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Abstract
We consider a population of agents whose preference types are unobservable but
imperfectly correlated with certain observable labels such as customs, languages, and
origins. In addition, the matching process exhibits homophily: agents tend to interact
with thosewho share the same labels.We show that labelling and homophily interact in
a non-trivial way to influence the evolution of preferences, which cannot be accounted
for in the extant literature.
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1 Introduction

The indirect evolutionary approach pioneered by Güth and Yaari (1992) provides a
useful methodology for studying preference evolution: preferences govern behavior,
behavior determines fitness successes, and fitness successes regulate the evolution of
preferences.1 Early models of preference evolution assume that (1) individuals in the
population are uniformly randomly matched in pairs or groups to engage in strategic

1 See also Güth (1995), Bester and Güth (1998), Fershtman andWeiss (1998), Huck and Oechssler (1999),
McNamara et al. (1999), Sethi and Somanathan (2001), Koçkesen et al. (2000), Ely and Yilankaya (2001),
Ok and Vega-Redondo (2001), Van Veelen (2006), Dekel et al. (2007), Heifetz et al. (2007a, b), Akçay et al.
(2009), Herold and Kuzmics (2009), Alger (2010) and Alger (2010); Alger andWeibull (2012, 2013, 2016,
2019). See Newton (2018) and Alger and Weibull (2019) for surveys of recent contributions to preference
evolution. See also Robson (2001) and Robson and Samuelson (2011) for a survey of another important
approach for studying preference evolution.
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2 J. Wu

interactions and (2) they can perfectly observe their opponents’ preferences. Recent
works realize that these two assumptions may be unrealistic and need to be relaxed.

Ok and Vega-Redondo (2001) and Dekel et al. (2007) consider unobservable or
partially observable preferences with uniformly random matching. They find that
observability is crucial for the emergence of non-materialistic preferences such as
altruism and reciprocity, while only materialistic preferences are evolutionarily stable
when preferences are unobservable. Alger and Weibull (2013) consider unobservable
preferences with assortative matching. That is, agents with the same preference types
are matched with higher probability than those with different preference types. They
find that instead of materialistic preferences, a certain preference type called homo-
moralis, which concerns both materialistic goals and moral values, is evolutionarily
stable.

In this paper, we propose an alternative model in which preferences may be (par-
tially) observable and matching is not uniformly random. To do so, we assume that
(1) agents’ preferences are correlated with certain observable labels and (2) agents
with the same labels are matched with a higher probability than those with different
labels. The latter assumption is called homophily, an important sociological concept
for describing the observation that people tend to interact with those who are similar in
certain observable labels such as dressing codes, customs, languages, organizational
affiliations, geographic locations, religions, and origins (see for example, Mcpherson
et al. 2001; Ruef et al. 2003; Currarini et al. 2009, 2010).

In the model, a population consists of two preference types, θ and τ , and two labels,
θ and τ . A proportion α ∈ [ 12 , 1] of θ agents are correctly labeled as the θ type and
1 − α of them are incorrectly labeled as the τ type. A proportion β ∈ [ 12 , 1] of τ

agents are correctly labeled as the τ type and 1− β of them are incorrectly labeled as
the θ type. Both α and β are exogenous variables measuring how imperfectly labels
are correlated with preference types. All agents are matched in pairs and play a two-
person game. The matching process exhibits homophily. That is, agents with the same
labels are more likely to be matched in pairs than those with different labels. Agents’
preferences may differ from the material payoffs of the game (i.e. fitness). Each pair
of agents plays a Bayesian Nash equilibrium according to their preference types and
beliefs about their opponents’ preference types. The equilibrium outcomes determine
the fitness successes of the two preference types. Correspondingly, the composition
of the population evolves, as the preference type with the higher fitness success is
adopted by more agents and the other one is adopted by fewer agents. We adopt the
generalized version of evolutionary stability of Maynard Smith and Price (1973) from
Alger and Weibull (2013) as our main solution concept and focus on studying the
stability of the homogeneous population. That is, we investigate whether a preference
type θ as the incumbent can resist the invasion of any arbitrarily small mutant group
carrying a different preference type τ from a general set of preferences.

First, we consider the case in which both preference types are incorrectly labeled
with positive probabilities (α, β < 1). In this case, regardless of the degree of
homophily in the matching, the probability that two mutants are matched in a pair
goes to zero as the size of the mutant group goes to zero. As long as the incumbents
always play a strict symmetric Nash equilibrium strategy (if one exists), they will have
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a higher fitness than the mutants, implying that only the homo-oeconomicus type of
preferences can be evolutionarily stable.

Second, suppose that both types are correctly labeled (α = β = 1). In this case,
observability allows the incumbents to treat themselves and the mutants differently.
At the same time, mutants are protected from being too “discriminated” against by
incumbents because of homophily.We find that a “Kantian-discriminating” preference
type is evolutionaily stable. A “Kantian-discriminating” agent acts “morally” (in the
sense of Alger and Weibull 2013) when matched with their own type agents and acts
“spitefully” (playing the minimax strategy) when matched with agents with different
types.2

Next, we consider the scenario in which the incumbents are correctly labeled (α =
1) whereas the mutants are not (β < 1). The mutants are considered to have an
informational advantage over the incumbents, which implies that they can better resist
latter’s “discriminating” behavior compared with the previous case of α = β = 1. We
find that when the incumbents play a strict and efficient symmetric Nash equilibrium
strategy (if one exists) when matched with other incumbents and play spitefully when
matched with the mutants, they can resist the invasion of the mutants.

Finally, suppose the incumbents are not correctly labeled (α < 1) while themutants
are (β = 1). In this case, the incumbents are considered to have informational advan-
tage over the mutants. We find that an interesting form of “discriminating” type arises:
if incumbents with such a preference type act “cooperatively” (meaning that they
coordinate on some symmetric strategy profile that yields higher payoff than some
symmetric Nash equilibrium) only when they are correctly labeled and matched with
agents with the same label, but act selfishly (playing the symmetric Nash equilibrium
that is Pareto dominated by the “cooperative” symmetric strategy profile) otherwise,
the incumbents can resist the invasion of any mutants.

The results we obtain demonstrate that the interplay between labels and homophily
generates predictions that cannot be accounted for by themodels in the extant literature.
In particular, we find that when the mutants are correctly labeled, the incumbents are
able to “discriminate” against the mutants; when the incumbents are correctly labeled,
mutants can resist the incumbents’ “discriminating” behavior because of homophily.

This paper is closely connected to the literature on assortative matching and label
recognition. Assortative matching has been an important type of population struc-
ture for explaining other-regarding behavior in the literature on evolutionary biology
dating back to Hamilton (1964a, b). Recently, Bergstrom (2003, 2013) formalizes a
framework for modeling assortative matching, which is adopted by Alger andWeibull
(2012, 2013, 2016, 2019) to the study of preference evolution and by Bilancini et al.
(2018) to a model of cultural intolerance.3 Bergstrom (2003, 2013) essentially treats
the degree of assortativity as an exogenous parameter. A related strand of the literature
considers assortativity to be a result of partner choice. See Frank (1987), McNamara
et al. (2008), Izquierdo et al. (2010), Rivas (2013), Hopkins (2014) and Izquierdo

2 Herold and Kuzmics (2009) also find stable “discriminating” types. However, since there is no homophily
in their model, agents with “discriminating” types are not required to act “morally” when matched with
their own type agents.
3 See also Van Veelen (2011), Newton (2017b) and Jensen and Rigos (2018).
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4 J. Wu

Millán et al. (2014), among others. Assortativiy can also be endogenously determined
through political processes. See Nax and Rigos (2016) and Wu (2016, 2018). In addi-
tion, Newton (2017a) extends Alger and Weibull (2013) by subjecting the degree of
assortativity under evolutionary pressure.

Label recognition is considered to be an important mechanism for promoting coop-
eration in prisoner’s dilemma through evolution. The basic intuition is that cooperators
can direct their help to other cooperators more effectively by identifying each other
through labels. It is first suggested by Hamilton (1964b) and is commonly called the
“green beard” effect since Dawkins (1976). Garciá et al. (2014) is the first paper that
studies the interaction of assortativity and label recognition on strategy evolution in
prisoner’s dilemma, while ours focuses on preference evolution.

The remainder of the paper is organized as follows. Section 2 provides the model.
Section 3 conducts the analysis. Section 4 concludes.

2 Themodel

Consider a continuum of agents constituting a population who are randomly matched
in pairs to engage in asymmetric two-person game � with the common strategy set
X . An agent playing strategy x ∈ X against another agent playing strategy y ∈ X
receives a material payoff (fitness), π(x, y), where π : X2 → R. X is a nonempty,
compact and convex set in a topological vector space and π is continuous.

Each agent is characterized by his or her preference type θ ∈ �, where � is a
general set of preference types. For the subsequent analysis, it is sufficient to consider
a populationwith two different preference types θ and τ , where θ, τ ∈ �. A proportion
1− ε of the agents carry θ and the remainder carry τ , where ε ∈ (0, 1). We refer to θ

as the incumbent type and call τ the mutant type. Define s = (θ, τ, ε) as a population
state. The set of population state is denoted by S ∈ �2 × (0, 1). Two labels θ and τ

are available. A proportion α ∈ [ 12 , 1] of the θ agents are correctly labeled as the θ

type and 1 − α of them are incorrectly labeled as the τ type. A proportion β ∈ [ 12 , 1]
of the τ agents are correctly labeled as the τ type and 1 − β of them are incorrectly
labeled as the θ type.4 Both α and β are exogenous variables measuring how perfectly
labels are correlated with these preference types.

Each preference type θ ∈ � defines a set of continuous utility functions for an
agent based on his/her preference type and label as well as the matched opponent’s
preference type and label. In the population with two different type,s θ and τ , we
define

U [cd |ab] (·) : X2 → R, (1)

as the utility function of an agent with the preference type a ∈ {θ, τ }, who is labeled
b ∈ {θ, τ } and is matched with another agent with the preference type c ∈ {θ, τ } and
labeled d ∈ {θ, τ }.
4 α = 1 denotes the case in which the label θ is the most informative signal representing the preference type
θ . α = 1

2 denotes the case in which the label θ is the least informative signal representing the preference
type θ . The same explanations apply to β.
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We impose no relation between U (cd |ab) and the material payoff function π . A
special example is the materialistic preference type, by which we mean that the utility
function U (cd |ab) = π .

In the population, α(1−ε)+(1−β)ε agents have the θ label and (1−α)(1−ε)+βε

agents have the τ label. Matchingmay not be uniformly random. Let σ ∈ [0, 1) denote
the level of homophily in matching. For each agent, he or she has a probability σ of
matching with those who share the same label and probability 1 − σ of randomly
matching with any one in the population.5

Let P[cd |ab, ε] denote the probability that an agent with the preference type a and
label b is matched with another agent with the preference type c and label d, where
a, b, c, d ∈ {θ, τ }. There are in total 16 of these probabilities given as follows:

P
[
θθ |θθ , ε

]
= P

[
θθ |τθ , ε

]
= σ

α
(
1 − ε

)

α
(
1 − ε

)
+

(
1 − β

)
ε

+
(
1 − σ

)
α
(
1 − ε

)
;

P
[
τθ |θθ , ε

]
= P

[
τθ |τθ , ε

]
= σ

(
1 − β

)
ε

α
(
1 − ε

)
+

(
1 − β

)
ε

+
(
1 − σ

)(
1 − β

)
ε;

P
[
θτ |θθ , ε

]
= P

[
θτ |τθ , ε

]
=

(
1 − σ

)(
1 − α

)(
1 − ε

)
;

P
[
ττ |θθ , ε

]
= P

[
ττ |τθ , ε

]
=

(
1 − σ

)
βε;

P
[
θθ |θτ , ε

]
= P

[
θθ |ττ , ε

]
=

(
1 − σ

)
α
(
1 − ε

)
;

P
[
τθ |θτ , ε

]
= P

[
τθ |ττ , ε

]
=

(
1 − σ

)(
1 − β

)
ε;

P
[
θτ |θτ , ε

]
= P

[
θτ |ττ , ε

]
= σ

(
1 − α

)(
1 − ε

)
(
1 − α

)(
1−ε

)
+βε

+
(
1 − σ

)(
1 − α

)(
1−ε

)
;

P
[
ττ |θτ , ε

]
= P

[
ττ |ττ , ε

]
= σ

βε(
1 − α

)(
1 − ε

)
+ βε

+
(
1 − σ

)
βε. (2)

Given a population state s = (θ, τ, ε), all agents play a Bayesian Nash equilibrium
(assuming that agents with the same preference type and the same label choose the
same strategy):

Definition 1 Astrategyprofile consistingof eight strategies, (x∗(c|ab, ε)witha, b, c ∈
{θ, τ }), constitutes a Bayesian Nash equilibrium if

5 Note that the definition of homophily here shares some similarities with the definition of assortativity
in Bergstrom (2003, 2013) and Alger and Weibull (2012, 2013). However, they are essentially different
because the former operates on labels and the latter operates on types.
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x∗(c|ab, ε
)

∈ argmax
x∈X

P
[
θc|ab

]

P
[
θc|ab

]
+ P

[
τc|ab

]U
[
θc|ab

](
x, x∗(b|θc

))

+
P

[
τc|ab

]

P
[
θc|ab

]
+ P

[
τc|ab

]U
[
τc|ab

](
x, x∗(b|τc, ε

))
, (3)

where x∗(c|ab, ε) is interpreted as the optimal strategy chosen by an a-type agent with
the label b who is matched with an agent with the label c.

Given a Bayesian Nash equilibrium (x∗(c|ab, ε)with a, b, c ∈ {θ, τ }), the resulting
average material payoffs (average fitnesses) of the two types are given as follows:

�θ

(
ε
)

=
∑

a,b,c∈{θ,τ }
P

[
bc|θa, ε

]
π

(
x∗(c|θa, ε

)
, x∗(a|bc, ε

))
; (4)

�τ

(
ε
)

=
∑

a,b,c∈{θ,τ }
P

[
bc|τa, ε

]
π

(
x∗(c|τa, ε

)
, x∗(a|bc, ε

))
. (5)

We define evolutionary stability based on the average material payoffs as in the liter-
ature on the indirect evolutionary approach.

Definition 2 A preference type θ ∈ � is evolutionarily stable against another pref-
erence type τ ∈ � if there exists an ε > 0 such that �θ(ε) > �τ (ε) in all Bayesian
Nash equilibria (x∗(c|ab, ε) with a, b, c ∈ {θ, τ }) in all states s = (θ, τ, ε) with
ε ∈ (0, ε). A preference type θ ∈ � is evolutionarily stable if it is evolutionarily
stable against all types τ �= θ in �.

This definition formalizes the notion that a homogeneous population with a certain
preference type would resist a small scale invasion of mutants carrying another prefer-
ence type. It is a generalization of the definition of evolutionary stability by Alger and
Weibull (2013) and a further generalization of the definition of evolutionary stability
by Maynard Smith and Price (1973). We also introduce the notion of evolutionary
unstability as follows.

Definition 3 A preference type θ ∈ � is evolutionarily unstable if there exists
another preference type τ ∈ � and an ε > 0 such that �θ(ε) < �τ (ε) in all
Bayesian Nash equilibria (x∗(c|ab, ε) with a, b, c ∈ {θ, τ }) in all states s = (θ, τ, ε)

with ε ∈ (0, ε).

3 Analysis

Define BNE (s) ⊆ X8 as the set of Bayesian Nash equilibria in population state
s = (θ, τ, ε). It defines an equilibrium correspondence BNE (θ, τ, ·) : (0, 1) ⇒ X8.
We extend the domain of BNE (θ, τ, ·) to [0, 1) and standard arguments (see proof of
Lemma 1 in Alger and Weibull 2013) immediately give us the following result:
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Lemma 1 BNE (s) is compact for any s = (θ, τ, ε) ∈ S. If U [cd |ab](·) is concave
in its first argument, for a, b, c, d,∈ {θ, τ }, then BNE (s) �= ∅. The equilibrium
correspondence BNE (θ, τ, ·) : (0, 1) ⇒ X8 is upper hemi-continuous.

Since we extend the domain for the equilibrium correspondence to [0, 1), we use
the following notation to denote a Bayesian Nash equilibrium as ε → 0: (x∗(c|ab)
with a, b, c ∈ {θ, τ }).

For any θ ∈ �, let �θ be the set of types τ such that as ε → 0 (a τ type being the
mutant type), a τ -type agent is behaviorally indistinguishable from a θ -type agent:

�θ =
{
τ ∈ � : ∃

(
x∗(c|ab

)
with a, b, c ∈

{
θ, τ

}))
∈ BNE

(
θ, τ, 0

)
,

x∗(c|θb
)

= x∗(c|τb
)
for any b, c ∈

{
θ, τ

})}
. (6)

As mentioned by Alger and Weibull (2013), an example of “behaviorally indis-
tinguishable” types of agents is those whose utility functions are positive affine
transformation of the utility function of the incumbents. In the rest of the analysis,
we will exclude the consideration of types belonging to �θ when we consider the
evolutionary stability of type θ .

3.1 Case 1:˛,ˇ �= 1

We start our analysis by considering the scenario in which both α and β are less than
1. We have the following result. To make the discussion concise, most of the proofs
in this paper are relegated to the Appendix.

Theorem 1 For any α, β ∈ [ 12 , 1), if there exists a symmetric strict Nash equilibrium
(x, x) for the fitness game� and x∗(θ |θθ ) = x∗(τ |θθ ) = x∗(θ |θτ ) = x∗(τ |θτ ) = x for
all Bayesian Nash equilibria in BNE (θ, τ, 0), then θ is evolutionarily stable against
any τ ∈ �\�θ .

Theorem 1 shows that whenever labels are not perfectly informative, incumbents
who always play the same strict Nash equilibrium strategy of the fitness game� (if one
exists), regardless of the labels of themselves and their opponents, can resist invasion
from any mutants. The intuition of Theorem 1 is straightforward: as the mutant group
shrinks (ε → 0), because of imperfect labelling, each mutant must almost always
be matched with an incumbent regardless of the degree of homophily. In addition,
a mutant agent can never tell for sure the type of his/her matched opponent even if
he/she is matched with another mutant. This prevents mutants behaving differently
when they are matched with other mutants compared with when they are matched
with incumbents. In this case, as long as the incumbents always play the same strict
Nash equilibrium strategy, they always have a higher average material payoff than the
mutants.

We have the following immediate corollary:

Corollary 1 For any α, β ∈ [ 12 , 1), if the fitness game � is dominance-solvable, then θ

representing homo-oeconomicus preferences, i.e., U [bc|θa](x, y) = π(x, y), for any
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8 J. Wu

a, b, c ∈ {θ, τ } and x, y ∈ X, is evolutionarily stable against any τ ∈ �\�θ . If θ is
behaviorally distinguishable from the homo-oeconomicus preference type, then there
exists α, β ∈ [ 12 , 1), such that θ is not evolutionarily stable.

The intuition of Corollary 1 is as follows.When� is dominance-solvable, the fitness
game� has a unique Nash equilibriumwhich is strict. Therefore, if the incumbents are
homo-oeconomicus, they always play the strict Nash equilibrium strategy. According
to Theorem 1, the homo-oeconomicus preference type is evolutionarily stable. On the
contrary, if the incumbents deviate from the strict Nash equilibrium strategy, homo-
oeconomicus as the mutant type can invade the incumbent population.

Theorem 1 and Corollary 1 highlight some important differences between our
model and those in the extant literature. Let us elaborate. Two mechanisms have been
found in the literature to support the stability of preference types that are behaviorally
distinguishable from homo-oeconomicus. First, Dekel et al. (2007) demonstrate the
importance of the observability of preference types.6 In their model, when preference
types are observable (even with a low probability), agents always have a positive prob-
ability of recognizing the type of their matched opponent. Hence, when two mutants
are matched and they recognize each other, they can play a symmetric strategy profile
that Pareto dominates the strict Nash equilibrium played by the incumbents if such a
strategy profile exists.7 Such a possibility, although rare, allows the mutants to invade
the incumbent population.

Second, Alger and Weibull (2013) show that even when preference types are com-
pletely unobservable, positive assortativity according to preference types in matching
makes it possible for incumbent who play a strict Nash equilibrium strategy to be
destabilized. The rationale is that given positive assortativity in types, mutants have
non-negligible probabilities of being matched with other mutants even when they
become vanishingly rare. Hence, if the mutants commit to play a strategy that leads
to a symmetric strategy profile which Pareto dominates the strict Nash equilibrium
played by the incumbents, the mutants can potentially have a higher average material
payoff than the incumbents. More specifically, Alger and Weibull (2013) show that
only a certain preference type called homo-moralis, which attaches weight to both a
self-interest goal and a moral goal, can be evolutionarily stable.8

Our model with both labels being imperfect excludes the two possibilities consid-
ered byDekel et al. (2007) andAlger andWeibull (2013), respectively. First, since both
types are incorrectly labeled, no agent can for sure tell the type of his/her matched
opponent. Hence, preference types are essentially not observable (although agents
have more information than when labels do not exist). This also explains why The-
orem 1 shares some similarities with Dekel et al.’s (2007) result for the case with
no observability. Second, we consider homophily in labels instead of assortativity in
preference types; hence, when both types are incorrectly labeled, the fraction of pairs

6 Ok and Vega-Redondo (2001) make a similar observation.
7 As discussed in Dekel et al. (2007), their logic is reminiscent of the “secret handshake” result of Robson
(1990).
8 Note that Corollary 3 in Alger andWeibull (2013) shows that homo-oeconomicus is evolutionarily stable
if agents instead engage in non-strategic activities.
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Table 1 2 × 2 Anti-coordination
game

Player 2

A B

Player 1

A 0, 0 1, 3

B 3, 1 0, 0

of matched mutants goes to zero, which contrasts to what Alger and Weibull (2013)
assume.

Theorem 1 and Corollary 1 consider games with a symmetric strict Nash equilib-
rium. However, many games do not have such an equilibrium. In what follows, we
provide an example in which Theorem 1’s result does not apply.

Example 1 Consider the game in Table 1. Let x ∈ [0, 1] denote a player’s probability
of playing the pure strategy A and X is the set of mixed strategies. The game has two
asymmetric pure strategy Nash equilibria (1, 0) and (0, 1), and one symmetric mixed
strategy Nash equilibrium (x̃, x̃) = ( 14 ,

1
4 ).

Consider a θ type such that x∗(θ |θθ ) = x∗(τ |θτ ) = x̃ , x∗(τ |θθ ) = 0, and
x∗(θ |θτ ) = 1 for all Bayesian Nash equilibria in BNE (θ, τ, 0). That is, a θ agent
tries to play the mixed strategy Nash equilibrium with his/her opponents when their
labels are matched and an asymmetric pure strategy Nash equilibrium when their
labels are mismatched. Given the θ agents’ strategies, as ε → 0, a τ type agent is
indifferent to any strategy when his/her own label matches his/her opponent’s label
and the best he/she can do when their labels are mismatched is to play x∗(τ |τθ ) = 0
and x∗(θ |ττ ) = 1 which are the best responses to x∗(θ |θτ ) and x∗(τ |θθ ), respectively.
Hence, as long as either x∗(θ |τθ ) or x∗(τ |ττ ) or both do not equal x̃ , and assuming
that x∗(τ |τθ ) = 0 and x∗(θ |ττ ) = 1, then such a τ type does not belong to �θ and is
considered to be the strongest mutant type against the θ type.

The average material payoffs of these two types of agents as ε → 0 are given by9

lim
ε→0

�θ

(
ε
)

= α
[(

σ +
(
1 − σ

)
α
)

× 3

4
+

(
1 − σ

)(
1 − α

)
× 3

]

+
(
1 − α

)[(
1 − σ

)
α × 1 +

(
σ +

(
1 − σ

)(
1 − α

))
× 3

4

]
; (7)

lim
ε→0

�τ

(
ε
)

=
(
1 − β

)[(
σ +

(
1 − σ

)
α
)

× 3

4
+

(
1 − σ

)(
1 − α

)
× 3

]

+β
[(

1 − σ
)
α × 1 +

(
σ +

(
1 − σ

)(
1 − α

))
× 3

4

]
. (8)

Let σ = 0.5, α = 0.5, and β = 0.6. We have limε→0 �θ(ε) = 17
16 and

limε→0 �τ(ε) = 81
80 , respectively. Since the former is larger than the latter, from

9 Please refer to the proof of Theorem 1 in the Appendix for the detailed expressions of the average material
payoffs.
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Table 2 3 × 3
Rock–Paper–Scissor game

Player 2

R P S

Player 1

R 0, 0 −1, 10 1, −1

P 10,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0

the standard argument of continuity, we can conclude that θ is evolutionarily stable
against any τ ∈ �\�θ . The rationale is as follows. Because α > β, a θ type agent is
more likely to be labeled as a θ type than a τ type agent. Hence, a θ type agent has a
higher probability of obtaining the highest payoff of three than a τ type agent.

In Example 1, a θ agent tries to play an asymmetric pure strategy Nash equilibrium
with his/her opponents when their labels do not match. However, in games without a
pure strategy Nash equilibrium, would a similar θ type be stable? We next investigate
another game in which only mixed strategy Nash equilibria exist:

Example 2 Consider the game in Table 2. Let x = (α, β, γ ) ∈ [0, 1] × [0, 1] × [0, 1],
with α + β + γ = 1, denoting a player’s mixed strategies and X being the set
of mixed strategies. The game has no pure strategy Nash equilibrium and (x̃, x̃) =(( 1

12 ,
1
3 ,

7
12

)
,
( 1
12 ,

1
3 ,

7
12

))
is a symmetric mixed strategy Nash equilibrium.

Consider a θ type such that x∗(θ |θθ ) = x∗(τ |θτ ) = x̃ , x∗(τ |θθ ) = (0, 1, 0), and
x∗(θ |θτ ) = (1, 0, 0) for all Bayesian Nash equilibria in BNE (θ, τ, 0). As ε → 0,
a τ type agent is indifferent to any strategy when his/her own label matches his/her
opponent’s label and the best he/she can do when their labels are mismatched is to play
x∗(τ |τθ ) = (0, 1, 0) and x∗(θ |ττ ) = (0, 0, 1)which are the best responses to x∗(θ |θτ )

and x∗(τ |θθ ), respectively. Since x∗(θ |ττ ) �= x∗(θ |θτ ), τ type does not belong to �θ

and is considered to be the strongest mutant type against the θ type.
The average material payoffs of the two types of agents as ε → 0 are given by

lim
ε→0

�θ

(
ε
)

= α
[(

σ +
(
1 − σ

)
α
)

∗ 1

4
+

(
1 − σ

)(
1 − α

)
∗ 10

]

+
(
1 − α

)[(
1 − σ

)
α ∗

(
− 1

)
+

(
σ +

(
1 − σ

)(
1 − α

))
∗ 1

4

]
;
(9)

lim
ε→0

�τ

(
ε
)

=
(
1 − β

)[(
σ +

(
1 − σ

)
α
)

∗ 1

4
+

(
1 − σ

)(
1 − α

)
∗ 10

]

+β
[(

1 − σ
)
α ∗ 1 +

(
σ +

(
1 − σ

)(
1 − α

))
∗ 1

4

]
. (10)

Let σ = 0.5, α = 0.5, and β = 0.9. We have limε→0 �θ(ε) = 21
16 and

limε→0 �τ(ε) = 53
80 , respectively. Since the former is larger than the latter, from

the standard argument of continuity, we can conclude that θ is evolutionarily stable
against any τ ∈ �\�θ . The rationale is similar to that for Example 1. Because α > β,
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Labelling, homophily and preference... 11

a θ type agent is more likely to be labeled as a θ type than a τ type agent. Hence, a θ

type agent has a higher probability of obtaining the highest payoff of 10 than a τ type
agent even though he/she runs the risk of receiving the lowest payoff of −1.

3.2 Case 2:˛ = ˇ = 1

Next, we consider the scenario in which α = β = 1. In this case, both labels
are perfectly correlated with the two types. Therefore, the types are observable. In
addition, homophily in labels is equivalent to assortativity in types. Let (xe, xe) ∈
argmax(x,x)∈X×X π(x, x) denote an efficient symmetric strategy profile as in Dekel
et al. (2007). Let xm ∈ argminx∈X maxy∈X π(y, x) be a minimax strategy. Let
πe f f icient = π(xe, xe) denote the efficient symmetric outcome of the game �. Let
πminimax = maxy∈X π(y, xm) denote the minimax value of the game �. We define a
specific preference type as follows:

Definition 4 θ ∈ � is a Kantian-discriminating type if x∗(θ |θθ ) = xe, x∗(τ |θθ ) =
xm for all Bayesian Nash equilibria in BNE (θ, τ, 0).

We have the following result:

Theorem 2 When α = β = 1, if πe f f icient > πminimax for the fitness game �, a
Kantian-discriminating type is evolutionarily stable for any σ ∈ [0, 1).

The intuition behind Theorem 2 is as follows. In the case with perfectly correct
labels and homophily, two opposite forces affect the average material payoff of the
mutants. First, given observability, as discovered by Herold and Kuzmics (2009), an
agent can treat different types of opponents differently. Therefore, the incumbents can
play spitefully (a minimax strategy) against mutants to minimize the mutants’ average
material payoffs. This is exactly the reason for the stability of the “discriminating”
types in Herold and Kuzmics (2009).10 Second, mutants are protected from being
“discriminated” against by the incumbents to a certain extent because of homophily.
They now have a non-negligible probability of matching with their own type of agents.
Hence, when they are matched in pairs, they can play the efficient symmetric strategy
profile (being “Kantian” in the sense of Alger andWeibull 2013) to increase their own
group’s average material payoffs. Therefore, incumbents need to play the efficient
symmetric strategy profile in self-matching pairs and play the minimax strategy when
matched the mutants to ensure the evolutionary stability of their types.

The necessary condition for evolutionary stability is given as follows.

Corollary 2 When α = β = 1, if x∗(θ |θθ ) /∈ argmaxx∈Xπ(x, x), then there exists a
σ ∈ [0, 1), such that θ is not evolutionarily stable.

Corollary 2 shows that non-Kantian preference types cannot be evolutionarily sta-
ble because they can be invaded by Kantian preference types when the degree of

10 InHerold andKuzmics (2009), agents are said to have a “discriminating” type if they play any symmetric
strategy profile that yields highermaterial payoff than theminimax value of the gamewhen they arematched
in pairs and play a minimax strategy when they are matched with mutants.
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12 J. Wu

Table 3 2 × 2 Dominant
solvable game

Player 2

A B

Player 1

A 2, 2 0, 4

B 4, 0 3, 3

homophily is sufficiently high. This demonstrates that in the case with observabil-
ity, being “discriminating” alone is not sufficient to guarantee evolutionarily stability
given a positive degree of homophily.

Theorem 2 applies to games satisfying πe f f icient > πminimax . Next, we consider
an example in which πe f f icient = πminimax .

Example 3 Consider the game in Table 3. Let x ∈ [0, 1] denote a player’s probability
of playing the pure strategy A and X is the set of mixed strategies. Strategy x = 1 is
the strictly dominant strategy and (1, 1) is the unique Nash equilibrium. We also have
xe = xm = 1 and πe f f icient = πminimax . Therefore, the Kantian-discriminating type
is indistinguishable from the homo-oeconomicus type and it is evolutionarily stable
against any non-homo-oeconomicus type.

Note that if there exists a game in which πe f f icient < πminimax , then no θ type is
evolutionarily stable because the mutants can obtain a higher payoff than the incum-
bents even when the latter play spitefully against them.

3.3 Case 3:˛ = 1,ˇ �= 1

Third, let us consider the case in which α = 1 and β �= 1. In this case, the incumbents
are correctly labeled whereas the mutants are not. We have the following results:

Theorem 3 For α = 1 and any β ∈ [ 12 , 1). Suppose there exists a symmetric and
efficient strict Nash equilibrium (xe∗, xe∗) for the fitness game �, that is, xe∗ =
argmaxx∈X π(x, x) and xe∗ ∈ argmaxx∈X π(x, xe∗) and πe f f icient > πminimax . If
x∗(θ |θθ ) = xe∗, x∗(τ |θθ ) = xm for all Bayesian Nash equilibria in BNE (θ, τ, 0),
then θ is evolutionarily stable against any τ ∈ �\�θ .

In the case of α = 1 and β �= 1, mutants are considered to have an informa-
tional advantage over incumbents, which implies that they can better resist the latter’s
“discriminating” behavior compared with the previous case of α = 1 and β = 1.
Hence, “Kantian-discriminating” types are no longer necessarily evolutionarily sta-
ble. Instead, stricter conditions are required for evolutionary stability: the incumbents
need to be both “Kantian” and “homo-oeconomicus” (playing the symmetric and effi-
cient strict Nash equilibrium strategy) when matched with agents with the θ label,
and being spiteful when matched agents with the τ label to resist the invasion of any
mutants as indicated in Theorem 3. The necessary condition for evolutionary stability
is given as follows, which is identical to that in Corollary 2:
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Table 4 Prisoner’s dilemma
game

Player 2

A B

Player 1

A 2, 2 4, 0

B 0, 4 3, 3

Corollary 3 When α = 1 and β ∈ [ 12 , 1), if x∗(θ |θθ ) /∈ argmaxx∈Xπ(x, x), then there
exists a σ ∈ [0, 1), such that θ is not evolutionarily stable.

Corollary 2 togetherwithCorollay 3demonstrates the importance of efficiencywhen
the incumbents are correctly labeled.

Theorem 3 considers games with a symmetric and efficient strict Nash equilibrium.
Next, we consider an example without such an equilibrium.

Example 4 Consider the game in Table 4. Let x ∈ [0, 1] denote a player’s probability
of playing the pure strategy A and X is the set of mixed strategies. Strategy x = 0 is
the strictly dominant strategy and (0, 0) is the unique Nash equilibrium. We also have
xe = 1 and xm = 0 and πe f f icient = 3 > πminimax = 2.

First, consider a θ type such that x∗(θ |θθ ) = x∗(τ |θθ ) = 0 (the θ type can be
the homo-oeconomicus type) and a τ type such that x∗(θ |τθ ) = x∗(θ |ττ ) = 0 and
x∗(τ |ττ ) = 1. The average material payoffs of the two types of agents as ε → 0 are
given by11

lim
ε→0

�θ(ε) = 2, (11)

lim
ε→0

�τ(ε) = (1 − β) ∗ 2 + β
[
(1 − σ) ∗ 2 + σ ∗ 3

]
. (12)

We have limε→0 �τ(ε) > 2 as long as σ > 0. Hence, θ is not evolutionarily stable
against τ .

Next, consider a θ type such that x∗(θ |θθ ) = 1 and x∗(τ |θθ ) = 0 (the θ type is
the Kantian-discriminating type) and a τ type such that x∗(θ |τθ ) = x∗(θ |ττ ) = 0 and
x∗(τ |ττ ) = 1. The average material payoffs of the two types of agents as ε → 0 are
given by

lim
ε→0

�θ(ε) = 3, (13)

lim
ε→0

�τ(ε) = (1 − β) × 4 + β
[
(1 − σ) × 2 + σ × 3

]
. (14)

We have limε→0 �τ(ε) > 3 as long as σ >
2β−1

β
. Hence, θ is not evolutionarily

stable against τ . The above analyzed two scenarios demonstrate that in the game

11 Please refer to the proof of Theorem 3 in the Appendix for the detailed expressions of the average
material payoffs.
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14 J. Wu

depicted in Table 4, playing either (a) the strict but not efficient Nash equilibrium or
(b) the efficient strategy profile that is not a Nash equilibrium, cannot be evolutionarily
stable.

3.4 Case 4:˛ �= 1,ˇ = 1

Finally, consider the situation in which α �= 1 and β = 1. In this case, the mutants are
correctly labeled whereas the incumbents are not.

We first have the following result:

Theorem 4 For any α ∈ [ 12 , 1) and β = 1, let (x, x) be a symmetric Nash equilibrium
for the fitness game �, as long as π(x∗(θ |θθ ), x∗(θ |θθ )) > π(x, x) and x∗(τ |θθ ) =
x∗(θ |θτ ) = x∗(τ |θτ ) = x for all Bayesian Nash equilibria in BNE (θ, τ, 0), then θ is
evolutionarily stable against any τ ∈ �\�θ .

In the case of α �= 1 and β = 1, incumbents are considered to have an informa-
tional advantage over mutants. Theorem 4 shows that in such a case, an interesting
form of “discriminating” type arises: if the incumbents act “cooperatively” (playing
a symmetric strategy profile, if one exists, that Pareto dominates a symmetric Nash
equilibrium) only when they are correctly labeled and matched with agents with the
same label, but act selfishly (playing the symmetric Nash equilibrium that is Pareto
dominated by the symmetric strategy profile) when they are incorrectly labeled or
matched with agents with the mutant’s label, the incumbents can resist the invasion of
anymutants. Comparedwith the case ofα �= 1 and β �= 1, incumbents with the correct
labels no longer worry about interacting with mutants who are masked as incumbents.
Therefore, they are free from playing a Nash equilibrium when matched in pairs but
reach a cooperative outcome with a higher fitness.

Second, in games with a symmetric and strict Nash equilibrium (x, x), always
playing x is sufficient for a θ type to be evolutionarily stable as well. we have the
following result:

Theorem 5 For any α ∈ [ 12 , 1) and β = 1, let (x, x) be a symmetric and strict Nash
equilibrium for the fitness game �, as long as x∗(θ |θθ ) = x∗(τ |θθ ) = x∗(θ |θτ ) =
x∗(τ |θτ ) = x for all BayesianNash equilibria in BNE (θ, τ, 0), then θ is evolutionarily
stable against any τ ∈ �\�θ .

Theorems 4 and 5 demonstrate an important difference between games with and
without a symmetric and strict Nash equilibrium. When there is no such equilib-
rium, the θ agents receive an equal payoff to the τ agents if they always play a
mixed strategy Nash equilibrium strategy, unless they can reach a cooperative out-
come with higher fitness when they are correctly labeled and matched with each
other. On the contrary, when there exists a symmetric and strict Nash equilibrium,
always playing it can already guarantee that the θ agents have a higher payoff than the
τ agents.
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4 Discussion and conclusion

This paper proposes a model of preference evolution in which preferences are corre-
lated with certain labels and the matching process exhibits homophily in labels. The
analysis provides novel results compared with the extant literature. In sum, we find
that when the mutants are correctly labeled (cases 2 and 4), the incumbents are able to
“discriminate” against the mutants. When the incumbents are correctly labeled (cases
2 and 3), the mutants can resist the incumbents’ “discriminating” behavior because
of homophily, which drives the evolution to select preferences that incorporate the
consideration of efficiency. Our results may thus offer new perspectives on under-
standing various cultural phenomena such as why culturally distinctive minorities are
more likely subject to discrimination and how within-community social connections
can help them resist assimilation.

The indirect evolutionary approach we adopt in this paper implicitly assumes that
behavior adjusts arbitrarily faster than preferences evolve. Although it is reasonable
to consider that the evolution of preferences proceeds slower than agents learn to
reach an equilibrium, letting the relative rates to infinity seems extreme. The model
of two-speed dynamics proposed by Sandholm (2001) provides a useful conceptual
framework and techniques for simultaneously studying the dynamics of preference
evolution and how agents learn to behave as their preferences dictate (see also Kuran
and Sandholm 2008).

Preference evolution can be shaped by either natural selection or cultural selection.
In the latter case, preferences are transmitted from one generation to the next. In each
generation, agents first interact with one another according to their preferences and
reach an equilibrium. Then, they become parents and exert efforts to transmit their own
preferences to their children. If we assume that preferences that have led to economic
success for the parents are more likely to be passed down to their children, then we
have a model similar to the indirect evolutionary approach: preferences evolve slowly
across generations while agents within each generation play an equilibrium. See Bisin
and Verdier (2011) for an extensive survey of the literature on cultural transmission.

In the currentmodel, labels are given exogenously. Itwould be an important research
avenue to consider labels as part of the definition of types. Here we provide a simple
example with endogenous label adoption for illustration purposes. Suppose there are
two neutral labels A and B that both types of agents can adopt. Adopting label A
is cheaper than label B. Without loss of generality, assume that the cost of adopting
label A is 0 and the cost of adopting label B is c > 0. First, consider a θ type that
adopts label A against a τ type that also adopts label A. Since both types have identical
labels, they are uniformly randomly matched in pairs. In this scenario, if there exists
a symmetric and strict Nash equilibrium, then playing it would guarantee that the θ

type is evolutionarily stable against the τ type. Second, consider a θ type that adopts
label A against a τ type that adopts label B. This scenario is similar to case 2 (α = 1,
β = 1) in the present paper because the two types can be perfectly differentiated.When
c is sufficiently large, the θ type is automatically evolutionarily stable against the τ

type. Otherwise, Corollary 2 applies, which requires the θ agents to play efficiently.
Third, consider a θ type that adopts label B against a τ type that also adopts label B.
This scenario is identical to the first one that requires the θ type to play a strict Nash
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16 J. Wu

equilibrium. Finally, consider a θ type that adopts label B against a τ type that adopts
label A. In this scenario, since the θ type agents need to pay the extra cost of c, even
a Kantian-discriminating type may not be stable.

There are many other potential ways to endogenize labels. For example, agents
may have different abilities to mimic others’ labels and such abilities are subject to
evolutionary selection as well. We will leave these topics to interested readers.

Appendix

Proof of Theorem 1 When α, β ∈ [ 12 , 1), a strategy profile (x∗(c|ab) with a, b, c ∈
{θ, τ }) ∈ BNE (θ, τ, 0) if

x∗(θ |aθ

)
∈ argmax

x∈X U
[
θθ |aθ

](
x, x∗(θ |θθ

))
;

x∗(τ |aθ

)
∈ argmax

x∈X U
[
θτ |aτ

](
x, x∗(θ |θτ

))
;

x∗(θ |aτ

)
∈ argmax

x∈X U
[
θθ |aτ

](
x, x∗(τ |θθ

))
;

x∗(τ |aτ

)
∈ argmax

x∈X U
[
θτ |aτ

](
x, x∗(τ |θτ

))
, for a ∈ {θ, τ }. (15)

The average material payoffs corresponding to the two preference types as ε → 0,
are given as:

lim
ε→0

�θ

(
ε
)

= α
[(

σ +
(
1 − σ

)
α
)
π

(
x∗(θ |θθ

)
, x∗(θ |θθ

))

+
(
1 − σ

)(
1 − α

)
π

(
x∗(τ |θθ

)
, x∗(θ |θτ

))]

+
(
1 − α

)[(
1 − σ

)
απ

(
x∗(θ |θτ

)
, x∗(τ |θθ

))

+
(
σ +

(
1 − σ

)(
1 − α

))
π

(
x∗(τ |θτ

)
, x∗(τ |θτ

))]
; (16)

lim
ε→0

�τ

(
ε
)

=
(
1 − β

)[(
σ +

(
1 − σ

)
α
)
π

(
x∗(θ |τθ

)
, x∗(θ |θθ

))

+
(
1 − σ

)(
1 − α

)
π

(
x∗(τ |τθ

)
, x∗(θ |θτ

))]

+β
[(

1 − σ
)
απ

(
x∗(θ |ττ

)
, x∗(τ |θθ

))

+
(
σ +

(
1 − σ

)(
1 − α

))
π

(
x∗(τ |ττ

)
, x∗(τ |θτ

))]
. (17)

If there exists a symmetric strict Nash equilibrium (x, x) for the fitness game �

and the incumbents play x , i.e., x∗(θ |θθ ) = x∗(τ |θθ ) = x∗(θ |θτ ) = x∗(τ |θτ ) = x
in any Bayesian Nash equilibrium in BNE (θ, τ, 0), then as long as at least one of
the mutants’ four equilibrium strategies are not x , i.e., the mutants are behaviorally
distinguishable from the incumbents (τ /∈ �θ ), we have
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lim
ε→0

�θ(ε) > lim
ε→0

�τ(ε). (18)

By continuity of �θ and �τ , the strict inequality in average material payoffs
holds in a neighborhood of (x∗(c|ab) with a, b, c ∈ {θ, τ }) and 0. Given that
the equilibrium correspondence BNE (θ, τ, ·) : [0, 1) ⇒ X8 is closed-valued and
upper hemi-continuous according to Lemma 1, if for all t ∈ N, (x∗(c|ab, εt ) with
a, b, c ∈ {θ, τ }) ∈ BNE (θ, τ, εt ) converges to some limit point as εt converges to
zero, the limit point must belong to BNE (θ, τ, 0). This implies that there exists a
T , such that for all t > T , (x∗(c|ab, εt ) with a, b, c ∈ {θ, τ }) and εt are in the
neighborhood of (x∗(c|ab) with a, b, c ∈ {θ, τ }) and 0, implying that �θ(εt ) >

�τ (εt ). 	


Proof of Corollary 1 When � is dominance-solvable, it has a unique Nash equilibrium,
which is strict and symmetric. Hence, as long as the incumbent type θ is homo-
oeconomicus, i.e., U [bc|θa](x, y) = π(x, y), for any a, b, c ∈ {θ, τ } and x, y ∈ X ,
according to the Bayesian Nash equilibrium defined in (15), the incumbents always
play the symmetric strict Nash equilibrium strategy. Hence, according to Theorem 1,
θ is evolutionarily stable.

Suppose instead θ is behaviorally distinguishable from homo-oeconomicus. Let
the mutant type τ be homo-oeconomicus, i.e., U [bc|τa](x, y) = π(x, y), for any
a, b, c ∈ {θ, τ } and x, y ∈ X . Then the mutants will play the strict Nash equilibrium
strategy, which also strictly dominates all other strategies. In this case, according
to (16) and (17), as long as β = 1 − α, we have limε→0 �θ(ε) < limε→0 �τ(ε).
Following the same argument as in Theorem 1, one can show that there exists a ε,
such that for ε < ε, �θ(εt ) < �τ (εt ), implying the instability of θ type. 	


Proof of Theorem 2 When α = β = 1, a θ -type agent with label τ or a τ -type agent
with label θ does not exist. Therefore, a Bayesian Nash equilibrium strategy profile
consists of only 4 strategies instead of 8. We also redefine the equilibrium correspon-
dence BNE (θ, τ, ·) as a correspondence from (0,1) to X4 instead of X8. Lemma 1 can
readily be applied to this new definition.

Now, a strategy profile (x∗(b|aa) with a, b ∈ {θ, τ }) ∈ BNE (θ, τ, 0) if

x∗(θ |θθ

)
∈ argmax

x∈X U
[
θθ |θθ

](
x, x∗(θ |θθ

))
;

x∗(τ |θθ

)
∈ argmax

x∈X U
[
ττ |θθ

](
x, x∗(θ |ττ

))
;

x∗(θ |ττ

)
∈ argmax

x∈X U
[
θθ |ττ

](
x, x∗(τ |θθ

))
;

x∗(τ |ττ

)
∈ argmax

x∈X U
[
ττ |ττ

](
x, x∗(τ |ττ

))
. (19)

The average material payoffs corresponding to the two preference types as ε → 0,
are given as:
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lim
ε→0

�θ

(
ε
)

= π
(
x∗(θ |θθ

)
, x∗(θ |θθ

))
, (20)

lim
ε→0

�τ

(
ε
)

=
(
1 − σ

)
π

(
x∗(θ |ττ

)
, x∗(τ |θθ

))
+ σπ

(
x∗(τ |ττ

)
, x∗(τ |ττ

))
.

(21)

Given that θ is Kantian-discriminating, i.e., x∗(θ |θθ ) = xe, x∗(τ |θθ ) = xm in any
Bayesian Nash equilibrium in BNE (θ, τ, 0), as long as πe f f icient > πminimax , we
have

lim
ε→0

�θ(ε) = πe f f icient > (1 − σ)πminimax

+ σπe f f icient ≥ lim
ε→0

�τ(ε), for any σ ∈ [0, 1). (22)

By continuity of�θ and�τ , the strict inequality in averagematerial payoffs holds in
a neighborhood of (x∗(b|aa)with a, b ∈ {θ, τ }) and 0. Given that the equilibrium cor-
respondence BNE (θ, τ, ·) : [0, 1) ⇒ X4 is closed-valued and upper hemi-continuous
according to a similar argument as in Lemma 1, if for all t ∈ N, (x∗(b|aa, εt ) with
a, b ∈ {θ, τ }) ∈ BNE (θ, τ, εt ) converges to some limit point as εt converges to zero,
the limit point must belong to BNE (θ, τ, 0). This implies that there exists a T , such
that for all t > T , (x∗(b|aa, εt ) with a, b ∈ {θ, τ }) and εt are in the neighborhood of
(x∗(b|aa) with a, b ∈ {θ, τ }) and 0, implying that �θ(εt ) > �τ (εt ). 	

Proof of Corollary 2 Suppose x∗(θ |θθ ) /∈ argmaxx∈X π(x, x), let x∗(τ |ττ ) ∈
argmaxx,∈X π(x, x). In this case, according to (20) and (21), as long as σ is suf-
ficiently close to one, we have limε→0 �θ(ε) < limε→0 �τ(ε). Following the same
argument as in Theorem 2, one can show that there exists a ε, such that for ε < ε,
�θ(εt ) < �τ (εt ), implying the instability of θ type. 	

Proof of Theorem 3 When α = 1 and β �= 1, a θ -type agent with label τ does not exist.
Therefore, a Bayesian Nash equilibrium strategy profile consists of only six strategies
instead of eight. We also redefine the equilibrium correspondence BNE (θ, τ, ·) as a
correspondence from (0,1) to X6 instead of X8. Lemma 1 can readily be applied to
this new definition.

Now, a strategy profile (x∗(c|ab) with a, b, c ∈ {θ, τ }) ∈ BNE (θ, τ, 0) if

x∗(θ |θθ

)
∈ argmax

x∈X U
[
θθ |θθ

](
x, x∗(θ |θθ

))
;

x∗(τ |θθ

)
∈ argmax

x∈X U
[
ττ |θθ

](
x, x∗(θ |ττ

))
;

x∗(θ |τθ

)
∈ argmax

x∈X U
[
θθ |τθ

](
x, x∗(θ |θθ

))
;

x∗(τ |τθ

)
∈ argmax

x∈X U
[
ττ |τθ

](
x, x∗(θ |ττ

))
;

x∗(θ |ττ

)
∈ argmax

x∈X U
[
θθ |ττ

](
x, x∗(τ |θθ

))
;

x∗(τ |ττ

)
∈ argmax

x∈X U
[
ττ |ττ

](
x, x∗(τ |ττ

))
. (23)
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The average material payoffs corresponding to the two preference types as ε → 0,
are given as:

lim
ε→0

�θ

(
ε
)

= π
(
x∗(θ |θθ

)
, x∗(θ |θθ

))
, (24)

lim
ε→0

�τ

(
ε
)

=
(
1 − β

)
π

(
x∗(θ |τθ

)
, x∗(θ |θθ

))

+β
[(

1 − σ
)
π

(
x∗(θ |ττ

)
, x∗(τ |θθ

))

+σπ
(
x∗(τ |ττ

)
, x∗(τ |ττ

))]
. (25)

Given that x∗(θ |θθ ) = xe∗, x∗(τ |θθ ) = xm in any Bayesian Nash equilibrium in
BNE (θ, τ, 0), as long as πe f f icient > πminimax , we have

lim
ε→0

�θ(ε) = πe f f icient > (1 − β)πe f f icient + β
[(

1 − σ
)
πminimax

+σπe f f icient

]
> lim

ε→0
�τ(ε),

for any σ ∈ [0, 1). (26)

By continuity of �θ and �τ , the strict inequality in average material payoffs holds
in a neighborhood of (x∗(c|ab) with a, b, c ∈ {θ, τ }) and 0. Given that the equi-
librium correspondence BNE (θ, τ, ·) : [0, 1) ⇒ X6 is closed-valued and upper
hemi-continuous according to a similar argument as in Lemma 1, if for all t ∈ N,
(x∗(c|ab, εt ) with a, b, c ∈ {θ, τ }) ∈ BNE (θ, τ, εt ) converges to some limit point
as εt converges to zero, the limit point must belong to BNE (θ, τ, 0). This implies
that there exists a T , such that for all t > T , (x∗(c|ab, εt ) with a, b, c ∈ {θ, τ }) and
εt are in the neighborhood of (x∗(c|ab) with a, b, c ∈ {θ, τ }) and 0, implying that
�θ(εt ) > �τ (εt ). 	

Proof of Corollary 3 Suppose x∗(θ |θθ ) /∈ argmaxx∈X π(x, x). Let x∗(θ |τθ ) ∈
argmaxx∈X π(x, x∗(θ |θθ )) and x∗(τ |ττ ) ∈ argmaxx,∈X π(x, x). In this case, accord-
ing to (24) and (25), as long as σ is sufficiently close to 1, we have limε→0 �θ(ε) <

limε→0 �τ(ε). Following the same argument as in Theorem 3, one can show that there
exists a ε, such that for ε < ε, �θ(εt ) < �τ (εt ), implying the instability of θ type. 	

Proof of Theorem 4 When α �= 1 and β = 1, aτ -type agent with label θ does not exist.
Therefore, a Bayesian Nash equilibrium strategy profile consists of only 6 strategies
instead of 8. We also redefine the equilibrium correspondence BNE (θ, τ, ·) as a cor-
respondence from (0,1) to X6 instead of X8. Lemma 1 can readily be applied to this
new definition.

Now, a strategy profile (x∗(b|ac) with a, b, c ∈ {θ, τ }) ∈ BNE (θ, τ, 0) if

x∗(θ |θθ ) ∈ argmax
x∈X U [θθ |θθ ](x, x∗(θ |θθ ));

x∗(τ |θθ ) ∈ argmax
x∈X U [θτ |θθ ](x, x∗(θ |θτ ));
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x∗(θ |θτ ) ∈ argmax
x∈X U [θθ |θτ ](x, x∗(τ |θθ ));

x∗(τ |θτ ) ∈ argmax
x∈X U [θτ |θτ ](x, x∗(τ |θτ ));

x∗(θ |ττ ) ∈ argmax
x∈X U [θθ |ττ ](x, x∗(τ |θθ ));

x∗(τ |ττ ) ∈ argmax
x∈X U [θτ |ττ ](x, x∗(τ |θτ )). (27)

The average material payoffs corresponding to the two preference types as ε → 0,
are given as:

lim
ε→0

�θ(ε) = α
[
(σ + (1 − σ)α)π(x∗(θ |θθ ), x

∗(θ |θθ ))

+(1 − σ)(1 − α)π(x∗(τ |θθ ), x
∗(θ |θτ ))

]

+(1 − α)
[
(1 − σ)απ(x∗(θ |θτ ), x

∗(τ |θθ ))

+(σ + (1 − σ)(1 − α))π(x∗(τ |θτ ), x
∗(τ |θτ ))

]
; (28)

lim
ε→0

�τ(ε) = (1 − σ)απ(x∗(θ |ττ ), x
∗(τ |θθ ))

+(σ + (1 − σ)(1 − α))π(x∗(τ |ττ ), x
∗(τ |θτ )). (29)

Let (x, x) be a symmetric Nash equilibrium for the fitness game�. If π(x∗(θ |θ, θ),

x∗(θ |θ, θ)) > π(x, x) and x∗(τ |θθ ) = x∗(θ |θτ ) = x∗(τ |θτ ) = x in any Bayesian
Nash equilibrium in BNE (θ, τ, 0), then as long as at least one of the mutants’ two
equilibrium strategies are not x , i.e., the mutants are behaviorally distinguishable from
the incumbents (τ /∈ �θ ), we have

lim
ε→0

�θ(ε) > lim
ε→0

�τ(ε). (30)

By continuity of �θ and �τ , the strict inequality in average material payoffs holds
in a neighborhood of (x∗(c|ab) with a, b, c ∈ {θ, τ }) and 0. Given that the equi-
librium correspondence BNE (θ, τ, ·) : [0, 1) ⇒ X6 is closed-valued and upper
hemi-continuous according to a similar argument as in Lemma 1, if for all t ∈ N,
(x∗(c|ab, εt ) with a, b, c ∈ {θ, τ }) ∈ BNE (θ, τ, εt ) converges to some limit point
as εt converges to zero, the limit point must belong to BNE (θ, τ, 0). This implies
that there exists a T , such that for all t > T , (x∗(c|ab, εt ) with a, b, c ∈ {θ, τ })
and εt are in the neighborhood of (x∗(b|aa) with a, b ∈ {θ, τ }) and 0, implying that
�θ(εt ) > �τ (εt ). 	

Proof of Theorem 5 Let (x, x)be a symmetric and strictNash equilibrium for thefitness
game �. If x∗(θ |θθ ) = x∗(τ |θθ ) = x∗(θ |θτ ) = x∗(τ |θτ ) = x in any Bayesian Nash
equilibrium in BNE (θ, τ, 0), then as long as either x∗(θ |ττ ) �= x or x∗(τ |ττ ) �= x or
both, then τ /∈ �θ , and according to (28) and (29), we have

lim
ε→0

�θ(ε) > lim
ε→0

�τ(ε). (31)
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By continuity of �θ and �τ , the strict inequality in average material payoffs holds
in a neighborhood of (x∗(c|ab) with a, b, c ∈ {θ, τ }) and 0. Given that the equi-
librium correspondence BNE (θ, τ, ·) : [0, 1) ⇒ X6 is closed-valued and upper
hemi-continuous according to a similar argument as in Lemma 1, if for all t ∈ N,
(x∗(c|ab, εt ) with a, b, c ∈ {θ, τ }) ∈ BNE (θ, τ, εt ) converges to some limit point
as εt converges to zero, the limit point must belong to BNE (θ, τ, 0). This implies
that there exists a T , such that for all t > T , (x∗(c|ab, εt ) with a, b, c ∈ {θ, τ })
and εt are in the neighborhood of (x∗(b|aa) with a, b ∈ {θ, τ }) and 0, implying that
�θ(εt ) > �τ (εt ). 	
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