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Abstract

The problem of fair division of payoff is one of the key issues when considering
cooperation of strategic individuals. It arises naturally in a number of applications
related to operational research, including sharing the cost of transportation or divid-
ing the profit among supply chain agents. In this paper, we consider the problem of
extending the Shapley Value—a fundamental payoff division scheme—to cooperative
games with externalities. While this problem has raised a lot of attention in the litera-
ture, most works focused on developing alternative axiomatizations for an extension.
Instead, in this paper we focus on the coalition formation process that naturally leads
to an extended payoff division scheme. Specifically, building upon recent literature,
we view coalition formation as a discrete-time stochastic process, characterized by the
underlying family of probability distributions on the set of partitions of players. Given
this, we analyse how various properties of the probability distributions that underlie
the stochastic processes relate to the game-theoretic properties of the correspond-
ing payoff division scheme. Finally, we prove that the Stochastic Shapley value—a
known payoff division scheme from the literature—is the only one that satisfies all
aforementioned axioms.
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1 Introduction

The problem of fair division of payoff is one of the fundamental problems when con-
sidering cooperation of strategic individuals. It arises naturally in various applications

Bd  Oskar Skibski
oskar.skibski @mimuw.edu.pl

Tomasz Michalak
tomasz.michalak @ mimuw.edu.pl

University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00182-019-00682-4&domain=pdf
http://orcid.org/0000-0002-3978-416X

148 0. Skibski, T. Michalak

related to operational research, including sharing transportation costs between cus-
tomers (Goel and Gruhn 2008), dividing the profit from cooperation among supply
chain agents (Nagarajan and Sosi¢ 2008), and measuring the distribution of the power
in legislative bodies (Algaba et al. 2007).

One of the well-known solutions to this problem is the Shapley value (Shapley
1953). It divides the payoff from cooperation in a way that satisfies various fundamen-
tal properties (or axioms). Mathematically, according to the Shapley value, the share
of a player in the overall outcome from cooperation equals to her average marginal
contribution to this outcome, taken over all possible permutations of players. Shapley
(1953) argued that his payoff division scheme can be rationalized by the following
deterministic coalition formation process: assume that players create the grand coali-
tion sequentially in a random order. A new player receives the payoff that equals her
marginal contribution to the group of players that she joins. Now, the Shapley Value
is the player’s expected such payoff given all possible orders of players.

The Shapley value is used not only to divide costs or share profits in cooperative
scenarios, but also as an advanced tool in various other settings, such as assessing the
role of a criterion in multi-criteria decision making (Grabisch et al. 2008), attributing
risk in public health applications (Cox 1985), and evaluating centrality of nodes in
networks (Gomez et al. 2003; Skibski et al. 2018a).

The standard version of the Shapley value was developed for games in the character-
istic function form, i.e., when it is simplistically assumed that the value of a coalition
depends solely on its members. However, many real-life scenarios involve externali-
ties, i.e., partitions of outside players may affect the value of a coalitions. Externalities
occur, for instance, in supply chains (Netessine and Zhang 2005), oligopolistic mar-
kets (De Clippel and Serrano 2008), and in the international agreements (Finus 2003;
Plasmans et al. 2006).

Unfortunately, the Shapley value for games with no externalities cannot be immedi-
ately extended to such richer settings. This is because a direct translation of Shapleys
original axiom system to games with externalities is too weak to yield a unique value.

Addressing this issue has been a subject of an intense debate in the literature (see
(Koczy 2018) for arecent overview). Two orthogonal approaches can be distinguished.
The first approach, followed by the majority of authors, is focused on developing a
new axiomatization by either modifying Shapley’s original axiom system, extending it
by additional axioms, or proposing completely different one (De Clippel and Serrano
2008; Myerson 1977; Maskin 2003; Hafalir 2007). In contrast, in the second approach,
the focus in shifted from axioms to the coalition formation processes that may occur
in games with externalities. The key idea is to study such processes and analyse the
values that they yield. The axiomatic characterisation of any value is then typically
built upon the coalition formation process that yields this value.

In this vein, Grabisch and Funaki (2012) proposed three values for games with
externalities, supported by particular coalition formation processes. These values,
however, do not satisfy the Null-player Axiom—Shapley’s fundamental requirements
that says that a player who does not contribute anything to any coalition should not
obtain any payoff. More recently, Skibski et al. (2018b) proposed a general approach to
extend the Shapley value to games with externalities in which the coalition formation
process is viewed as the discrete-time stochastic process characterized by an arbitrary
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family of quasi-probability distributions p = (p1, p2, . . .). The authors showed that all
values that satisfy the direct translation of Shapleys axioms to games with externalities
can be obtained using such a process approach. We refer to such values as p-Process
(Shapley) values.

The Chinese Restaurant Process—one of the key stochastic processes in probability
theory—turns out to be of particular importance in the context of games with external-
ities. In more detail, Skibski et al. (2018b) showed that using the Chinese Restaurant
Process in the process approach leads to well-known value from the literature; more-
over, it can be uniquely characterized by the strengthening of the Null-Player Axiom
and the direct translation of Shapley’s remaining axioms. This value, now termed
the Stochastic Shapley Value (Skibski et al. 2018b), had been previously derived by
Feldman (1996) and Macho-Stadler et al. (2007) based on two specific axiom systems.

While the work by Skibski et al. (2018b) forged the link between cooperative
game theory and probability theory in the context of extending the Shapley value to
games with externalities, this link has not been yet thoroughly explored. Interestingly,
however, as we show in this article, there exist a plethora of results in probability
theory that may shed a new light on our understanding of payoff division in games
with externalities.

In particular, we study the relation between the properties of the probability dis-
tributions that underline stochastic processes and the corresponding values. We begin
our analysis by considering two well-known properties—exchangeability and con-
sistency. In more detail, we first show that if distributions from the family p satisfy
the property of exchangeability, then the p-Process Shapley Value satisfies a property
called Strong Symmetry. We then show that if, in addition to exchangeability, the fam-
ily p satisfies the property of consistency, then the p-Process Shapley Value satisfies
a property called the Null-player Out Axiom.

Next, we discuss two further properties of probability distributions. The first one,
called in the literature conditional independence, means that the partitions formed by
latter elements is independent from the partition of earlier ones. When combined with
exchangeability and consistency, conditional independence characterizes the class of
the celebrated Ewens probability distribution. We show how this property of p leads to
a new, natural axiom, called Condition Independence in Games, met by the resulting
p-Process Shapley value. The second property, which we call 2-partition equality, says
that probability distribution on two partitions of two-element set should be uniform,
i.e., both partitions are equally likely. This is because both elements involved can
be either together or apart. We show that it is possible to translate this property to
Embedded Coalition Anonymity—an axiom proposed by Albizuri et al. (2005), but
now focused solely on 3-player games. Intuitively, this axiom says that in a 3-player
game, swapping the values of a (singleton) coalition embedded in two partitions does
not affect the payoffs of players.

Our key result is that the Stochastic Shapley value is a unique extension for which the
underlying probability distribution satisfies all four properties, i.e., exchangeability,
consistency, conditional independence, and 2-partition equality. Thus, through our
analysis, we provide a new axiomatization of the Stochastic Shapley value.

The remainder of this article is organized as follows. In the next section, we present
basic definitions and notation. In Sect. 3, we consider properties of the probability
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distribution and show how they translated to the properties of the corresponding values
for games with externalities. In Sect. 4, we discuss existing values that can be obtained
using the process approach. Conclusions follows.

2 Preliminary definitions

Let N = {1,2,...,n} be a set of players. A coalition, S, is any subset of N. A
partition, denoted P, is any set of disjoint coalitions whose union is N. The set of
all partitions over N is denoted by & (N). An embedded coalition is a pair (S, P),
where S is a coalition and P is a partition such that S € P. The set of all embedded
coalitions over N is denoted by EC(N). When there is no risk of confusion, we will
write &2 and EC instead of Z(N) and EC(N).

A game (in a partition-function form) is amapping v : EC(N) — R that associates
areal number with every embedded coalition. The outcome of the game (or the value of
the game) is a function ¢ that, for a given game, associates a vector of n real numbers,
one for each player, i.e., ¢ : RECN) — RN Thus, ¢; (v) denotes the value ¢ of player
i in game v. As is customary in the literature, we assume that the grand coalition, N,
forms. In result, the value of the game distributes the value of the grand coalition.

A permutation of set S is abijection : § — {1, 2, ..., |5]|} that assigns positions
to players. We use text decoration to distinguish the set of positions from the set of
players. The set of all permutations of S is denoted by £2(S). For a permutation v and a
playeri, CT" denotes the set of players that appearin afteri: C7* = {j | n(j) > m(i)}.
A permutation obtained from w € §2(S) by addingi ¢ S at the end is denoted by ;.
In addition, for § = {1, 2, ..., |S|}, we define the identity permutation m;y € £2(S)
as wig(k) = k forevery k € S.

For an arbitrary function f : N — X, f(S) = {f(@) | i € S} for S € N, and
f(P)={f(S)| S € P}for P € #(N). Consequently, (S, P) = (f(S), f(P)).
Moreover, for a bijection f : N — N, we define (f(v))(S, P) = v(f(S, P)) and
@) =ri).-

A probability distribution on the set of partitions of {1, ..., n} is a mapping p,, :
P({1,...,n})) — Rthatsatisfies ZPe@({]l,...,m}) pn(P)=1and0 < p,(P) < 1 for
every P € Z({1, ..., n}). A quasi-probability distribution allows for negative values,
i.e.,itis any mapping p, : #({1, ..., n}) — Rthatsatisfies Zpey({ﬂ ..... np Pn(P) =
1. For P, € ({1, ...,k}), k < n, we define p, on Py as the sum of probabilities of
the partitions that cover Py:

Pa(Py) = > Pa(R). (1)

ReZ({1,...n):{SN{L,...k}|SeR} =P

A family of (quasi-)probability distribution on the set of partitions of 1,2, ... is an
ordered list p = (p1, p2, . ..), where each p, is a (quasi-)probability distribution.
Fix (S, P) € EC. The Dirac game ¢®>-F) is a game in which only coalition S in
partition P has non-zero value: ¢S (S, P) = 1 and ¢S-P)(S, P) = 0, otherwise.
We use a shorthand notation for adding/excluding a player to/from a coalition or a
partition: S_; = S\{i}, Sy; = SU {i} and P_; = {T\{i} : T € P}. Analogously,
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for a set of players, T C N, we define Py = {T'\T : T’ € P}. Furthermore, to
denote the partition obtained by the transfer of player i to coalition T in partition P,
we introduce the following notation:

t (P) = P_rupy U{T U (i}}.

In particular, if T = @, then i forms a singleton coalition {i}.

A game has no externalities if the value of every coalition is independent
from the partition of other players, i.e., v(S, P;) = v(S, P;) for every S C N,
(S, P1), (S, P,) € EC(N). Such a game can be represented in the characteristic-
function form, b : 2N — R with 5(¥) = 0. A well-known value of games without
externalities is the Shapley value (Shapley 1953).

Definition 1 (Shapley value) For a game, v, and a player, i € N, the Shapley value is
defined by the following equation:

. 1 Ny
SVi(U)ZW Z v(Ci U i) —u(C), @)

" meR(N)

which can be rewritten as:

S| — DI(N]| —|SD!
sviy = Y W DUMIZI gy~ pesyiin. 3

|
SCN,ieS INI!

The Shapley value can be viewed as the following coalition formation process.
Assume that players leave the grand coalition one by one in a random order and, as a
player leaves, he receives a payoff that equals his marginal contribution to the group
of players that he left. Now, the Shapley value is the expected outcome of the player’s
contributions over all orders.

Shapley (1953) proved that the Shapley value is a unique payoff distribution scheme
that satisfies four desirable axioms: Efficiency, Symmetry, Additivity, and the Null-
player Axiom. For games with externalities, Shapley’s axioms are translated as follows:

— Efficiency (EFF)—the total payoff is distributed among the players: Y ", .y @i (v) =
v(N, {N}) for every game v;

— Symmetry (SYM)—payoffs do not depend on the players’ names: ¢(f(v)) =
f(p)(v) for every game v and every bijection f : N — N;

— Additivity (ADD)—if two games are combined, then the payoffs should be equal
to the sum of payoffs of both games considered separately: ¢(B1v; + Bava) =
Biro(v1) + Boep(v2) for all the games vy, vy and scalars 81, B2 € R, where (v; +
12)(S, P) = vi(S, P) + v2(S, P) and (Bv)(S, P) = B - v(S, P); this condition
is sometimes called Linearity (Macho-Stadler et al. 2007);

— Null-player Axiom (NP )—the payoff of anull-player, i.e., player without the impact
on the value of any coalition, is zero: if for every (S, P) such thati € S, and every
T € (P\{S}) U {4} it holds that v(S, P) — v(S—;, riT(P)) = 0, then ¢; (v) = 0,
for every game v and playeri € N.
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Unlike in games without externalities, when externalities are present, these axioms
do not imply a unique value. In result, a number of extensions have been proposed
(De Clippel and Serrano 2008; Macho-Stadler et al. 2007; Bolger 1989). A number of
such values can be obtained using the process approach, i.e., are equal to a p-Process
Shapley value for a family of quasi-probability distributions p.

Definition 2 (The p-Process Shapley value) For a game, v, and a player, i € N, the
p-Process Shapley value is defined as follows:

O YooY peam(P))W(CT UL, Pieruy) — v(CT Pier)),s
'ze.o(N) PeZ(N)
{r~'(m)}eP
“)

where P[s) = P_gs U {S}; this can be rewritten as follows:

S — D!
HOEEY % > Yo (PG (P\S-)) -

(S,P)eEC INT! 7eR(N\S) Te(P\{S)HU{#}
i€S
(w68, Py = v(sei 7T (PD)). 5)

Formula (4) sums over all possible permutations and partitions of players. As the
position of the last player does not matter, it is assumed that he forms a singleton
coalition. Also, note that for S = {i} formula (5) does not depend on the specific
values of p,_ for partitions of size n but only on their sum. This is because we have
v(S—;, P) =0for S = {i} and every P € Z(N).

For a family of probability distributions, p, the p-Process Shapley value can be
viewed as the following coalition formation process. Assume that players leave the
grand coalition N in a random order 7 and divide themselves into groups outside.
Assume that after k steps, partition P; has been formed outside of the remainder of
the grand coalition. In the (k + 1)-th step, one player departs and joins one of the
coalitions (or forms a new coalition) with probability p,_1 (7w (Pk+1))/pn—1((Px)),
where Py is the partition obtained by this transfer. As the result of his leaving, the
player is assigned a payoff that equals his elementary marginal contribution, i.e., the
loss of a coalition he left. Finally, in the n-th step, the last player, independently of
which coalitions he joins, is assigned the remaining value of the grand coalition. Now,
the p-Process Shapley value is his expected payoff over all orders.

Skibski et al. (2018b) proved that every value that satisfies Shapley’s axioms is
the p-Process Shapley value for some family of quasi-probability distributions p =
(p1, p2, . ..). This result is the starting point of our further analysis.

Theorem 1 Skibski et al. (2018b) If the value satisfies EFF, SYM, ADD, NP if and
only if it is a p-Process Shapley value for some quasi-probability distribution p.

Let us introduce the axiom of Monotonicity.

Monotonicity (MON)—increase of a player’s contributions does not decrease his
payoff: if vi (S, 75 (P)) — v1(S, P) = v2(S4i, 7 (P)) — va(S, P) holds for
every (S, P) € EC,suchthati ¢ S, then ¢; (v1) > ¢; (v2).
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Skibski et al. (2018b) proved that if the value additionally satisfies Monotonicity, then
we can limit ourselves to probability distributions.

Example 1 (the Stochastic Shapley value) Consider the probability distribution p,, that
results from the following process. At time ¢t = 1, partition {1} is obtained. At time
t = k the element k either forms a new block, {k}, with the probability % or is added
to one of the existing blocks with the probability %, where b is the size of this block.
The p-Process Shapley value based on this probability distribution is the Stochastic
Shapley value (Feldman 1996; Macho-Stadler et al. 2007; Skibski et al. 2018b).

The process described in Example 1 is the famous Chinese restaurant process
(Aldous 1985). The name attributed to Jim Pitman comes from the following analogy.
Imagine a fictional Chinese restaurant with a large number of empty large tables.
Assume customers arrive sequentially: the first customer sits at the first table and
every new customer either sits directly next to someone at one of the already occupied
tables or at the first unoccupied table, where each of those seats is chosen with the
same probability. In result, k-th customer has k choices and sits at the empty table
with the probability % and at the table with b customers with the probability %.

The Chinese restaurant process leads to the following probability distribution on
the set of partitions of {1, ..., n}:

7] — D!
pr(l)RP(P) _ [lrep ,

IN|!
forevery P € Z({1, ..., n}). In particular, for n = 3 we have:

pSRP AL 21 3 = ¢, PSR 2,3)) =2, and
PSR ({1}, {2, 3h = p§RP ({1, 2}, {3 = p§RP L, 3}, {21 = ¢.

The Chinese restaurant process has several desirable properties, such as exchange-
ability and consistency the details of which we discuss in the next section. In result, the
Chinese restaurant process is used in many applications; some more recent include
data clustering (Teh et al. 2005), gene expression analysis (Qin 2006) and natural
language processing (Blei et al. 2010).

3 Properties

We consider the following four properties of probability distributions: exchangeability,
consistency, conditional independence and 2-partition equality. Our goal is to study
how the satisfiability of these properties by a given family p translates to the properties
of the corresponding p-Process Shapley value. We will show how each new property
limits the space of feasible values. Our key result is that the Stochastic Shapley value
is the only p-Process Shapley value in which p satisfies all the properties under
consideration.
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3.1 Exchangeability

We say that a (quasi-)probability distribution is exchangeable if relabelling elements
does not change the distribution of the partition. Thus, the probability of the partition
depends only on the sizes of blocks, and not by their members. Formally, p,(P) =
pn(f(P)) forevery P € Z({1, ..., n}) and bijection f : {1,...,n} — {1,...,n}.

Example 2 (the Bolger value) Let us consider the probability distribution p,, thatresults
from the following process. At time ¢ = 1, partition {1} is obtained. At time ¢ = k the
element k is added to one of the existing blocks or forms a new block, each option with
the same probability. Now, p,({{1}}) = 1, and p,({{1, 2}}) = p,({{1}, {2}}) = %
However, p,({{1, 2}, {3}}) = % and p,({{1, 3}, {2}}) = %. Thus, this probability
distribution is not exchangeable. The p-Process Shapley value based on this probability
distribution is the Bolger value (Bolger 1989).

In probability theory, exchangeability is the necessary condition for de Finetti’s
theorem (Lehner 2006). While de Finetti’s theorem concerns an infinite sequence
of Bernoulli random variables, in our work we consider exchangeability of random
partitions. This notion was proposed by Kingman (1978) who proved an analogous of
de Finetti’s theorem for random partitions where the role of i.i.d. sequences is player
by “paintbox processes” [see (Aldous 1985) for details].

In what follows, we will show that the property of exchangeability translates to
Strong Symmetry—a strengthening of the axiom of Symmetry proposed by Macho-
Stadler et al. (2007). To better understand this concept, let us consider a game (5-#)
(recall that in this game only a particular coalition S embedded in a certain P has
a non-zero value). Symmetry says that all players from coalition S should have the
same payoff. In turn, payoffs of players from N\S may differ between them. This
may, however, seem unfair, as they all have the same role in the game: they must form
a specific partition P\S for the coalition S in P to be able to generate a value.

Strong Symmetry is intended to tackle the above problem. In particular, let us con-
sider abijection f : N\S — N\S andlet f(s p)(v) be a game obtained by exchanging
the value of (S, P)and (S, SU f(P\{S})) inv (formally, (f(s,p)(v))(S, P) = v(S, SU
FPESH), (fis,py()(S, S U fF(P\{S})) = (S, P) and (fis,p)(0))(S, P) =
v(S, P), otherwise). The axiom of Strong Symmetry states that the value satisfies
two conditions: (i) Symmetry; and (ii) that the payoffs from game f(s p)(v) are equal
to the payoffs from game v:

Strong Symmetry (SSYM)—the value of a coalition affects the payoffs of outside
players symmetrically:

1) ¢(f(v)) = f(e)(v) for every game v and bijection f : N — N;
(i) ¢(fs,py(v)) = @(v) for every game v, embedded coalition (S, P) and
bijection f : N\S — N\S.

The latter condition is equivalent to the condition ¢; (e'S:")) = ¢, (e'S:P)) for every
i, j ¢ Sforadditive values. In other words, all players, whose coalitions in all partitions
have the value of zero, are assigned the same payoff.
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The following theorem shows that a p-Process Shapley value satisfies Strong Sym-
metry if and only if p is a family of exchangeable quasi-probability distributions.

Theorem 2 A p-Process Shapley value satisfies SSYM if and only if p is a family of
exchangeable quasi-probability distribution.

Proof Let p,_; be a quasi-probability distribution. First, we show that Strong Symme-
try implies that p,, | is exchangeable. Assume otherwise and let Py € Z({L, . .., ) be
a minimal partition such that p,,_1 (Px) # pn—1(f (Px)) for abijection f: {l, ..., K —
{1, ..., k}. From the fact that k is minimal, we know that f(k) = [ # k. Also, we
can arbitrary reorder previous elements, as p,—1(Px—1) = pn—1(f(Px—1)) for every
fi{1,...,k—1} — {1,...,k — 1}. Now, we construct a game e'5-*) for n players
with S = {k + 1, ..., n} and players {1, ..., k} partitioned according to Pj:

w(Py) = eMktTon) (rig (POUk+ 1)

From formula (5) we have:

_ISEANT = IS = D!
[N]!

MNE
wk(w(Pk))=—ﬁ Y. pear(P) =

" meR(N\(SU(k))

Pn—1(Pr),

and analogously ¢; (w(f(Py))) = — an_l (f (Pr)). Asboth probabilities
are different, both players get different payoffs, and Strong Symmetry is violated.
Now, we prove the other direction of the theorem. Assume that p,_1 is exchange-

able. Then, for ¢ with i ¢ S, formula (5) simplifies to

_ISEANT = 18] = D!
IN]!

ol (5P = Pn—1 (T (P\{SH)

for arbitrary w € £2(N\S). Thus, it does not depend on i and Strong Symmetry is
satisfied. This concludes our proof. O

If we consider the values that satisfy Strong Symmetry, then p, (7t (Px)), for every
partition P, € £ (S) with S € N, does not depend on permutation 7 € £2(S). In such
scenarios, we define p, (Px) on partition of players Py as p, (w(Py)) with w € £2(S)
defined as a natural order of S: w(i) = mif [{j € S: j <i}| =m.

Now, the general formula (5) can be simplified as follows:

S| — DI(N| = |SD!
o= Y GSIZDNMZISN gy

!
(S,B)gEC INI! Te(P\{SHU{d}
e

{(v(S, P) = v(S—;, 7/ (P)))). (6)
Observe that v(S_;, rl.T (P)) in the above formula is multiplied by p,,—| (tl.T (P\S-)).
Also, observe that v(S, P) is multiplied by ZTe(P\{S})U{@} pn_l(fl.T(P)\S_i) =

Pn—1(P\{S}). In other words, the value of a coalition in a given partition is always
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preceded by the probability that this partition forms. This suggests the following algo-
rithm for evaluating a fair division in a game with externalities:

— first, we create from a game with externalities v an average game v with no exter-
nalities. This is done by calculating the value of every coalition as the average of
its values in the game with externalities:

0(S) = Y _a(S. P)-v(S. P),

P>S

where Y p_ga(S, P) = 1 forevery S;
— then, we calculate the Shapley value for the average game v:

p(v) = SV(0).

This approach, called the average approach, was introduced by Macho-Stadler et al.
(2007), who proved that the value that satisfies Shapley’s axioms can be constructed
using the average approach if and only if it satisfies Strong Symmetry [see Theorem
1 in the work by Macho-Stadler et al. (2007)].

Theorem 3 The average approach is equivalent to the process approach with a family
of exchangeable quasi-probability distributions.

Proof From Theorem 1, we know that process approach can produce every value that
satisfies Shapley’s axiom: EFF, SYM, ADD, and NP. Moreover, Theorem 2 shows that
the resulting value satisfies SSYM if and only if family p consists of exchangeable
quasi-probability distributions. Thus, these two theorems combined with the result
from Macho-Stadler et al. (2007) imply that a value can be obtained using the average
approach if and only if it can be obtained using the process approach with exchangeable
quasi-probability distributions. O

Hu and Yang (2010) proved that every value obtained using the average approach
with positive weights can be obtained using the process approach. Their result is a
special case of our precise characterization from Theorem 3.

3.2 Consistency

Recall that, in our definition of a family of probability distributions, we did not require
any relation between p, and p,41. This means, in particular, that probability distri-
butions from the same family can be arbitrarily different. For instance, probability
distribution p» can assign a non-zero value only to partition {{1, 2}}, while probabil-
ity distribution p3 can assign a non-zero value only to partition {{1}, {2}, {3}}. As a
result, given that the p-Process Shapley value for the n-player game depends only on
Pn—1, the values for games with different number of players can be arbitrarily defined
and no relation between such values can be assumed. To address this issue, we analyze
in this section the condition of consistency.
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A family of probability distribution p = (p1, pa2, ...) is said to be (Kotmogorov)
consistent (or projective) if p,(Py) = pr(Px) for every P, € Z({1,2,...,k}) and
k < n.Thus, the sum of probabilities according to distribution p,, of the partitions that
cover Py (i.e., such partitions that are obtained by inserting elements {k + 1, ..., n}
into partition Py) equals the probability of Py according to distribution py.

Example 3 (the Hu-Yang value) Consider family p = (p1, p2, . ..) of uniform proba-
bility distributions p,(P) = 1/|Z ({1, ..., n})| forevery P € Z({1, ..., n}). Now,
the sum of probabilities of all partitions in which element 1 is in the same set as element
2 equals p, ({1}, {2}}) = 2008 Thus, p, ({1, 2}) # pa({{1,2))) = 3
forn > 2 (e.g., p3({{1, 2}}) = %) and p is not consistent. The p-Process Shapley
value based on this family of probability distributions but shifted by one position, i.e.,
(p2, p3, . ..), is the Hu-Yang value (Hu and Yang 2010).

In terms of our coalition formation process for p-Process Shapley value, consistency
requires that the probability of joining a coalition by a player should depend only on
the coalitions to choose from and not on the coalition that the player is leaving.

Now, we will show that if p is a family of exchangeable probability distribution,
then consistency translates to the Null-player Out Axiom proposed by Derks and Haller
(1999) and vice versa, i.e., the family of exchangeable probability distributions p is
consistent if and only if the p-Process Shapley value satisfies the Null-player Out
Axiom.

Let us first explain the concept of this axiom. In particular, let us consider a game
v in which i is a null-player in the strict sense, i.e., i does not have an impact on the
game whatsoever. In such a case, the Null-player Axiom requires that player i has
zero payoff. However, it does not mean that player i cannot have an impact on the
payoffs of others. In other words, removing a null-player from the game may affect the
payoffs of the remaining players. The Null-player Out Axiom rules out such situations.
Specifically:

Null-player Out Axiom (NPO)—a null-player does not have an impact on the
payoffs of others: if i is a null-player then ¢; (v) = ¢;(v_;) forevery j € N\{i},
where v_; denotes the game without playeri: v_; (S—;, P—;) = v(S, P) forevery
(S, P) such thati € S.

Note that the combination of the standard Null-player Axiom and the Null-player Out
Axiom is equivalent to the Strong Null-player Axiom proposed by Macho-Stadler
et al. (2007).

When i is not a null-player, constructing the game v_; can be challenging. However,
the situation is much simpler when i is a null-player. This is because the value of
embedded coalition (S, P) € EC(N\{i}) can be obtained by inserting player i to an
arbitrary coalition in partition P. Regardless which coalition is chosen, we will obtain
the same value.

The following theorem states that if p-Process Shapley value satisfies Strong Sym-
metry, then consistency of family p is necessary and sufficient to obtain the Null-player
Out Axiom.
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Theorem 4 Assume that p is a family of exchangeable quasi-probability distributions.
Then, a p-Process Shapley value satisfies NPO if and only if p is consistent.

Proof Consider the class of games {vfj’lﬁ)j) | (S, P) € EC, j € S}defined as follows:

(S,P) _ (S.P) (s_j. 7l (P))
DR D DR

Te(P\{Shu{s}

Note that player j is a null-player in this game. Thus, the Null-player Out Axiom
implies that the payoff of arbitrary player i € N\{j} does not change if we remove
null-player j from this game, i.e.,
(S,P) \ _ o (S,P) N
(pi(vnu”(j)) = @i ((vnull(]‘))—j)
holds for every i € N\{j} and (S, P) € EC such that j € S. Now, we argue that this
condition is also sufficient to imply the Null-player Out Axiom. This is because the

class of games vr(zi};)();') forms a basis of all games in which j is a null-player. Thus,

if the payoff of player i € N\{,j} in game v;iilf(}) for every (S, P) does not change
when we remove player j, then it does not change for arbitrary game in which j is a
null-player.

Now, consider this condition for the p-Process Shapley value, where p is a family
of exchangeable quasi-probability distributions. Let i be a player, and (S, P) € EC an
embedded coalition such that j € S. From formula (6) for values with exchangeable
probability distributions we get:

(S.P) (ISI = DIANT = ISD!

wi(vnull(j)) = IN|! Pn—1(P\{S})
S| —2)W(IN| —|S|+ D!
n Z (ISl )(||N||' B )pn—l(TjT(P)\S—j)-
Te(P\{SHU(s} '

Furthermore, from exchangeability of p,—; we know that the sum
ZTe(P\{S})U{@} Pn—l(TjT(P)\S—j) equals p,—1(P\{S}). Thus,

(05D ) — <(|S| —DIAN] = ISD! (S| =2)I(IN]| = S|+ D!
LN null () |N|' |N|‘
(S| =2UIN| — |SD!
B (IN| = 1)!

)pn—l(P\{S})

Pn-1(P\{S}).

Formula (6) applied to game v,(li’lﬁ}) without player j equals

S| =N —ISD!
atSiiy =1 (“3”('_ {)! D pacpuis).

Since P\{S} can be chosen arbitrarily, we get that p,_1(Pr) = pn—2(Px) for every
Py e Z(S) for S C {1,...,n — 2} which is equivalent to consistency. O
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Consistency yields another simplification of the formula (6) for the p-Process Shap-
ley value. In particular, we can omit index in p, because the elements of family p are
consistentand p; (Py) = p;(Py),foreveryi, j > kandevery P, € ({1, 2,...,k}).

In the next two sections we will consider two further properties of stochastic pro-
cesses, called conditional independence and 2-partition equality.

3.3 Conditional independence

Let us divide set {1, ..., n} into two parts: A = {1,...,k}and B = {k+ 1, ..., n}.
Next, let us consider the set of partitions in which both sets A and B are separated:
P*={P\UPy | P e Z({1,...,k}), P, € Z({k+1,...,n}}. Now,itis natural to
ask whether the probabilities of both partitions are independent, i.e., whether an event
P € P affects the probability distribution of P> and vice versa. Formally, a family of
probabilistic distribution p = (p1, ..., pn) is said to be conditionally independent (or,
in other words, satisfy subset deletion), if for each k < n the probability distribution
of partitions of N that contains {k + 1, ..., n} is p. Formally,

Pn(PeU{k+1,....,0n}) = pp(Pr) - f(k,n) forevery P € Z({1,2,...,k}), (7)

where f(k, n) donotdepend on Py. The fact that this condition can be applied multiple
times implies that an arbitrary partition of the latter elements does not depend on
the former ones (unless they mix). Thus, it can be considered as a “lack-of-memory
property”.

Let us translate this property to an axiom for games with externalities. As in the case
of Strong Symmetry, let us assume that there is only one coalition S with a non-zero
value in the game. However, this time we require that it has a non-zero value not only
in a particular partition P but in (possibly all) partitions in which there exist another
coalition, 7. More formally, let vg|7 be a game, where only coalition S in partitions
P, such that T € P\{S}, has non-zero values.

Furthermore, let us consider game v obtained from vg|7 by removing players from
T.Formally, let vg) (S, P) = vs;r (S, PU{T}), and vg|.(S*, P) = Ofor S* # S.Now,
intuitively, conditional independence translated to an axiom means that, in both the
above games, vs|r and vy, the relations between how different partitions affect the
payoff of player i are the same, i.e., the general structure of the value is preserved.

Conditional Independence in Games (Cl)—when only one coalition in partitions
with another one has non-zero values we can consider a smaller game: ; (vg|7) =
@i (vs).)- fUT], INI, |S]), where f does notdepend on vg|7, forevery S, T C N,
i € §,and every game vg|7.

Theorem 5 Assume p is family of exchangeable quasi-probability distributions. Then,
the p-Process Shapley value satisfies CI if and only if p is conditionally independent.

Proof Let vs|r be the game, where only coalition S has non-zero values in the par-
titions P such that {S, T} € P. Consider the payoff of player i € § in this game.
From formula (6) for the p-Process Shapley value based on family of exchangeable
probability distributions p we have:
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S| —DI(N]| = |SD!
o/ osir) = Y 51 DML = 15D (s - wsir (S, P).

N|!
PeP(N) IN]
S, TeP

Let game vg), be defined as follows: vg|. (S, P) = vsr (S, PU{T}), and vs| (S*, P) =
0 for S* # S. Then, the payoff of player i in game vg), equals:

» _ (ISI = DIN| = |S] = ITD! PALS S p
@; (vs).) = Pegz(;v\m (N[=1TD! Prn—T—1(P\{SHvs|.(S, P)
SepP
S| = D!(N| =S| =T
-y @ ()“(V"l'T'D', O i1 (LS. Thvsir (5. P).
PeZ(N) ’
S, TeP

Now, if p satisfies conditional independence, i.e., if p,(Py U {k+1,...,n}) =
pr(Py) - f(k,n) holds for every P, € Z({1, 2, ..., k}), then we have

Pn—1(P\{S}) = pu—jr -1 (P\{S, T}) - f(z,n)

forevery P € &(N) suchthat S, T € P. This is because, from formula (1), we know
that p,_1(P\{S}) is the sum of probabilities p,_1(R) over all partitions R of size
n — 1 covering P\{S}. However, each such probability translates to the corresponding
probability p,_7|(R\T) multiplied by f(k,n), and the sum of such probabilities
equals p, 711 (P\{S,T}) - f(k,n). As aresult,

(NT=ISDY (N[ —ITD!
INIL (NI =S| =1ThH!

ol (vsir) = @l (vs)) - f(t,n) -

Thus, Conditional Independence in Games is satisfied.
On the other hand, assume that ¢? satisfies Conditional Independence in Games,
i.e., for every coalition S, T it holds that:

ol (vsit) = ¢ (vs1.) - g(IT1, INI, |S]),

for some function g which does not depend on vg|7. Next, consider the set of players
{1,...,n,n + 1} and an arbitrary partition P, € Z({1,...,k}). Now, consider a
payoff of player n + 1 in game ¢") for § = {n + 1} and P = Jrijll(Pk) Uk +
1,...,n} U {{n + 1}}. From formula (6) and Conditional Independence in Games
applied to vg;r = ¢®-P), we have that:

1 1
— pu(PLU{K+1,..., = ——  pr(Py) - —k,n+1,1),
T Pn(Pr U { n}) 1 pr(Pr) - g(n n )

Thus, by putting f (k, n) = % -g(n—k, n+1, 1) we obtain the property of conditional

independence. o
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Aldous (1996) proved that a family of probability distributions p satisfies exchange-
ability, consistency, and conditional independence if and only if it follows Ewens
sampling formula, defined as follows:

glPI-1

[Tasi-n
@+ DE+2)--@+n—1) ¢}

pn(P) = ®)

for some 6 € Ry. The Ewens distribution arises naturally from the following parame-
terization of the Chinese Restaurant Process. At time ¢ = 1, partition {1} is obtained.
Now, assume that forming a new block has weight 6 instead of 1. At time r = n, ele-
ment n forms a new block with probability m or is added to one of the existing

blocks with probability =%y, where b is the size of this block.
Note that the result of Aldous applies only to probability distribution. Let us first

extend the result of Aldous also to quasi-probability distributions.

Theorem 6 Family of quasi-probability distributions p satisfies exchangeability, con-
sistency, and conditional independence if and only if follows Ewens distribution (i.e.,
formula 8) for some 6 € R\{—1, =2, ...}.

See the Appendix A for the proof of Theorem 6.
In result, we get the following corollary.

Theorem 7 A value satisfies EFF, ADD, SSYM, NP, NPO, and CI if and only if it is a
p-Process Shapley value, where p is the Ewens distribution (i.e., formula 8) for some

0 eR\{=1,-2,...}.

Proof By combining Theorems 2 and 4 with Theorems 5 and 6 from this section we
get the result. O

Finally, in the next section we consider the property of 2-partition equality.

3.4 2-Partition equality

We focus in this section on such p-Process Shapley values in which the probability
distribution results from the parameterized Chinese Restaurant Process. We start by
presenting two extensions of the Shapley value from the literature that can be obtained
by parametrizing the Chinese Restaurant Process with 6 set to two opposite extreme
values.

Example 4 (the McQuillin value) Consider the parameterized Chinese Restaurant Pro-
cess with 0 = 0, i.e., the probability of forming a new coalition equals O; hence, all
elements form a single coalition outside. Thus, p,(P) = 1 for P = {{1, 2, ..., n}},
and p,(P) = 0, otherwise. The p-Process Shapley value based on this family of
probability distributions p leads to the McQuillin value (McQuillin 2009).

Example 5 (the externality-free value) Consider the parameterized Chinese Restaurant
Process with & — o0, i.e., the probability of joining an existing coalition approaches
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zero. Thus, in the limit, p,(P) = 1 for P = {{k} | k € {1, ..., n}}}, and p,(P) =0,
otherwise. Using this definition of p in a construction of the p-Process Shapley value
results in the externality-free value, proposed by Pham Do and Norde (2007), and later
studied by De Clippel and Serrano (2008).

Next, consider set {1, 2} and let us focus on the parametrized Chinese Restaurant
Process. When element 2 joins 1, two partitions can possibly emerge: either element 2
creates a new block (with probability p> ({{1}, {2}})) or it joins the block of element 1
(with probability p2 ({{1, 2}})). Since no extra information is available, it is reasonable
to assume that both cases are equally likely:

1
p2({{1}, {2}) = p2({{1, 2}}) = 3"

We call this property of a family of probability distribution 2-partition equality.

We will now translate 2-partition equality to the property of the value in games
with externalities. To this end, we use the Embedded Coalition Anonymity condition
proposed by Albizuri et al. (2005). Let S € N be an arbitrary coalition. For a bijection
gs :{Pe PIN)|SeP} - {Pec PN)|S e P} of partitions with coalition
S, we define a game, denoted gs(v), in which values of S are swapped according
to gs: gs()(S, P) = v(S, gs(P)) for every P € Z(N) such that S € P, and
gs()(S', Py =v(S', P') for ' # S.

Embedded Coalition Anonymity in 3-Player Games (3-ECA)—in a 3-player
game, swapping the values of a coalition § between partitions P contain-
ing S does not affect the payoffs: ¢;(gs(v)) = ¢;(v) for every § < N,
gs :{P e PIN)| Se P} - {Pe PN)|S e P}, and every game v
with N = {1, 2, 3}.

Albizuri et al. (2005) proposed a value built upon the Embedded Coalition
Anonymity for arbitrary number of players. The resulting value, however, violates
the Null-player Axiom. Thus, we limit this axiom to games with three players—the
smallest game with externalities. In a 3-player game, i.e., for N = {1, 2, 3}, external-
ities affect only the values of singleton coalitions. In particular, v({i}, {{i}, {j}, {k}})
and v({i}, {{i}, {J, k}}) may differ for {i, j, k} = {1,2,3}. Thus, we argue that the
values of the coalition in both partitions should have the same impact on the payoffs
of players. Note that this approach can be considered as a “golden mean” between
two extreme cases considered above—the externality-free value (which only takes
into account v({i}, {{i}, {j}, {k}})) and the McQuillin’s value (which only accounts
forv({i}, {{i}, {j. k}D).

We show the equivalence of 2-partition equality and 3-ECA in the following theo-
rem.

Theorem 8 The p-Process Shapley value satisfies 3-ECA if and only if p satisfies
2-partition equality.

Proof Let N = {1, 2, 3}. From formula (5) for player 1, we have that:

@ Springer



Fair division in the presence of externalities 163

p1(v) =2/6- pp({1}) - (v({1, 2,3}, {1, 2, 3}}) — v({2. 3}, {{1}. {2, 3}}))
+1/6 - p2({{1, 2}}) - (v({1, 2}, {{1. 2}, {3}}) — v({2}, {{1. 3}, {2}}))
+1/6 - p2({{1}, {2}}) - (v({1, 2}, {1, 2}, (3}) — v({2}, {{1}, {2}, {3}})
+1/6 - p2({{1, 2}}) - (w({L, 3}, {{1, 3}, {2}D) — v({3}. {1, 2}, {3}}))
+1/6 - p2({{1}, {24 - (w({1, 3}, {1, 3} {23) — ({3}, {1} {2}, {3}})
+1/6 - p2({{1, 2}}) - ({1}, {1}, {2, 3}
+1/6 - p2({{1}, {2} - v({1}, {{1}, {2}, (3}D).

For every i, j,k € {1,2,3},i # j # k, the value v({i}, {{i}, {j, k}}) is multiplied
by p2({{1, 2}}); also, the value v({i}, {{i}, {/}, {k}}) is multiplied by p>({{1}, {2}}).
Thus, both values affect the payoff equally if and only if both probabilities are equal:
p2({{1, 2}}) = p2({{1}, {2}}). This concludes the proof. O

In result, only the family of probability distributions obtained from the (non-
parametrised) Chinese Restaurant Process satisfies all four properties.

Theorem 9 There exists a unique value which satisfies EFF, ADD, SSYM, NP, NPO,
CI, and 3-ECA and it is the Stochastic Shapley value.

Proof Based on Theorem 7 we know that value satisfies EFF, ADD, SSYM, NP, NPO,
and CI if and only if itis a p-Process Shapley value where p is the Ewens distribution
(i.e., formula (8) for some 6 € R\{—1, —2,...}. From Theorem 8 we know that 3-
ECA implies 2-partition equality, which for formula (8) is equivalent to p> ({1, 2}) =
0/ + 1) = 1/2, which means that 6 = 1, and p,(P) = 1/(n!) [[gcp(IS| — DL
Thus, p-Process Shapley value based on this probability distribution is the only value
that satisfies all axioms from theorem’s statement. This value is the Stochastic Shapley
value. O

Table 1 summarizes our results on the relationship between properties of the process
and axioms of the corresponding values. In the next section, we collate the values for
games with externalities from the literature that can be obtained using the process
approach and discuss which properties are satisfied by the probability distributions
they rely on.

4 Comparison with other values in the process approach.

In the literature, there exist five values for games with externalities that can be obtained
with the process approach for probability distributions (i.e., following (Skibski et al.
2018Db), that satisfy Shapley’s axioms and Monotonicity). We already presented them
in Examples 1-5. In this section, we formally introduce these values and discuss which
properties/axioms they satisfy.

— Stochastic Shapley value (Feldman 1996; Macho-Stadler et al. 2007; Skibski et al.
2018b) (introduced in Example 1) is a p-Process Shapley value for the family

pCRP = (pCRPpERP "y with pSRP defined as follows:
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[rep(71 = D!

CRP
P =
Py (P) NI

As proven in Theorem 9, pC &P satisfies exchangeability, consistency, conditional

independence, and 2-partition equality and the Stochastic Shapley value satisfies
SSYM, NPO, CI, and 3-ECA.

— Bolger value (Bolger 1989) (introduced in Example 2) is a p-Process Shapley
value for the family p® = (p&, p2,...) with p? defined as follows:

rEpy= ] !

This family of probability distributions was already introduced as an example
of non-exchangeable distribution, i.e., it violates SSYM. While pB is consis-
tent, it violates the NPO (see the work by Macho-Stadler et al. (2007) for
details). Also, we note that it does not satisfy conditional independence, as

B B _ 1 : .
Pp (P U{k+1,....,n)/p(P) = A DB 2T 1€ depends on Py;

hence, the value does not satisfy the corresponding axiom—ClI. Finally, p? satis-
fies 2-partition equality, so from Theorem 8 the Bolger value satisfies 3-ECA.

— Hu-Yang value (Hu and Yang 2010) (introduced in Example 3) is a p-Process
Shapley value for the family p#Y = (pf¥ pl¥ ) with p/!¥ defined as fol-
lows:

[P|+1

HY _
Y I X ES

We showed in Example 3 that this family of probability distributions is not con-
sistent. Also, it does not have the property of conditional independence, due to the
fact that:

[Pl +2 . |21, ...,n+1})|

AY pUlk+1,... AY (py =
o POk AL o) o (P = o e ik 1))

Finally, this family does not satisfy 2-partition equality. Thus, based on The-
orems 4, 5 and 8, the Hu-Yang value violates the Null-player Out Axiom,
Conditional Independence in Games and 3-ECA. On the other hand, pH ¥ s
exchangeable and the corresponding value satisfies Strong Symmetry.

— McQuillin’s value (McQuillin 2009) (introduced in Example 4) is a p-Process

Shapley value for the family p/*! = (plf"”, p{"”, ..) with pI"!" defined as

follows:

Sfull 1 ifP= {{]l, ey [ﬂ}}
P) =
pr(P) 0 otherwise.

As we discussed before, p/*/ satisfies exchangeability, consistency and condi-
tional independence; hence, the McQuillin’s value satisfies Strong Symmetry, the
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Table 2 The properties of existing values which satisty the direct translation of Shapley’s axioms

Exchangeability/ ~ Consistency/ C. independence/ 2-Part.equality
SSYM NPO CI /3-ECA
Stochastic SV VIV VIV VIV VIV
Bolger X /% V' /% X /% VIV
Hu and Yang VIV X /% X /% X /X
Pham Do and Norde VIV VIV VIV X /%
McQuillin VIV VIV VIV X /X

Null-player Out Axiom, and Conditional Independence for Games. However, p/*//
violates 2-partition equality and the McQuillin value violates 3-ECA.
— externality-free value (Pham Do and Norde 2007; De Clippel and Serrano 2008)

(introduced in Example 5) is a p-Process Shapley value for the family p/7¢¢ =
( free _ free ree

Py »P> ... with p; = defined as follows:
1 ifP={k}|kelq,...,
pr{ree(P) _ 1 {{ } | € { P m}}
0 otherwise.

plree satisfies the same properties as the p/*/—exchangeability, consistency,
conditional independence, but violates 2-partition equality. Thus, the externality-
free value satisfies Strong Symmetry, the Null-player Out Axiom, Conditional
Independence for Games, but violates 3-ECA.

We summarise all the above observations in Table 2. As we can see, each property is
met by majority of the probability distributions under consideration. The same applies
to axioms, except Embedded Coalition Anonymity for 3-Player Game, which is not
satisfied by 3 out of 5 values. Note that the Bolger value satisfies consistency and does
not satisfy the Null-player Out Axiom—this is because our Theorem 4 applies only
to exchangeable distributions. As argued in Theorem 9, the Stochastic Shapley value
is the unique value that satisfies all four axioms.

There exists in the literature yet another value for games with externalities proposed
by Myerson (1977) that satisfies Shapley’s axioms. However, this value does not meet
Monotonicity. Thus, it can be obtained with the process approach, but for a family of
quasi-probability distributions, p™ = ( p{” , pg’l ,...). In result, this family does not
satisfy any of the properties discussed above. In particular, it violates 3-ECA, since
PY (L. 2})) = — 1 and p¥ ({1}, {2}}) = 2.

Finally, let us discuss the coalition formation process proposed by Grabisch and
Funaki (2012). This process can be interpreted as the following stochastic process:
The starting point is the partition of singleton coalitions. In each step, two coalitions
chosen at random are merged. Ultimately, the grand coalition is formed after n — 1
steps. Now, the value of player i is defined by looking how the values of all coalitions
change when they are merged with coalitions containing player i in this process.

Note that, unlike our approach, in the process by Grabisch and Funaki all considered
partitions have n players. In result, this approach can be considered orthogonal to our
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approach—a partition is formed not from a partition with less players, but from a
partition with the same number of players, but with more coalitions. The resulting
probability distribution is very different from those studied in this paper.

5 Conclusions

In this paper, we studied the link between cooperative game theory and probability
theory in the context of extending the Shapley value to games with externalities. We
analyzed various properties of the probability distributions that underline the stochastic
processes that strengthens the Null-player Axiom and how these properties relate to
the game-theoretic properties of the corresponding extensions of the Shapley value.
In particular, we showed that the property of exchangeability from probability theory
corresponds to Strong Symmetry—a well-known axiom in cooperative game theory.
Furthermore, we showed that consistency corresponds to Null-player Out property,
conditional independence to the new axiom—Conditional Independence in Games
and 2-partitions equality—to Embedded Coalition Anonymity in 3-Player Games.
Finally, we proved that the Stochastic Shapley value is the only one that satisfies all
aforementioned axioms.

In our future work, it would be interesting to analyze whether the choice of the
suitable value for a given application can be driven by the specific probabilities of
merging groups in a given environment. Also, in the spirit of the recent literature
on game-theoretic network centralities, it would be interesting to study how values
developed using the process approach can be used to rank nodes in networks.
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A Proof of Theorem 6

Theorem 10 Family of quasi-probability distributions p satisfies exchangeability, con-
sistency, and conditional independence if and only if follows Ewens distribution (i.e.,
formula 8) for some 6 e R\{—1, =2, ...}.

Proof Let p be a family of exchangeable, consistent, and conditionally independent
quasi-probability distributions. In the first part of the proof, we will assume that
p2({{1}, {2}}) ¢ {0, 1}. Next, we will consider these special cases.

Let us specify 6 as follows:

_ _ Pa({{1} {23
1= pa({{1}, (23D

©))
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We will prove using an induction on n that p, has the following form:

glPI—1
-1
O+DO@+2) - @+tn—D S]l(m Y,

pn(P) = (10)

forevery P € Z({1,...,n}),and that6 ¢ {—1,—-2,...,n— 1}.
For n = 1, the result is trivial, and for n = 2 it follows from the definition of 6
(formula (9)). Assume it holds for every n < k. We prove it holds also forn = k + 1.
We will first prove that formula (10) works for the partition of singletons, i.e.,
P={{1}, {2}, ..., {k}}. From formula (1) we have that

et ({1} 2}, KD = per ({1, {23 (K (k10D

+ ) pen({h {2 B kT (KD,
fe{d,....k}

Note that all partition in the sum above have k — 1 singleton coalitions and exactly

one coalition with two elements. Thus, from exchangeability, they all have the same
probability, equal to pry1({{1, 2}, {3}, ..., {k+ 1}}):

P ({1}, {2}, ... {kiD
= pert ({1}, 2, {) (ke + 1) + k- prer (T 23, {3), .- {k+ 1)),

From conditional independence, we know that the probability that an element k + 1
forms a singleton coalition does not depend on the partition. Formally,

Pi+1 (P U {{k + 1} = pe(Px) - B (11
for some constant 8. Thus,

({1}, {2}, . KD = B - pe({{1) {2, {KE) + k- B pe(f{TL 2 {3 . (KD,

Now, using consistency, we replace piy1 with p in pr41 ({1}, {2}, ..., {k}}), and,
by applying inductive assumption, we get:

Qk—l B ﬂ‘gk_l+/3‘k‘9k_2
O@+DO+2)--O@+k—=1) @+DO+2)---@+k—1)

Since 6 # 0, the above formula simplifies to
O0=pB-0+k). (12)
If & = —k, then formula (12) yields a contradiction: the right-hand side equal zero

while the left-hand side does not, where the latter follows from our assumption. In

other cases, formula (12) yields g = ﬁ, and, from formula (11):
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ek—l
O+k OG+DO+2)--O+k—1)

({1}, {2}, .. {k+ 1)) =

After deriving the formula for a partition with k 4 1 coalitions, we will prove that
Pk+1(P) can be derived using pr+1 for bigger partitions. Formally, we will use a
recursive induction on the size of P. To this end, consider a partition P with the size
smaller than k+ 1, but larger than one: 2 < | P| < k. As stated before, in such a case, P
contains at least two coalitions {S, T'}, one of which (say T') is bigger than a singleton
coalition. Let T = {T7, T»} be a partition of T into two non-empty coalitions. From
conditional independence we have that

Pr+1(P) _ Pr+1(P\{T} U {T1, T2})
Pha1-1s|(P\{SD)  pra1—is|(P\{S, TYU{T1, To})’

Applying the inductive assumption for n < k yields:

(7] = D!
0- (71l = DT = D

Pi+1(P) = prp 1 (P\{T}U Ty, T2}) -

If prp1 (P\{T} U {T1, T»}) follows formula (10), then pi1(P) follows it as well:

0P 1(T| — DI(T2| — 1! (71— D!
P) = R|—1)!
Pt = G e+ @+ b REQ{T}(' I A
glPI-1
= - Dl
G062 @im LR

The remaining case when P = {1, 2, ..., k + 1} follows from the fact that the prob-
abilities of all partitions sum up to one. This concludes the main part of the proof.
Next, consider two special cases: p>({{1}, {2}}) = 1 and p>({{1}, {2}}) = 0.

— Assume that pr({{1},{2}}) = 1. We will prove using induction that

pn({{1},{2},...,{n}}) = 1, and p,(P) = O for different partitions P €
Z({1,...,n}). This probability distribution is Ewens distribution with 6 — oc.
This is trivial for n = 1, 2. Assume this statement holds for n < k (with k > 2).
We will prove that it holds also forn = k + 1.
Consider partition P € Z({1,...,k,k+1}). If |P| # k+ 1 and |P| # 1,
then P contains at least two coalitions {S, 7'}, one of which (assume T') is big-
ger than singleton coalition. From exchangeability, we can assume that § =
{k—s+1,...,k k4 1}. Now, from conditional independence we have that
Pn(P) = pn—s(P\{S})- B for some . But from the inductive assumption we have
that p,—s (P\{S}) = 0, thus p,(P) = 0. As p, ({1}, {2}}) = p2({{1}, {2}}) =1
is the sum of probabilities of partitions with at least 2 partitions, we get that
pn({{1}, {2}, ..., {k+1}}) = 1. Analogously, p,({{1, 2}}) = O is the sum of
probabilities of partitions with at most k partitions, thus p, ({{1, ..., k,k+ 1}}) =
0. This concludes the proof of the case p>({{1}, {2}}) = 1.
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— Assume p>({{1}, {2}}) = 0. We will prove that p,({{1,2,...,n}}) = 1, and

pn(P) = 0 for different partitions P € Z({1,...,n}), i.e., p, is the Ewens
probability distribution with & = 0. For n = 1, and 2, it is trivial. Similarly to (i),
we will use an induction. In particular, assume that our statement holds for n < k
(with £ > 2). We will prove that it holds also forn = k + 1.
If P e Z{1,...,k+1}) contains more than two coalitions, then, from
conditional independence, the probability of P equals zero, as pixy+1(P) =
Pik+1—1s|(P\{S}) - B = O for § € P. Since k 4+ 2 > 4, at least one coalition
in every partition P € Z ({1, ...,k + 2}) with | P| > 2 must be of size 2 or more,
and we get also that py42(P) = 0. We will prove that if P contains two coalitions,
then it also has zero probability. Our proof is based on formula (1) and the property
of consistency. Specifically, we obtain:

pi(la, k —al) = prri(la+ 1,k —al) + prri(la, k —a+1]),  (13)

for every a > 0, as we know that piy1([a, k — a, 1]) = 0. From the fact that
pr(la, k — a]) = 0 for every a > 0, we have that series

(Prr1(lk + 1 = [k +1)/2], Ltk + 1)/2]D. ..., pry1 (k. 2]), prg1 (e + 1, 1)

isequal to (o, —a, @, . .., ) for some @ € R. Now, if k is even, i.e., k = 2m for
some m, we get from formula (13) that 0 = pi([m, m]) = 2pr+1([m + 1, m]), so
a = 0, and all probabilities equal zero. Otherwise, i.e., k = 2m + 1, by applying
formula (13) for pi+1, we obtain that the series

(Pr2(m +2,m+ 1], ..., pry2([2m + 1, 2]), pry2([2m + 2, 11))

is equal to (%a, —%a, %a, R :i:2m—2+1a). However, from conditional indepen-
dence we get that 0 = prio(2m + 1,1, 1]) = pry1(2m + 1, 1]) - B, and
Pik+2(2m + 2, 1]) = pr41([2m + 1]) - B for some B. Thus, either piy1([2m +
I,1]) = 0, or B = 0. Both cases imply that « = 0, which concludes the

proof. O

B Summary of notation

N The set of players N = {1,2,...,n}.

S A coalition, i.e., subset of N.

P A partition, i.e., any set of disjoint coalitions whose union is N.

P(N) The set of all partitions over N. Also denoted £2.

(S, P) An embedded coalition: S is a coalition and P is a partition such
that S € P.

EC(N) The set of all embedded coalitions over N. Also denoted EC.

v A game (in a partition-function form), i.e., amapping EC (N) —
R.

7 A value of the game, i.e., a mapping from REC(V) — RN,
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@i (v) The value of player i in game v.
b4 A permutation, i.e., a bijection § — {1, 2, ..., |S|}.
1,2,... The set of positions in a permutation.
£22(5) The set of all permutations of set S.
cr The set of players that appear in 7 after i, ie., C]7 = {j |
n(j) > ()}
T4 A permutation obtained from 7 € £2(S) by adding playeri ¢ S
at the end.
Tid An identity permutation—iz;4(k) = k for every k € S where
S={1,...,|S]}
DPn A (quasi-)probability distribution on the set of all partitions of
{1,...,n}.
p=(p1,p2, ... A family of (quasi-)probability distribution.
eSP) A game in which only (S, P) has non-zero value.
S_i, S4i A shorthand notation for S\{i}, and S U {i}.
P_;, P_p A shorthand notation for {S\{i} | S € P} and {S\T | S € P}.
tT(P) A shorthand notation for P_rugy) U {T U {i}}.
(S—;, riT (P)) An embedded coalition obtained from (S, P) by moving player
i from StoT.
0 A game (in a characteristic-function form), i.e., a mapping
2V 5 R
SV; (0) The Shapley value of player i in game 0.
gpip (v) The p-Process Shapley value of player i in game v.
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