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Abstract
The principle of differential monotonicity for cooperative games states that the
differential of two players’ payoffs weakly increases whenever the differential of
these players’ marginal contributions to coalitions containing neither of them weakly
increases. Together with the standard efficiency property and a relaxation of the null
player property, differential monotonicity characterizes the egalitarian Shapley val-
ues, i.e., the convex mixtures of the Shapley value and the equal division value for
games with more than two players. For games that contain more than three play-
ers, we show that, cum grano salis, this characterization can be improved by using a
substantially weaker property than differential monotonicity. Weak differential mono-
tonicity refers to two players in situations where one player’s change of marginal
contributions to coalitions containing neither of them is weakly greater than the other
player’s change of thesemarginal contributions. If, in such situations, the latter player’s
payoff weakly/strictly increases, then the former player’s payoff also weakly/strictly
increases.
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1 Introduction

The Shapley value (Shapley 1953) probably is the most eminent (one-point) solution
concept for cooperative games with transferable utility (TU games). Among these
solution concepts, the Shapley value can be viewed as the measure of the players’
individual productivity in a game. This view is strongly supported by Young’s (1985)
characterization via three properties: efficiency, strong monotonicity, and symmetry.1

Efficiency says that the worth generated by the grand coalition is distributed among the
players. Strong monotonicity requires a player’s payoff weakly to increase whenever
her productivity, measured by her marginal contributions to coalitions of the other
players, weakly increases. Symmetry ensures that equally productive players obtain
the same payoff.

Modern societies and institutions, however, distribute their wealth not only based on
individual productivity but also on solidarity or egalitarian principles. In order to reflect
this fact, alternative solution concepts have been developed. Most notably, Joosten
(1996) introduces a particularly appealing class of such solutions, the egalitarian
Shapley values, which are the convex mixtures of the Shapley value and the equal
division value. That is, an egalitarian Shapley value redistributes the Shapley payoffs
as follows: First, the Shapley payoffs are taxed proportionally at a fixed rate. Second,
the total tax revenue is distributed equally among all players.2

Among the egalitarian Shapley values, the Shapley value is the only value that
satisfies strong monotonicity. Two roads have been taken in order to reconcile the
marginalism embodied in strong monotonicity with solidarity or egalitarianism.

van den Brink et al. (2013) suggest a relaxation of strong monotonicity called
weak monotonicity. Weak monotonicity requires a player’s payoff weakly to increase
whenever both her productivity and the worth generated by the grand coalition weakly
increase. Casajus and Huettner (2014b) show that the class of egalitarian Shapley
values is characterized by efficiency, symmetry, and weak monotonicity, unless there
are just two players.3

Casajus (2011) considers a differential version ofmarginality (see footnote 1) called
differential marginality, which demands equal productivity differentials to translate
into equal payoff differentials, i.e., whenever the differential of their marginal contri-
butions to coalitions containing neither of them does not change then the differential
of their payoffs does not change. Interestingly, differential marginality coincides with
the fairness property due to van den Brink (2001) on the full domain of games, for
example. Hence, the latter can be replaced with the former in van den Brink’s (2001)
characterization of the Shapley value, i.e., differential marginality together with effi-
ciency and the null player property characterize the Shapley value.

1 As already mentioned by Young (1985) , strong monotonicity implies and can be relaxed into marginality,
i.e., a player’s payoff only depends on her own productivity.
2 Sprumont (1990) suggests another solution with a solidary flavor that later on was characterized by
Nowak and Radzik (1994) as the “solidarity value”. Casajus and Huettner (2014a) consider a class of
generalizations of this value.
3 Besides efficiency, symmetry and weak monotonicity, the characterizations of the egalitarian Shapley
values due to van den Brink et al. (2013) involve a fourth axiom, either linearity or weak covariance. Their
characterization using linearity also covers the two-player case.
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Later on, Casajus and Huettner (2013) strengthen differential marginality into a
differential version of strong monotonicity called strong differential monotonicity.
This property requires two players’ payoff differential weakly to increase whenever
their productivity differential weakly increases. They show that the egalitarian Shapley
values are characterized by efficiency, the null player in a productive environment
property, and strong differential monotonicity, unless there are just two players. The
null player in a productive environment property relaxes the standard null player
property by requiring a non-negative payoff for null players only when the worth
generated by the grand coalition is non-negative.

Recently, Casajus and Yokote (2017) introduce a substantial relaxation of differ-
ential marginality called weak differential marginality. Differential marginality can be
rephrased as that equal changes in two players’ productivities, i.e., their marginal con-
tributions to coalitions containing neither of them change by the same amount, entails
that their payoffs change by the same amount, which obviously implies that both pay-
offs change in the same direction. Weak differential marginality relaxes differential
marginality in this vein. Equal changes in two players’ productivities should entail
that their payoffs change in the same direction. Using this property, they considerably
improve the characterization of the Shapley value by Casajus (2011) . For games with
more than two players, the Shapley value can be characterized by efficiency, the null
player property, and weak differential marginality.

In this paper, we consider a relaxation of differential monotonicity called weak
differential monotonicity, which relaxes differential monotonicity in the same vein
as weak differential marginality relaxes differential marginality. Weak differential
monotonicity refers to situations where one player’s change of marginal contributions
is weakly greater than another player’s change of marginal contributions. If, in such
situations, the latter player’s payoff weakly/strictly increases, then the former player’s
payoff alsoweakly/strictly increases. First,we show that one cannot replace differential
monotonicity with weak differential monotonicity in Casajus and Huettner’s (2013)
characterization of the egalitarian Shapley values. Second, for games with more than
three players, the egalitarian Shapley values can be characterized by efficiency, a
relaxation of the dummy player property, and weak differential monotonicity.

The remainder of this paper is organized as follows. In Sect. 2, we give basic
definitions and notation. In Sect. 3, we present ourmain result. Some remarks conclude
this paper. An appendix contains the proof of ourmain result and some complementary
findings.

2 Basic definitions and notation

A (finite TU) game on a non-empty and finite set of players N is given by a coalition
function v ∈ V(N ) := { f : 2N → R | f (∅) = 0}, where 2N denotes the power set
of N . Subsets of N are called coalitions; v(S) is called the worth of coalition S. Since
we deal with a fixed player set N , the latter mostly is dropped as an argument.

Player i ∈ N is called a dummy player in v ∈ V if v(S∪{i})−v (S) = v ({i}) for
all S ⊆ N\ {i} ; player i ∈ N is called a null player in v ∈ V if v (S ∪ {i}) = v (S)
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982 A. Casajus, K. Yokote

for all S ⊆ N\ {i}; players i, j ∈ N are called symmetric in v ∈ V if v (S ∪ {i}) =
v (S ∪ { j}) for all S ⊆ N\ {i, j}.

For v,w ∈ V and α ∈ R, the coalition functions v +w ∈ V and α ·v ∈ V are given
by (v + w) (S) = v (S) + w (S) and (α · v) (S) = α · v (S) for all S ⊆ N . The game
0 ∈ V given by 0 (S) = 0 for all S ⊆ N is called the null game. For T ⊆ N , T �= ∅,

the game uT ∈ V given by uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise is called
a unanimity game. Any v ∈ V can be uniquely represented by unanimity games. In
particular, we have

v =
∑

T⊆N :T �=∅
λT (v) · uT , (1)

where the coefficients λT (v) are known as the Harsanyi dividends (Harsanyi 1959)
and can be determined recursively by

λT (v) := v (T ) −
∑

S�T :S �=∅
λS (v) for all T ⊆ N , T �= ∅. (2)

A game v ∈ V is called inessential if all i ∈ N are dummy players in v. The set of
inessential games is denoted by V̄.

A solution/value on N is a mapping ϕ : V → R
N . The Shapley value (Shapley

1953) , Sh, is given by

Shi (v) :=
∑

T⊆N :i∈T
|T |−1 · λT (v) for all v ∈ V and i ∈ N . (3)

The equal division value, ED, is given by

EDi (v) := v (N )

|N | for all v ∈ V and i ∈ N .

The egalitarian Shapley values (Joosten 1996) , Shα, α ∈ [0, 1] are given by

Shα
i (v) = α · Shi (v) + (1 − α) · EDi (v) for all v ∈ V and i ∈ N . (4)

In the following, we make use of the following standard properties of solutions.

Efficiency, E. For all v ∈ V, we have
∑

�∈N ϕ� (v) = v (N ) .

Null player, N. For all v ∈ V and i ∈ N such that i is a null player in v, we have
ϕi (v) = 0.

Dummy player, D. For all v ∈ V and i ∈ N such that i is a dummy player in v, we
have ϕi (v) = v ({i}) .
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3 Weak differential monotonicity and the egalitarian Shapley values

While the egalitarian Shapley values except the Shapley value itself failYoung’s (1985)
strong monotonicity property, they satisfy a differential version of this property due
to Casajus and Huettner (2013) .

Differential monotonicity, DMo. For all v,w ∈ V and i, j ∈ N such that

v (S ∪ {i}) − v (S ∪ { j}) ≥ w (S ∪ {i}) − w (S ∪ { j}) for all S ⊆ N\ {i, j} ,

we have

ϕi (v) − ϕ j (v) ≥ ϕi (w) − ϕ j (w) .

For games with more than two players, differential monotonicity together with effi-
ciency and the following null player in a productive environment property characterize
the egalitarian Shapley values.

Null player in a productive environment, NPE. For all v ∈ V and i ∈ N such that
i is a null player in v and v (N ) ≥ 0, we have ϕi (v) ≥ 0.

Theorem 1 (Casajus and Huettner 2013, Theorem 4) For |N | > 2, a value ϕ satis-
fies efficiency (E), the null player in a productive environment property (NPE), and
differential monotonicity (DMo) if and only if there exists an α ∈ [0, 1] such that
ϕ = Shα .

Hypothesis and implication of differential monotonicity can be rewritten as

v (S ∪ {i}) − w (S ∪ {i}) ≥ v (S ∪ { j}) − w (S ∪ { j}) for all S ⊆ N\ {i, j} (5)

and
ϕi (v) − ϕi (w) ≥ ϕ j (v) − ϕ j (w) , (6)

respectively. That is, differential monotonicity can be paraphrased as follows. When-
ever one player’s change in her productivity is weakly greater than that of another
player, the former player’s change in her payoff is weakly greater than that of the
latter.

In the following, we suggest a considerable relaxation of differential monotonicity
calledweakdifferentialmonotonicity that relaxes differentialmonotonicity in the same
vein as weak differential marginality (Casajus and Yokote 2017) relaxes differential
marginality (Casajus 2011) , the latter two properties given below. Note that we rewrite
these properties in analogy to (5) and (6). We use the sign function sign : R →
{−1, 0, 1} given by sign (x) = 1 for x > 0, sign (0) = 0, and sign (x) = −1 for
x < 0.

Differential marginality, DM For all v,w ∈ V and i, j ∈ N such that

v (S ∪ {i}) − v (S ∪ { j}) = w (S ∪ {i}) − w (S ∪ { j}) for all S ⊆ N\ {i, j} ,

123



984 A. Casajus, K. Yokote

we have

ϕi (v) − ϕi (w) = ϕ j (v) − ϕ j (w) .

Weak differential marginality, DM−. For all v,w ∈ V and i, j ∈ N such that

v (S ∪ {i}) − w (S ∪ {i}) = v (S ∪ { j}) − w (S ∪ { j}) for all S ⊆ N\ {i, j} ,

we have

sign (ϕi (v) − ϕi (w)) = sign
(
ϕ j (v) − ϕ j (w)

)
.

Weak differential marginality can be paraphrased as follows. Whenever two player’s
productivity changes by the same amount, then their payoffs change in the same
direction. For games with more than two players, one can replace the fairness property
and differential marginality with weak differential marginality in the characterizations
of the Shapley value by van den Brink (2001, Theorem 2.5) and Casajus (2011,
Corollary 5) , respectively

Theorem 2 (Casajus and Yokote 2017, Theorem 2)Let |N | > 2. The Shapley value is
the unique value that satisfies efficiency (E), the null player property (N), and weak
differential marginality (DM−).

We define weak differential monotonicity in analogy to weak differential marginal-
ity and differential monotonicity.

Weak differential monotonicity, DMo− For all v,w ∈ V and i, j ∈ N such that

v (S ∪ {i}) − w (S ∪ {i}) ≥ v (S ∪ { j}) − w (S ∪ { j}) for all S ⊆ N\ {i, j} ,

we have

sign (ϕi (v) − ϕi (w)) ≥ sign
(
ϕ j (v) − ϕ j (w)

)
.

One can easily check that the implication of weak differential monotonicity is equiv-
alent to (i) ϕ j (v) ≥ ϕ j (w) implies ϕi (v) ≥ ϕi (w) and (ii) ϕ j (v) > ϕ j (w) implies
ϕi (v) > ϕi (w). That is, weak differential monotonicity can be paraphrased as fol-
lows. Whenever one player’s change in her productivity is weakly greater than that
of another player, then the direction of the change of these players’ payoffs does not
contradict the changes in their productivities.

Unfortunately, one cannot simply replace differential monotonicity with weak dif-
ferential monotonicity in Theorem 1. Consider the strictly positivelyweighted division
values (Béal et al. 2016, Theorem 2) . Let

�N++ :=
{
x ∈ R

N | x� > 0 for all � ∈ N and
∑

�∈N
x� = 1

}
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denote the set of all strictly positive weight vectors. For ω ∈ �N++, the ω-weighted
division value WDω is given by

WDω
i (v) = ωi · v (N ) for all v ∈ V and � ∈ N .

One can easily check that these values satisfy efficiency, the null player in a productive
environment property, and weak differential monotonicity, but fail differential mono-
tonicity and therefore are not egalitarian Shapley values as long as the weights are not
uniform.

In order to restore most of the implications of Theorem 1 after replacing differen-
tial monotonicity with weak differential monotonicity, we consider a property that is
stronger than the null player in a productive environment property but weaker than the
dummy player property.

Average dummy player, AD. For all v ∈ V and i ∈ N such that i is a dummy player
in v, we have that

(i) v ({i}) ≥ v (N ) / |N | implies ϕi (v) ≤ v ({i}) ,

(ii) v ({i}) ≤ v (N ) / |N | implies ϕi (v) ≥ v ({i}) .

Whenever a dummy player is weakly more (less) productive than the average of all
players, then her payoff is not greater (lower) than her productivity. In the first case,
such a player should not be “subsidized” by the other players, in the second, she should
not be required to contribute to “subsidizing” other players. Note that average dummy
player property is related to the average property used by Yokote and Casajus (2017,
Theorem 2) in order to characterize the flat tax and a basic income within a simple
framework of the redistribution of income in a society.

Theorem 3 For |N | > 3, a value ϕ satisfies efficiency (E), the average dummy player
property (AD), and weak differential monotonicity (DMo−) if and only if there exists
an α ∈ [0, 1] such that ϕ = Shα .

The proof of Theorem 3 can be found in Appendix A. Appendix B contains the
counterexample to our characterization for |N | = 2. The non-redundancy of our
characterization is indicated in Appendix C. It remains an open question whether
Theorem 3 holds true for |N | = 3 or not.

4 Concluding remarks

As differential marginality, differential monotonicity implicitly assumes that the play-
ers’ payoff differences are inter-personally comparable. For, differential monotonicity
requires that, depending on the games, the difference of one player’s payoffs in two
games is weakly greater than the difference of some other player’s payoffs in these
games. In contrast, weak differential marginality and weak differential monotonic-
ity are rather based on intra-personal comparisons. For example, weak differential
marginality requires that, depending on the games, one player is better off in one
game if and only if some other player also is better off in this game.
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986 A. Casajus, K. Yokote

Shapley (1988, p. 307) first recognizes that “[i]nterpersonal comparability of utility
is generally regarded as an unsound basis on which to erect theories of multipersonal
behavior.” Even though he then argues that “it enters naturally [...] as a nonbasic,
derivative concept playing an important if sometimes hidden role in the theories of
bargaining, group decisionmaking, and social welfare”, one may not wish to directly
impose inter-personal utility comparison. In this sense, Casajus and Yokote (2017,
Theorem 2) and our Theorem 3 improve the previous results by van den Brink (2001,
Theorem 2.5) , Casajus (2011, Corollary 5), and—cum grano salis— Casajus and
Huettner (2013, Theorem 4).
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Appendix A Proof of Theorem 3

Preamble: squeezing water from stone

Proving characterizations for a parametrized classes of solutions with few rather weak
axioms is like squeezing water from stone. Their proofs tends to be lengthy and rather
technical. Our proof is no exception in this respect. It is by induction on the number
of non-vanishing Harsanyi dividends of a game for non-singleton coalitions and can
be divided into three major parts. While the first two parts provide the induction basis,
the third one the induction step.

The first part (Claim 1) shows the theorem for inessential games, which includes
the derivation of the parameter α ∈ [0, 1] from the solution ϕ. Its proof largely mimics
the proof of Yokote and Casajus (2017, Theorem 2) . Since the latter result involves
a related but different average dummy player property and in order to keep our paper
self-contained, we present the full proof. The second part (Claims 2, 3, and 4) and the
third part extend part one to general games. Their proof is an adaptation of the proof
of Casajus and Yokote (2017, Theorem 2) to the egalitarian Shapley values and the
use of the average dummy property instead of the null player property.

The proof

It is well-known that any value Shα, α ∈ [0, 1] satisfiesE. SinceDMo impliesDMo−,
Casajus and Huettner (2013, Theorem 4) entails that any Shα also obeys DMo−. By
(4) and the fact that Sh meets D, any Shα meets AD. Let |N | > 3 and let the solution
ϕ meet E, AD, and DMo−.

For v ∈ V, set

T>1 (v) := {T ⊆ N | |T | > 1 and λT (v) �= 0} .

We show ϕ = Shα for some α ∈ [0, 1] by induction on |T>1 (v)| . For this purpose, we
“reduce” |T>1 (v)|without changing v (N ) by the following construction: For T ⊆ N ,

|T | > 1, let ūT ∈ V be given by
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ūT := uT −
∑

�∈T

u{�}
|T | . (A.1)

Note that Shα
i (ūT ) = 0 for all α ∈ [0, 1] and i ∈ N . For T ∈ T>1 (v) , let vT ∈ V be

given by
vT := v − λT (v) · ūT . (A.2)

By construction, (*) |T>1 (vT )| = |T>1 (v)| − 1 and (**) v (N ) = vT (N ) .

Induction basis: We show ϕ (v) = Shα (v) for some α ∈ [0, 1] and all v ∈ V such
that |T>1 (v)| ≤ 1 by a number of claims and subclaims.

If |T>1 (v)| = 0 for v ∈ V, then v ∈ V̄, i.e., v is inessential.

Claim 1, C1: There exists some α ∈ [0, 1] such that ϕ (v) = Shα (v) for all v ∈ V̄.

One can easily check that there is a bijection RN → V̄, x 
→ vx , where vx is given
by vx (S) = ∑

�∈S x� for all S ⊆ N . Abusing notation, we identify V̄ with R
N and

write x instead of vx . By D, we have Sh (x) = x for all x ∈ R
N and therefore

Shα
i (x)

(4)= α · xi + (1 − α) · |N |−1 ·
∑

�∈N
x� for all α ∈ [0, 1] , x ∈ R

N and i ∈ N .

(A.3)
Set n := |N | . For λ ∈ R and x ∈ R

N , we define λ · x ∈ R
N by (λ · x)� = λ · x� for

all � ∈ N . Further, for i, j ∈ N , i �= j,we define ei j ∈ R
N by ei ji = 1, ei jj = −1, and

ei j� = 0 for all � ∈ N\ {i, j} . Moreover, for μ ∈ R, we define eμ ∈ R
N by eμ

� = μ
n

for all � ∈ N .

For all i ∈ N , j ∈ N\ {i} , and μ ∈ R, let the mapping gμ
i j : R → R be given by

gμ
i j (λ) := ϕi (e

μ + λ · ei j ) − μ

n
for all λ ∈ R. (A.4)

Note that for ϕ = Shα, α ∈ [0, 1] , we have gμ
i j (λ) = α · λ for all λ ∈ R. In the

following, we use the mappings gμ
i j in order to derive the parameter α from ϕ. We

proceed by a number of subclaims. First, we show that gμ
i j does not depend on the

choice of j ∈ N\ {i} .

Claim C1a. For i ∈ N and λ,μ ∈ R, we have ϕi (eμ + λ · ei j ) = ϕi (eμ + λ · eik) for
all j, k ∈ N\ {i} .

For j = k, nothing is to show. Let now j �= k and � ∈ N\ {i, j, k} . Player � is
a dummy player in eμ + λ · ei j ∈ V̄ and in eμ + λ · eik ∈ V̄ with

(
eμ + λ · ei j )

�
=

μ
n = 1

n · (
eμ + λ · ei j ) (N ) and

(
eμ + λ · eik)

�
= μ

n = 1
n · (

eμ + λ · eik) (N ) . By
AD, we have (†) ϕ�

(
eμ + λ · ei j ) = ϕ�

(
eμ + λ · eik) . Since i and � are symmetric

in λ · ei j − λ · eik, players i and �, eμ + λ · ei j , and eμ + λ · eik satisfy the hypothesis
of DMo−. Hence, DMo− and (†) imply ϕi

(
eμ + λ · ei j ) = ϕi

(
eμ + λ · eik) . ��

For i ∈ N and μ ∈ R, we define gμ
i : R → R by

gμ
i := gμ

i j for all λ ∈ R and some j ∈ N\ {i} . (A.5)
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By (A.4) and C1a, gμ
i j does not depend on the choice of j ∈ N\ {i} . Hence, gμ

i is

well-defined. By AD, we have gμ
i (0) = 0. Next, we show that gμ

i does not depend
on the choice of i ∈ N .

Claim C1b. For all i, j ∈ N , i �= j and λ,μ ∈ R, we have gμ
i (λ) = gμ

j (λ) .

For k ∈ N\ {i, j} , we have

gμ
i (λ) + gμ

k (−λ)
(A.4),(A.5)= ϕi (e

μ + λ · eik) − μ

n
+ ϕk(e

μ − λ · eki ) − μ

n

= ϕi (e
μ + λ · eik) − μ

n
+ ϕk(e

μ + λ · eik) − μ

n
, (A.6)

where the second equation drops from λ · eik = −λ · eki . By AD, we have ϕ�(eμ +λ ·
eik) = μ

n for all � ∈ N\{i, k}. Hence, E entails ϕi (eμ + λ · eik) + ϕk(eμ + λ · eik) =
2μ
n . Together with (A.6), we obtain gμ

i (λ) + gμ
k (−λ) = 0. Analogously, one shows

gμ
j (λ) + gμ

k (−λ) = 0, which concludes the proof. ��
For μ ∈ R, we define gμ : R → R by gμ = gμ

i for some i ∈ N . By C1b, gμ

is well-defined. In the following, we show certain properties of the mappings gμ and
their relation to ϕ. For later use, we first show that gμ is odd.

Claim C1c. For all λ,μ ∈ R, we have gμ (λ) = −gμ (−λ) .

For i, j ∈ N , i �= j, we have

gμ (λ) + gμ (−λ)
(A.4),(A.5)= ϕi

(
eμ + λ · ei j

)
− μ

n
+ ϕ j

(
eμ − λ · e ji

)
− μ

n

= ϕi

(
eμ + λ · ei j

)
− μ

n
+ ϕ j

(
eμ + λ · ei j

)
− μ

n
, (A.7)

where the second equation drops from λ · ei j = −λ · e ji . By AD, we have
ϕ�

(
eμ + λ · ei j ) = 0 for all � ∈ N\ {i, j} . Hence, E entails ϕi

(
eμ + λ · ei j ) +

ϕ j
(
eμ + λ · ei j ) = 2μ

n . Together with (A.7), this proves the claim. ��
For later use, we show a technical relation between the mappings gμ and ϕ. Note

that in view of AD, average players in x ∈ R
N
μ , i.e., players i with xi = μ

n are

of particular interest. For μ ∈ R, set RN
μ = {

x ∈ R
N | ∑

�∈N x� = μ
}
and R̄

N
μ :={

x ∈ R
N
μ | there exist some i ∈ N such that xi = μ

n

}
. For x ∈ R̄

N
μ ,we setCμ (x) :={

i ∈ Nn | xi �= μ
n

}
.

Claim C1d. For all μ ∈ R, x ∈ R̄
N
μ , and i ∈ N , we have ϕi (x) = gμ

(
xi − μ

n

) + μ
n .

We proceed by induction on
∣∣Cμ (x)

∣∣ .
Induction base: For

∣∣Cμ (x)
∣∣ = 0, AD entails ϕi (x) = μ

n = gμ (0) + μ
n =

gμ
(
xi − μ

n

)+ μ
n for all i ∈ N .Note that

∣∣Cμ (x)
∣∣ �= 1 for all x ∈ R̄

N
μ . If

∣∣Cμ (x)
∣∣ = 2,

then there are i, j ∈ N , i �= j such that x = eμ +(
xi − μ

n

) ·ei j = eμ +(
x j − μ

n

) ·e ji .
By (A.4) and (A.5 ),we haveϕi (x) = gμ

(
xi − μ

n

)+μ
n andϕ j (x) = gμ

(
x j − μ

n

)+μ
n .

Moreover, for k ∈ N\ {i, j} ,AD implies ϕk (x) = μ
n = gμ (0)+ μ

n = gμ
(
xk − μ

n

)+
μ
n .
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Induction hypothesis: Let the claim hold for all x ∈ R̄
N
μ such that

∣∣Cμ (x)
∣∣ ≤ t,

t ∈ N.

Induction step: Let x ∈ R̄
N
μ be such that

∣∣Cμ (x)
∣∣ = t + 1 > 2. Suppose ϕi (x) �=

gμ
(
xi − μ

n

)+ μ
n for some i ∈ Nn .ByAD, i ∈ Cμ (x) .Let j, k ∈ Cμ (x) \ {i} , j �= k,

and y = x − (
x j − μ

n

) · e jk . Note that y ∈ R̄
N
μ ,

∣∣Cμ (y)
∣∣ ≤ t, and

∣∣Cμ (y)
∣∣ �= 1. By

the induction hypothesis, we have ϕi (y) = gμ
(
yi − μ

n

) + μ
n = gμ

(
xi − μ

n

) + μ
n .

By assumption, there exists � ∈ N\Cμ (x) such that x� = μ
n . Hence, we obtain

ϕi (x) − ϕi (y) �= gμ
(
xi − μ

n

) + μ
n − gμ

(
xi − μ

n

) − μ
n = 0 and ϕ� (x) − ϕ� (y) = 0,

where the latter drops from AD. Since i and � are symmetric in x − y, x, y, i, and j
satisfy the hypothesis of DMo−. Hence, this contradicts DMo−. ��

For later use, we show crucial properties of the mappings gμ, where linearity is of
particular importance.

Claim C1e. For all μ ∈ R, the mapping gμ : R → R is linear and monotonic.
We show that the mapping gμ is additive andmonotonic. Then, linearity drops from

Aczél (1966, Theorem 1).
Additivity: Let a, b ∈ R. Let i, j, k ∈ N and x ∈ R

N
μ be such that i �= j, j �= k,

k �= i ,

xi = μ

n
+ a, x j = μ

n
+ b, xk = μ

n
− a − b, x� = μ

n
for all � ∈ Nn\ {i, j, k} .

Since n > 3, x ∈ R̄
N
μ . By C1d, we have

ϕi (x) = gμ (a) + μ

n
, ϕ j (x) = gμ (b) + μ

n
, and ϕk (x) = gμ (−a − b) + μ

n
.

Further, by AD, we have ϕ� (x) = μ
n for all � ∈ N\ {i, j, k} . Hence, we obtain

0
E= ϕi (x) + ϕ j (x) + ϕk (x) − 3μ

n
= gμ (a) + gμ (b) + gμ (−a − b)

C1c= gμ (a)

+gμ (b) − gμ (a + b) .

That is, the mapping g is additive.
Monotonicity: Let a, b ∈ R and i, j, k ∈ N be such that i �= j, j �= k, k �= i, and

a ≥ b. For x = eμ +a · ei j and y = eμ + b · ei j , we have xi − yi = a ≥ b = xk − yk .
Moreover, by AD, ϕk (x) = ϕk (y) = μ

n . Hence, we obtain

gμ (a)
(A.4),(A.5)= ϕi (x)

DMo−
≥ ϕi (y)

(A.4),(A.5)= gμ (b) .

That is, the mapping gμ is monotonic. ��
Forμ ∈ R, setαμ := gμ (1) .The next claim already establishesC1 for all x ∈ R

N
μ .

Claim C1f. For all μ ∈ R and x ∈ R
N
μ , we have ϕ (x) = αμ · x + (1 − αμ) · eμ.
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Case (i): For x ∈ R̄
N
μ and i ∈ N , we obtain

ϕi (x)
C1d= gμ

i

(
xi − μ

n

)
+ μ

n
C1e= αμ ·

(
xi − μ

n

)
+ μ

n
= αμ · xi + (

1 − αμ
) · μ

n
.

Case (ii): Let x ∈ R
N
μ \R̄N

μ . Suppose ϕ (x) �= αμ · x + (1 − αμ) ·eμ. By E, we have∑
�∈N ϕ� (x) = μ = ∑

�∈N
[
αμ · x� + (1 − αμ) · μ

n

]
. Hence, there are i, j ∈ N

such that ϕi (x) > αμ · xi + (1 − αμ) · μ
n and ϕ j (x) < αμ · x j + (1 − αμ) · μ

n .

Let k, � ∈ N\ {i, j} , and y = x − (
xk − μ

n

) · ek�. Note that xi = yi and x j = y j .
Further, note that yk = μ

n and therefore y ∈ R̄
N
μ . By Case (i), we obtain ϕ (y) =

αμ · y + (1 − αμ) · eμ. Moreover, we have

ϕi (x) − ϕi (y) > αμ · xi + (
1 − αμ

) · μ

n
−

[
αμ · yi + (

1 − αμ
) · μ

n

]
= 0

and

ϕ j (x) − ϕ j (y) < αμ · x j + (
1 − αμ

) · μ

n
−

[
αμ · y j + (

1 − αμ
) · μ

n

]
= 0.

Since i and j are symmetric in x − y, x, y, i, and j satisfy the hypothesis of DMo−.

Hence, this contradicts DMo−. ��
Now, we are ready to prove C1.
Case (a): Suppose αμ = 0 for all μ ∈ R. By C1f, we obtain ϕi (x) =

1
n · ∑

�∈N x�
(A.3)= Sh0 (x) for all x ∈ R

N .

Case (b): Suppose αμ̄ �= 0 for some μ̄ ∈ R.ByC1e, we have αμ > 0. Set α := αμ̄.

We show that

ϕi (x) = α · xi + 1 − α

n
·
∑

�∈N
x� for all x ∈ R

N and i ∈ N . (A.8)

Suppose there exists some x ∈ R
N such that (A.8) fails for some i ∈ N . By C1f,

x /∈ R
N
μ̄ . By E and w.l.o.g., there exists j ∈ N\ {i} such that

ϕi (x) > α · xi + 1 − α

n
·
∑

�∈N
x� (A.9)

and

ϕ j (x) < α · x j + 1 − α

n
·
∑

�∈N
x�. (A.10)

Let

X := 1 − α

n
·
[(

∑

�∈N
x�

)
− μ̄

]
. (A.11)
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Further, let k ∈ N\ {i, j} and let y ∈ R
N be given by

yi = xi + X

α
, y j = x j + X

α
, yk = −xi − x j − 2 · X

α
+ μ̄, and y� = 0 (A.12)

for all � ∈ N\ {i, j, k} . Since y ∈ R
N
μ̄ , by C1f, we have ϕ (y) = α · y + (1 − α) · eμ̄.

By (A.9), (A.10), (A.11), and (A.12), we obtain

ϕi (x) − ϕi (y) > α · xi + 1 − α

n
·
∑

�∈N
x� −

(
α · xi + X + 1 − α

n
· μ̄

)
= 0

and

ϕ j (x) − ϕ j (y) < α · x j + 1 − α

n
·
∑

�∈N
x� −

(
α · x j + X + 1 − α

n
· μ̄

)
= 0.

Since i and j are symmetric in x − y, x, y, i, and j satisfy the hypothesis of DMo−.

Therefore, this contradicts DMo −. Hence, ϕ (x)
(A.3)= Shα (x) for all x ∈ R

N .

Finally, we have

α
(A.8)= −ϕ j

(
ei j

) AD≤ −
(
ei j

)

j
= 1 for i ∈ N and j ∈ N\ {i} ,

which concludes the proof of C1. ��
If |T>1 (v)| = 1 for v ∈ V, then there are δv ∈ R

N and βv ∈ R, and T v ⊆ N ,

|T v| > 1 such that βv �= 0 and

v = βv · ūT v +
∑

�∈N
δv
� · u{�}. (A.13)

Set

Rv :=
{
i ∈ N | v ({i}) �= 1

|N | · v (N )

}
.

Note that players i ∈ N\ (Rv ∪ T v) are average dummy players, i.e., dummy players
with v ({i}) = 1

|N | · v (N ) for which AD implies ϕ (v) = v ({i}) .

We now show that ϕ (v) = Shα (v) for all v ∈ V with |T>1 (v)| = 1 by a number
of claims. First, we deal with games in which there exists a average dummy player.

Claim 2, C2: For all v ∈ V with |T>1 (v)| = 1 and such that Rv ∪ T v �= N , we have
ϕ (v) = Shα (v) .

By C1, we have

ϕ
(
v − βv · ūT v

) = Shα
(
v − βv · ūT v

) (4),(A.1)= Shα (v) . (A.14)
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For i ∈ N\ (Rv ∪ T v) , we have

ϕi (v)
AD= v (N )

|N |
(4),(A.1)= Shα

i

(
v − βv · ūT v

) C1= ϕi
(
v − βv · ūT v

)
. (A.15)

Since all players in N\T v are pairwise symmetric in −βv · ūT v , v, v − βv · ūT v , and
i, � ∈ N\T v satisfy the hypothesis of DMo−. Hence, we have

ϕ� (v)
(A.15),DMo−= ϕ�

(
v − βv · ūT v

)
for all � ∈ N\T v. (A.16)

Since any two players in T v are pairwise symmetric in −βv · ūT v , v, v − βv · ūT v ,

and k, � ∈ T v satisfy the hypothesis of DMo−, which implies that we have

ϕk (v) ≷ ϕk
(
v − βv · ūT v

)
if and only if ϕ� (v) ≷ ϕ�

(
v − βv · ūT v

)
(A.17)

for all k, � ∈ T v. By E, (A.16), and (A.17 ), we finally have ϕ (v) = Shα (v). ��
Next, we handle games in which there are average players but which are not dummy

players.

Claim 3, C3: For all v ∈ Vwith |T>1 (v)| = 1 such that Rv ∪T v = N and |T v\Rv| ≥
1, we have ϕ (v) = Shα (v) .

Suppose ϕ (v) �= Sh (v). By E, there are i, j ∈ N such that

ϕi (v) > Shα
i (v) and ϕ j (v) < Shα

j (v) . (A.18)

Case (i): Suppose i, j ∈ Rv\T v or i, j ∈ T v.By (A.13), we have v−βv · ūT v ∈ V̄.

Hence, C1 implies

ϕ
(
v − βv · ūT v

) = Shα
(
v − βv · ūT v

)
. (A.19)

By (A.18) and (A.19), we further have

ϕi (v) − ϕi
(
v − βv · ūT v

)
> Shα

i (v) − Shα
i

(
v − βv · ūT v

) = Shα
i

(
βv · ūT v

) (4),(A.1)= 0

and

ϕ j (v) − ϕ j
(
v − βv · ūT v

)
< Shα

j (v) − Shα
j

(
v − βv · ūT v

) = Shα
j

(
βv · ūT v

) (4),(A.1)= 0.

Since i and j are symmetric in−βv ·ūT v , v, v−βv ·ūT v , i, and j satisfy the hypothesis
of DMo−. Hence, this contradicts DMo−.

Case (ii): Suppose, w.l.o.g., i ∈ Rv\T v and j ∈ T v.

Case (ii-a): Suppose j ∈ T v\Rv. Let w := v − βv · ūT v − βv · ū(T v\{ j})∪{i}. By
C2, we have

ϕ (w) = Shα (w) . (A.20)
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By (A.18) and (A.20), we further have

ϕi (v) − ϕi (w) > Shα
i (v) − Shα

i (w) = Shα
i

(
βv · ūT v + βv · ū(T v\{ j})∪{i}

) (4),(A.1)= 0

and

ϕ j (v) − ϕ j (w) < Shα
j (v) − Shα

j (w) = Shα
j

(
βv · ūT v + βv · ū(T v\{ j})∪{i}

) (4),(A.1)= 0.

Since i and j are symmetric in −βv · ūT v − βv · ū(T v\{ j})∪{i}, v, w, i, and j satisfy
the hypothesis of DMo−. Hence, this contradicts DMo−.

Case (ii-b): Suppose j ∈ T v ∩ Rv. By assumption, there exists k ∈ T v\Rv such
that k �= i and k �= j . By C1, we have

ϕ j
(
v − βv · ūT v

) = Shα
j

(
v − βv · ūT v

)
and

ϕk
(
v − βv · ūT v

) = Shα
k

(
v − βv · ūT v

)
. (A.21)

By (A.18) and (A.21), we have

ϕ j (v) − ϕ j
(
v − βv · ūT v

)
< Shα

j (v) − Shα
j

(
v − βv · ūT v

) = Shα
j

(
βv · ūT v

) (4),(A.1)= 0.

Since j and k are symmetric in−βv ·ūT v , v, v−βv ·ūT v , i, and k satisfy the hypothesis
of DMo−. Hence, DMo− entails

ϕk(v) − ϕk(v − βv · ūT v ) < 0.

Since

ϕk(v − βv · ūT v )
(A.21)= Shα

k (v − βv · ūT v )
(4),(A.1)= Shα

k (v) ,

we obtain
ϕk (v) < Shα

k (v) . (A.22)

Let z := v − βv · ūT v − βv · ū(T v\{k})∪{i}. By (A.18), (A.22), and C2, we have

ϕi (v) − ϕi (z) > Shα
i (v) − Shα

i (z) = Shα
i

(
βv · ūT v + βv · ū(T v\{k})∪{i}

) (4),(A.1)= 0
(A.23)

and

ϕk (v) − ϕk (z) < Shα
k (v) − Shα

k (z) = Shα
k

(
βv · ūT v + βv · ū(T v\{k})∪{i}

) (4),(A.1)= 0.
(A.24)

Since i ∈ Rv\T v and k ∈ T v\Rv, i and k are symmetric in−βv ·ūT v−βv ·ū(T v\{k})∪{i},
v, z, i, and k satisfy the hypothesis of DMo −. Hence, (A.23) and (A.24) contradict
DMo −. ��
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Finally, we deal with games in which there are no average players.

Claim 4, C4: For all v ∈ Vwith |T>1 (v)| = 1 such that Rv ∪T v = N and |T v\Rv| =
0, we have ϕ (v) = Shα (v) .

By assumption,we have Rv = N .Supposeϕ (v) �= Sh (v). ByE, there are i, j ∈ N
such that

ϕi (v) > Shα
i (v) and ϕ j (v) < Shα

j (v) . (A.25)

Let k ∈ N\ {i, j}, � ∈ N\ {i, j, k} , and q ∈ V be given by

q :=
(

v ({k}) − v (N )

|N |
)

· (
u{k} − u{�}

)
. (A.26)

By (A.13), we have

v − q = βv · ūT v + v (N )

|N | · u{k} +
(

δv
� + δv

k − v (N )

|N |
)

· u{�} +
∑

h∈N\{k}
δv
h · u{h}.

Hence, we have |T>1 (v − q)| = 1, T v−q = T v, and

(v − q) ({k}) = v (N )

|N | = (v − q) (N )

|N | ,

where the latter implies k /∈ Rv−q . Note that q is constructed in a way such that k is
an average player in v − q.

If k /∈ T v, then v − q satisfies the hypothesis of C2 and we obtain

ϕ (v − q) = Shα (v − q) . (A.27)

If k ∈ T v, then v − q satisfies the hypothesis of C3 and we also obtain (A.27). By
(A.25) and (A.27), we have

ϕi (v) − ϕi (v − q) > Shα
i (v) − Shα

i (v − q) = Shα
i (q)

(4),(A.26)= 0 (A.28)

and

ϕ j (v) − ϕ j (v − q) < Shα
j (v) − Shα

j (v − q) = Shα
j (q)

(4),(A.26)= 0. (A.29)

Since i and j are symmetric in −q, v, v −q, i and j satisfy the hypothesis of DMo−.

Hence, (A.28) and (A.29) together contradict DMo−. ��
Note that the induction basis (see page 8) is proved by C1, C2, C3, and C4.
Induction hypothesis: Let the claim hold for all v ∈ V such that |T>1 (v)| ≤ t,

t ∈ N, t ≥ 1.
Induction step: Let now v ∈ V be such that |T>1 (v)| = t + 1. There exist S, T ∈

T>1 (v) such that S �= T . By (3), (A.2), (*) (see page 8), and the induction hypothesis,
we have

ϕ (vS) = Shα (vS) = Shα (v) = Shα (vT ) = ϕ (vT ) . (A.30)
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Case (i): S ∩ T �= ∅. W.l.o.g., S\T �= ∅. Let i ∈ S ∩ T and j ∈ S\T . By (A.30)
and DMo−, we have

ϕ� (v) ≷ Shα
� (v) if and only if ϕi (v) ≷ Shα

i (v) for all � ∈ S,

ϕ� (v) ≷ Shα
� (v) if and only if ϕi (v) ≷ Shα

i (v) for all � ∈ T ,

ϕ� (v) ≷ Shα
� (v) if and only if ϕ j (v) ≷ Shα

j (v) for all � ∈ N\T ,

and therefore

ϕ� (v) ≷ Shα
� (v) if and only if ϕi (v) ≷ Shα

i (v) for all � ∈ N . (A.31)

Case (ii): S ∪ T �= N . W.l.o.g., S\T �= ∅. Let i ∈ N\ (S ∪ T ) and j ∈ S\T . By
(A.30) and DMo−, we have

ϕ� (v) ≷ Shα
� (v) if and only if ϕi (v) ≷ Shα

i (v) for all � ∈ N\S,

ϕ� (v) ≷ Shα
� (v) if and only if ϕi (v) ≷ Shα

i (v) for all � ∈ N\T ,

ϕ� (v) ≷ Shα
� (v) if and only if ϕ j (v) ≷ Shα

j (v) for all � ∈ S,

and therefore

ϕ� (v) ≷ Shα
� (v) if and only if ϕi (v) ≷ Shα

i (v) for all � ∈ N . (A.32)

Case (iii): S∩ T = ∅ and S∪ T = N . Hence, T>1 (v) = {S, T } . Let i ∈ S, j ∈ T ,

and w ∈ V be given by

w = vS − λS (v) · u(S\{i})∪{ j} + λS (v)

|S| ·
∑

�∈(S\{i})∪{ j}
u{�}. (A.33)

By construction, we have T>1 (w) = {(S\ {i}) ∪ { j} , T } and (****) v (N ) = w (N ) .

In view of Case (i), we have (*****) ϕ (w) = Sh (w) .

Since i and j are symmetric in v − w, v, w, i, and j satisfy the hypothesis of
DMo−. Hence, by DMo− and (A.30), we have

ϕ j (v) ≷ ϕ j (w)
(*****)= Shα

j (v) if and only if ϕi (v) ≷ ϕi (w)
(*****)= Shα

i (v) ,

ϕ� (v) ≷ Shα
� (v) if and only if ϕi (v) ≷ Shα

i (v) for all � ∈ S,

ϕ� (v) ≷ Shα
� (v) if and only if ϕ j (v) ≷ Shα

j (v) for all � ∈ T ,

and therefore

ϕ� (v) ≷ Shα
� (v) if and only if ϕi (v) ≷ Shα

i (v) for all � ∈ N . (A.34)

Finally, (A.31), (A.32), (A.34), and E imply ϕ (v) = Shα (v). ��
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Appendix B Counterexample to Theorem 3 for |N| = 2

Theorem 3 fails for |N | = 2. Let N = {1, 2} . Consider the solution ϕ♥ : V → R
2

given by

(
ϕ

♥
1 (v) , ϕ

♥
2 (v)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Sh1 (v) ,Sh2 (v)) , Sh1 (v) ≥ 0, Sh2 (v) ≥ 0,(
Sh1 (v) + Sh2 (v)

2
,
Sh2 (v)

2

)
, Sh1 (v) > 0, Sh2 (v) < 0, v (N ) ≥ 0,

(
Sh1 (v)

2
,Sh2 (v) + Sh1 (v)

2

)
, Sh1 (v) > 0, Sh2 (v) < 0, v (N ) < 0,

(Sh1 (v) ,Sh2 (v)) , Sh1 (v) ≤ 0 Sh2 (v) ≤ 0,(
Sh1 (v) + Sh2 (v)

2
,
Sh2 (v)

2

)
, Sh1 (v) < 0, Sh2 (v) > 0, v (N ) ≥ 0,

(
Sh1 (v)

2
,Sh2 (v) + Sh1 (v)

2

)
, Sh1 (v) < 0, Sh2 (v) > 0, v (N ) < 0

for all v ∈ V. One can easily check that ϕ♥ �= Shα for all α ∈ [0, 1] and that ϕ♥
inherits E, AD, and DMo − from Sh.

Appendix C Non-redundancy of Theorem 3 for |N| > 3

Our characterization is non-redundant for |N | > 3. The value ϕE given by
ϕE
i (v) = v ({i}) for all v ∈ V and i ∈ N satisfies AD and DMo− but not E.

The strictly positively weighted division values (Béal et al. 2016, Theorem 2) with
non-uniform weights satisfy E and DMo− but not AD. For v ∈ V, let D0 (v) :=
{i ∈ N | i is a dummy player in v} . The value ϕDMo−

given by

ϕDMo−
i (v) =

⎧
⎨

⎩

v (N ) − ∑
�∈D0(v) v ({�})

|N\D0 (v)| , i ∈ N\D0 (v) ,

v ({i}) , D0 (v)

for all v ∈ V and i ∈ N

satisfies E and AD but not DMo−.
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