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Abstract
We introduce a new axiom for power indices, which requires the total (additively
aggregated) power of the voters to be nondecreasing in response to an expansion
of the set of winning coalitions; the total power is thereby reflecting an increase
in the collective power that such an expansion creates. It is shown that total-power
monotonic indices that satisfy the standard semivalue axiomsare probabilisticmixtures
of generalized Coleman-Shapley indices, where the latter concept extends, and is
inspired by, the notion introduced inCasajus andHuettner (Public choice, forthcoming,
2019). Generalized Coleman-Shapley indices are based on a version of the random-
order pivotality that is behind the Shapley-Shubik index, combinedwith an assumption
of random participation by players.
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1 Introduction

The Shapley-Shubik power index 1 (henceforth, SSPI) and the Banzhaf power index
2 (henceforth, BPI) enjoy a near-universal recognition as valid measures of a priori
voting power. The two indices quantify the power held by individual voters under
a given decision rule by assigning each individual the probability of being pivotal
in a certain mode of random voting. The SSPI views voters as “aligned in order of
their enthusiasm for the proposal” over which the vote is held, with all orders being
possible and equally likely a priori; an individual is pivotal in an order if “by joining
his more enthusiastic colleagues, [he] brings [that] coalition up to winning strength.”3

In the BPI, the pivotal status of an individual is defined as his ability to affect the
outcome of the vote in the random set of yes-voters, assuming that each individual
votes “yes” with probability 1

2 , independently of anyone else. Thus, the assumption
behind the SSPI is that all individuals ultimately vote “yes,” in the order of their
enthusiasm; 4 the pivotality of a voter then arms him with some bargaining advantage
in demanding adjustments in the content of the proposal.5 The BPI, on the other hand,
views pivotality as being in a position to single-handedly push the proposal through.

Recently, Casajus and Huettner (2019) suggested a new power index, which they
named the Coleman-Shapley index (henceforh, CSPI), with an underlying probability
model that naturally combines the assumptions behind the SSPI and BPI. In this paper
we will consider a family of indices that generalize the CSPI and are obtained by
varying a single parameter in Casajus and Huettner’s (2019) definition. For a given
q ∈ (0, 1], the q -Coleman-Shapley power index (or q-CSPI, for short) identifies the
power of an individual voter with his probability of being pivotal in the following
hybrid situation. Assume that each voter turns up for vote with probability q (in which
case we shall call him q-active, or simply active), independently of others. In other
words, we start from a Banzhaf-like scenario, except that an individual decision to
be active need not necessarily amount to voting “yes,” and the probability q that an
individual is interested (or capable) to vote may be different from 1

2 . Next, as in the
Shapley-Shubik scenario, think of the active voters as declaring their support for the
proposal in the order of their enthusiasm. The pivotality of a voter is now defined with
respect to a random (enthusiasm-based) order of all active voters; the q-CSPI of a
voter is defined as the probability that he is pivotal, conditional on being active.6

1 Defined in Shapley and Shubik (1954).
2 As is often done in the literature, we use the term “Banzhaf power index” for brevity, although the origin
of this power index lies in multiple works (Penrose (1946), Banzhaf (1965, 1966, 1968), Coleman (1971)).
The specific variant of the BPI used in this work is referred to as the “Banzhaf measure” in Felsenthal and
Machover (1998).
3 All quotations in this sentence are taken from Dubey and Shapley (1979, p. 103).
4 This may be weakened by noting that voting “yes” is not expected from players less enthusiastic than
the pivot. Indeed, the proposal will be collectively approved (by virtue of the votes of the pivot and his
predecessors in the order) before the less enthusiastic players will be asked to join in support.
5 This view of the SSPImay also be (more formally) supported by the fact that the underlying Shapley value
arises as an equilibrium outcome of certain natural bargaining procedures (see, e.g., Hart and Mas-Colell
(1996)).
6 The notion of pivotality here still implies the ability to affect the content of a proposal, but the passage
of the proposal is now uncertain because the set of q-active voters may be losing.
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Generalized Coleman-Shapley indices and total-power monotonicity 301

The CSPI of Casajus and Huettner (2019) is a member of our family of generalized
CSPIs, corresponding to q = 1

2 .This family also contains the SSPI,which corresponds
to q = 1. The lower boundary of the parameter range, q = 0, will also be admitted;
with an underlying assumption is that no one supports the proposal, the power of a
voter in this case is equal to the winning status of his stand-alone coalition. As will
be made clear in what follows, all q-CSPIs, for q ∈ [0, 1], share a very intuitive and
important property, and are, essentially, characterized by it.

All aforementionedpower indices, in their narrow interpretation,measure the voting
power of each individual voter.However, in practice and in theory, the individual power
is often additively aggregated across individuals in order to compute the implied power
of sets of voters. There is somewhat less clarity as towhat an aggregation of power over
a set represents, compared to the rather straightforward concept of individual power
that is behind the SSPI and BPI, but such an aggregation is taken quite seriously. A
need for comparison of power of different sets arises on various occasions [see, e.g.,
Brams (2013, Chapter 5)], and an axiomatic treatment of power indices often contains
references to the total, or combined, power of voters. Indeed, following the discovery
of the 2-efficiency of the BPI by Lehrer (1988), whereby the additively combined
power of any two voters remains unchanged if the two voters “merge” and act as a
single bloc,multiple axiomatizations of theBPIwere offered based on relaxed versions
of that property.7 Axioms based on assumptions on the total, additively aggregated,
power of the entire voter set (henceforth referred to simply as total power) are also
common. In the earliest axiomatization of a power index, that of the SSPI by Dubey
(1975), the efficiency axiom was imposed, whereby the total power is independent
of the particular decision rule, and is equal to 1. Dubey and Shapley (1979), who
axiomatized the BPI, assumed the total power to be equal to the expected number
of swing voters, or “swingers,” 8 in the voter set; this number is also known as the
“sensitivity of the decision rule” (see Felsenthal and Machover (1998), Sect. 3.3). The
CSPI of Casajus and Huettner (2019) is also axiomatized with a central property being
the equality of the total power to (a multiple of) another well-recognized concept, the
Coleman’s (1971) “power of a collectivity to act,” defined as the proportion of winning
sets among all (sub)sets of voters.

The behavior of the total power as a function of the decision rule is quite distinct
under BPI compared to the other indices that have been mentioned. The total power
according to BPI, being the “sensitivity of a decision rule,” quantifies “the ease with
which [the decision rule] responds to voters’ wishes.”9 It is therefore not surprising
that the total BPI power favors rules where the outcome of the vote appears, a priori, to
be very uncertain, as this is when individual voters have the best chance to be pivotal.
Indeed, as shown in Dubey and Shapley (1979), the total BPI power is maximal for the
simple majority rule, as that rule creates the greatest instability in the outcome of the
vote under the assumption that votes are cast completely at random and independently
across individuals.

7 See, e.g., Lehrer (1988), Nowak (1997), Casajus (2012), Haimanko (2018).
8 See Dubey et al. (1979, p. 103). A swinger is defined w.r.t. a random set of yes-voters (with the uniform
distribution over all subsets of the voting body) by the requirement that the change in his vote affects the
the voting outcome.
9 See Felsenthal and Machover (1998, p. 52).
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302 O. Haimanko

The total power behaves in a notably different fashion under the other indices. The
total SSPI power is fixed at 1, and hence the simplemajority rule has the same standing
as the rest. Under the CSPI, the total power (identifiable with the aforementioned
Coleman power of collectivity to act) is at the intermediate level for the simplemajority
rule, falling with an increase in the majority quota. Indeed, Coleman’s measure of the
power of collectivity is concernedwith the ease of a collective achievement,with higher
quotas implying a lower number of winning sets, and, accordingly, lower collective
power.

The abovemonotonicity feature of the total CSPI power obviously extends from the
simplemajority to general, not necessarily symmetric and quota-based, decision rules:
the smaller is the set ofwinning sets (as in the particular case of a risingmajority quota),
the lower is the total power. This feature is, moreover, common to all generalized
CSPIs. Indeed, it will be shown in this work that, for any q ∈ (0, 1], the total q-CSPI
power is a ( 1q -scaled) modified version of the Coleman power of collectivity to act,
defined as the probability that the set of all q -active voters is winning. Obviously,
such a probability responds monotonically to an addition of winning sets.10

We will call the property whereby the total power is nondecreasing when winning
sets are added total-power monotonicity of a power index, or TP-monotonicity. As
has been claimed above, all generalized CSPIs are TP-monotonic. TP-monotonicity
appears to be quite desirable if one wishes the total power to measure, or at least be
highly correlated with, some form of collective power held by the voters. Indeed, as
the set of winning coalitions expands, passing any proposal that is put to vote becomes
easier, 11 indicating an increase in the collective power. 12 Thus, if the total power is
to be regarded as a numerical proxy for the collective power of all voters, the total
power should respond positively to an expansion of the set of winning coalitions.
Accordingly, TP-monotonicity may be viewed as a necessary condition for a power
index to satisfy if there is an intention to use additive aggregation of the individual
power measured by that index in estimating the collective power of sets of voters.

This work will explore the implications of TP-monotonicity on the structure of
power indices. Following the approach pioneered in Shapley and Shubik (1954) and
adopted in much of the literature on power indices, we will model voting situa-
tions/decision rules as cooperative games known as simple (or voting) games, and
view a power index as a map defined on the domain of simple games. The focus will
be on power indices that are semivalues, a term that was borrowed by Einy (1987)
from the realm of value maps considered by Dubey et al. (1981), and applied to power
indices that satisfy four axioms that are quite standard and figure prominently in the

10 Under the degenerate 0-CSPI, the total power aslo responds in a (weakly) monotonic fashion to an
addition of winning sets.
11 This is because no coalition of yes-voters can turn fromwinning to losing, and at least one such coalition
turns from losing to winning, under such a change in the decision rule.
12 It may be argued that if the winning coalitions become too numerous, then in some contexts (such as
under symmetricmajority rules with quotas below 1

2 ) the collective power could suffer because any proposal
that may be easy to pass with just a minority approval, can be subsequently overturned by a counter-proposal
supported by an opposing minority. However, we take the view that the measurement of power concerns
a single decision, namely, passage of a single (anticipated but a priori unknown) proposal. Under a scope
restricted to the proposal at hand, it is natural to regard the power of collectivity as commensurate with the
ease of passing the proposal.
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literature on axiomatizations. These axioms are: transfer (or valuation), which has
been a routine substitute for the additivity axiom for value maps in the context of sim-
ple games since its introduction in Dubey (1975); non-negativity of the power index;
anonymity, which requires covariance under permutations of the player (voter) set;
and dummy, whereby the power of a dummy player (which can only be a null player,
or a dictator, in a simple game) equals to the payoff of his stand-alone coalition.

By standard arguments, all generalized CSPIs are semivalues. They are not the only
TP-monotonic semivalues, but we will show, via a somewhat indirect approach, that
they generate all such semivalues. Ourmain tool will be Einy’s (1987) characterization
of semivalues of simple games as probabilistic mixtures of x-values. For x ∈ [0, 1] ,
the x -value is a power index (in fact, a semivalue itself) that assigns each voter
i in a simple game v the probability that he is pivotal13 for a random coalition of
other players, joined by each player with probability x independently of the rest.
Einy’s result states that any semivalue is obtained by integrating over x-values w.r.t.
a uniquely determined probability distribution ξ. Our first result, Theorem 1, studies
the effect of imposing the TP-monotonicity assumption on a semivalue in terms of the
implied conditions on the representing distribution ξ. It turns out that a semivalue is
TP-monotonic if and only if the c.d.f. of the distribution ξ is a concave function.

The structural implication of TP-monotonicity in Theorem 1 appears rather tech-
nical from first glance. However, it contains a much more explicit message, initially
hidden from view. Our Theorem 2 uses the concavity of the c.d.f. of the representing
distribution of a TP-monotonic semivalue to show that the latter is a probabilistic
mixture of generalized CSPIs. This characterization of the TP-monotonic semival-
ues is a complete one: a semivalue is TP-monotonic if and only if it is obtained by
integrating q -CSPIs over q ∈ [0, 1] w.r.t. a uniquely defined probability measure on
[0, 1] . In particular, any TP-monotonic semivalue that is not a convex combination of
generalized CSPIs can be approximated by such combinations, since integrals in our
characterization are approximable by weighted averages.

The paper is organized as follows. Section 2 recalls the basic definitions pertaining
to games and power indices, lists the semivalue axioms, and calls attention to the
known characterization of semivalues as mixtures of x -values. Generalized CSPIs are
defined in Sect. 3, and are shown to be attainable by the random-arrival and random-
order approaches. Section 3 also introduces the axiom of TP-monotonicity, and checks
that it is satisfied by any q-CSPI. Section 4 contains our main results: Theorem 1,
which characterizes TP-monotonic semivalues in terms of their underlying probability
distribution, and Theorem 2, which represents TP-monotonic semivalues as mixtures
of generalized CSPIs. Two extended remarks, on the extendibility of our results to
value maps for general finite games, and the relation between general semivalues and
generalized CSPIs via the notion of decomposition, appear at the end of Sect. 3. Some
parts of our proofs that rely on later results appear in the Appendix.

13 In the context of a simple game, a pivot for a coalition is a player whose presence switches that coalition
from losing to winning.
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2 Preliminaries

2.1 Finite games, Simple games, and Power indices

LetU be an infinite universe ofplayers (or voters), and assume,w.l.o.g., thatU includes
the set N of positive integers. Denote the collection of all coalitions (subsets ofU ) by
2U , and the empty coalition by ∅. A game on U is given by a map v : 2U → R with
v (∅) = 0. A coalition N ⊂ U is called a carrier of v if v(S) = v(S ∩ N ) for any
S ∈ 2U . We say that v is a finite game if it has a finite carrier; the minimal carrier of
such v is, in effect, its true player set. The space of all finite games onU is denoted by
G. The domain SG of simple (or voting) games on U consists of all v ∈ G such that:
(i) v(S) ∈ {0, 1} for all S ∈ 2U ; (ii) v(U ) = 1; and (iii) v is monotonic, i.e., if S ⊂ T
then v(S) ≤ v(T ).14 If v ∈ SG, a coalition S is winning if v(S) = 1, and losing
otherwise. Thus, as in Shapley and Shubik (1954), any v ∈ SG describes a voting
system or a decision rule, with a full account of all possible coalitions of yes-voters
that can win the vote.

The space AG of additive games consists of all v ∈ G satisfying v(S ∪ T ) =
v(S) + v(T ) whenever S ∩ T = ∅. Any w ∈ AG with a finite carrier N is identifiable
with the vector15 {w(i) | i ∈ N } , and thus may be thought of as a payoff vector to the
players in N .

A power index ϕ is a map ϕ : SG → AG, where ϕ (v) (i) is interpreted as the
voting power of player i in a simple game v. We will refer to ϕ (v) (U ) as the total
power of players; since ϕ (v) ∈ AG is additive and has a finite carrier, the total power
satisfies the equality ϕ (v) (U ) = ∑

i∈N ϕ (v) (i) for any finite N ⊂ U that is a joint
carrier of v and ϕ(v).

2.2 Semivalues axioms

The following four axioms—plausible requirements that a general power index ϕ may
be expected to obey—are quite routinely assumed in analyzing and designing power
indices, either in their entirety or in part. As in Einy (1987), who was the first to look
at the conjunction of these four axioms, we will use the term semivalue16 in reference
to any power index ϕ that satisfies all the axioms.17

Axiom I: Transfer.18 For any v,w ∈ SG, ϕ (max{v,w}) + ϕ (min{v,w}) =
ϕ (v) + ϕ (w) . 19

14 This definition of simple games follows the convention set forth in Dubey and Shapley (1979), and used
in much of the subsequent research.
15 We shall henceforth omit braces when indicating one-player sets.
16 The term “semivalue” was originally coined in Dubey et al. (1981) in the context of value maps on G
(see Remark 1).
17 Variants of semivalue axioms have been present in the original axiomatizations of the SSPI and BPI
(see Dubey (1975) and Dubey and Shapley (1979)).
18 The term Transfer is due to Weber (1988).
19 max, min in the statement of Transfer refer to the maximum/minimum of functions on 2U , and hence
both max{v, w} and min{v, w} are well-defined games in SG.
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Aswas shown inDubey et al. (2005, p. 24),Transfer can be restated in an equivalent
but conceptually clearer form, amounting to a requirement that the change in power
depends only on the change in the voting game.20

Axiom II: Anonymity. For any v ∈ SG, i ∈ U , and a permutation π of U ,

ϕ (πv) (i) = ϕ (v) (π (i)) , where πv ∈ SG is given by (πv) (S) = v(π(S)) for all
S ∈ 2U .

According to Anonymity, if players are relabeled in a game, their power indices
will be relabeled accordingly. Thus, irrelevant characteristics of the players, outside
of their role in the game v, have no influence on the power index.

Axiom III: Non-negativity. For any v ∈ SG and i ∈ U , ϕ (v) (i) ≥ 0.
Non-negativity is natural because every v ∈ SG is monotonic by assumption, and

hence no player that joins a coalition can affect its winning status negatively.
Axiom IV: Dummy. If v ∈ SG and i is a dummy player in v, i.e. v(S ∪ i) =

v(S) + v(i) for every S ⊂ U \ i, then ϕ (v) (i) = v (i) .

A dummy player in a simple game can be either a dictator (if v(i) = 1), in which
case {i} is the minimal carrier of v, or a null player (if v (i) = 0), that does not belong
to the minimal carrier of v. Dummy can be viewed as a normalization requirement,
assigning power 1 to a dictator and power 0 to a null player.

2.3 Characterization of semivalues

Dubey et al. (1981) defined a family of semivalues21
(
φξ

)
ξ
, parameterized by ξ ∈

M ([0, 1]) ≡the set of probabilitymeasures on [0, 1], as follows: given ξ ∈ M([0, 1]),
for every v ∈ SG with some finite carrier N ,

φξ (v) (i) =
∑

S⊂N\i
p|N |
|S| (ξ) [v(S ∪ i) − v(S)] (1)

if i ∈ N , where

pns (ξ) =
∫ 1

0
xs (1 − x)n−s−1 dξ (x) ; (2)

and φξ (v) (i) = 0 if i ∈ U \N . The definition is independent of the choice of a carrier
N .

Einy (1987) showed that the set of semivalues on SG coincides with the family(
φξ

)
ξ∈M([0,1]) :

Proposition 1 (Einy (1988)). A power index ϕ is a semivalue if and only if ϕ = φξ for
some ξ ∈ M ([0, 1]) , with ξ uniquely determined by ϕ.

20 Specifically, if v, w, v′, w′ ∈ SG are such that v ≥ v′, w ≥ w′ and v − v′ = w − w′, then
ϕ(v) − ϕ(v′) = ϕ(w) − ϕ(w′).
21 Dubey et al. (1981) considered semivalues on G and not on SG (for further discussion, see Remark 1).
The family of power indices with the forthcoming description is obtained by restricting those semivalues
to games in SG.
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Relying on the equivalence in Proposition 1, the term semivalue will henceforth be
used in reference to some member of the family

(
φξ

)
ξ∈M([0,1]). Each semivalue φξ

has a simple probabilistic interpretation. Assume that player i believes that players
other than himself have the same probability x of voting “yes” (thereby joining the
coalition of yes-voters), and that they do so independently of each other; however, i
may be uncertain about the parameter x, with his prior belief being the distribution ξ

over x . Then φξ (v) (i) represents i’s a priori likelihood to switch a random coalition
of yes-voters from losing to winning by joining it.

If the parameter x is known, one may refer to the corresponding semivalue, for
which ξ is the Dirac measure concentrated on x, as x -value,which will be denoted φx

for simplicity. A general φξ is then a probabilistic mixture of x-values: the definition
of φξ implies that, for any v ∈ SG and i ∈ U ,

φξ (v) (i) =
∫ 1

0
φx (v) (i)dξ (x) . (3)

The family
(
φξ

)
ξ∈M([0,1]) includes the two best-known and widely used semival-

ues: the Banzhaf power index (BPI) φ 1
2
, corresponding to ξ that is the Dirac measure

concentrated on 1
2 , and the Shapley-Shubik power index (SSPI), corresponding to

the uniform distribution on [0, 1] . The Coleman-Shapley power index (CSPI), intro-
duced in Casajus and Huettner (2019), is precisely φξ for ξ that corresponds of the
uniform distribution on

[
0, 1

2

]
. Its probabilistic interpretation will be discussed in the

next section, in a unifying set-up that will single out a subfamily of semivalues in(
φξ

)
ξ∈M([0,1]).

3 Generalized CSPIs and total-power monotonicity

The definition of the CSPI in Casajus and Huettner (2019) allows to conjure up a more
general framework, in which the SSPI and CSPI are included as particular cases. We
will define generalized CSPIs as a one-pramateric family of semivalues, and will then
show how these indices arise in two related models of random voting.

3.1 Generalized CSPIs as semivalues

For any 0 ≤ q ≤ 1, consider the probability measure ξq ∈ M ([0, 1]) that is concen-
trated on the interval [0, q] and, when q > 0, corresponds to the uniform distribution
on [0, q], i.e.,

dξq(x) = 1

q
Ix≤qdx, (4)

where IA denotes the indicator function of a set A. Denote ϕq = φξq , and call it
q-Coleman-Shapley power index, or q-CSPI for short.
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3.2 Random-arrival interpretation of q-CSPIs

When q > 0, the definition of the q-CSPI bymeans of (1 ), (2) and (4) lends itself to the
following probabilistic interpretation, which is a version of the “random arrival times”
view that has usually been reserved for the Shapley value and the weighted Shapley
value (starting with Owen (1968)). Let v ∈ SG be a game with some finite carrier
N , and let {Xi }i∈N be i.i.d. random variables with the uniform distribution on [0, 1].
Think of Xi as measuring the dissatisfaction of player i with a proposal that stands
for vote; the given parameter q represents the cut-off value of dissatisfaction above
which a player will never vote in favor of a proposal. Players whose dissatisfaction
falls below or is equal to q will, on the other hand, ultimately vote “yes”, but their
turn to join the support of the proposal depends on their measure of dissatisfaction:
the higher is Xi , the later will i join the other yes-voters. It stands to reason that,
in such a scenario, the influence of player i over the vote should be quantified as the
probability (conditional on i being a yes-voter, having Xi ≤ q) that the coalition of the
proposal supporters switches from losing to winning precisely when i’s turn arrives
and he declares his support for the proposal.

The measure of voting power given by ϕq (v) (i) = φξq (v) (i) does exactly that.
Formally, (1), (2) and (4) mean that

ϕq (v) (i) =
∑

S⊂N\i

(∫ q

0
x |S| (1 − x)|N |−|S|−1 1

q
dx

)

[v(S ∪ i) − v(S)] ,

for every i ∈ N (and ϕq (v) (i) = 0 for every i ∈ U \ N ), which can be readily seen
to be a restatement in terms of integrals of the equality

ϕq (v) (i) = E
[
v({ j ∈ N | X j ≤ Xi }) − v({ j ∈ N | X j < Xi }) | Xi ≤ q

]
, (5)

where E stands for the expectation operator. The last equality is itself equivalent to

ϕq (v) (i) = Pr
[
v({ j ∈ N | X j < Xi }) = 0 and v({ j ∈ N | X j ≤ Xi }) = 1 | Xi ≤ q

]
.

(6)

3.3 Random-order interpretation of q-CSPIs

The following alternative description of a q-CSPI can be derived from (5). Given
q ∈ [0, 1] and v ∈ SG with a finite carrier N , consider a random coalition S

q
N ⊂ N

that satisfies

Pr(S
q
N = S) = q |S|(1 − q)|N\S| (7)

for every S ⊂ N . Put differently, each i ∈ N belongs to S
q
N with probability q,

independently of the other players in N . We can think of S
q
N as the coalition of players
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308 O. Haimanko

who are interested in, or capable of, voting for a proposal. Call the players in S
q
N (q-

)active. Additionally, let RN be a random linear order of players in N , chosen w.r.t.
to the uniform distribution over all such orders, and assume that the choice of order
is made independently of the realization of S

q
N . RN can be thought of as the ranking

of players w.r.t. their eagerness to vote in favor of a proposal; note that RN ranks all
players, including those who might not be active. For any suchRN and i ∈ N , denote
by Si (RN ) the (random) coalition of players in N that precede i in RN (according
to our interpretation, Si (RN ) consists of players who like the proposal more than i).
Then, for q > 0, (5) is equivalent to

ϕq (v) (i) = E
[
v((Si (RN ) ∪ i) ∩ S

q
N ) − v(Si (RN ) ∩ S

q
N ) | i ∈ S

q
N

]
, (8)

or

ϕq (v) (i) = Pr
[
v(Si (RN ) ∩ S

q
N ) = 0 and v((Si (RN ) ∪ i) ∩ S

q
N ) = 1 | i ∈ S

q
N

]
,

(9)

for every i ∈ N .

Similarly to the random-arrival approach, here ϕq (v) (i) is expressed as the prob-
ability that i switches from losing to winning the coalition of q-active voters who are
ranked below i (i.e., are stronger than i) in their support, conditional on that i is himself
active. In order to see how (8) is obtained from (5), take RN be the order induced by
the relative positions of the players in {Xi }i∈N (which were defined in Sect. 3.2), and
let S

q
N = {i ∈ N | Xi ≤ q} be the random coalition of players whose dissatisfaction

does not exceed q. Notice that even though such RN is not independent of S
q
N , the

random coalition Si (RN ) ∩ S
q
N is distributed as if RN is independent of S

q
N when

there is a conditioning on i ∈ S
q
N .22

Observe that the 1-CSPI (ϕ1) is just the SSPI, as (6) or (9) boil down to its usual
definition as the (unconditional) probability of being pivotal in a random order. Also,
when q = 1

2 , (9) is, in effect, the definition of the CSPI in Casajus and Huettner
(2019), and hence the 1

2 -CSPI (ϕ 1
2
) is precisely that index.

3.4 The total power under q-CSPI

The total power of players under a given q-CSPI can be computed directly, but we
will find it as an upshot of a more general exercise. It turns out, as has been already
observed by Casajus and Huettner (2019) in the case of ϕ 1

2
, that for any q ∈ [0, 1] the

q -CSPI of v ∈ SG can be expressed as the Shapley (1953) value of an appropriately
modified game vq ∈ G. Indeed, fix a finite carrier N for v. For any 0 < q ≤ 1 and
S ∈ 2U , define

22 In (8), RN can be replaced by RS
q
N
(a random, uniformly distributed order of players in S

q
N ), i.e., it

suffices to rank only the active players. Such an equation would have been the reduced form of both (5)
and (8), consistent with our description of the q-CSPI in the Introduction. The current (8) is preferable,
however, as it is used in the proof of our upcoming Proposition 2.
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vq(S) := 1

q
E

[
v(S ∩ S

q
N )

]
, (10)

where (recall) S
q
N is the random coalition of q-active players that satisfies (7).23 Thus,

vq(S) is the 1
q -scaled probability that the coalition of q-active players in S is winning

in the given v ∈ SG. For q = 0,

v0(S) :=
∑

i∈S
v(i), (11)

which is consistent with (10) when q > 0 tends to 0. Also recall that, for any game
w ∈ Gwith a finite carrier N , its Shapley value Sh(w) ∈ AG is defined as Sh (w) (i) =
E [w(Si (RN ) ∪ i) − w(Si (RN ))] for every i ∈ N (and Sh (w) (i) = 0 for every
i ∈ U \ N ).

Proposition 2 For any q ∈ [0, 1], v ∈ SG and i ∈ U , ϕq (v) (i) = Sh(vq)(i).

Proof Let N be a finite carrier of v, and take i ∈ N . When q > 0, by using the
independence of Si (RN ) and S

q
N , (8) can be transformed into

ϕq (v) (i) = ERN

(
ES

q
N

[
v((Si (RN ) ∪ i) ∩ S

q
N ) − v(Si (RN ) ∩ S

q
N ) | i ∈ S

q
N

])

= ERN

(
1

q
ES

q
N

[(
v((Si (RN ) ∪ i) ∩ S

q
N ) − v(Si (RN ) ∩ S

q
N )

)
· Ii∈SqN

])

= ERN

(
1

q
ES

q
N

[
v((Si (RN ) ∪ i) ∩ S

q
N ) − v(Si (RN ) ∩ S

q
N )

])

= ERN (vq(Si (RN ) ∪ i) − vq(Si (RN )) = Sh(vq)(i).

Also note that, for q = 0, trivially ϕ0 (v) (i) = v(i) = Sh(v0)(i). Finally, when
i ∈ U \ N , ϕq (v) (i) = 0 and Sh(vq)(i) = 0 by definition, for any q ∈ [0, 1]. �


Proposition 2 and the efficiency of the Shapley value imply that, for 0 < q ≤ 1 and
v ∈ SG with a finite carrier N ,

ϕq (v) (U ) = vq(N ) = 1

q
E

[
v(S

q
N )

]
, (12)

which is equivalent to

ϕq (v) (U ) = 1

q
Pr

[
v(S

q
N ) = 1

]
. (13)

That is, the total power in the game v, as measured by ϕq , is a constant multiple ( 1q ) of
the probability that the coalition of all q-active players is winning. For q = 0, clearly

ϕ0 (v) (U ) = v0(N ) =
∑

i∈N
v(i). (14)

23 It is easy to see that the definition of vq is independent of the choice of a carrier N .
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When q = 1, (12) is the usual efficiency property of the SSPI. When q = 1
2 ,

(13) is precisely the 2CPCA-efficiency of Casajus and Huettner (2019), whereby the
total power in v equals to twice the Coleman (1971) power of a collectivity to act
(≡the proportion of the winning coalitions among all coalitions in a carrier N of v).
Casajus and Huettner (2019) used the 2CPCA-efficiency to characterize the Coleman-
Shapley index ϕ 1

2
using 2CPCA-efficiency as a replacement of efficiency in the set

of axioms of Dubey (1975) (originally devised for the SSPI). Similar axiomatizations
can be obtained for any ϕq , with (13) as a substitute for 2CPCA-efficiency, where the
right-hand side is viewed as an alternative measure of the power of a collectivity to
act.

3.5 The axiom of total-power monotonicity

When the set of winning coalitions in the game expands, there is no guarantee that
the individual power of every (or even most) players will not be affected negatively.
Indeed, for any given ξ ∈ M ([0, 1]) that is not a Dirac measure concentrated on
0, think of the change in the semivalue ϕ = φξ when a unanimity game v = uT
(where uT (S) = 1 if and only if T ⊂ S) sees its carrier T shrink to a strict subset,
T ′

� T , and the game becomes uT ′ . The power of every i ∈ T \T ′ then falls from
ϕ (uT ) (i) = ∫ 1

0 x |T |−1dξ(x) > 0 to ϕ (uT ′) (i) = 0. That is to be expected because
the players in T \T ′ become null in uT ′ , despite there being more winning coalitions
to which each i ∈ T \T ′ belongs in uT ′ compared to uT . Only the members of the new
minimal winning coalition, T ′, see their power rise (or at least remain unaffected) by
the change in the game. 24 Indeed, for every i ∈ T ′,

ϕ (uT ′) (i) =
∫ 1

0
x |T ′|−1dξ(x) ≥

∫ 1

0
x |T |−1dξ(x) = ϕ (uT ) (i) . (15)

For a semivalue ϕ that is a q-CSPI for some q ∈ [0, 1], namely, ϕ = ϕq , any
expansion of the set of winning coalitions in the game has a non-negative net effect on
the total power despite possibly ambiguous individual power variations. Specifically,
if v ∈ SG is replaced by w ∈ SG that satisfies v ≤ w, the total power cannot go
down:

ϕq (v) (U ) ≤ ϕq (w) (U ) . (16)

This fact is immediate from (12) when q > 0, and from (14) when q = 0.
We shall state the monotonicity requirement in (16) as an axiom on the behavior of

a general power index ϕ:
Axiom V: Total-power Monotonicity (TP-Mon). If v,w ∈ SG and v ≤ w, then

ϕ (v) (U ) ≤ ϕ (w) (U ) .

24 A more general (and easily verifiable) version of this property is the following: if w ∈ SG is obtained
from v ∈ SG by adding a singleminimalwinning coalition T ′ (that is,w = max(v, uT ′ )), thenφξ (w) (i) ≥
φξ (v) (i) for every i ∈ T ′.
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As argued in the Introduction, TP-Mon seems desirable if there is an intention of
using the power index to compute the power of coalitions by additively aggregating
the individual power within them. At the same time, TP-Mon is sufficiently selective
– it is not possessed by all semivalues.25 For instance, the BPI attains the maximal
total power on a given carrier of odd size at the simple majority game, by Theorem 2
in Dubey and Shapley (1979).

4 Results

4.1 Total-power monotonicity of a semivalue

In this section we will characterize the effect of imposing the axiom of TP-Mon on
the family of semivalues. On a technical level, TP-Mon reduces to concavity of the
c.d.f. of the representing distribution.

Theorem 1 A semivalue ϕ = φξ satisfies TP-Mon if and only if the c.d.f. Fξ of the
distribution corresponding to ξ is concave on [0, 1] .

Proof of Theorem 1 We start with the proof of the “only if” direction of the theorem.
Let ξ ∈ M ([0, 1]) be such that φξ satisfiesTP-Mon. The main ingredient of the proof
will be the following claim. �

Claim Let 0 < a < b < 1 and 0 < c < d ≤ 1 be such that c− a = d − b > 0. Then

ξ ((a, b]) ≥ ξ ((c, d]) . (17)

Proof of the claim. We shall first establish (17) under the assumption that

ξ ({a, b, c, d}) = 0. (18)

Fix δ > 0, and let 0 < ε < b−a
2 be such that ξ

([t−, t+]) < δ for t ∈ {a, b, c, d},
where t+ = min(t + ε, 1), t− = max(t − ε, 0). Also, for any n ∈ N such that 1

n < ε
2

and any x ∈ [0, 1], let Yn
x be a random variable with the binomial distribution B(n, x).

Then

ξ ((a, b]) ≥ ξ
(
(a−, b+)

) − 2δ =
∫

(a−,b+)

dξ (x) − 2δ

≥
∫

(a−,b+)

⎛

⎝
[bn]∑

k=[an]

Pr(Yn
x = k)

⎞

⎠ dξ (x) − 2δ

(where [t] stands for the integer part of t)

25 Notice that manifestations of individual power monotonicity expressed by the inequality (15) or, more
generally, the statement in Footnote 24, are not selective, in contrast to TP-Mon: they are satisfied by all
semvalues.
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=
[bn]∑

k=[an]

(∫ 1

0
Pr(Yn

x = k)dξ (x)

)

−
∫

(a−,b+)c

⎛

⎝
[bn]∑

k=[an]

Pr(Yn
x = k)

⎞

⎠ dξ (x) − 2δ

≥
[bn]∑

k=[an]

(∫ 1

0
Pr(Yn

x = k)dξ (x)

)

−
∫

(a−,b+)c
Pr

(∣
∣
∣
∣
Yn
x

n
− x

∣
∣
∣
∣ >

ε

2

)

dξ (x) − 2δ. (19)

By the Chebishev’s inequality,

Pr

(∣
∣
∣
∣
Yn
x

n
− x

∣
∣
∣
∣ >

ε

2

)

≤ 1

nε2
, (20)

and hence the expression in (19) is bound from below by

[bn]∑

k=[an]

(∫ 1

0
Pr(Yn

x = k)dξ (x)

)

− 1

nε2
− 2δ

=
[bn]∑

k=[an]

(∫ 1

0

(
n

k

)

xk(1 − x)n−kdξ (x)

)

− 1

nε2
− 2δ. (21)

For k = 0, ..., n, let wn+1,k+1 ∈ SG be the k + 1-majority game with carrier
N = {1, ..., n + 1}, i.e., wn+1,k+1(S) = 1 if and only if |S ∩ N | ≥ k + 1. It follows
from the definition of φξ in (1) and (2) that

φξ

(
wn+1,k+1

)
(U ) = (n + 1)

∫ 1

0

(
n

k

)

xk(1 − x)n−kdξ (x) , (22)

and so the right-hand side of (21) is equal to

1

n + 1

[bn]∑

k=[an]

φξ

(
wn+1,k+1

)
(U ) − 1

nε2
− 2δ.

We have thereby established that

ξ ((a, b]) ≥ 1

n + 1

[bn]∑

k=[an]

φξ

(
wn+1,k+1

)
(U ) − 1

nε2
− 2δ. (23)
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Since: (i) φξ satisfies TP-Mon; (ii) wn+1,k+1 ≥ wn+1,k′+1 whenever k ≤ k′; and
(iii) c − a = d − b > 0, we obtain

[bn]∑

k=[an]

φξ

(
wn+1,k+1

)
(U ) ≥

[dn]∑

k=[cn]+1

φξ

(
wn+1,k+1

)
(U ) .

From this, (22), and (23) it follows that

ξ ((a, b]) ≥ 1

n + 1

[dn]∑

k=[cn]+1

φξ

(
wn+1,k+1

)
(U ) − 1

nε2
− 2δ

=
[dn]∑

k=[cn]+1

∫ 1

0

(
n

k

)

xk(1 − x)n−kdξ (x) − 1

nε2
− 2δ

≥
[dn]∑

k=[cn]+1

∫

[c+,d−]

(
n

k

)

xk(1 − x)n−kdξ (x) − 1

nε2
− 2δ

=
[dn]∑

k=[cn]+1

∫

[c+,d−]
Pr(Yn

x = k)dξ (x) − 1

nε2
− 2δ

=
n∑

k=0

∫

[c+,d−]
Pr(Yn

x = k)dξ (x)

−
∑

k<[cn]+1 or k>[dn]

∫

[c+,d−]
Pr(Yn

x = k)dξ (x) − 1

nε2
− 2δ.

As

n∑

k=0

∫

[c+,d−]
Pr(Yn

x = k)dξ (x) =
∫

[c+,d−]

(
n∑

k=0

Pr(Yn
x = k)

)

dξ (x)

= ξ
([
c+, d−]) ≥ ξ((c, d]) − 2δ,

we obtain

ξ ((a, b]) ≥ ξ ((c, d]) −
∑

k<[cn]+1 or k>[dn]

∫

[c+,d−]
Pr(Yn

x = k)dξ (x) − 1

nε2
− 4δ

= ξ ((c, d]) −
∫

[c+,d−]

⎛

⎝
∑

k<[cn]+1 or k>[dn]

Pr(Yn
x = k)

⎞

⎠ dξ (x) − 1

nε2
− 4δ

≥ ξ ((c, d]) −
∫

[c+,d−]
Pr

(∣
∣
∣
∣
Yn
x

n
− x

∣
∣
∣
∣ >

ε

2

)

dξ (x) − 1

nε2
− 4δ.
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By using the Chebishev’s inequality (20) again, the last expression is bound from
below by ξ ((c, d]) − 2

nε2
− 4δ. We have thus shown that

ξ ((a, b]) ≥ ξ ((c, d]) − 2

nε2
− 4δ.

By letting n → ∞, this turns into ξ ((a, b]) ≥ ξ ((c, d]) − 4δ, and since the fixed
δ > 0 was arbitrary, the desired inequality (17) is established under Assumption (18).

We will now show that Assumption (18) can be dispensed with. First, notice that
when d = 1, all the arguments above work without the need to pass from d to d−.

Hence, it is not necessary to assume that ξ ({d}) = 0 when d = 1 (and, in addition,
ξ ({a, b, c}) = 0), in order to obtain (17).

Next, for any 0 < x < y ≤ 1, there exists a sequence {(an, bn, cn, dn)}∞n=1 such
that 0 < an < x < bn < 1, 0 < cn < y ≤ dn ≤ 1, cn − an = dn − bn > 0,
limn→∞ an = limn→∞ bn = x, limn→∞ cn = limn→∞ dn = y, ξ ({an, bn, cn}) = 0,
and ξ ({dn}) = 0 (unless dn = 1). As (17) holds for such an, bn, cn, dn by what has
been shown, we have ξ ((an, bn]) ≥ ξ ((cn, dn]) , which translates into ξ ({x}) ≥
ξ ({y}) by letting n → ∞. Since the latter inequality holds for all 0 < x < y ≤ 1, ξ

cannot have atoms in (0, 1]. It follows that (18) always holds, and hence (17) holds
for any a, b, c, d as in the premise of the claim. �

Proof of Theorem 1 (continued) As has been argued in the last part of the preceding
proof, ξ has no atoms in (0, 1]. It follows that the c.d.f. Fξ that corresponds to ξ, given
by Fξ (x) = ξ ([0, x]) for any x ∈ [0, 1] , is continuous on (0, 1]. Because a c.d.f. is
right-continuous, Fξ is continuous on the entire closed interval [0, 1]. By (17),

Fξ (b) − Fξ (a) ≥ Fξ (d) − Fξ (c) (24)

for any 0 < a < b < 1 and 0 < c < d ≤ 1 such that c − a = d − b > 0. The
continuity of Fξ on [0, 1] implies that, furthermore, (24) holds even if a = 0.

Now, given 0 ≤ x < y ≤ 1, consider any rational number 0 < r < 1, which has
the form r = m

n for some n > m ∈ N. Successive applications of (24) yield

Fξ

(
m

n
x + n − m

n
y

)

− Fξ (x)

=
n∑

k=m+1

(

Fξ

(
k − 1

n
x + n − k + 1

n
y

)

− Fξ

(
k

n
x + n − k

n
y

))

≥ (n − m)

(

Fξ

(
m

n
x + n − m

n
y

)

− Fξ

(
m + 1

n
x + n − m − 1

n
y

))

≥ (n − m)

(

Fξ

(
m − 1

n
x + n − m + 1

n
y

)

− Fξ

(
m

n
x + n − m

n
y

))

≥ n − m

m

m∑

k=1

(

Fξ

(
k − 1

n
x + n − k + 1

n
y

)

− Fξ

(
k

n
x + n − k

n
y

))
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= n − m

m

(

Fξ (y) − Fξ

(
m

n
x + n − m

n
y

))

,

and hence

Fξ (r x + (1 − r)y) ≥ r Fξ (x) + (1 − r)Fξ (y) (25)

holds for r = m
n . Since Fξ is continuous on [0, 1], the inequality (25) holds for any

0 < r < 1, which shows that Fξ is indeed concave on [0, 1]. This establishes the
“only if” direction of the theorem.

The proof of the “if” direction of Theorem 1 is deferred to the Appendix, as it is
based on the main fact established in the proof of our next Theorem 2. �


4.2 Mixing q-CSPIs: the only way to achieve total-power monotonicity

Theorem 1 contains an implication that is somewhat hidden from sight. The next
theorem uncovers it, and points to a tight link between the TP-Mon property and
the family of generalized CSPIs: a semivalue satisfies TP-Mon if and only if it is a
mixture of q-CSPIs.

Theorem 2 A semivalue ϕ satisfies TP-Mon if and only if there exist a probability
measure μ ∈ M ([0, 1]), uniquely determined by ϕ, such that for any v ∈ SG and
i ∈ U ,

ϕ (v) (i) =
∫ 1

0
ϕq (v) (i) dμ (q) . (26)

Proof The fact that any q-CSPI ϕq satisfies TP-Mon has already been noted (see
(16)), and it is obvious that any mixture ϕ of such indices, given by (26), inherits
this property. This establishes the “if” direction. To prove the “only if” direction, fix a
semivalue ϕ that satisfiesTP-Mon . By Theorem 1,26 ϕ = φξ for some ξ ∈ M ([0, 1])
whose c.d.f. Fξ is continuous27 and concave on [0, 1] . The last two properties of
Fξ and its monotonicity as a c.d.f. imply that there exists a nonincreasing function
fξ ≥ 0 on (0, 1] such that28 Fξ (t) = Fξ (0) + ∫ t

0 fξ (x)dx for every t ∈ (0, 1], where
Fξ (0) = ξ ({0}) .

Next, let g ≥ 0 be any continuous function on [0, 1] , and assume that Fξ (0) < 1.
Notice that

26 Notice that this use of Theorem 1 is legitimate because it relies on the “only if” part of that theorem,
which has already been established in the previous section. It is the “if” part that still awaits proof, given in
the Appendix.
27 Continuity of Fξ was established in the proof of Theorem 1, but we did not need to claim both continuity
and concavity in the statement of that theorem because concavity of Fξ on [0, 1] implies its continuity on
that interval. Indeed, the only discontinuity of a concave function on [0, 1] might occur at the end-points,
but that is impossible because Fξ is right-continuous and nondecreasing as a c.d.f.
28 One may take fξ to be the left-hand derivative of Fξ on (0, 1]. If limx→0+ fξ (x) = ∞, then all

integrals in the proof that have the form
∫ t
0 ...dx (for 0 < t ≤ 1), and in which the integrand involves

fξ (x), should be regarded as improper integrals.
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∫ 1

0
g(x)dξ (x) = g(0)Fξ (0) +

∫ 1

0
g(x) fξ (x)dx = g(0)Fξ (0) +

∫ 1

0
g(x)

(∫ fξ (x)

0
ds

)

dx

= g(0)Fξ (0) +
∫ ∞
0

(∫ 1

0
g(x)Is≤ fξ (x)dx

)

ds. (27)

Denote aξ = limx→0+ fξ (x) > 0,29 and let hξ be a nonincreasing function on [0, aξ )

defined by hξ (s) = sup{x ∈ [0, 1] | s ≤ fξ (x)} for every s ∈ [0, aξ ); notice that
hξ > 0. The expression in (27) is then equal to

g(0)Fξ (0) +
∫

[0,aξ )

(∫ 1

0
g(x)Ix≤hξ (s)dx

)

ds

= g(0)Fξ (0) +
∫

[0,aξ )

hξ (s)

(∫ 1

0
g(x)

1

hξ (s)
Ix≤hξ (s)dx

)

ds.

We have thereby shown that

∫ 1

0
g(x)dξ (x) = g(0)Fξ (0) +

∫

[0,aξ )

hξ (s)

(∫ 1

0
g(x)

1

hξ (s)
Ix≤hξ (s)dx

)

ds, (28)

where
∫
[0,aξ )

hξ (s) ds = 1 − Fξ (0). Now recall the definition of the probability
measure ξq ∈ M ([0, 1]) as the one that is concentrated on [0, q], with dξq(x) =
1
q Ix≤qdx when q > 0. The equality (28) then becomes

∫ 1

0
g(x)dξ (x) =

∫ 1

0

(∫ 1

0
g(x)dξq(x)

)

dνξ (q) , (29)

where νξ ∈ M ([0, 1]) is the probability measure determined by the following prop-
erties: νξ ({0}) = Fξ (0), and νξ ((0, x]) = ∫

[0,aξ )
Ihξ (s)≤xhξ (s) ds for any x ∈ (0, 1].

The measure μ = νξ turns out to be the one that is required in ( 26). Indeed, given
v ∈ SG and i ∈ U , by using (3) we obtain

ϕ (v) (i) = φξ (v) (i) =
∫ 1

0
φx (v) (i) dξ (x)

(by (29)) =
∫ 1

0

(∫ 1

0
φx (v) (i) dξq(x)

)

dνξ (q)

=
∫ 1

0
φξq (v)(i)dνξ (q) =

∫ 1

0
ϕq(v)(i)dνξ (q) .

Lastly, if Fξ (0) = 1 then ξ is supported on {0}, i.e., ξ = ξ0, implying that ϕ =
φξ0 = ϕ0, and hence (26) holds trivially. Thus, the existence of μ that satisfies (26)
has been established for any given TP-monotonic ϕ = φξ .

29 The limit aξ exists because fξ is nondecreasing, and its positivity follows from the assumption that
Fξ (0) < 1. It may, furthermore, be equal to ∞.
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The fact that μ in (26) is determined uniquely by the given ϕ will be established in
the Appendix, based on a useful observation made in the upcoming Remark 2. �


We conclude with two remarks.

Remark 1 (Generalized Coleman-Shapley values and TP-monotonicity of semivalues
for all finite games). Dubey et al. (1981) defined a semivalue on the space of all finite
games, G, as a linear projection30 ϕ : G → AG that satisfies the Anonymity and
Non-negativity axioms of Sect. 2.2 (in the context of general games in G,Anonymity
needs to be stated for any v ∈ G, and Non-negativity for any monotonic v ∈ G).
Their characterization of semivalues on G as the family

(
φξ

)
ξ∈M([0,1]) (defined by (1)

and (2) for all v ∈ G ) is identical to that in Proposition 1 for simple games. Using
this characterization, q-Coleman-Shapley values for games in G can be defined in the
same way as q-CSPIs were defined on SG in Sect. 3.1, and, with TP-Mon stated for
games in G, all our results (Proposition 2 and Theorems 1, 2) hold for semivalues on
G instead of SG, by identical arguments. �

Remark 2 (Generalized CSPIs decompose semivalues). Consider any semivalue ϕ that
satisfies TP-Mon; by Theorem 2, it possesses the representation (26) for some μ ∈
M ([0, 1]) . There turns out to be a strong connection between ϕ and the semivalue
φμ. Using the terminology of Casajus and Huettner (2018), ϕ decomposes φμ, that is,
for any v ∈ SG with a finite carrier N and any i ∈ U ,

φμ (v) (i) = ϕ (v) (i) +
∑

j∈N\i
(ϕ (v) ( j) − ϕ (v−i ) ( j)) , (30)

where v−i is the game obtained from v by the removal of player i from its minimal
carrier.31 Thus, if ϕ (v) (i) is interpreted as a measure of i’s direct power, φμ (v) (i)
may be viewed as a combined measure of i’s direct power and his threat power (the
latter being captured by the total change of the direct power of other players effected
by i’s exclusion).

Casajus and Huettner (2019) showed that (30) holds when μ is a Dirac measure
concentrated on 1

2 (in which case φ 1
2
is the BPI, and ϕ = ϕ 1

2
is the CSPI). To establish

(30) for ϕ that is given by (26) for a general μ ∈ M ([0, 1]) , define a game vμ ∈ G
by

vμ(S) :=
∫ 1

0
vq (S) dμ (q) (31)

(where vq (S) is given by (10) and (11)) for every S ∈ 2U . It can be readily seen that

φμ(v)(i) = vμ(N ) − vμ(N\i) (32)

30 I.e., ϕ acts as the identity map when restricted to AG.
31 Formally, v−i (S) := v (S\i) for every S ∈ 2U . Notice that v−i may be the zero game, which is
excluded from our definition of simple games. In such a case, ϕ

(
v−i

)
is also taken to be the zero game.
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for any v ∈ SG with a finite carrier N , and any i ∈ N (for completeness, this will be
stated and proved in Proposition 3 in the Appendix). Also, by integrating both sides
of the equation in Proposition 2 over q w.r.t. μ and noticing that the Shapley value
operator is interchangeable with integration, another equality is obtained:

ϕ (v) (i) = Sh
(
vμ

)
(i) . (33)

By substituting into (30) the expressions obtained for φμ(v), ϕ (v) in (32) and (33),
the equality in (30) follows immediately from the efficiency of the Shapley value.32

Since, by Proposition 1, any semivalue has the form φμ for some μ ∈ M ([0, 1]),
(30) shows that any semivalue can be decomposed by a mixture of generalized CSPIs
(specifically, by ϕ defined in (26) for the corresponding μ). �


A Appendix

A.1 Proof of the“if” direction of Theorem 1

Proof Assume that the c.d.f. Fξ of the distribution corresponding to ξ is concave on
[0, 1] . The proof of the “only if” part of Theorem 2 shows that, in such a case, the
semivalue ϕ = φξ has the representation (26). But then, by the “if” part of Theorem 2,
ϕ satisfies TP-Mon. �


A.2 Proof of the uniqueness of a representingmeasure� in Theorem 2

Proof Assume that a semivalue ϕ possesses a representation (26) for some μ ∈
M ([0, 1]) . Then, as shown in Remark 2, ϕ decomposes φμ. But then φμ is uniquely
determined by (30), andμ is in turn uniquely determined by φμ (due to Proposition 1).

�


A.3 Proposition 3

Proposition 3 Consider μ ∈ M ([0, 1]) and v ∈ SG. For any finite carrier N of v and
any i ∈ N ,

φμ(v)(i) = vμ(N ) − vμ(N\i), (34)

where vμ ∈ G is the game given by (31).

Proof It is clear from (1), (2) that, for any q ∈ (0, 1], the q-value φq is given by

φq (v) (i) = E
[
v(S

q
N ) − v(S

q
N\i) | i ∈ S

q
N

]
,

32 Equalities (32) and (33) extend, respectively, Proposition 1 and Theorem 2 of Casajus and Huettner
(2019). Our proof of ( 30) follows the argument used by these authors in establishing their Corollary 1.
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where S
q
N is the random coalition of q-active players that satisfies (7). Notice that

E
[
v(S

q
N ) − v(S

q
N\i) | i ∈ S

q
N

]
= 1

q
E

[
v(S

q
N ) − v(S

q
N\i)

]

= 1

q
E[v(N ∩ S

q
N )] − 1

q
E[v((N\i) ∩ S

q
N )]

= vq(N ) − vq(N\i),

and hence

φq (v) (i) = vq(N ) − vq(N\i). (35)

Whenq = 0, (35) still holds becauseφ0 (v) (i) = v(i) and v0(N )−v0(N\i) = v(i)
by (11). By integrating both sides of (35) over q w.r.t. μ and using (3), the desired
equality (34) is obtained. �


References

Banzhaf JF (1965) Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev 19:317–343
Banzhaf JF (1966) Multi-member electoral districts—Do they violate the “One Man, One Vote” principle.

Yale Law J 75:1309–1338
Banzhaf JF (1968) One Man, 3.312 Votes: A Mathematical Analysis of the Electoral College. Vilanova

Law Review 13:304–332
Brams SJ (2013) Game Theory and Politics, Dover Books on Mathematics. Dover Publications, Mineola
CasajusA (2012)Amalgamating Players, Symmetry, and theBanzhafValue. Int JGameTheory 41:497–515
Casajus A, Huettner F (2018) Decomposition of solutions and the shapley value. Games Econ Behav

108:37–48
Casajus A, Huettner F (2019) The Coleman-Shapley-index: being decisive within the coalition of the

interested. Public Choice, forthcoming
Coleman JS (1971) Control of collectives and the power of a collectivity to act. In: Lieberman Bernhardt

(ed) Social choice. Gordon and Breach, New York, pp 192–225
Dubey P (1975) On the uniqueness of the shapley value. Int J Game Theory 4:131–139
Dubey P, Neyman A, Weber RJ (1981) Value theory without efficiency. Math Oper Res 6:122–128
Dubey P, Einy E, Haimanko O (2005) Compound voting and the Banzhaf index. Games Econo Behav

51:20–30
Dubey P, Shapley LS (1979)Mathematical properties of the Banzhaf power index.Math Oper Res 4:99–131
Einy E (1987) Semivalues of simple games. Math Oper Res 12:185–192
Felsenthal DS, Machover M (1998) The measurement of voting power: theory and practice, problems and

paradoxes. Edward Elgar Publishers, London
Haimanko O (2018) The axiom of equivalence to individual power and the Banzhaf index. Games Econ

Behav 108:391–400
Hart S, Mas-Colell (1996) Bargaining and Value. Econometrica 64:357–380
Lehrer E (1988) Axiomatization of the Banzhaf value. Int J Game Theory 17:89–99
Nowak AS (1997) On an axiomatization of the Banzhaf value without the additivity axiom. Int J Game

Theory 26:137–141
Owen G (1968) A note on the shapley value. Manag Sci 14:731–732
Penrose LS (1946) The elementary statistics of majority voting. J R Stat Soc 109:53–57
Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory

of Games II (annals of mathematical studies 28). Princeton University Press, Princeton
Shapley LS, Shubik M (1954) A method for evaluating the distribution of power in a committee system.

Am Polit Sci Rev 48:787–792

123



320 O. Haimanko

Weber RJ (1988) Probabilistic values for games. In: Roth AE (ed) The Shapley value: essays in honor of
Lloyd S. Shapley. Cambridge University Press, Cambridge, pp 101–121

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Generalized Coleman-Shapley indices and total-power monotonicity
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Finite games, Simple games, and Power indices
	2.2 Semivalues axioms
	2.3 Characterization of semivalues

	3 Generalized CSPIs and total-power monotonicity
	3.1 Generalized CSPIs as semivalues
	3.2 Random-arrival interpretation of q-CSPIs
	3.3 Random-order interpretation of q-CSPIs
	3.4 The total power under q-CSPI
	3.5 The axiom of total-power monotonicity

	4 Results
	4.1 Total-power monotonicity of a semivalue
	4.2 Mixing q-CSPIs: the only way to achieve total-power monotonicity

	A Appendix
	A.1 Proof of the ``if'' direction of Theorem 1
	A.2 Proof of the uniqueness of a representing measure  µ in Theorem 2
	A.3 Proposition 3

	References




