since m ≥ z we get for the SG function by (3)
that

GΓ+(0; 3, 3, 4) = (z − 1) + ((m − z) mod (y + 1)) = 1 + (1 mod 2) = 2.

Note that for any move x → x ′ in Γ+ (and since x0 = 0, also in Γ ) we have
s(x ′) ≥ m(x) = 3. Thus, to argue that (3) provides the SG value of 2 for this position,
we only need to consider moves to positions x ′ for which m(x ′) ≥ z(0; x ′). We list
these positions (up to a permutation of the coordinates) in the table below:

(0; x ′) m(x ′) y(0; x ′) z(0; x ′) G = (z − 1) + ((m − z) mod (y + 1))
(0; 3, 2, 2) 2 1 2 1 = (2 − 1) + ((2 − 2) mod (1 + 1))
(0; 3, 3, 3) 3 0 1 0 = (1 − 1) + ((3 − 1) mod (0 + 1))

Let us next consider the position (x0; x1, x2, x3) = (1; 3, 3, 4) ∈ Z
4+ of the game Γ+.

In this case we have m(x) = 3, y(x0; x) = 2, and thus z(x0; x) = (2+1
2

) + 1 = 4.
Since m(x) < z(x0; x) we get by (3) that

GΓ+(1; 3, 3, 4) = s(x) + x0 = 11.

Note that for any move (x0; x) → (x ′
0; x ′) we have GΓ+(x ′

0; x ′) ≤ x ′
0 + s(x ′) < x0 +

s(x) = 11. We list below some moves (x0; x) → (x ′
0; x ′) such that m(x ′) < z(x ′

0; x ′)
and the corresponding values by (3):

(x ′
0; x ′) m(x ′) y(x ′

0; x ′) z(x ′
0; x ′) G = s(x ′) + x ′

0
(1; 3, 2, 4) 2 4 11 10
(1; 3, 1, 4) 1 6 22 9
(1; 3, 0, 4) 0 8 37 8
(1; 3, 0, 3) 0 7 29 7
(1; 3, 0, 2) 0 6 22 6
(1; 3, 0, 1) 0 5 16 5
(1; 3, 0, 0) 0 4 11 4
(0; 3, 0, 0) 0 3 7 3

Note finally that (0; 3, 3, 4) is reachable from (1; 3, 3, 4) and any position reachable
from (0; 3, 3, 4) is also reachable from (1; 3, 3, 4), and thus the above computations
show that
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642 E. Boros et al.

11 = mex{GΓ+(x ′
0; x ′

1, x
′
2, x

′
3) | (1; 3, 3, 4) → (x ′

0; x ′
1, x

′
2, x

′
3)}.

3 The case of n = 2

Surprisingly, this case seems to be much more difficult than the case of n ≥ 3. Here
we present some partial results and conjectures. If NimH is a proper Nim game, then
let us call NimH+ an extended proper Nim.

3.1 Upper and lower bounds for the SG function of extended properNim

For the analysis of the extended proper Nim with n = 2, we will need a few more
properties of the SG function of extended proper Nim games. Let us consider the
hypergraph H = 2I \{∅, I }.
Lemma 5 The SG function GH+(x0; x) is strictly monotone with respect to x0.

Proof Consider two positions (x0; x) and (x ′
0; x) such that x0 > x ′

0. Since (x ′
0; x) and

any position reachable from (x ′
0; x) are also reachable from (x0; x), we must have

GH+(x0; x) > GH+(x ′
0; x) by the definition of the SG function. �

To a position (x0; x) ∈ Z
I++ let us associate

�(x0; x) = x0 + GH(x).

Lemma 6 We have

�(x0; x) ≤ GH+(x0; x) ≤ x0 + s(x). (9)

Proof The upper bound is obvious, while the lower one follows from Lemma 5. �
In the rest of this section we consider n = 2. In this case the extended game

is NimH+ where H+ = {{0}, {1}, {2}, {0, 1}, {0, 2}}. For simplicity, we change our
notation. We denote by x = (x0, x1, x2) ∈ Z

3+ a position of the extended game and
by G(x) the value of its SG function. Since proper Nim with n = 2 is the same as a
2-pile Nim, we also use s(x) = x0 + x1 + x2 and �(x) = x0 + (x1 ⊕ x2), where ⊕ is
the so called Nim sum, see e.g., 3.

In this case Lemma 6 turns into the following inequalities

�(x) ≤ G(x) ≤ s(x). (10)

If x0 = 0, the lower bound is attained. Obviously, the upper bound is attained if x1 = 0
or x2 = 0. We shall see that both bounds are attained in many other cases.

3.2 Shifting x1 and x2 by the same power of 2

We present simple conditions under which the SG function G(x) is invariant with
respect to a shift of x1 and x2 by the same power of 2.
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Let us note that G is not a monotone increasing function of x1 and/or x2, in contrast
to x0. The next lemma shows that a weaker property still holds, if we use power of 2
increments.

Lemma 7 For any k ∈ Z+, let us set Δk = (0, 2k, 2k). Then,

G(x + Δk) = G(x) if G(x) < 2k, and
G(x + Δk) ≥ 2k if G(x) ≥ 2k .

Proof We show this by induction on x . We first note that G(0, 0, 0) = G(0, a, a) holds
for any positive integer a, which proves the base of the induction.

For a position x , we assume that the statement is true for all x ′ with x ′ ≤ x ,
x ′ �= x and show that it holds for x by separately considering the cases G(x) < 2k

and G(x) ≥ 2k .
Case 1: G(x) < 2k . We note that if x → x ′ is a move then so is x +Δk → x ′ +Δk .

For any v with 0 ≤ v < G(x) < 2k , there exists a move x → x ′ such that G(x ′) = v

by the definition of the SG function. It follows from the induction hypothesis that
G(x ′+Δk) = G(x ′) = v. Since x+Δk → x ′+Δk is a move, we have G(x+Δk) �= v.
Since this applies for values 0 ≤ v < G(x), we can conclude that G(x + Δk) ≥ G(x).

We will show next that for any position x ′ obtained from x + Δk by a move
x + Δk → x ′, the SG function values of x and x ′ differ, G(x ′) �= G(x).

Let x ′ = (x ′
0, x

′
1, x2 + 2k) without loss of generality. If x ′

1 < 2k , then we have

G(x ′) ≥ �(x ′) ≥ x ′
1 ⊕ (x2 + 2k) ≥ 2k > G(x).

If x ′
1 ≥ 2k and G(x ′ − Δk) = G(x ′

0, x
′
1 − 2k, x2) ≥ 2k , then by induction hypothesis,

G(x ′) = G((x ′ − Δk) + Δk) ≥ 2k , which implies that G(x ′) �= G(x). Finally, if
x ′
1 ≥ 2k and G(x ′ − Δk) < 2k , then G(x ′ − Δk) �= G(x), since x → x ′ − Δk is
a move. By our induction hypothesis, we have G(x ′) = G(x ′ − Δk) �= G(x). This
completes the proof of the case G(x) < 2k .

Case 2: G(x) ≥ 2k . By definition, for any integer v with 0 ≤ v < 2k ≤ G(x),
there exists a move x → x ′ such that G(x ′) = v. By induction hypothesis, we have
G(x ′) = G(x ′+Δk). Since x ′+Δk is reachable from x+Δk , we obtainG(x+Δk) ≥ 2k .

�
To illustrate the first claim of the lemma, let us note that:

G(1, 0, 0) = 1 < 2
G(2, 0, 0) = 2 < 4
G(3, 0, 0) = 3 < 4
G(4, 0, 0) = 4 < 8
G(0, 1, 2) = 3 < 4
G(1, 0, 1) = 2 < 4
G(1, 1, 1) = 3 < 4
G(1, 1, 2) = 4 < 8
G(2, 1, 3) = 6 < 8
G(3, 1, 1) = 5 < 8.
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Furthermore, computations show that

G(1, 2, 6) = 5 < 8
G(1, 5, 6) = 11 < 16
G(2, 5, 5) = 11 < 16

Hence, for all i ∈ Z+ we have

G(1, 0, 0) = G(1, 2, 2) = G(1, 4, 4) = · · · = G(1, 2i, 2i) = 1
G(2, 0, 0) = G(2, 4, 4) = G(2, 8, 8) = · · · = G(2, 4i, 4i) = 2
G(3, 0, 0) = G(3, 4, 4) = G(3, 8, 8) = · · · = G(3, 1 + 4i, 1 + 4i) = 3
G(4, 0, 0) = G(4, 8, 8) = G(4, 16, 16) = · · · = G(4, 8i, 8i) = 4
G(1, 0, 1) = G(1, 4, 5) = G(1, 8, 9) = · · · = G(1, 4i, 1 + 4i) = 2
G(0, 1, 2) = G(0, 5, 6) = G(0, 9, 10) = · · · = G(0, 1 + 4i, 2 + 4i) = 3
G(1, 1, 1) = G(1, 5, 5) = G(1, 9, 9) = · · · = G(1, 1 + 4i, 1 + 4i) = 3
G(1, 1, 2) = G(1, 9, 10) = G(1, 17, 18) = · · · = G(1, 1 + 8i, 2 + 8i) = 4
G(2, 1, 3) = G(2, 9, 11) = G(2, 17, 19) = · · · = G(2, 1 + 8i, 3 + 8i) = 6
G(3, 1, 1) = G(3, 9, 9) = G(3, 17, 17) = · · · = G(3, 1 + 8i, 1 + 8i) = 5
G(1, 2, 6) = G(1, 10, 14) = G(1, 18, 22) = · · · = G(1, 2 + 8i, 6 + 8i) = 5
G(1, 5, 6) = G(1, 21, 22) = G(2, 47, 48) = · · · = G(1, 5 + 16i, 6 + 16i) = 11
G(2, 5, 5) = G(2, 21, 21) = G(1, 37, 37) = · · · = G(2, 5 + 16i, 5 + 16i) = 11.

To illustrate the second claim of the lemma, let us consider k = 1, x = (1, 2, 3),
x + (0, 2, 2) = (1, 4, 5), and note that G(1, 2, 3) = 6 while G(1, 4, 5) = 2.

Lemma 7 results immediately the following claim.

Corollary 2 For any k ∈ Z+, if G(x) < 2k and x ≥ Δk then G(x − Δk) = G(x). �
We also need the following elementary arithmetic statement.

Lemma 8 Let a be an integer with 2k−1 ≤ a < 2k for some positive integer k. Then
we have a ⊕ b > b if 0 ≤ b < 2k−1, and a ⊕ b < b if 2k−1 ≤ b < 2k .

Proof The claim results immediately from the definition of the Nim-sum, since the
binary representation of a includes 2k−1. �

For a nonnegative integer v, let k(v) denote the unique nonnegative integer such
that 2k(v)−1 ≤ v < 2k(v).

The following consequence of Lemma 7 provides a characterization of the SG
values.

Theorem 2 Let x = (x0, x1, x2) be a position with G(x) = v and x1 ≤ x2. Then
there exists a position x̂ such that x̂ ≤ (v, 2k(v)−1 − 1, 2k(v) − 1), G(x̂) = G(x), and
x = x̂ + λΔk(v) for some λ ∈ Z+.
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Proof By Corollary 2, there exists a position x̂ = (x̂0, x̂1, x̂2) = x − λΔk(v) for a
nonnegative integer λ such that G(x̂) = G(x) = v and x̂1 < 2k(v). We show that
x̂0 ≤ v, x̂1 < 2k(v)−1, and x̂2 < 2k(v), which will imply the statement. Since

v = G(x̂) ≥ �(x̂) = x̂0 + (x̂1 ⊕ x̂2), (11)

x̂0 ≤ v holds. Moreover, if x̂2 ≥ 2k(v), then x̂1 ⊕ x̂2 ≥ 2k(v) by x̂1 < 2k(v), which
again contradicts (11), since v < 2k(v) by definition of k(v). Thus we have x̂2 <

2k(v). Suppose that 2k(v)−1 ≤ x̂1 ≤ x̂2. Then x̂ → (0, x̂1, x̂1 ⊕ v) is a move, since
x̂1 ⊕ v < x̂1 ≤ x̂2 by Lemma 8. This together with G(0, x̂1, x̂1 ⊕ v) = v contradicts
that G(x̂) = v. �

For any nonnegative integer v, let us define

Core(v) = {x = (x0, x1, x2) | G(x) = v, x0 ≤ v, x1 < 2k(v)−1, x2 < 2k(v)}.

Then, Theorem 2 shows that every position x with G(x) = v and x1 ≤ x2 has a
position x̂ ∈ Core(v) such that x = x̂ + λΔk(v) for some nonnegative integer λ.

Note that Core(v) has at most 2v3 positions, and by the definition of the SG
function, we can compute their SG value in O(v5) time. This implies the following
corollary.

Corollary 3 For any v ∈ Z+ and for any position x we can compute the value G(x), if
G(x) ≤ v, or prove that G(x) > v in O(v5) time. �

This implies that we can compute the SG value of a position x ∈ Z
3+ in polynomial

time in G(x), regardless the magnitude of the coordinates of x .

3.3 Some conjectures and partial results for them

In this subsection we assume that x1 ≤ x2.

3.3.1 Case 1: x1 is a power of 2

Computational results suggest that if x1 is a power of 2 then G(x) equals either the
lower or the upper bound in accordance with the following simple rule.

Conjecture 1 Given x = (x0, x1, x2) such that x0 ∈ Z+ and x2 ≥ x1 = 2k for some
nonnegative integer k, then G(x) = �(x) = x0 + (x1 ⊕ x2) for any

x2 = (2 j + 1)2k + m such that j ∈ Z+ and 0 ≤ m < 2k − x0. (12)

Otherwise, G(x) = s(x) = x0 + x1 + x2.

Note that (12) can be equivalently rewritten as

2k ≤ (x2 mod 2k+1) < 2k+1 − x0.
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It is also convenient to equivalently reformulate this conjecture replacing G(x) by
δ(x) = s(x) − G(x). For any nonnegative integer a, b, c ∈ Z+ let us introduce the
function

f (a, b, c) =
{
1, if (c mod a) ≥ b,

0, otherwise.

In particular, f (a, b, c) = 0 whenever b ≥ a.
It is not difficult to verify that Conjecture 1 can be reformulated as follows:
Given x = (x0, x1, x2) such that x0 ∈ Z+ and x2 ≥ x1 = 2k for some k ∈ Z+,

then

δ(x) = 2k+1 f (2k+1, x0 + 2k, x0 + x2) = 2x1 f (2x1, x0 + x1, x0 + x2). (13)

We can illustrate this by several simple examples.

x0 x1 x2 δ(x)
0 1 1, 2, 3, . . . 2, 0, 2, 0, 2, . . .
0 2 2, 3, 4, . . . 4, 4, 0, 0, 4, 4, 0, 0, 4, 4, . . .
0 4 4, 5, 6, . . . 8, 8, 8, 8, 0, 0, 0, 0, 8, 8, 8, 8, . . .
2 4 4, 5, 6, . . . 8, 8, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, . . .

The upper bound is attained, whenever x0 ≥ x1; for instance if x0 = 2 and x1 ≤ 2
then δ(x) ≡ 0.

Note that Conjecture 1, if true, would imply the following useful addition to
Lemma 7. Note first that for x = (x0, 0, x2) we have

�(x0, 0, x2) = G(x0, 0, x2) = s(x0, 0, x2) = x0 + x2.

By the conjecture above we also have

G(x0, 2
k, x2 + 2k) = �(x0, 2

k, x2 + 2k) = x0 + x2,

whenever vector x ′ = (x0, 2k, x2 + 2k) satisfies condition (12). Otherwise,

G(x0, 2
k, x2 + 2k) = s(x0, 2

k, x2 + 2k) = x0 + x2 + 2k+1.

The following examples illustrate the above statement: By Lemma 7 we have the
equalities

13 = G(0, 0, 13) = G(0, 16, 29) = G(0, 32, 45) = G(0, 64, 79) = · · ·
17 = G(1, 0, 16) = G(1, 32, 48) = G(1, 64, 80) = · · ·
19 = G(2, 0, 17) = G(2, 32, 49) = G(2, 64, 81) = · · ·
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In addition, our computations show the following equalities, in agreement with the
above conjecture. For the lower bound equalities we have

13 = G(0, 0, 13) = G(0, 2, 15)

17 = G(1, 0, 16) = G(1, 2, 18) = G(1, 4, 20) = G(1, 8, 24)

19 = G(2, 0, 17) = G(2, 4, 21) = G(2, 8, 25),

while the upper bound is attained in the following cases G(0, 1, 14) = 15,
G(0, 4, 17) = 21, G(0, 8, 21) = 29. G(1, 1, 17) = 19, G(1, 16, 32) = 49,
G(2, 1, 18) = 21, G(2, 2, 19) = 23, and G(2, 16, 33) = 51.

3.3.2 Case 2: x1 is close to a power of 2

Our computations indicate that for a position x = (x0, x1, x2) the upper bound is
attained whenever the semi-closed interval (x1, x1 + x0] contains a power of 2. Let us
recall that x1 ≤ x2 is assumed.

Conjecture 2 If x1 < 2k ≤ x0 + x1 for some k ∈ Z+, then G(x) = s(x).

Instead, we are able to prove only the following special case.

Proposition 1 If x0 ≥ 2k−1 and x1 < 2k for some k ∈ Z+, then G(x) = s(x).

Proof We show the claim by induction on s(x). If s(x) = 0 (that is, x = (0, 0, 0))
then clearly G(x) = s(x) = 0. Assuming that the claim holds for all x with
s(x) ≤ p − 1, consider a position x with s(x) = p. We claim that for each inte-
ger v with x0 ≤ v < s(x), there exists a move x → x ′ such that G(x ′) = v. This
will imply G(x) = s(x), since x0 and s(x) are lower and upper bounds for G(x),
respectively.

Let x ′ = (x ′
0, x

′
1, x

′
2) be a position such that x ′

0 = x0, x ′
1 = x1, and 0 ≤ x ′

2 < x2.
Then x → x ′ is a move such that x ′ satisfies x ′

0 = x0 ≥ 2k−1 and min{x ′
1, x

′
2} ≤ x1 <

2k . Thus, by induction hypothesis, for any integer v satisfying x0 + x1 ≤ v < s(x)
there exists a move x → x ′ such that G(x ′) = v.

Then, let us consider moves x → x ′ such that 0 ≤ x ′
0 < x0, x ′

1 = x1, and
x ′
2 = 0. By definition, we have G(x ′) = s(x ′), which shows that for any integer v with
x1 ≤ v < x0 + x1, there exists a move x → x ′ such that G(x ′) = v. Hence, our claim
is proven if x0 ≥ x1, because �(x) ≥ x0.

If x0 < x1 then for each integer v with 2k−1 ≤ v < x1 consider a position x ′ such
that x ′

0 = 0, x ′
1 = x1, and x ′

2 = x1⊕v. It follows fromLemma 8 that x1⊕v < x1 ≤ x2,
which implies that x ′ is reachable from x . Since G(x ′) = v, and �(x) ≥ x0 ≥ 2k−1,
the proof is completed. �
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Note that this Proposition is a special case of Conjecture 2 if we choose k to be the
smallest integer satisfying x0 ≥ 2k−1 and x1 < 2k .

Corollary 4 If x0 ≥ x1 then G(x) = s(x). �

3.3.3 Case 3: x2 is close to a multiple of a power of 2

Let us summarize the previous results and conjectures:

(a) If x0 = 0 then the lower bound is attained: G(x) = x1 ⊕ x2.
(b) If x1 is a power of 2 then the condition of Conjecture 1 holds.
(c) If x1 < 2k ≤ x0 + x1 for some k ∈ Z+, then the condition of Conjecture 2 holds.

Thus, we assume from now on that

2k−1 < x1 < x0 + x1 < 2k for some k ∈ Z+. (14)

In this case, our computations show that G(x) = s(x) whenever x2 differs from a
multiple of 2k by at most x0.

Conjecture 3 If x = (x0, x1, x2) satisfies (14), x1 ≤ x2, and

j2k − x0 ≤ x2 ≤ j2k + x0

for some j, k ∈ Z+, then G(x) = s(x).

Note that assumption (14) is essential. For example, by computations we have
G(1, 4, 20) = �(1, 4, 20) = 1 + (4 ⊕ 20) = 17 < s(1, 4, 20), while the other
conditions of Conjecture 3 hold.

3.3.4 Case 4: x2 is large

Although the SG function looks chaotic in general, it seems that the pattern becomes
much more regular when x2 is large enough. Unfortunately, we cannot predict how
large should it be or prove any observed pattern.

Conjecture 4 We have G(x) = s(x) whenever (14) and the following two conditions
hold simultaneously:

(i) either x0 > 1, or x0 = 1 and x1 is odd, and
(ii) x2 is sufficiently large.
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Let us start with several examples where G(x) = s(x) with x0 = 1 and odd x1, if
x2 > τ(x1) is large enough:

x1 τ(x1) δ(1, x1, τ (x1))
5 14 1
9 94 1
11 30 1
13 30 1
17 446 1
19 158 1
21 94 3
23 62 1
25 126 1
27 62 3
29 30 10

where δ(x) = s(x) − G(x). Note that we skip the values x1 = 2k − 1, that is,
x1 = 1, 3, 7, 15, 31 because those cases are covered by Conjecture 2. When x1 is even
and x0 = 1 the computations show a chaotic behavior.

It seems that for x0 > 1 the upper bound is attained sooner (that is, for smaller x2)
and for both odd and even x1. For x1 < 25 = 32 and x0 = 2 we obtain:

x1 τ(x1) δ(1, x1, τ (x1))
5 5 1
9 45 1
10 44 1
11 13 1
12 13 24
13 13 2
17 125 1
18 125 1
19 61 1
20 93 2
21 61 1
22 61 1
23 29 2
24 92 4
25 61 1
26 61 2
27 29 1
28 29 56
29 29 4
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For x0 = 3 the upper bound is achieved even faster; for x1 < 25 = 32 we have:

x1 τ(x1) δ(1, x1, τ (x1))
9 28 1

10 20 1

11 12 1

12 12 24

17 92 1

18 92 1

19 60 1

20 60 1

21 60 1

22 28 2

23 28 2

24 56 47

25 28 3

26 28 3

27 28 3

28 28 56

In all the above examples we skip the values of x1 such that x1 < 2k ≤ x1 + x0 for
some k ∈ Z+, since in this case the condition of Conjecture 2 holds. We also skip
values of x1 = 2k because the condition of Conjecture 1 holds in this case.

Finally, let us consider the case when x1 is even and x0 = 1.

Conjecture 5 Given x0 = 1 and an even x1 such that 2k−1 < x1 < 2k for some k ∈ Z+,
then δ(x0, x1, x2) takes only even values and becomes periodic in x2 with period 2k ,
when x2 is large enough.

The examples for k ≤ 5 are presented below. Note that for x1 = 2, 4, 8, 16 the
condition in Conjecture 1 is satisfied and hence all remaining cases are presented in
the table below. For a threshold integer τ(x1) we define

π(x1) = (δ(1, x1, i) | i = τ(x1) + 1, τ (x1) + 2, . . .),

and write (0, 0, 0, 1, 2, 1, 2)∗ = ((0)3, (1, 2)2)∗ for the infinite sequence
(0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 1, 2, 1, 2, . . .).
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x1 τ(x1) 2k π(x1) δ(1, x1, τ (x1))
6 14 8 (03, 4, (0, 2)2)∗ 12
10 109 16 (4, (03, 4)2, 0, 12, (0, 4)2, 0)∗ 2
12 109 16 (2, 05, 6, 8, 2, (0, 2, 4, 2, 0, 2, 4)∗ 2
14 30 16 (03, 4, (0, 2)6)∗ 28
18 446 32 ((03, 4)4, (0, 2)8)∗ 1
20 400 32 ((0, 2, 0, 6)3, 0, 2, (05, 6, 0, 2)2, 0, 22)∗ 3
22 94 32 ((03, 4, (0, 2)2)2, (0, 2)8)∗ 4
24 456 32 ((0, 2)2, 0, 16, ((0, 2)3, 0, 10)2, 09, 16)∗ 10
26 126 32 ((03, 4)2, (0, 2)12)∗ 1
28 104 32 ((0, 2, 0, 6)5, 0, 2, 05, 6, 0, 2, 0, 14)∗ 3
30 30 32 (03, 4, (0, 2)14)∗ 60

Interestingly, δ(x) = 0whenever x2 is odd, except for only one case: x1 = 12, when
δ(1, 12, x2) takes non-zero values 8, 4, 4 for x2 = 5, 9, 13 mod 16, respectively.

Let us also recall that for x1 = 2k , Conjecture 1ofSect. 3.3.1 gives similar periodical
sequences, which take only two values: δ = 0 and δ = 2x1.

Before concluding the section, we remark that we cannot separately prove the
conjectures stated above. Indeed, to show that G(x) = v, we have to verify that for
any nonnegative integer v′ < v, there exists a move x → x ′ such that G(x ′) = v′.
Thus to prove one of the conjectures by induction, we may need all other conjectures.
It is natural to prove them simultaneously. However, at this moment we cannot, since
for example, we have no bounds for τ in Conjectures 4 and 5.

Let us add finally that in the recent publication (Beideman et al. 2018) some of
the above questions were studied. The authors considered auxiliary Nim, which is
the selective compound of a single pile Nim and the classical Nim with n piles. For
n = 2 this coincides with the game we analyzed above. The authors obtained some
interesting results, and in particular they proved our Conjecture 2 and some special
cases of Conjecture 3,4, and 5.

Acknowledgements The authors thank Rutgers University and RUTCOR for the support to meet and
collaborate. The authors thank the anonymous reviewers and the editor for the detailed reports and helpful
advice.

Appendix: SlowNim

In this section, we consider a variant of Nim, so called slow Nim. A move in a
Hypergraph Nim game NimH is called slow if each pile is reduced by at most
one token. Let us restrict both players by their slow moves, then the obtained game is
called slow hypergraph Nim. We study SG functions and losing positions of slow
Moore Nim and slow exact Nim, where they respectively correspond to hypergraphs
H = {H ⊆ I | 1 ≤ |H | ≤ k} and H = {H ⊆ I | |H | = k} for some k ≤ n.
We provide closed formulas for the SG functions of both games when n = k = 2
and n = k + 1 = 3, where we remak that the SG function for slow exact Nim when
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n = k = 2 is trivial. We also characterize losing positions for slow Moore Nim if
either n ≤ k + 2 or n = k + 3 ≤ 6 holds.

Here we only present the results, where all the proofs can be found in the preprint
by Gurvich and Ho (2019).

Given a position x = (x1, . . . , xn) ∈ Z
I+, wewill always assume that its coordinates

are nondecreasing x1 ≤ · · · ≤ xn . The parity vector p(x) is defined as the vector
p(x) = (p(x1), . . . , p(xn)) ∈ {0, 1}I such that p(xi ) = 0 if xi is even, and p(xi ) = 1
if xi is odd. It appears that the status of a position x in the slow Moore Nim in the
cases below is defined by p(x) .

Proposition 2 The SG functionG for slowMooreNim for n = k = 2 and n = 3, k = 2
are uniquely defined by p(x) as follows:

(i) For n = k = 2,

G(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if p(x) = (0, 0)

1, if p(x) = (0, 1)

2, if p(x) = (1, 1)

3, if p(x) = (1, 0).

(ii) For n = 3 and k = 2,

G(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if p(x) ∈ {(0, 0, 0), (1, 1, 1)}
1 if p(x) ∈ {(0, 0, 1), (1, 1, 0)}
2 if p(x) ∈ {(0, 1, 1), (1, 0, 0)}
3 if p(x) ∈ {(0, 1, 0), (1, 0, 1)}.

We next consider losing positions of slow Moore Nim.

Proposition 3 Consider a slow Moore Nim when n ≤ k + 2 or n = k + 3 ≤ 6. Then
for a position x ∈ Z

I+, we have the following five cases.

(1) for n = k, x is losing if and only if p(x) = (0, 0, . . . , 0).
(2) for n = k + 1, x is losing if and only if p(x) ∈ {(0, 0, . . . , 0), (1, 1, . . . , 1)}.
(3) for n = k + 2, x is losing if and only if p(x) ∈ {(0, 0, . . . , 0), (0, 1, . . . , 1).
(4) for n = 5 and k = 2, x is losing if and only if

p(x) ∈ {(0, 0, 0, 0, 0), (0, 0, 1, 1, 1), (1, 1, 0, 0, 1), (1, 1, 1, 1, 0)};

(5) for n = 6 and k = 3, x is losing if and only if

p(x) ∈ {(0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 1, 1), (1, 1, 0, 0, 1, 1), (1, 1, 1, 1, 0, 0)}.

We note that Moore Nim games satisfy that 1 ≤ k ≤ n, and the case in which n = 4
and k = 1 is a standard 4-pile Nim.
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We finally consider slow exact Nim. Note that this game is trivial when k = 1 or
k = n. We show that the game is tractable if n = 3 and k = 2. Again the parity vector
plays an important role, although it does not define the SG function uniquely.

Define six sets of positions x ∈ Z
3+:

A = {(2a, 2b − 1, 2(b + i)) | 0 ≤ a < b, 0 ≤ i < a, (a + i) mod 2 = 1}
B = {(2a, 2b, 2(b + i) + 1) | 0 ≤ a ≤ b, 0 ≤ i < a, (a + i) mod 2 = 1}
C0 = {(2a − 1, 2b − 1, 2(b + i) − 1) | 0 ≤ a ≤ b, 0 ≤ i < a, (a + i) mod 2 = 0}
C1 = {(2a − 1, 2b − 1, 2(b + i) − 1) | 0 ≤ a ≤ b, 0 ≤ i < a, (a + i) mod 2 = 1}
D0 = {(2a − 1, 2b, 2(b + i)) | 0 ≤ a < b, 0 ≤ i < a, (a + i) mod 2 = 1}
D1 = {(2a − 1, 2b, 2(b + i)) | 0 ≤ a < b, 0 ≤ i < a, (a + i) mod 2 = 0},

and let C = C1 ∪ C2, D = D1 ∪ D2.

Proposition 4 For a slow exact Nim with n = 3 and k = 2, the SG function G can be
represented by

G(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x ∈ ({(2a, 2b, c) | 2a ≤ 2b ≤ c}\B) ∪ A ∪ C0 ∪ D0

1 if x ∈ ({(2a, 2b + 1, c) | 2a ≤ 2b + 1 ≤ c}\A) ∪ B ∪ C1 ∪ D1

2 if x ∈ {(2a + 1, 2b + 1, c) | 2a + 1 ≤ 2b + 1 ≤ c}\C
3 if x ∈ {(2a + 1, 2b, c) | 2a + 1 ≤ 2b ≤ c}\D.
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