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Abstract
We consider a network game based on matching pennies with two types of agents,
conformists and rebels. Conformists prefer tomatch the action taken by themajority of
her neighbors while rebels like to match the minority. We investigate the simultaneous
best response dynamic focusing on the lengths of limit cycles (LLC for short). We
show that LLC = 1 or 2 when all agents are of the same type, and LLC = 4when there
is no conformist-rebel edge and no two even-degreed agents (if any) are neighboring
each other. Moreover, LLC = 1 for almost all type configurations when the network is
a line or a ring, which implies that a pure strategyNash equilibrium is reached from any
initial action profile. However, LLC = 4 for about one half of the type configurations
with star networks.
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1 Introduction

The theory of network games has become a booming field and attracted increasing
attention from social and computer scientists.1 One direction of research in this field is
to model social interactions by letting two-player games be simultaneously played by
players connected through network structures. In this paper, we study such a network
extension of matching pennies.2 There is generally no pure strategy Nash equilibrium
(PNE for short) in this model, so we study its best-response dynamics, which are mim-
ics of individuals’ adaptive behaviors and the limit cycles of which to be introduced
soon could also be viewed as extensions of PNE.

Matching pennies is an asymmetric game. It can be intuitively interpreted as that the
row player (called a conformist) preferring to coordinate with her opponent’s action,
while the column player (called a rebel) preferring to anti-coordinate. Therefore, in
a network extension of matching pennies, it is natural to assume that a pair of con-
formists play a coordination game, a pair of rebels play an anti-coordination game, and
a conformist-rebel pair plays matching pennies. With this in mind, the model, to be
referred to as the networkmatching pennies game (NMP for short), can be decomposed
into three elementary base games, namely,matching pennies, a coordination game, and
an anti-coordination game, among which matching pennies is the most essential one,
because it is the only one that has both types of players. The NMP model is originally
proposed by Jackson (2008, P.271) for the analysis of the phenomenon of fashion and
subsequently analyzed by Cao et al. (2013), Cao and Yang (2014), and Zhang et al.
(2018). However, the potential applications of NMP are not restricted to fashion. For
example, the dynamics ofNMP, as studied in this paper,may be viewed as learning pro-
cesses of heterogeneous agentswith different learning rules. Conforming and rebelling
behaviors are also closely related to herding and contrarian behaviors, which are well
recognized as being critical to understanding financial markets (Park and Sabourian
2011). In fact, there are at least three types of conforming/rebelling behaviors, namely,
pure conformity/rebellion, instrumental conformity/rebellion, and informational con-
formity/rebellion, as detailed in Young (2001) and Zhang et al. (2018).

1.1 Results

Wemainly focus on the simultaneous best response dynamics (simultaneous BRD for
short). Since the simultaneous BRD is deterministic, and there are a total of finitely
many states, it will eventually enter a cycle, which is usually called a limit cycle in
the literature on dynamic systems. We are mainly concerned with the lengths of limit
cycles (LLC for short) under simultaneous BRD. It is clear that a PNE must exist for
the corresponding NMP when LLC = 1.

1 The reader is referred to Goyal (2007), Jackson (2008), Menache and Ozdaglar (2011), Jackson and
Zenou (2014), Bramoullé and Kranton (2016) for excellent introductions and surveys of the literature.
2 Matching pennies has also found many interesting applications. For example, it is usually interpreted as
an attack-defence game, including penalty kicks in the soccer game (Chiappori et al. 2002; Palacios-Huerta
2003) and military landings in wars (Easley and Kleinberg 2010). In biology, matching pennies is used to
study the Red Queen effect (van Valen 1980).
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Dynamic analyses on general network structures are usually very complicated.
For the particular model that we are interested in, even the static problem of deciding
whether a PNE exists is computationally hard (Cao andYang 2014). For this reason,we
shall investigate two benchmark cases: the casewith a single type of agents and the case
without direct interaction among agents of the same type, and three special network
structures: lines, rings or stars. Although these network structures seem simple, some
of the analyses are nontrivial. In addition, they are frequently analyzed in the literature
on social learning and cultural dynamics, a field that is closely related to this paper.3

Our main findings are summarized as follows. (i) We show that LLC = 1 or 2 when
all agents are of the same type (Theorem 1).4 (ii) We generalize the simple fact that
matching pennies has LLC = 4 to NMPs with all edges being conformist-rebel ones
under certain additional conditions (Theorem 2). (iii) When the underlying network
is a line or a star, all the possible LLCs for NMPs are 1, 2 and 4 (Theorems 3, 5).
When the network is a ring, however, LLC can be as large as twice the size of the
network (Remark 5), although in most cases the properties with rings are similar to
those with lines (Theorem 4). (iv) If a network is sufficiently large, then regardless of
the initial action profiles, NMP has LLC = 1 for almost all type configurations when
the network is a line or a ring (Theorem 6(a)), and LLC = 4 for approximately one
half of the type configurations when the network is a star (Theorem 6(b)).

In an appendix, we also investigate the sequential BRD. It turns out that when
the underlying network is a line or a ring, NMP is an ordinal potential game, which
implies that the sequential BRD converges to a PNE, if and only if the network is not
completely heterophilic (i.e., not all edges are conformist-rebel ones) (Theorem 7).
For star networks, we consider a particular sequential BRD, where at each time step
unsatisfied agents are randomly selected to deviate with the probability that each
unsatisfied agent is selected being positive.We show that when the underlying network
is a star, the probability that the above sequential BRD converges is one if and only if
at least one half of the peripheral agents are of the same type as the central agent, a
condition that is equivalent to the existence of a PNE (Theorem 8).

1.2 Related work

The NMP model is originally proposed by Jackson (2008), who observed that when
each agent has no fewer conformist neighbors than rebel neighbors, the existence
of a PNE is guaranteed. Applying a partial potential analysis, Zhang et al. (2018)
established an improvement of the above observation by showing that we only need to
require each conformist have no fewer conformist neighbors than rebel neighbors to
guarantee the existence of a PNE. The major difference between this paper and Zhang
et al. (2018) is that the latter paper studies sequential BRD by transforming the discrete
dynamic into a system of ordinary differential equations, whereas the present paper
mainly focuses on simultaneous BRD, a dynamic that is much less understood in the

3 C.f. Ellison (1993), Kandori et al. (1993), Anderlini and Ianni (1996), Young (1998), and Chen et al.
(2013).
4 This result resembles a well-known one for the threshold model that has a subtle yet critical difference
with our model. See Remark 1 and Sect. 3.1 for details.
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literature than its sequential counterpart. In addition, the present paper also carries out
a rigorous analysis, instead of an approximate analysis as in Zhang et al. (2018), of the
sequential BRD. The major difference between this paper and Cao and Yang (2014)
is that the latter focuses on computational issues. While we are concerned with LLC
and convergence of BRDs, Cao et al. (2013) concentrated on the cooperation level
problem in NMP through numerical simulations.

Since the coordination game and the anti-coordination game are both base games,
NMP can also be viewed as a combination of the network coordination game and
the network anti-coordination game. The literature on network coordination games is
too vast for us to give a complete survey here. In particular, Apt et al. (2017) consid-
ered general coordination games on networks where agents typically have different
action sets. Several other related useful results for this paper will be introduced when
they are applied. The network anti-coordination game, in contrast, attracts consid-
erably less attention. The most influential papers on this topic are Bramoullé et al.
(2004) and Bramoullé (2007).5 In the field of social physics, a closely related and
extensively studied model is the minority game (also known as the El Farol Bar prob-
lem), a model that was proposed by Arthur (1994) and developed by Challet and
Zhang (1997) with numerous follow-ups. We refer the reader to Szabó et al. (2014)
for a recent study of the evolutionary matching pennies game on bipartite regular
networks.

Our research falls into the booming field of network games. The NMP model is
a mixture of a network game with strategic complements and a network game with
strategic substitutes, the two most extensively studied classes of network game mod-
els. Indeed, it exhibits a simple form of strategic complement for conformists and a
simple form of strategic substitute for rebels. In a recent paper by Bramoullé et al.
(2014), mixtures of strategic complements and strategic substitutes are allowed, but
action sets in their paper are continuous. In Hernandez et al. (2013), both strate-
gic complement and strategic substitute are considered. However, for any specific
values of parameters in their model, strategic complement and strategic substitute
do not coexist. Other recent related works include Southwell and Cannings (2013),
Ramazi et al. (2016), Haslegrave and Cannings (2017), and Shirado and Christakis
(2017).6

The rest of this paper is organized as follows. Section 2 formally introduces the
NMP model. Section 3 deals with two benchmark cases for the simultaneous BRD.
Section 4 considers three special network structures for the simultaneous BRD. Sec-
tion 5 concludes the paper with several further discussions. Most of the proofs and the
investigation of the sequential BRD are organized in an appendix.

5 Note that the coordination and anti-coordination games that are used in this paper, which are also referred
to as the pure coordination and anti-coordination games in literature, have very simple payoffs. The models
that are studied in Bramoullé et al. (2004) and Bramoullé (2007) are general anti-coordination games.
6 Simultaneous BRD of NMP is mathematically a nonlinear discrete dynamical system as well as a boolean
network, which in general is notoriously hard to analyze (c.f. Ilachinski 2001, P.225). Related stochastic
models are drawing an increasing attention frommathematicians recently (Balister et al. 2010; Kanoria and
Montanari 2011; Tamuz and Tessler 2015).
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H T
H 1, 1 −1,−1
T −1,−1 1, 1

H T
H −1,−1 1, 1
T 1, 1 −1,−1

H T
H 1,−1 −1, 1
T −1, 1 1,−1

Fig. 1 The three base games. (1) The coordination game (left): a conformist versus a conformist; (2) the
anti-coordination game (middle): a rebel versus a rebel; (3) matching pennies (right): a conformist versus
a rebel. Conformists are represented by circles, and rebels by triangles

2 Themodel

In the NMP model, there are two types of agents, conformists and rebels, located on a
fixed network. Conformists like to match the majority action of her neighbors, while
rebels prefer to match the minority. Each agent has two available actions, named 0 and
1, which can be interpreted as wearing white or black skirts, buying or not buying an
iphone, etc.7 According to their types, each pair of neighboring agents play one of the
three base games, the payoffs of which are described in Fig. 1. We assume that each
agent takes the same action in all of the base games she plays. The overall payoff of
each agent is simply the sum of the payoffs that she receives in all the games she plays.

Formally, we use {C, R} to denote the type set, where C stands for conformists and
R for rebels. For each agent i , Ti ∈ {C, R} is her type. An NMP is represented by a
triple G = (N , g,T), where

• N = {1, 2, . . . , n} is the set of agents;
• g ⊆ N × N is the set of links (edges);
• T = (T1, T2, . . . , Tn) ∈ {C, R}n is the configuration of agents’ types.

The underlying network (N , g) is undirected. That is, i j and j i represent the same
link. Two agents i, j ∈ N are neighboring each other if and only if i j ∈ g. We also
use Ni to denote the set of neighbors of agent i , i.e., Ni = { j ∈ N : i j ∈ g}. In
simultaneous BRD, time elapses discretely. Agents’ types do not change over time,
but their actions may change. We use

x(0) = (x1(0), x2(0), . . . , xn(0)) ∈ {0, 1}n

to denote the initial action profile, where xi (0) is the initial action of agent i .
We define xi (t) ∈ {0, 1} as the action of agent i at time t , and write x(t) =
(x1(t), x2(t), . . . , xn(t)).

Define Li (x(t)) ⊆ Ni as the subset of neighbors at time t that are liked by agent
i . Since conformists like those taking the same action while rebels the opposite, we
have

7 In this paper, agents’ strategies are simply their pure actions. Neithermixed actions nor strategic behaviors
other than myopic BRDs are allowed. Hence we use “action” and “action profile” in place of “strategy”
and “strategy profile”, respectively.
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Li (x(t)) =
{ { j ∈ Ni : x j (t) = xi (t)} i f Ti = C,

{ j ∈ Ni : x j (t) �= xi (t)} i f Ti = R.

Set Di (x(t)) = Ni\Li (x(t)) as the subset of neighbors that are disliked by agent i at
time t . According to the payoff settings in Fig. 1, agent i gains 1 unit from interacting
with each neighboring agent in Li (x(t)) but loses 1 unit from interacting with each of
those in Di (x(t)). Thus, given an action profile x(t) at time t , the utility of agent i is
given by

ui (x(t)) = |Li (x(t))| − |Di (x(t))|.
When ui (x(t) ≥ 0, we may also say that agent i is satisfied (at time t). Otherwise,

she is called unsatisfied. Under the simultaneous BRD, agent i switches her action at
time t if and only if she is unsatisfied:

xi (t + 1) =
{
1 − xi (t) i f ui (x(t)) < 0,
xi (t) otherwise.

The focus of our analysis is on the limit cycle, a basic concept from dynamic
systems. Intuitively, a limit cycle is an ordered set of action profiles such that starting
from each of these profiles the system will evolve into its immediate successor (the
successor of the last action profile is the first one). Since there are a total of finitely
many action profiles in the NMP and simultaneous BRD is deterministic, some profile
will reappear after a certain number of steps. From that time on, everything will be
repeated just as that state is reached for the first time. Therefore, limit cycle always
exists and it is unique for any NMP and an initial action profile.

In the rest of this paper, we also use I = (N , g,T, x(0)) to denote an initialized
NMP. Below is the formal definition of a limit cycle.

Definition 1 Let I = (N , g,T, x(0)) be an initialized NMP, and t(I) ≥ 1 be the first
time such that

x(t(I)) ∈ {x(0), x(1), . . . , x(t(I) − 1)}.

Let r(I) < t(I) be the time such that x(t(I)) = x(r(I)). We call the ordered set of
states (x(r(I)), x(r(I) + 1), . . . , x(t(I) − 1)) the limit cycle of I.

In the rest of this paper, we use �(I) = t(I)−r(I) to denote the length of the limit
cycle (LLC for short) of I. When time goes beyond r(I), we say that simultaneous
BRD enters the limit cycle. For an initialized NMP I, it is clear that a PNE will be
eventually reached via simultaneous BRD if and only if �(I) = 1, in which case we
also say that the simultaneous BRD converges.

Example 1 Matching pennies, when viewed as an NMP with exactly one conformist
and one rebel who are connected, has LLC = 4. See Fig. 2 for an illustration.

Remark 1 A closely related model to NMP that has been extensively studied is the
threshold model (Granovetter 1978). In the threshold model, there is a threshold for
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Fig. 2 LLC = 4 in matching
pennies. Conformists and rebels
are represented by circles and
triangles, respectively. Actions
are indicated by colors: black for
1 and white for 0

each agent and she prefers action 1 over action 0 if and only if the number of her neigh-
bors choosing action 1 is greater than or equal to this threshold. When the threshold
is one half of the degree for each agent, the corresponding simultaneous BRD is also
known as the majority dynamic. It is worth noting that the preference of a conformist
in NMP is not exactly the same as in the majority dynamic. The subtle difference lies
in the tie-breaking rules: when the number of action 1 neighbors of an agent is exactly
the threshold, action 1 is biased in the majority dynamic, but action 1 and action 0
are symmetric in NMP. It has been pointed out that the tie-breaking rule may be very
critical in global behaviors of the dynamic and other tie-breaking rules have also been
studied in the literature (Gärtner and Zehmakan 2017).

3 Simultaneous BRD: two benchmark cases

In this section, we consider two benchmark cases. (i) The case where either all agents
are conformists (a network coordination game) or all agents are rebels (a network anti-
coordination game). Note that in this case all interactions are inner-type ones, i.e., there
is no conformist-rebel edge. (ii) The casewhere all interactions are cross-type ones, i.e.,
all edges are conformist-rebel ones. In terms of homophily, the first benchmark is the
completely homophilic case and the second benchmark is the completely heterophilic
case.8

3.1 The completely homophilic case

It is well-known that any threshold model has an LLC of either one or two via a Lya-
punov functionmethod (Poljak andSura 1983;Goles 1987;Berninghaus andSchwalbe
1996). It was pointed out by Cannings (2009) that the same Lyapunov function works
for anti-threshold models, deriving an LLC of either one or two. However, as we
have pointed out in Remark 1, there is a subtle difference between the tie-breaking
rules of a threshold model and the network coordination game. As a result, the Lya-
punov functions constructed in Poljak and Sura (1983), Goles (1987) and Berninghaus
and Schwalbe (1996) do not apply to the network coordination game or the network
anti-coordination game. Yet, the LLC ≤ 2 property still holds.

Theorem 1 Let G = (N , g,T) be an NMP such that all agents are of the same type.
Then LLC equals 1 or 2.

8 See Zhang et al. (2018) for more discussions about the concept of homophily and its connections with
limit cycles of sequential BRD in NMP.
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Fig. 3 LLC = 6 in an NMP with
one conformist-rebel edge.
Conformists and rebels are
represented by circles and
triangles, respectively. Actions
are indicated by colors: black for
1 and white for 0. Unhappy faces
indicate that the corresponding
agents are unsatisfied

Our proof is based on the Lyapunov function applied in a recent paper byHaslegrave
andCannings (2017), who studied amixture of a thresholdmodel and an anti-threshold
model, which has different tie-breaking rules with our model.

For each agent i ∈ N and time t ≥ 1, we use n1i (t) to denote the number of i’s
neighbors that use action 1 at time t . The following observations are critical.

Observation 1 Suppose i is a conformist. (i) If xi (t + 1) = 1, then n1i (t) ≥ ni/2. (ii)
If xi (t + 1) = 0, then n1i (t) ≤ ni/2.

Note that the other way around is incorrect in both cases of the observation, because
xi (t + 1) = xi (t) when n1i (t) = ni/2. In addition, if ni is odd, the two inequalities
are both strict. We have an analogous observation for rebels.

Observation 2 Suppose i is a rebel. (i) If xi (t + 1) = 1, then n1i (t) ≤ ni/2. (ii) If
xi (t + 1) = 0, then n1i (t) ≥ ni/2.

Using the above two observations, it can be shown that the proof of Haslegrave and
Cannings (2017) can be adapted for Theorem 1 (Appendix A).

Remark 2 Theorem 1 may not be valid in the general case, even if there is only one
conformist-rebel edge. The example in Fig. 3 provides an illustration.

3.2 The completely heterophilic case

As illustrated in Fig. 2, matching pennies always has LLC = 4 under simultaneous
BRD. Theorem 2 of this subsection is a generalization of this simple fact. Before
presenting this result, we provide a formal definition of complete heterophily.

Definition 2 LetG = (N , g,T)be anNMP. If Ti �= Tj for all i j ∈ g, i.e., the neighbors
of any conformist are all rebels and the neighbors of any rebel are all conformists, we
say that G is completely heterophilic.

If G is completely heterophilic, then the underlying network (N , g) is a bipartite
network with one side of all conformists and the other side of all rebels.9 This structure

9 A network (N , g) is called bipartite, if we can partition the node set N into two parts, N1 and N2, such that
the two nodes of each link are from different parts. That is, (N , g) is bipartite if and only if g ⊆ N1 × N2.
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is a natural generalization of that in thematching pennies game, because onlymatching
pennies will be played in this NMP but the other two base games do not occur.

Theorem 2 Let G = (N , g,T) be a completely heterophilic NMP. If no two even-
degreed agents (if any) are neighboring each other, then LLC = 4.

Proof We prove in two steps. In the first step we show via a new Lyapunov function
that xi (t − 1) �= xi (t + 1) for any agent i with an odd degree and large enough t such
that a limit cycle is reached at time t − 1. This implies that the period of the action
series of agent i in the limit cycle is 4. In the second step, we show that the action
series of an even-degreed agent is of either period 1 or period 4, if her neighbours are
all odd-degreed. The proof is completed by combining these two steps.

Step 1: Denote αC (t) = ∑
i∈C :xi (t)=1 n

1
i (t − 1) as the number of i j links

such that i ∈ C, xi (t) = 1 and j ∈ R, x j (t − 1) = 1, and βC (t) =∑
i∈C :xi (t)=1 or xi (t−1)=0 ni/2. Analogously, denote αR(t) = ∑

i∈R:xi (t)=1 n
1
i (t − 1)

as the number of i j links such that i ∈ R, xi (t) = 1 and j ∈ C, x j (t − 1) = 1, and
βR(t) = ∑

i∈R:xi (t)=1 or xi (t−1)=0 ni/2. Define a Lyapunov function

γ (t) = [αC (t) − βC (t)] − [αR(t) − βR(t)].

It can be checked that

γ (t+1) − γ (t)=
∑

i∈C1→1(t)∪R0→0(t)

(n1i (t) − ni/2) +
∑

i∈C0→0(t)∪R1→1(t)

(ni/2 − n1i (t)),

where

C1→1(t) = {i ∈ C : xi (t − 1) = 1, xi (t + 1) = 1}

is the set of conformists who take action 1 at time t − 1 and time t + 1, and
C0→0(t), R1→1(t) and R0→0(t) are analogously defined.

By Observations 1 and 2, γ (t + 1) − γ (t) is always nonnegative. Consequently,
γ (t) must be a constant in a limit cycle. In particular, if ni is odd, then we must
have xi (t − 1) �= xi (t + 1) in the limit cycle, i.e, C1→1(t),C0→0(t), R1→1(t) and
R0→0(t) are all empty. This implies that the action series of agent i has the form of
00110011 · · · in the limit cycle, i.e., with a period of 4.

Step 2: We now consider the case that every neighbour of an even-degreed agent
j has an odd degree. Suppose that agent j has k neighbours, among whom k j0(t)
agents use action 0 and k j1(t) agents use action 1 at time t . Let k j (t) = k j0(t) −
k j1(t) be the value of the number of j’s action 0 neighbors minus the number of
j’s action 1 neighbors at time t . From Step 1, the period of the action series of
any of agent j’s neighbor i is 4 in a limit cycle, leading to xi (t − 1) �= xi (t + 1).
This implies that k j0(t − 1) = k j1(t + 1) and k j1(t − 1) = k j0(t + 1), and hence
k j (t) = −k j (t + 2) = k j (t + 4). For simplicity, we denote the time series of k j (t) by
[k j (t), k j (t + 1),−k j (t),−k j (t + 1)].

The action of agent j at time t + 1, x j (t + 1), is determined by the type of j , x j (t)
and the sign of k j (t). Since k j (t) and k j (t + 1) can be either positive, negative or
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Fig. 4 LLC = 12 in a
completely heterophilic NMP
with two even-degreed agents
that are neighboring each other.
Conformists and rebels are
represented by circles and
triangles, respectively. Actions
are indicated by colors: black for
1 and white for 0. The third
conformist and the third rebel
are the only even-degreed agents
and they are neighboring each
other. Unhappy faces indicate
that the corresponding agents are
unsatisfied

0, there are 9 cases for the sign series of [k j (t), k j (t + 1),−k j (t),−k j (t + 1)]. For
each case, it can be checked that the action series of agent j displays either period 1
or period 4, regardless of j’s type or x j (t) (we omit the easy but tedious details). This
implies that LLC = 4 if there is no link between even-degreed agents. 	

Remark 3 The condition that even-degreed agents are not neighboring each other is
necessary to the correctness of Theorem 2. In fact, LLC = 12 is possible even if there
are exactly two such agents, as shown in Fig. 4.

4 Simultaneous BRD: three special network structures

In this section, we consider three special network structures, lines, rings, and stars.10

The simultaneous BRD of NMP can be understood more clearly with these networks.
Note first that if (N , g) is a line or a ring, then complete heterophily means that
conformists and rebels are alternate; and for star networks, complete heterophilymeans
that all the peripheral agents are of the opposite type to the central one. The following
basic results will be frequently used in later discussions.

Lemma 1 Let G = (N , g,T) be an NMP, x(0) an initial action profile, and I =
(N , g,T, x(0)) the corresponding initialized NMP. Suppose also n ≥ 2.

(a) G is an exact potential game if and only if there is no conformist-rebel link;
(b) If no agent is initially satisfied, i.e., ui (x(0)) < 0 for all i ∈ N , then �(I) = 2;
(c) If (N , g) is a line, then G does not have a PNE if and only if it is completely

heterophilic;
(d) If (N , g) is a ring, then G does not have a PNE if and only if it is completely

heterophilic and n/2 is odd;
10 We say that (N , g) is a line if agents can be re-indexed such that g= {12, 23, . . . , (n − 1)n}, a ring if
g={12, 23, . . . , (n − 1)n, n1}, and a star if there exists an agent i such that g= {i j : j ∈ N , j �= i}, in
which case i is called the central agent and the others are called peripheral ones.
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(e) If (N , g) is a star, then G has a PNE if and only if at least one half of the peripheral
agents are of the same type as the central agent.

Lemma 1(a) is provided in Zhang et al. (2018). In particular, Lemma 1(a) implies
that a PNE exists in NMP when there is only one type of agents. Lemma 1(b) is
trivial: because when no agent is initially satisfied, they switch to the other actions
simultaneously, leading to a new state where no agent is satisfied either. In the next
round, all agents switch back to the initial state. Therefore, the system keeps oscillating
between the two states, all agents are in eternal flux and no agent is ever satisfied.
Evidently, coordination failure is caused by simultaneous moves. Lemma 1(c) and
Lemma 1(d) are proved in Cao and Yang (2014). Lemma 1(e) is simple: since each
peripheral agent has the central agent as her unique neighbor, the utility of the central
agent in any PNEmust be the number of agents that are of the same type minus that of
the opposite type; this happens if and only if at least one half of the peripheral agents
are of the same type as the central agent.

Certain simple local structures turn out to play crucial roles in the convergence of
BRDs. To ease later discussions, we introduce them formally in the definitions below.

Definition 3 Let G = (N , g,T) be an NMP, and the underlying network (N , g) be a
line or a ring. Any component of two adjacent agents that are of the same type is called
a weak cluster, and G is called weakly clustered if it has at least one weak cluster.
Obviously, G is weakly clustered if and only if it is not completely heterophilic.

Definition 4 Let G = (N , g,T) be an NMP, and the underlying network (N , g) be
a line. A strong cluster of G is defined as any of the following components: (i) the
left-most two agents that are of the same type; (ii) the right-most two agents that are
of the same type; and (iii) three adjacent agents that are of the same type. G is called
strongly clustered if it has at least one strong cluster.

Definition 5 Let G = (N , g,T) be an NMP, and the underlying network (N , g) be a
ring. A strong cluster of G is defined as a component of three adjacent agents that are
of the same type. G is called strongly clustered if it has at least one strong cluster.

Since NMP with any network structure has LLC ≤ 2 (Theorem 1) and is an exact
potential game when there is only one type of agents (Lemma 1(a)), it is intuitive that
the existence of clusters may be in favor of the convergence of BRDs. It is indeed the
case.

4.1 Lines

Below are the main results of this subsection, which give a fairly complete character-
ization for the simultaneous BRD of NMP with line structures.

Theorem 3 Let G = (N , g,T) be an NMP with the underlying network (N , g) being
a line, x(0) an initial action profile, and I = (N , g,T, x(0)) the corresponding
initialized NMP. Suppose also n ≥ 2.

(a) If G is completely heterophilic, then �(I) = 4 for all x(0);
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(b) If G is not completely heterophilic, i.e., it is weakly clustered, then �(I) ∈ {1, 2, 4}
for all x(0). In particular,

(i) �(I) = 2 if and only if all agents are of the same type and they are all initially
unsatisfied, i.e., ui (x(0)) < 0 for all i ∈ N ;

(ii) If there exists a weak cluster such that the corresponding two agents initially
like each other, then �(I) = 1;

(iii) If G is strongly clustered and the condition in (i) is not true, then �(I) = 1;
(iv) In all the other cases that G is weakly clustered, i.e.,G is not strongly clustered

and the condition in (ii) is not true, �(I) ∈ {1, 4}.
Proofs of the above results are relatively easy, except cases (a) and (b)(iv), whose

basic ideas are sketched in the following. Detailed rigorous proofs of all results of
Theorem 3 are presented in Appendices B.1 and B.2.

The proofs of cases (a) and (b)(iv) rely crucially on two technical lemmas, Lemma 6
and Lemma 7 (Appendix B.2). Suppose now the underlying network is a completely
heterophilic line. In the two lemmas, we focus on utility sequences rather than on
action profiles. Roughly speaking, Lemma 6 states that certain utility sequences will
never occur. Lemma 7 shows further that no agent has utility zero in the limit cycle.

The basic idea to prove Theorem 3(a) goes as follows. Recall first that a PNE does
not exist in this case (Lemma 1(d)). By Lemma 7, none of the agents has a utility of
zero in the limit cycle. Due to Lemma 6, 2 will never be adjacent with 2 and neither
will −2 be adjacent with −2 in any utility sequence. Thus, it can be concluded that,
the whole sequence of utilities will consist of alternate 2 and−2 (except for the ending
agents, whose utilities are 1 or −1) once a limit cycle is entered. And hence at any
step of the limit cycle, either none conformist is satisfied but every rebel is, or none
rebel is satisfied but every conformist is. Based on this argument, it can be checked
easily that LLC = 4.

To prove Theorem 3(b)(iv), a “cutting technique” is explored. Observe first that, due
to (b)(i) and (b)(iii), NMPs discussed in this case cannot be strongly clustered. Since
LLC = 2 implies that all agents are of the same type and further that G is strongly
clustered, we must have �(I) �= 2. In addition, there are no three adjacent agents that
are of the same type, and neither the left-most two agents nor the right-most two ones
are of the same type. So, if we cut the line at all the conformist-conformist links and
at all the rebel-rebel ones into sublines, then each subline is completely heterophilic,
and no isolated agent will be produced. To prove Theorem 3(b)(iv), it suffices to show
that “�(I) ≥ 3 implies �(I) = 4”. Suppose now �(I) ≥ 3. Since each of the sublines
has LLC = 4 (Theorem 3(a)), and piecing them together does not affect the dynamic
of each other, provided that �(I) ≥ 3 (Lemma 5 in Appendix B.1), we complete the
proof of Theorem 3(b)(iv).

Theorem 3(b)(i), though simple, possesses several features that are in general not
owned by other network structures (e.g., the star, see Theorem 5(a)): to have LLC = 2,
it must be true that (i) the limit cycle is entered immediately at the very beginning
of the dynamic. There is no possibility to evolve for certain periods of time and then
enter a length two limit cycle; (ii) no agent is ever satisfied; and (iii) all agents are of
the same type.
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Remark 4 Let G be an NMP with the underlying network being a line. Combining
Theorem 3 with Lemma 1(c) yields an interesting property: if G does not possess any
PNE, then LLC = 4 for all initial action profiles. Note that this property is not covered
by Theorem 2.

4.2 Rings

The results in Theorem 3(b) for lines are still valid for rings. We summarize them in
the following theorem.

Theorem 4 Let G = (N , g,T) be an NMP with the underlying network (N , g) being
a ring, x(0) an initial action profile, and I = (N , g,T, x(0)) the corresponding
initialized NMP. Suppose also n ≥ 3. If G is weakly clustered, then �(I) ∈ {1, 2, 4}
for all x(0). In particular,

(i) �(I) = 2 if and only if all agents are of the same type and they are all initially
unsatisfied, i.e., ui (x(0)) < 0 for all i ∈ N ;

(ii) If G is weakly clustered and the two agents in some cluster initially like each
other, then �(I) = 1;

(iii) If G is strongly clustered and the condition in (i) is not true, then �(I) = 1;
(iv) In the other cases that G is weakly clustered, i.e.,G is not strongly clustered and

the condition in (ii) is not true, we have �(I) ∈ {1, 4}.

Note that when the number of agents n is odd, G with a ring structure cannot be
completely heterophilic. Therefore, Theorem 4 provides a fairly complete character-
ization for the simultaneous BRD of NMP on ring structures when n is odd. The
characterization is not as complete when n is even.

Proofs of Theorem 4(i), (ii) and (iii) are the same as of their counterparts in Theo-
rem 3. However, the result that is parallel to Theorem 3(a) does not hold for rings: if
the ring is completely heterophilic, we do not have in general that LLC = 4 (see Fig. 5
for a counter example). The key reason is that rings do not have ending nodes, and
thus we are unable to get a result that is parallel to Lemma 7 (Appendix B.1), which
plays a crucial role in the proof of Theorem 3(a).

Fortunately, a similar cutting technique can still be applied. This technique helps
us to cut a ring into completely heterophilic lines without affecting its LLC, when
�(I) ≥ 3 (note that while cutting a line for k times leads to k + 1 smaller separate
lines, cutting a ring for k times leads to k separate lines). Using a similar argument
as in the proof of Theorem 3(b)(iv), we can show that Theorem 4(iv) is valid. The
detailed proof is presented in Appendix B.1.

Remark 5 When n is even, numerical simulations suggest that simultaneous BRD
on completely heterophilic rings behaves very differently from that on completely
heterophilic lines. To be specific, (i) if n/2 is also even, then LLC could be 1, 4 and
n, (ii) if n/2 is odd, then LLC could be 4 and 2n. Figure 5 illustrates two limit cycles
with lengths n and 2n, respectively.
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Fig. 5 Limit cycles for completely heterophilic rings. Conformists and rebels are represented by circles and
triangles, respectively. Actions are indicated by colors: black for 1 andwhite for 0. In the left example, n = 8
and LLC = n. In the right example, n = 6 and LLC = 2n. Unhappy faces indicate that the corresponding
agents are unsatisfied

4.3 Stars

When the underlying network is a star, simultaneous BRD can be understood even
more clearly than with lines and rings.

Theorem 5 Let G = (N , g,T) be an NMP with the underlying network (N , g) being
a star, x(0) an initial action profile, and I = (N , g,T, x(0)) the corresponding
initialized NMP. Suppose also n ≥ 4.

(a) If more than one half of the peripheral agents are of the opposite type to the central
agent, then �(I) = 4 for all x(0);

(b) If more than one half of the peripheral agents are of the same type as the central
agent, and initially the central agent is unsatisfied, then �(I) = 2;

(c) In all the other cases, �(I) = 1.

The proof of Theorem 5(a) has some similarity to Theorem3(a). It can be shown
that either only the central agent is satisfied or only the central agent is unsatisfied in
the limit cycle. Using this fact, it can be checked easily that LLC = 4. Limit cycles in
this case are illustrated in Fig. 6.

Theorem 5(b) is parallel to Theorem 3(b)(i) and Theorem 4(i), all characterizing
the LLC = 2 case. The condition used in Theorem 5(b) is weaker than the one used
for lines and rings, which requires all agents be initially unsatisfied (and hence be of
the same type), as for the general case in Lemma 1(c). The reason that this weaker
condition is still sufficient for deriving LLC = 2 is that, for star networks, after one
round of deviations of the initially unsatisfied agents, the peripheral ones, no matter
whether initially satisfied or not, are all unsatisfied. Since the peripheral agents that are
of the same type as the central agent outnumber those of the opposite type, it follows
that the central agent is still unsatisfied at the second step, leading to the general
condition in Lemma 1(c) that no agent is satisfied. This shows that Theorem 5(b) is
correct.

To prove Theorem 5(c), suppose now the central agent is a conformist. Due to
Theorem 5(a)(b), there are two cases to discuss, (i) more than one half of the peripheral
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Fig. 6 Illustrations of the LLC = 4 cases for star networks. Conformists and rebels are represented by
circles and triangles, respectively. Actions are indicated by colors: black for 1 and white for 0

agents are conformists, and initially the central conformist is satisfied, and (ii) precisely
one half of the peripheral agents are conformists and one half of them are rebels. Case
(i) is easy: at the first step only possibly some of the peripheral agents deviate, but
not the central conformist. Thus, at the second step, all of the peripheral agents are
satisfied, and consequently so is the central conformist, leading to the convergence of
the simultaneous BRD. To show case (ii), suppose on the contrary that �(I) ≥ 2. Then,
there exists some time t in the limit cycle such that the central conformist is unsatisfied;
suppose w.l.o.g. that she takes action 1. It can be observed that, peripheral agents that
are of the same type must take the same action in the limit cycle (Lemma 8(a) in
Appendix B.3). It follows that all of the peripheral agents take action 0 at time t . At
time t+1, all of the peripheral conformists switch to action 1 and the central conformist
switches to action 0, making the central conformist satisfied but all the peripheral ones
unsatisfied. Thus, at time t + 2, all the peripheral agents switch, making all agents
happy and �(I) = 1, contradicting the hypothesis that �(I) ≥ 2. The other scenario
that the central agent is a rebel can be similarly proved.

The detailed proof of Theorem 5 is presented in Appendix B.3. Due to Theorem 5,
we can see that the central agent plays a much more important role than the peripheral
ones. This is very reasonable.

Remark 6 Let G be an NMP with the underlying network being a star. Combining
Theorem 5 with Lemma 1(e) yields a property similar to the one in Remark 4 for
lines: if G does not possess a PNE, then LLC = 4 for all initial action profiles.

4.4 A summary

We have seen the crucial roles of weak and strong clusters. Other factors that might
affectLLC includenetwork size, population composition, network structure, and initial
action profile.

As discussed in Remark 5, network size may sometimes play a very critical role.
LLC could be arbitrarily long as the network size n goes to infinity. However, this
happens only to ring networks in our study, not to the line or star networks, where LLC
is always bounded above by 4. Even for the ring networks, an LLC that is larger than
4 may only possibly occur when the ring is completely heterophilic. Nevertheless,
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being completely heterophilic with ring structures is very rare if the configuration
of agents’ types is randomly determined. To be more specific, let each agent be a
conformist with probability c ∈ [0, 1] and be a rebel with probability 1 − c. We use
T to denote this random type configuration. Note that there are 2n configurations in
total. Thus, a random type configuration is a distribution of these 2n configurations,
where the probability of a configuration with nC conformists and n − nC rebels is
cnC (1 − c)n−nC . Then, the probability that a ring is completely heterophilic (i.e.,
Ti �= Ti+1 for i = 1, . . . , n − 1 in the type configuration T) is 2cn/2(1− c)n/2, which
tends to 0 as n goes to infinity (assume for simplicity that n is even). Thus, if the
network has a line, ring, or star structure, then in almost all cases its size does not
affect LLC.

To discuss the effects of other factors, we use a similar probability approach. Note
that when c = 1/2, the random type configuration T obeys the uniform distribution.
A general cmakes us able to investigate the factor of population composition. For any
real number x ∈ [0, 1], denote

x = max{x, 1 − x} and x = min{x, 1 − x}.

Observe that x ≤ 0.5 ≤ x and x + x = 1 for all x ∈ [0, 1].
We also useX as a random initial action profile such that each agent is independently

assigned an initial action 0 with probability b ∈ [0, 1] and action 1 with probability
1−b. There are 2n initial action profiles in total. Thus, similarly toT,X is a distribution
of these 2n action profiles, where the probability of an action profile with n0 agents
using action 0 and n − n0 agents using action 1 is bn0(1 − b)n−n0 . In the following,
we also use subscripts c and b for the probability function Prob[·] to indicate the
distribution parameters in T and X.

Theorem 6 The following results on the probabilities of LLC hold for all c, b ∈ [0, 1].
(a) If the underlying network (N , g) is a line or a ring, then

lim
n→∞Probc

[
�(N , g,T, x(0)) = 1,∀x(0) ∈ {0, 1}n] = 1.

(b) If the underlying network (N , g) is a star, then

Probc
[
�(N , g,T, x(0)) = m,∀x(0) ∈ {0, 1}n] = 0, ∀m �= 4,

lim
n→∞Probc

[
�(N , g,T, x(0)) = 4,∀x(0) ∈ {0, 1}n] = c,

lim
n→∞Probc,b [�(N , g,T,X) = 2] = c(cb + (1 − c)b),

lim
n→∞Probc,b [�(N , g,T,X) = 1] = c(cb + (1 − c)b).

Using Theorems 3 and 4, Theorem 6(a) can be easily shown, because the proba-
bility that there is at least one strong cluster tends to 1, as n goes to infinity. Using
Theorem 5, the correctness of Theorem 6(b) is also easy. The detailed proof is provided
in Appendix B.4.
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Observe that when type configuration and initial action profile are uniformly
selected, i.e., c = b = 0.5, the probabilities in the latter three formulas of Theo-
rem 6(b) are respectively 0.5, 0.25 and 0.25. According to Theorem 6, we know that
network structure alone can play a very important role. If we are told that the underly-
ing network is a line or a ring, then almost always LLC = 1, namely, the simultaneous
BRD converges. If it is known that the network is a star and type configuration and
initial action profile are uniformly selected, then LLC = 4 with probability 0.5.

When the network is a star, population composition plays some role in determining
LLC: All the latter three probabilities are significantly affected by it. A not so intuitive
fact is that the roles of conformists and rebels are sometimes symmetric, which is not
the case in Zhang et al. (2018), where, under the dynamic of sequential BRD, they
found that conformists tend to widen the gap between the number of agents choosing
action 0 and the number of agents choosing action 1, while rebels tend to narrow
this gap. For example, the second formula in Theorem 6(b) indicates that the roles of
the proportion of conformists and the proportion of rebels are symmetric in deciding
the probability of LLC = 4: this probability reaches its highest value when the two
proportions are the most balanced (c = 0.5) and reaches its lowest value when the
two proportions are the most unbalanced (c ∈ {0, 1}).

For star networks, the population composition parameter c has to work together
with the initial action parameter b in order to decide the probabilities of LLC = 2
and LLC = 1. For example, when c = 1, i.e., all of the agents are conformists, the
probability for LLC = 1 is approximately b, which achieves its highest value when
all agents initially take the same action (b ∈ {0, 1}), and it achieves its lowest value
when each agent uniformly chooses between action 0 and action 1 (b = 0.5).

5 Conclusion

In this paper, we have studied the matching pennies game on networks. Two bench-
mark cases and three simple network structures have been investigated. Our results
demonstrate that network structures play a very critical role for both the simultaneous
and sequential BRD. Indeed, even some very simple local structures, i.e., weak and
strong clusters, may play crucial roles. These results may help us understand various
phenomena in the real world including fashion.

The NMP is a relatively new model that is concise, interesting and useful. Much
work is needed for more completely understanding the model and for exploring appli-
cations. First, how often is it to have LLC = 1 in NMPs with a single type of agents?
Second, it is meaningful to understand completely heterophilic NMPs with at least
two linked even-degreed agents. Finally, it is interesting to investigate properties of
other familiar dynamics, such as fictitious play and logit response, for NMP.
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Appendix A: Proof of Theorem 1

Proof Suppose now all agents are conformists. Denote α(t) = ∑
i∈N :xi (t)=1 n

1
i (t −1)

as the number of edges i j such that xi (t) = 1 and x j (t − 1) = 1, and β(t) =∑
i∈N :xi (t)=1 ni/2. Define a Lyapunov function

γ (t) = α(t) − β(t) − β(t − 1).

It is elementary to check that

γ (t + 1) − γ (t) =
∑

i∈N0→1(t)

(n1i (t) − ni/2) +
∑

i∈N1→0(t)

(ni/2 − n1i (t)),

where

N0→1(t) = {i ∈ N : xi (t − 1) = 0, xi (t + 1) = 1},
N1→0(t) = {i ∈ N : xi (t − 1) = 1, xi (t + 1) = 0}.

By Observation 1, γ (t + 1) − γ (t) is always nonnegative. Consequently, γ (t) is a
constant in the limit cycle and the following observation holds.

Observation 3 Suppose that a limit cycle is reached at time t − 1. If i ∈ N0→1(t) ∪
N1→0(t), i.e., i takes different actions at time t − 1 and t + 1, then n1i (t) = ni/2.

We show in the rest of the proof that N0→1(t) ∪ N1→0(t) = ∅ in the limit cycle,
i.e., the action of each agent will be back within two steps, implying that LLC equals
1 or 2.

Suppose on the contrary that N0→1(t) ∪ N1→0(t) �= ∅ for large enough t such that
a limit cycle is reached. If there exists i ∈ N0→1(t), we must have xi (t + 1) = 1 due
to x1i (t) = ni/2. Let t + k be the first time after t such that xi (t + k) = 0 with k ≥ 2.
Then xi (t + k) = 0 and xi (t + k − 2) = 1, implying that i ∈ N1→0(t + k − 1) and
hence n1i (t + k − 1) = ni/2 due to Observation 3. Therefore, xi (t + k − 1) = 0. This
contradicts the hypothesis that t + k is the first time after t such that xi (t + k) = 0.
Using the same logic, the case that i ∈ N1→0(t) is impossible as well.

When all agents are rebels, the same Lyapunov function γ (t), which is nonincreas-
ing due to Observation 2, still applies. We can show that N0→1(t) ∪ N1→0(t) = ∅
holds in the limit cycle in a way similar to the all-conformist case. This finishes the
proof. 	


Appendix B: Proofs in Sect. 4

We assume throughout this appendix that (i) n ≥ 2 whenever the underlying network
is a line, (ii) n ≥ 3 whenever it is a ring, and (iii) n ≥ 4 whenever it is a star.
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B.1 Proofs of Theorems 3 and 4

We prove Theorems 3 and 4 simultaneously.

Definition 6 Given an initialized NMP I = (N , g,T, x(0)), if xi (t) keeps unchanged
when simultaneous BRD enters the limit cycle, we say agent i is immune w.r.t. I.

The lemma below characterizes the convergence case.

Lemma 2 Given an initialized NMP I = (N , g, T , x(0)), and suppose the underlying
network (N , g) is either a line or a ring. The following statements are equivalent.

(a) �(I) = 1;
(b) All agents are immune w.r.t. I;
(c) At least one agent is immune w.r.t. I.
Proof The equivalence between (a) and (b) is obvious. It is trivial that (b) implies (c),
so we are left to show that (c) implies (b). Suppose that i is immune. We claim that
j ∈ Ni , an arbitrary neighbor of i , is also immune.
Suppose not, then there would exist some time t0 ≥ r(I) such that u j (x(t0)) < 0.

So i is not liked by agent j at time t0, and j will switch, i.e., x j (t0 + 1) = 1− x j (t0).
Since i is immune,we know that she never switches, i.e., xi (t0+1) = xi (t0). Therefore,
i is liked by agent j at time t0 +1, and u j (x(t0 +1)) ≥ 0. Furthermore, the utility of j
keeps being nonnegative after time t0 + 1, because i never switches in the limit cycle
and hence she is always liked by j after t0. It follows that agent j will never switch
any more, and the action x j (t0) will never be taken again by j after t0, contradicting
the fact that a limit cycle is entered at time t0. 	


Notice that the above lemma relies crucially on the fact that each agent has at most
two neighbors in lines and rings. As long as one of her two neighbors is liked by her,
she will be satisfied and will not deviate. This is generally not true for other structures.
The following lemma characterizes length-two limit cycles.

Lemma 3 Given an initialized NMP I = (N , g,T, x(0)), and suppose the underlying
network (N , g) is either a line or a ring. The following statements are equivalent.

(a) �(I) = 2;
(b) ∃i ∈ N such that ui (x(t)) < 0 holds for all t ≥ r(I);
(c) ∃t ≥ 0 such that ui (x(t)) < 0 holds for all i ∈ N ;
(d) ui (x(0)) < 0 holds for all i ∈ N.

Proof (a) implies (b) trivially. Suppose (b) is true, then agent i keeps switching her
action in the limit cycle. This can only happen when her neighbors keep switching
actions too. Using this argument repeatedly, we know that no agent is satisfied at any
step of the limit cycle, thus (c) is valid. Suppose now (c) is true, i.e., at some time t no
agent is satisfied. This can only happen when all agents are of the same type, because
for any two adjacent agents of different types, it is impossible for both of them to be
unsatisfied. In addition, no agent should be initially satisfied, because otherwise the
initially satisfied agent and one of her neighbors will both be immune. This indicates
that (d) is valid. (d) implies (a) obviously. This finishes the proof. 	


123



906 Z. Cao et al.

Proofs of Theorem 3(b)(i) and Theorem 4(i) The equivalence between (a) and (d) in
Lemma 3 implies that Theorem 3(b)(i) and Theorem 4(i) are both valid. 	

Proof of Theorem 3(b)(ii) Suppose two agents in some weak cluster initially like each
other. Then it can be seen that the two agents are immune. It follows from Lemma 2
that �(I) = 1. 	

Proof of Theorem 3(b)(iii) Suppose G is strongly clustered and some agent (not nec-
essarily in any strong cluster) is initially satisfied. Then at least one of the following
must hold: (i) T1 = T2; (ii) Tn−1 = Tn ; and (iii) there are three adjacent agents that
are of the same type.

Suppose T1 = T2 and they are both conformists. If at some step they take the
same action, then they will both be immune. By Lemma 2, this means that �(I) = 1
and we are done. So we suppose now they always take different actions. Since agent
1 has only one neighbor, this means that she will keep switching actions. By the
equivalence between (a) and (b) in Lemma 3, we have �(I) = 2 and hence no agent
is initially satisfied (Lemma 3(d)), contradicting the hypothesis that some agent is
initially satisfied. If agents 1 and 2 are both rebels, it can be shown by a similar
argument. By symmetry, it is also valid for the case that Tn−1 = Tn .

Suppose now there are three agents, i, i+1 and i+2, such that Ti = Ti+1 = Ti+2 =
C . If there exists some time t such that either xi (t) = xi+1(t) or xi+1(t) = xi+2(t),
then there will be immune agents and �(I) = 1. So we assume that xi (t) = xi+2(t) �=
xi+1(t) holds for all time t . Therefore, the middle agent i + 1 will switch her action
at all steps. By Lemma 3, it follows that �(I) = 2, contradicting the hypothesis that
some agent is initially satisfied.

Suppose now there are three agents, i, i+1 and i+2, such that Ti = Ti+1 = Ti+2 =
R. If there exists some time t such that either xi (t) �= xi+1(t) or xi+1(t) �= xi+2(t),
then there will be immune agents and �(I) = 1. So we assume that xi (t) = xi+2(t) =
xi+1(t) holds for all time t . Therefore, the middle agent i + 1 will switch her action
at all steps. By Lemma 3, it follows that �(I) = 2, contradicting the hypothesis that
some agent is initially satisfied. 	

Proof of Theorem 4(iii) The proof is exactly the same as that of Theorem 3(b)(iii),
except that the first two cases do not occur. 	


To prove part (a) and (b)(iv) of Theorem 3, we need a property about LLC≥3.

Lemma 4 Let I = (N , g,T, x(0)) be an initialized NMP with the underlying network
(N , g) being either a line or a ring. If �(I) ≥ 3, then no agent switches in two
consecutive steps, i.e., there is no agent i and time t such that ui (x(t)) = ui (x(t +
1))<0.

Proof We consider first the case that (N , g) is a line. Suppose on the contrary that
ui (x(t)) = ui (x(t + 1)) < 0. It can be shown easily that (i) if i ∈ {1, n}, then i is of
the same type as her only neighbor, and (ii) if i /∈ {1, n}, then i and her two neighbors
must have the same type. Hence I is strongly clustered. Due to Theorem 3 (b)(i)(iii),
we know that �(I) ≤ 2. A contradiction with the hypothesis that �(I) ≥ 3. The case
that (N , g) is a ring can be proved in exactly the same approach. 	


123



Dynamic matching pennies on networks 907

The key method we use to deal with part (b)(iv) of Theorem 3 is the “cutting”
technique. To ease the presentation, we need one more term. Given an initialized NMP
I = (N , g,T, x(0)), and suppose that (N , g) is a line. For any agent i , 2 ≤ i ≤ n−1,
let I ′(i) = (N ′, g′, T ′, x ′(0)) be a new (smaller) initialized NMP constructed by the
left i agents of I in the following natural way: N ′ = {1, 2, . . . , i}; g′ = {i j : i, j ∈
N ′, i j ∈ g}; ∀1 ≤ j ≤ i , T ′

j = Tj ; ∀1 ≤ j ≤ i , x ′
j (0) = x j (0). Similarly, I ′′(i) is an

initialized NMP constructed by the right n − i agents of I.
Definition 7 We say that I ′(i) is a complete sub-instance of I if and only if x ′

j (t) =
x j (t) holds for all t ≥ 1 and all 1 ≤ j ≤ i . I ′′(i) is called a complete sub-instance in
an analogous way.

Lemma 5 Given an initialized NMP I = (N , g,T, x(0)), and suppose the underlying
network is a line that is not completely heterophilic. Suppose also that �(I) ≥ 3 and
agents i and i + 1 are of the same type (2 ≤ i ≤ n − 2). Then I ′(i) and I ′′(i) are
both complete sub-instances of I.
Proof By symmetry, we only consider I ′(i). Suppose w.l.o.g. that i and i + 1 are
both conformists. In the simultaneous BRD of I, i and i + 1 will always take the
opposite actions, because otherwise they will both be immune and the hypothesis
that �(I) ≥ 3 will be violated. Therefore, whether i will switch her action or not at
step t is completely determined by the action of agent i − 1. This is also true for the
simultaneous BRD of I ′(i), where i −1 is the only neighbor of i . Hence the lemma. 	


With the assistance of Lemma 6 and Lemma 7 that are to be presented in
Appendix B.2, we are ready to prove the remaining parts of Theorem 3.

Proof of Theorem 3(a) Suppose now I = (N , g,T, x(0)) is an initialized NMP, and
the underlying network is a completely heterophilic line. Recall first that a PNE does
not exist in this case (Lemma 1(d)). Since none of the agents has a utility of zero in
the limit cycle (Lemma 7), and 2 will never be adjacent with 2 and neither will -2 be
adjacent with -2 in any utility sequence (Lemma 6(a)), the whole sequence of utilities
will consist of alternate 2 and -2 (except for the ending agents, whose utilities are 1 or
-1). At any step of the limit cycle, either none conformist is satisfied but every rebel
is, or none rebel is satisfied but every conformist is. Based on the above discussion, it
is easy to check that the length of any limit cycle is exactly 4, just as in the example
of the matching pennies game that is illustrated in Fig. 2. 	

Proof of Theorem 3(b)(iv) Suppose now I = (N , g,T, x(0)) is an initialized NMP,
and the underlying network is a line that is a neither strongly clustered nor completely
heterophilic (note that this is exactly the case discussed in Theorem 3(b)(iv)). Since
I is not strongly clustered, it follows from Theorem 3(b)(i) that �(I) �= 2. To prove
Theorem 3(b)(iv), it suffices to show that �(I) ≥ 3 implies �(I) = 4.

Suppose now �(I) ≥ 3. We cut the line at an arbitrary conformist-conformist link
or rebel-rebel link into two pieces. Notice that this cutting will not produce isolated
agents because I is not strongly clustered. Due to Lemma 5, they are both complete
sub-instances. If the two pieces are both completely heterophilic, then each of themhas
LLC = 4, regardless of the initial action profiles (Theorem 3(a)). By the definition of
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a complete sub-instance, piecing them together gives Theorem 3(b)(iv) immediately.
Otherwise, we cut them again into even smaller pieces, and use the same argument.
Since the line is finite, this process will terminate and the proof is done. 	


Proof of Theorem 4(iv) To prove Theorem 4(iv), we use a similar cutting technique.
Observe that a ring discussed in this case will be cut into completely heterophilic lines
instead of completely heterophilic rings. Therefore, although we do not have LLC = 4
for completely heterophilic rings (see Remark 5), we can still use the same logic as in
the proof of Theorem 3(b)(iv) to show that Theorem 4(iv) is correct. 	


B.2 Two technical lemmas

The two lemmas provided in this subsection are used in the proofs of Theorem 3(a)
and (b)(iv). Since their proofs, mainly the latter one, are rather technical, we present
them in this separate subsection.

In this subsection, we use ui (t) for short of ui (x(t)). This is reasonable, because
the utility of each agent is a function of the single variable of time t once the initial
action profile is fixed.

Since the underlying network (N , g) is a line, ui (t) takes five possible values,
2, 1, 0, −1, and −2. We call [a1, a2, . . . , ak] ∈ {−2, 2, 0,−1, 1}k a utility sequence,
if there exists a time t and an agent i such that [ui (t), ui+1(t), . . . , ui+k−1(t)] =
[a1, a2, . . . , ak]. It is sometimes more convenient to deal with utility sequences than
to deal with action sequences.

Lemma 6 Given an initialized NMP I = (N , g,T, x(0)), and suppose (N , g) is a
completely heterophilic line.

(a) The following utility sequences never occur: [2, 2], [−2,−2], [2, 0, 2], [2, 0, . . . ,
0, 2], [2, 0, 1], [2, 0, . . . , 0, 1], [−2, 0,−2], [−2, 0, . . . , 0,−2], [−2, 0,−1],
[−2, 0, . . . , 0,−1], [1, 0, . . . , 0, 1], and [−1, 0, . . . , 0,−1];

(b) If ui (t) = −2, then ui (t + 1) = 2;
(c) If ui (t) = 0, then ui (t + 1) ∈ {−2, 0}.

Proof One nice property of the completely heterophilic line is that one agent likes her
neighbor at some time if and only if her neighbor dislikes her. Using this property, it
is easy to check that the sequences in (a) never occurs.

Since no pair of adjacent agents can be simultaneously unsatisfied, we know that
if agent i switches her action at some step, then none of her neighbors switches at the
same step. Using this fact, (b) is valid.

If ui (t) = 0, then i likes one of her neighbors and dislikes the other at time t .
Suppose w.l.o.g. that i − 1 ∈ Li (x(t)) and i + 1 ∈ Di (x(t)). Accordingly, i ∈
Di−1(x(t)) and i ∈ Li+1(x(t)). Therefore, ui−1(t) ≤ 0 and ui+1(t) ≥ 0. Since i + 1
is satisfied at time t , she will not switch. In the case that ui−1(t) < 0, it is evident that
ui (t + 1) = −2. And in the case that ui−1(t) = 0, we have ui (t + 1) = 0. Hence (c)
is correct. This finishes the proof. 	
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Given an initialized NMP I = (N , g,T, x(0)), let Z(t) be the set of agents whose
utilities are zero at time t , i.e.,

Z(t) = {i ∈ N : ui (t) = 0}.

Lemma 7 Given an initialized NMP I = (N , g,T, x(0)), suppose the underlying
network (N , g) is a completely heterophilic line. Then Z(t) = ∅ for all t ≥ r(I), i.e.,
no agent has utility zero in the limit cycle.

Proof First, it follows from Lemma 1(a) that PNE does not exist for I and hence
L(I) �= 1. Due to Lemma 3, we obviously have L(I) �= 2. Hence

L(I) ≥ 3, (1)

and the results in Lemma 4, Lemma 5 and Lemma 6 are all valid. We prove in two
steps.

(i) We prove first that the cardinality of Z(t) is non-increasing, i.e.,

|Z(t + 1)| ≤ |Z(t)|. (2)

Let

Z+(t) = Z(t + 1)\Z(t),

and

Z−(t) = Z(t)\Z(t + 1),

we only need to show that

|Z+(t)| ≤ |Z−(t)|.

If Z+(t) is empty, we are done. Suppose not. Take an arbitrary agent i from Z+(t),
i.e., ui (t + 1) = 0 and ui (t) �= 0. Then by Lemma 6(b), it can only be that ui (t) = 2.
And it is obvious that i /∈ {1, n}. So agent i does not switch her action at step t , and her
utility changes from 2 at step t to 0 at step t + 1. This can only happen when exactly
one neighbor of i is unsatisfied at time t . Due to Lemma 6(a), utility sequence [2, 2]
never occurs, so the neighbor of agent i who is satisfied at time t must have a utility
of 0. Therefore, {ui−1(t), ui+1(t)} = {−2, 0} (we assume w.l.o.g. that i − 1 �= 1 and
i + 1 �= n).

Claim 1 (i) If [ui−1(t), ui (t), ui+1(t)] = [−2, 2, 0], then Z−(t) ∩ {i + 1, i +
2, . . . , n} �= ∅. (ii) If [ui−1(t), ui (t), ui+1(t)] = [0, 2,−2], then Z−(t) ∩
{1, 2, . . . , i − 1} �= ∅.

Suppose now [ui−1(t), ui (t), ui+1(t)] = [−2, 2, 0], and suppose on the contrary
to Claim 1(i) that Z−(t) ∩ {i + 1, i + 2, . . . , n} = ∅. Then i + 1 /∈ Z−(t). Since
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i + 1 ∈ Z(t), this implies that i + 1 ∈ Z(t + 1), i.e., ui+1(t + 1) = 0. As agent i + 1
does not switch her action at step t , her left neighbor, agent i , does not switch either,
and the utility of i +1 also keeps unchanged, we know that the right neighbor of agent
i + 1, namely, agent i + 2, should not switch at step t either. Therefore, ui+2(t) ≥ 0.
By Lemma 6(a), utility sequence [2, 0, 2] and [2, 0, 1] never occurs, implying it is
impossible that ui+2(t) ∈ {2, 1}. It can only be that ui+2(t) = 0.

In addition, Z−(t) ∩ {i + 1, i + 2, . . . , n} = ∅ implies that i + 2 /∈ Z−(t). It
follows from ui+2(t) = 0 that i + 2 ∈ Z(t). Using exactly the same argument as
in the last paragraph, we know that ui+3(t) = 0. But this cannot continue for ever,
because un(t) ∈ {1,−1} for all time t . Hence a contradiction. Therefore, Claim 1(i)
is valid. By symmetry, Claim 1(ii) is also valid.

Due to Claim 1, the following definition for each i ∈ Z+(t) is valid:

f (i) =
{
min

{
j : j ∈ Z−(t) ∩ {i + 1, i + 2, . . . , n}} i f [ui−1(t), ui (t), ui+1(t)] = [−2, 2, 0]

max
{
j : j ∈ Z−(t) ∩ {1, 2, . . . , i − 1}} i f [ui−1(t), ui (t), ui+1(t)] = [0, 2, −2] .

The facts below can also be observed from the above discussion. For all i ∈ Z−(t),

f (i) > i implies [ui−1(t), . . . , u f (i)+1(t)] = [−2, 2, 0, . . . , 0,−2], (3)

f (i) < i implies [u f (i)−1(t), . . . , ui+1(t)] = [−2, 0, . . . , 0, 2,−2], (4)

where the “. . .”s on the right hand sides both denote a series of 0’s.
Since f (·) is a mapping from Z+(t) to Z−(t), if we could show that i1 �= i2 implies

f (i1) �= f (i2), then |Z+(t)| ≤ |Z−(t)| would be valid. Assume w.l.o.g. that i1 < i2.
We discuss in four cases.

• f (i1) < i1 and f (i2) > i2. Since f (i2) > i2 > i1 > f (i1), it is true that
f (i1) �= f (i2);

• f (i1) > i1 and f (i2) > i2. It can be seen from (3) that u j (t) = 0 for all i1 <

j ≤ f (i1). It follows from i2 > i1 and ui2(t) �= 0 that i2 > f (i1). Hence
f (i2) > i2 > f (i1), and consequently f (i1) �= f (i2);

• f (i1) < i1 and f (i2) < i2. It can be seen from (4) that u j (t) = 0 for all f (i2) ≤
j < i2. It follows from i2 > i1 and ui1(t) �= 0 that i1 < f (i2). Hence f (i1) <

i1 < f (i2), and consequently f (i1) �= f (i2);
• f (i1) > i1 and f (i2) < i2. It can be seen from (3) that u f (i1)+1(t) = −2. But we
know from (4) that u f (i2)+1(t) ∈ {0, 2}, hence f (i1) �= f (i2).

This shows that (2) is indeed correct.
(ii) By the monotonicity property (2) we know immediately that the cardinality of

Z(t) keeps unchanged in the limit cycle, i.e.,

|Z(t + 1)| = |Z(t)|,∀t ≥ r(I). (5)

Consequently, we know that

∀t ≥ r(I),∀ j ∈ Z−(t), there exists exactly one i ∈ Z+(t) s.t . f (i) = j . (6)
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Now, we are ready to prove the final result. We use the minimum counter-example
argument. Suppose the lemma is not valid, and I = (N , g,T, x(0)) is a counter-
example with the smallest number of agents. Let j∗ be the agent with the largest index
among all the agents having a utility of 0 for at least one time in the limit cycle.

First of all, it is verifiable that j∗ = n − 1, because otherwise we could construct
a smaller counter-example. In fact, the choice of j∗ tells us that if j∗ �= n − 1,
then x j∗+1(t) ∈ {2,−2} holds for all t ≥ r(I). In the limit cycle, if agent j∗ + 1
dislikes j∗, then her utility will be −2, because 0 is never attained, and she will
switch her action. And when agent j∗ + 1 likes j∗, evidently she will not switch.
Therefore, whether j∗ + 1 switches her action at time t ≥ r(I) or not is com-
pletely determined by the action of j∗. Using the same argument as in the proof
of Lemma 5, we know that I ′( j∗ +1) = (N ′, g′, T ′, x ′(0)) is also a qualified counter-
example (a limit cycle is entered at the first step), where N ′ = {1, 2, . . . , j∗ + 1},
T ′ the corresponding sub-vector of T , g′ the corresponding left part of g, and
x ′(0) = (x1(r(I)), x2(r(I), . . . , x j∗+1(r(I)))). Since I is the smallest counter-
example, this is impossible, and thus it can only be that j∗ = n − 1.

Suppose u j∗(t ′) = 0 for some t ′ ≥ r(I), then there must exist t∗ ≥ t ′ such that
u j∗(t∗) = 0 and u j∗(t∗ + 1) �= 0. Because otherwise, the utility of j∗ would keep at
0 from time t ′ on, and thus she would be immune. As a result, �(I) = 1 and a PNE
would be reached by the simultaneous BRD. This is a contradiction with (1).

Therefore, j∗ ∈ Z−(t∗). Since t∗ ≥ t ′ ≥ r(I), we know by (6) that there exists
exactly one i∗ ∈ Z+(t∗) such that f (i∗) = j∗. Since j∗ = n − 1, we know that
i∗ < j∗ (note that agent n never has utility 0, while i∗ ∈ Z+(t∗) implies that agent
i∗ has utility 0 at time t∗ + 1). Therefore, it follows from (4) that

[ui∗−1(t
∗), . . . , u j∗(t

∗), un(t∗)] = [−2, 2, 0, . . . , 0,−1].

By Lemma 6(c), it must hold that u j∗(t∗ + 1) = −2. Therefore,

[ui∗−1(t
∗ + 1), . . . , un(t

∗ + 1)] = [2, 0, 0, . . . ,−2, 1]. (7)

It can be observed from (7) that j∗ − 1 ∈ Z−(t∗ + 1). Again, using (6), we know
that there is an agent k∗ ∈ Z+(t∗ + 1) such that f (k∗) = j∗ − 1. It must hold that
k∗ < j∗ −1, because (7) tells us that the sequence [0, 2,−2] never occurs on the right
side of j∗ − 1 and (4) says that if k∗ > j∗ − 1 we would have a sequence [0, 2,−2]
on the right side of j∗ − 1 (note by definition that f (i) �= i for any i ∈ Z+(t)). Fur-
thermore, comparing (3) with (7), we know that k∗ = i∗ − 1, which can only happen
when ui∗−2(t∗ + 1) ∈ {−2,−1}.

However, ui∗−2(t + 1) = −1, i.e., i∗ − 2 = 1, is not true. Because if otherwise,
then we would have [ui∗−2(t∗ + 2), . . . , un(t∗ + 2)] = [1, 0, 0, 0, . . . ,−2, 2,−1],
which has n − 4 0s in total. However, it can be checked that we would further have
[ui∗−2(t∗ + 3), . . . , un(t∗ + 3)] = [1, 0, 0, 0, . . . ,−2, 2,−2, 1], which has n − 5 0s
in total, a contradiction with (5).

Therefore, we have ui∗−2(t + 1) = −2 and

[ui∗−2(t
∗ + 2), . . . , un(t

∗ + 2)] = [2, 0, 0, 0, . . . ,−2, 2,−1]. (8)
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It can be observed from (8) that j∗−2 ∈ Z−(t∗+2). Again, there is no [0, 2,−2] on
the right side of j∗−2, and sowe can only have f ( j∗−2) = i∗−2. This can only hap-
pen when ui∗−3(t∗ + 2) ∈ {−2,−1}. Again, we can deduce that ui∗−3(t∗ + 2) = −2
and

[ui∗−3(t
∗ + 3), . . . , un(t

∗ + 3)] = [2, 0, 0, 0, . . . ,−2, 2,−2, 1]. (9)

This process will be repeated infinitely. But this is obviously impossible, because
the line is finite. This establishes the lemma. 	


B.3 Proof of Theorem 5

Before presenting the main proof, we need a lemma that is similar to Lemma 2 and
Lemma 3.

Lemma 8 Let I = (N , g,T, x(0)) be an initialized NMP and suppose the underlying
network (N , g) is a star. The following statements are true.

(a) At every step of the limit cycle, all the peripheral conformists choose the same
action, and so do all the peripheral rebels;

(b) �(I) = 1 if and only if all agents are satisfied at some time, if and only if some
agent is always satisfied in the limit cycle.

(c) �(I) = 2 if and only if all agents are unsatisfied at some time, if and only if some
agent is always unsatisfied in the limit cycle.

Proof (a) We only prove for conformists, because the rebel half is analogous. Suppose
on the contrary that at some step of the limit cycle, part of the peripheral conformists
choose action 1 and the other peripheral conformists choose action 0. Since all the
peripheral agents have the same single neighbor, namely, the central agent, it must
be true that either all the action 1 peripheral conformists are satisfied but the action
0 ones are unsatisfied, or the opposite. Suppose w.l.o.g. the former case occurs.
Then the action 1 peripheral conformists switch to action 0, while the action 0 ones
keep their actions fixed at 0. Hence, all the peripheral conformists have an action of
0 at the next step. From that time on, at each step, either they simultaneously switch
or simultaneously keep unchanged. So, in any of the following steps, they always
share the same action, and hence the state we assume that part of the peripheral
conformists choose action 1 and the others choose action 0 will never be reached
again, contradicting our hypothesis that it is in the limit cycle.

(b) The first part is straightforward, we only show the second part. The “only if” side
is trivial. Suppose now some agent is always satisfied in the limit cycle, then the
central agent is also always satisfied in the limit cycle, and consequently so are
all the peripheral ones. This shows that the “if” side of the second part is also
correct.

(c) The “if” side of the first part is trivial. LLC = 2 implies that if some agent is
satisfied at some step of the limit cycle, then it is always satisfies in the limit cycle.
Therefore, the “only if” side of the first part is true due to (a). The “only if” side
of the second part is trivial due to the first part. The “if” side of the second part is
also true, because some agent is always unsatisfied in the limit cycle implies that
the central agent and furthermore all agents are unsatisfied in the limit cycle. 	
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Proof of Theorem 5 (a) Consider the case that the central agent is a rebel. Then periph-
eral conformists are more than peripheral rebels. Observe first that �(I) ≥ 2,
because a PNE exists for star networks if and only if at least one half of the periph-
eral agents are of the same type as the central one. Since all of the conformists
choose the same action in the limit cycle (Lemma 8 (a)), it is impossible that
�(I) = 2, because at any step of the limit cycle, either all of the conformists are
satisfied (when they take the same action as the central agent) or the central rebel
is satisfied (when the peripheral conformists take a different action with the central
rebel).

Using Lemma 8(c), there must exist some time t in the limit cycle such that the
central rebel is satisfied, say she chooses action 0. Since there are more peripheral
conformists than peripheral rebels, we know that all peripheral conformists should
choose action 1 at time t (hence they are also satisfied). We discuss in two cases
about the peripheral rebels.

(i) All of the peripheral rebels are unsatisfied at time t . This implies that they all
choose action 0 at time t . At time t+1, all the peripheral agents switch actions,
making themselves happy but the central rebel unhappy. So at time t + 2, the
central rebel switches to action 1, making herself happy and all the peripheral
agents unhappy. Similarly, at time t + 3, all the peripheral agents, but not the
central one, switch, and at time t + 4, only the central rebel switches, leading
back to the action profile at time t . Therefore, we have �(I) = 4 in this case.
This limit cycle is illustrated in the left part of Fig. 6.

(ii) All of the peripheral rebels are satisfied at time t . This implies that they all
choose action 1 at time t . It can be checked that the state at time t + 1 in this
case is exactly that at time t + 1 in case (i). However, the time t state in this
case is none of the four states in the limit cycle of the previous case, so it will
never be reached again, contradicting our hypothesis that a limit cycle has been
entered at time t . Therefore, this case never occurs.

The proof of the situation that the central agent is a conformist is quite similar and
thus omitted. The limit cycle in this case is illustrated in the right part of Fig. 6.

(b) Let’s consider the case that the central agent is a rebel.

Supposew.l.o.g. that the central rebel chooses action1 initially. Since she is initially
unsatisfied, at step 2 she will switch to action 0. So do the peripheral rebels who
initially take action 1. For the peripheral rebels who initially take action 0, they are
initially satisfied and do not switch at the first step. For the peripheral conformists
who take action 1 initially, they are satisfied at the first step, and hence still have
action 1 at the second step. For the peripheral conformists who take action 0
initially, they are unsatisfied at the first step, and hence switch to action 1 at the
second step.

(c) Naturally, we discuss in four cases.

(i) The central agent is a rebel, more than half of the peripheral agents are also
rebels, and initially the central rebel is satisfied. Since the central rebel is

123



914 Z. Cao et al.

initially satisfied, her action at the second step will be the same as in the first
step. For the peripheral rebels, the ones initially taking the opposite action
keep unchanged, and the other peripheral rebels switch to this action too at
the second step. So, at the second step, each of the peripheral rebels takes an
opposite action to the central rebel. Since more than one half of the central
rebel’s neighbors are rebels, we know that all the rebels will be always satisfied
from the second step on. Using Lemma 8(b), we have �(I) = 1.

(ii) The central agent is a conformist, more than one half of the peripheral agents
are also conformists, and initially the central conformist is satisfied. The proof
is quite similar to that of case (i) and thus omitted.

(iii) The central agent is a rebel, and exactly one half of the peripheral agents are
rebels and one half of them are conformists. Suppose on the contrary that
�(I) ≥ 2. It follows from Lemma 8(b) that there is some time t in the limit
cycle such that the central rebel is unsatisfied. This must be the case that all
the agents take the same action, say action 1, because when the peripheral
conformists and the peripheral rebels take different actions, the central rebel is
satisfied. So, at step t+1, all of the rebels switch to action 0, and the conformists
still hold action 1. Therefore, the central rebel is the only satisfied agent at step
t + 1. At time t + 2, the central rebel still has action 0, the peripheral rebels
have action 1, and the conformists have action 0. It can be seen that all of the
agents are satisfied at step t + 2, contradicting the hypothesis that �(I) ≥ 2.

(iv) The central agent is a conformist, and one half of the peripheral agents are
rebels and one half of them are conformists. The proof is quite similar to that
of case (iii) and thus omitted. 	


B.4 Proof of Theorem 6

Proof (a) Suppose now the underlying network is a line or a ring, then the probability
that it is strongly clustered goes to 1, as n goes to infinity. This is true because the
probability that there are three or more adjacent agents that are of the same type
goes to 1, as n tends to infinity. Since u j (x(0)) < 0 for all j ∈ N can only happen
when all agents are of the same type, an event that occurs with a probability
cn + (1 − c)n → 0, it follows from Theorem 3(b)(iii) and Theorem 4(iii) that
Theorem 6(a) is correct.

(b) Suppose now the underlying network is a star. Since the probability that there are
equal numbers of conformists and rebels in the peripheral agents goes to 0, as n
goes to infinity, it follows from Theorem 5 that the first formula is valid.
Observe that c + c(cb + (1 − c)b) + c(cb + (1 − c)b) = 1 for all b, c ∈ (0, 1).

Therefore, it suffices to show that the second and the third formulas are both correct.

Claim 2 The probability that more than one half of the peripheral agents are of the
same type as the central agent tends to c, as n goes to infinity.

Observe that the probability that there are equal numbers of conformists and rebels
in the peripheral agents approaches 0, as n goes to infinity. To prove Claim 2, we
discuss in three cases. (i) When c = 0.5, it follows by symmetry that Claim 2 is
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correct. (ii) When c > 0.5, using the Law of Large Numbers, the probability that
there are more conformist peripheral agents than rebel ones approaches 1, as n goes
to infinity. Thus, the probability that more than one half of the peripheral agents are
of the same type as the central agent tends to the probability that the central agent is
a conformist, which is c = c. (iii) When c < 0.5, using the Law of Large Numbers
again, it can be seen that the probability that more than one half of the peripheral
agents are of the same type as the central agent tends to the probability that the central
agent is a rebel, which is 1 − c = c. Due to the above discussions, we conclude that
Claim 2 is valid.

Claim 3 When the central agent is a conformist, the probability that she is initially
unsatisfied tends to b, as n goes to infinity.

Observe first that the probability that there are equal numbers of peripheral agents
who choose 0 and those who choose 1 goes to 0, as n goes to infinity. We still discuss
in three cases. (i) When b = 0.5, Claim 3 is true by symmetry. (ii) When b > 0.5, the
probability that more than one half of the peripheral agents initially choose action 0
approaches 1. Therefore, the probability that the central agent is initially unsatisfied
approaches the probability that she initially chooses action 1, which is 1 − b = b,
because the central agent is a conformist. (iii) When b > 0.5, the probability that
more than one half of the peripheral agents initially choose action 1 approaches 1.
Therefore, the probability that the central agent is initially unsatisfied approaches the
probability that she initially chooses action 0, which is b = b. It follows from the
previous discussions that Claim 3 is true.

Claim 4 When the central agent is a rebel, the probability that she is initially unsat-
isfied tends to b, as n goes to infinity.

The proof of Claim 4 is quite similar to that of Claim 3 and thus omitted.
Claim 2 implies that the probability that more than one half of the peripheral agents

are of the opposite type to the central agent tends to 1 − c = c, as n goes to infinity.
Combining with Theorem 5(a), it is clear that the second formula in Theorem 6(b) is
valid. We are left to show the third formula in Theorem 6(a). By Claim 3 and Claim 4,
the probability that the central agent is initially unsatisfied tends to cb + (1 − c)b.
Combining this with Theorem 5(b) and Claim 2, it can be seen that the third formula
in Theorem 6(b) is valid. This finishes the proof. 	


Appendix C: Sequential BRD

In this appendix, we discuss properties of the sequential BRD with arbitrary deviation
orders. Given an initialized NMP, at each time step, as long as PNE is not reached, we
let an arbitrary unsatisfied agent switch her action. We say that the sequential BRD
converges if and only if a PNE is reached for any deviation order. It is well known
that the sequential BRD converges if and only if the corresponding game possesses an
ordinal potential function (Monderer and Shapley 1996). While Zhang et al. (2018)
discuss the two benchmark cases, where an NMP is either completely homophilic or
completely heterophilic, we consider the line and the ring network structures in this
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section. We use a slightly weaker convergence concept, to be introduced later, for
NMPs with a star network.

C.1 Lines and rings

Observe first that an NMP, in general, is not a potential game for the line or ring
networks, because a PNE is not guaranteed in the two cases, while a potential game
always possesses a PNE (Monderer and Shapley 1996). However, for a very wide
class of situations, it is indeed the case. Lemma 1(a) states that an NMP is an exact
potential game if and only if there is no conformist-rebel link, i.e., conformists only
interact with conformists and rebels only interact with rebels. The following theorem
concerns with ordinal potentials for NMPs with line or ring structures.

Theorem 7 Let G = (N , g,T) be an NMP. Suppose the underlying network (N , g) is
a line or a ring. The sequential BRD converges for G, i.e., G is an ordinal potential
game, if and only if it is weakly clustered.

Proof Suppose now the underlying network is a line. Due to Lemma 1(a), the “only if”
part of Theorem 7 is straightforward. We show next the “if” part. That the line is not
completely heterophilic implies that it is weakly clustered, i.e., there exist two agents,
say i and i+1, who are adjacent and are of the same type. Suppose on the contrary that
G is not an ordinal potential game. Then, there will be an infinite number of deviations
from some initial action profile (for some particular deviating order). Since i and i +1
are of the same type, at most one of them ever deviates, and deviates for at most once.
When neither of i and i + 1 deviates, i − 1 and i + 2, the two neighbors of i and
i + 1, both deviate for at most once. When one of i and i + 1 deviates, say at time
t1, then after t1, i − 1 and i + 2 both deviate for at most once. Using the same logic,
there exists some time t2 such that after t2 both i − 2 and i + 3, the two neighbors of
i − 1 and i + 2, deviate for at most once. Using this logic repeatedly, we will get that
there are a finite number of deviations in total, a contradiction. Thus the “if” part of
Theorem 7 in this case is also true.

Suppose now the underlying network is a ring. The “if” part of Theorem 7 in this
case can be shown to be correct in precisely the same way as for the line network. To
verify the “only if” part, suppose now the underlying ring is completely heterophilic
and all agents take the same initial action. Then the conformists are all satisfied and
the rebels are all unsatisfied. We let the rebels deviate one by one, during which the
payoffs of the conformists keep decreasing. After the last deviation of the rebels, all of
them are satisfied, but all of the conformists are unsatisfied. Now it is the conformists’
turn to deviate one by one. When the conformists are satisfied, all of the rebels will
be unsatisfied again. Hence under the above particular deviation orders, this process
will be infinitely repeated. It follows that the sequential BRD does not converge and
the game is not an ordinal potential game. This completes the whole proof. 	


When the underlying network (N , g) is a line or a ring, it is very likely to have at
least one weak cluster. Similar to Theorem 6(a), we have

lim
n→∞Probc

[
(N , g,T) is an ordinal potential game

] = 1.
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We also have the following nice characterization for the sequential BRD on lines.
Let G = (N , g,T) be an NMP with the underlying network (N , g) being a line,
then the following statements are equivalent: (i) a PNE exists for G; (ii) G is weakly
clustered; (iii) the sequential BRD converges for all initial action profiles; and (iv) the
sequential BRD converges for some initial action profile. We do not have such a nice
characterization when the network is a ring.

C.2 Stars

Observe first that, when the underlying network is a star, an NMP may not be an
ordinal potential game, even if a PNE exists. To see this, suppose that the central agent
is a conformist, and there are two peripheral conformists and one peripheral rebel.
This game has a PNE (e.g., all the conformists choose action 0 and the rebel chooses
action 1). Suppose the central conformist initially takes action 1, the rebel takes action
0, one peripheral conformist takes action 0 and the other peripheral conformist takes
action 1. We let the rebel have a priority in deviating over the peripheral conformists.
Then, it can be seen that the sequential BRD will never converge. Indeed, the central
conformist and the peripheral rebel will alternately deviate for ever, like in matching
pennies.

Yet, if we slightly weaken the convergence concept, then a result that is similar to
Theorem 7 still holds for star networks.

Definition 8 Suppose that we are given an initialized NMP. A (stochastic) sequential
BRD is called regular, if in each round, as long as a PNE is not reached, exactly
one unsatisfied agent is selected to switch, such that (i) the probability that each
unsatisfied agent is selected is positive, and (ii) this stochastic process is Markovian,
i.e., the probability that each unsatisfied agent is selected is independent of the history.

Theorem 8 Let G = (N , g,T) be an NMP. If the underlying network (N , g) is a star,
then each regular sequential BRD converges with probability one for all initial action
profiles if and only if at least one half of the peripheral agents are of the same type as
the central agent.

Proof Since G has a PNE if and only if at least one half of the peripheral agents are
of the same type as the central agent (Lemma 1(e)), the “only if” part of Theorem 8
is immediate. The “if” part is a direct application of absorbing Markov chains, as
demonstrated below.

Suppose now at least one half of the peripheral agents are of the same type as the
central agent. Then at least one PNE exists. In fact, it can be seen that there are exactly
two PNEs. Taking the action profiles as states, and letting the transition probabilities
be determined by the underlying dynamic, we have a well-defined (not necessarily
time-homogeneous) Markov chain. The two PNEs correspond to the only absorbing
states of the Markov chain. It remains to show that this Markov chain is absorbing,
i.e., every state can reach one of the two absorbing states. This follows from the
observation below: if we let the unsatisfied peripheral agents that are of the same
type as the central agent deviate first (one by one in an arbitrary order), and the other
unsatisfied peripheral agents deviate subsequently (one by one in an arbitrary order),
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then wewill arrive at one of the two PNEs. Since the non-absorbing states are transient
in absorbing Markov chains, we know immediately that a PNE will be reached with
probability one. This completes the proof. 	


Given a star network (N , g), let each agent uniformly choose a type, then the
probability that at least one half of the peripheral agents are of the same type as the
central agent tends to 0.5, as n goes to infinity. Combining this fact with Theorem 8,
it can be seen that when the underlying network is a star and each agent is assigned as
a conformist with probability 0.5, the probability that the sequential BRD converges
almost surely for all initial action profiles approaches 0.5, as n goes to infinity.

We also have the following nice characterization for the sequential BRD on star
networks. Let G = (N , g,T) be an NMP with the underlying network (N , g) being
a star, then the following statements are equivalent: (i) a PNE exists for G; (ii) at
least one half of the peripheral agents are of the same type as the central agent; (iii)
the sequential BRD converges almost surely for all initial action profiles; and (iv) the
sequential BRD converges almost surely for some initial action profile.

C.3 Simultaneous BRDV.S. sequential BRD

Let’s nowmake some comparisons between the simultaneous BRD and the sequential
BRD.Generally speaking, the sequentialBRDhas been studiedmuchmore extensively
than the simultaneous BRD, and it has been widely recognized that the simultaneous
BRD is in general more complicated than the sequential BRD. This contrast is also
reflected in this paper: while we have provided quite complete characterizations for
the sequential BRD of NMP, it is not the case for the simultaneous BRD.

We can also argue that convergence of the simultaneous BRD is stronger than
convergence of the sequential BRD in some sense, when the underlying network is
a line or a star. (i) Given an NMP with the underlying network being a line, if the
simultaneous BRD converges for some initial action profile, then the sequential BRD
converges for all initial action profiles. This is true because the former condition
implies that a PNE exists, which is equivalent to the latter condition. (ii) Suppose now
the underlying network is a star. Similarly, if the simultaneous BRD converges for
some initial action profile, then the sequential BRD converges almost surely for all
initial action profiles.
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