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Abstract
We introduce i-misère play to multiplayer impartial games, which is an extension of
Li’s rank-based play and, at the same time, which contains the normal play and the
misère play as special cases when the number of players is two.We characterize losing
positions of such plays for both NIM and Moore’s game. i-misère play is defined as
a special case of a more general notion of preference-based play, and we also study
properties of some other preference-based plays.

Keywords Combinatorial game theory · Multiplayer game · Misère play · NIM ·
Moore’s game

1 Introduction

Multiplayer combinatorial games are difficult to analyze, because of the possibility
of coalitions in multiplayer games. For example, consider a NIM position (1, 2) in
three-player NIM. If the current player moves to (1, 0) or (0, 2), then the second player
wins. However if the current player moves to (1, 1) then the second player moves to
(1, 0) and the third player wins. So, the current player has no winning strategy but she
can choose whether the second player becomes the winner or the third player does.

With this observation, we introduce the notion of a preference-based play to multi-
player games. We consider that each player has her preference order, which is a total
ordering of all the players, and the objective of each player is to let the last moving
player of the game be the most preferred player with respect to her order. Of course, it
is difficult to determine which move will lead to the most preferred result. However,
we show that, under some assumptions, the most preferable move of each player is
determined and thus the outcomes of each game position is determined. In this paper,
we analyze such outcome of plays with preference order.
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We are particularly interested in the case that the preference order of each player is
equal to the play order starting with the i-th player, which we call the i-misère play.
0-misère game is equivalent to Li’s theory of multiplayer combinatorial games. In
addition, for the two-player game, 0-misère play is equivalent to normal play and 1-
misère play is equivalent to misère play. Therefore, it is a generalization of Li’s theory
(1978) as well as the generalization of both normal and misère games to multiplayer
games.

We introduce early results and define i-misère play in Sect. 2, study i-misère NIM
in Sect. 3 and study i-misère Moore’s game in Sect. 4. In Sect. 5, we study another
symmetric preference order and in Sect. 6, we study some asymmetric preference
orders.

2 Normal, misère andmultiplayer NIM

Among the early results of combinatorial game theory is a winning strategy for NIM
by Bouton (1902). NIM is a two-player game with some heaps of stones, and the
current player chooses one of the heaps and takes out some stones. The winner of
NIM is the player who takes out the last stone. NIM is an impartial game in that both
player have the same options in every game position.

We say that a game position is an N-position or a P-position if the next player or
the previous player has a winning strategy, respectively. The following is one of the
most important facts for a two-player impartial game.

Theorem 1 A game position of an impartial two-player game is an N-position or a
P-position.

We can analyze whether a NIM position is an N-position or a P-position in a simple
way, by calculating modulo-2 sum without carry which is denoted by ⊕ (NIM sum).

Theorem 2 (Bouton 1902) A NIM position (n1, n2, . . . , nk) is a P-position if and only
if n〈2〉

1 ⊕ n〈2〉
2 ⊕ · · · ⊕ n〈2〉

k = 0. Here, n〈2〉 is the binary notation of n.

In contrast to normal play, a game is called in misère play if the last player to move
is the loser. We can also analyze misère NIM game in the following way.

Theorem 3 (Bouton 1902) In misère NIM game, a position (n1, n2, . . . , nk) is a P-
position if and only if

{
n〈2〉
1 ⊕ n〈2〉

2 ⊕ . . . ⊕ n〈2〉
k = 0 (∃ j . n j > 1)

n〈2〉
1 ⊕ n〈2〉

2 ⊕ . . . ⊕ n〈2〉
k = 1 (∀ j . n j ≤ 1).

2.1 Multiplayer game

In this paper we consider multiplayer games. We assume that there are m players
P0, P1, . . . , Pm−1 and they play in this order. For simplicity, any arithmetic in the
subscript (e.g. Pi+k) is done modulo m.
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Multiplayer games as extension of misère games 783

In two-player impartial games, as Theorem 1, each game position is determined
whether it is a P-position or an N-position. In contrast, as we mentioned above,
multiplayer combinatorial games are difficult to analyze because of its possibility
of coalitions. Therefore, people usually study multiplayer games by adding some
assumptions to determine the game result. Robert Li (1978) defined a rank system.
Krawec (2012; 2015) introduced alliance matrix and Liu and Duan (2017), Liu and
Wang (2017a, b), Liu and Yang (2018); Liu and Zhou (2018); Liu and Wu (2019)
studied some multiplayer games with Krawec’s definitions.

In this paper, we introduce the notion of a preference-based play to multiplayer
games. We assume that each player has her own preference order, which is a total
ordering of all the players.We study the situation where each player knows the content
of each other’s preference, and it is common knowledge that every player knows the
preferences of the other players, that is, each player knows that other players know
the preferences of other players, and so on. We call such a play a preference-based
play. In this article, we study the case that each player behaves optimally so that her
most preferred player will move last, and if she cannot, then she behaves so that her
second preferred player will move last,…, and so on.

We write the preference order of a player as Pi(0) > Pi(1) > · · · > Pi(m−1) if she
wants player Pi(0) to be the last player to move, and if that is impossible, she wants
player Pi(1) to play last, …, and it is the worst result that player Pi(m−1) becomes the
last player to move.

Definition 1 (Preference matrix) Following Krawec (2012), we introduce an m × m
matrix notation to express the preference orders of all the players.

⎡
⎢⎢⎢⎣

A0,0 A0,1 · · · A0,m−1
A1,0 A1,1 · · · A1,m−1
...

...
...

Am−1,0 Am−1,1 · · · Am−1,m−1

⎤
⎥⎥⎥⎦

Here, A j,k is the index of the k-th preferred player of Pj relative to j with the most
preferred player called the 0-th preferred player. That is, the preference order of Pj is
Pj+A j,0 > Pj+A j,1 > · · · > Pj+A j,m−1 .

Example 1 If the preference order of P0, P1 and P2 are P0 > P1 > P2 , P2 > P0 > P1
and P1 > P2 > P0, respectively, then the preference matrix is

⎡
⎣0 1 2
1 2 0
2 0 1

⎤
⎦ .

Example 2 If the preference order of P0, P1, P2 and P3 are P1 > P2 > P3 > P0,
P2 > P3 > P0 > P1, P3 > P0 > P1 > P2 and P0 > P1 > P2 > P3, respectively,
then the preference matrix is
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⎡
⎢⎢⎣
1 2 3 0
1 2 3 0
1 2 3 0
1 2 3 0

⎤
⎥⎥⎦ .

Our notion of preference-based play is similar to the notion of alliance by Krawec
(2012). The difference is that the objective of alliance-based play is to let the specified
player have no moves, where the objective of our play is to let the specified player play
last. The two notions are convertible and we can express our results with the notion
of alliance-based play. However, then the constructions in the next section becomes
complicated and we cannot state our result (Theorem 6) as a generalization of Li’s
result. The following notion of a last moving player is a reformulation of Krawec’s
notion of game value and Theorem 4 is his result expressed with the position of the
last moving player.

Definition 2 For a game position G, we write opt(G) as the set of all options at G.
That is, for every G ′ ∈ opt(G), one can move from G to G ′.

Definition 3 We define the function l to be

l(G, t) =
{
m − 1 if G is an end position

At,q otherwise.

for q = min{ j ∈ N | l(G ′, t + 1) + 1 = At, j wi th G ′ ∈ opt(G)}.
We call l the last moving player function because the following theorem holds.

Theorem 4 (Krawec) If every player plays optimally, then Pt+l(G,t) moves last in the
game that starts with position G and player Pt . If the starting position G is an end
position, then we consider Pt−1 to have moved last.

Proof If G is an end position then l(G, t) = m−1 by Definition 3 and player Pt+m−1
moves last.

Otherwise, by induction hypothesis, for each G ′ ∈ opt(G), Pt+1+l(G ′,t+1) is the
player who moves last in the game starts with the position G ′ and player Pt+1. Since
we assume that every player plays optimally, Pt chooses G ′ which minimizes the
number j such that l(G ′, t + 1) + 1 = At, j .

By using this theorem, it is guaranteed that for multiplayer games in preference-
based play, the result of each game is uniquely determined as using Theorem 1 for
two-player games.

Definition 4 Wesay amultiplayer game ispreference-impartial if the game is impartial
and its preference matrix satisfies, Ai,k = A j,k for every i, j, k < m. In this case, we
abbreviate the preference matrix as:

[
A0 A1 · · · Am−1

]
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Multiplayer games as extension of misère games 785

Definition 5 In a preference-impartial game, l(X , t) = l(X , t ′) for any t and t ′. There-
fore we simply describe it as a unary function l(X).

l(G) =
{
m − 1 if G is an end position

Aq otherwise

for q = min{ j ∈ N | l(G ′) + 1 = A j wi th G ′ ∈ opt(G)}.
For G = (n1, n2, . . . , nk), we will abbreviate l(G) as l(n1, n2, . . . , nk) when they

will be no confusion.

Definition 6 If a game is a preference-impartial game and its preference matrix is

[
i (i + 1) · · · (m − 1) 0 1 · · · (i − 1)

]
,

then we say that it is in i -misère play.

In i-misère play, each player wants the i-th player to be the last moving player. The
reason why we call it misère is that we obtain two-player misère play whenm = 2 and
i = 1. In a preference impartial game, according to Theorem 4, if every player plays
optimally, then Pl(G) plays last in the game G starting with player P0. Therefore, the
person whose preference order starts (resp. ends) with Pl(G) obtains the most pleasant
(resp. unpleasant) result. We call them the winner and the loser of the game, and say
that a position is a winning (resp. losing) position if the starting player is the winner
(resp. loser). Note that an N-position is a winning position and a P-position is a losing
position for two-player games. In an i-misère game, a position is a winning position
if l(G) = i and is a losing position if l(G) = i − 1.

Of course, we can define other positions by using the values of l(G). However, it
seems to be difficult to characterize the positions.

2.2 Li’s theory

In 1978, Li considered multiplayer NIM with rank system. He defined that the winner
of the game is the person who moves last like two-player normal play. In addition,
players are assigned a rank, ranging from bottom to top in the order of Pk+1, Pk+2,
…, Pm−1, P0, P1, …, Pk−1, Pk when Pk is the winner and each player adopts an
optimal strategy toward her own highest possible rank. That is, by definitions above,
Li’s theory is in 0-misère play, under the following preference matrix:

[
0 1 · · · m − 1

]
andwith our terminology, the highest ranked player is thewinner and the lowest ranked
player is the loser.

In order to describe Li’s result, we define a notion of modulo-m NIM sum.

Definition 7 For k ≥ 2, let SEQk be the set of sequences of {0, 1, . . . , k − 1} that do
not start with 0. For simplicity, we write 0 ∈ SEQk for the empty sequence. Note that
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SEQk ⊆ SEQm if k ≤ m. For a non-negative integer x , we write x 〈k〉 ∈ SEQk for
the k-ary notation of x . That is, x 〈k〉 = (xt , xt−1, . . . , x1, x0) if x = �0≤s≤t xsks .

Definition 8 (Generalized NIM sum) On SEQm , we define the component-wise
modulo-m addition operation ⊕m as follows. For x, y ∈ SEQm , if x and y have
different length, then we prepend 0s to the shorter sequence to adjust their length and
then do modulo-m addition without carry on each component and then remove the
leading 0s from the result so that x ⊕m y do not start with 0. We simply write ⊕ for
⊕2.

Example 3 39〈2〉 ⊕3 17〈2〉 = 100111 ⊕3 010001 = 110112

Example 4 5〈2〉 ⊕3 7〈2〉 ⊕3 9〈2〉 ⊕3 15〈2〉 = 0101 ⊕3 0111 ⊕3 1001 ⊕3 1111 = 2021

By using these definitions and notations, Li’s result is described in the following
theorem.

Theorem 5 (Robert Li 1978) In 0-misère NIM, (n1, n2, . . . , nk) is a losing position if
and only if n〈2〉

1 ⊕m n〈2〉
2 ⊕m · · · ⊕m n〈2〉

k = 0.

For the case m = 2, we can obtain Theorem 2 from this theorem. Therefore, this
theorem is a generalization of Theorem 2 for multiplayer case. In the next section, we
show a more generalized theorem.

3 Multiplayer misère NIM

In this section, we show a generalization of Li’s theorem to i-misère play.

Theorem 6 In i-misère NIM, (n1, n2, . . . , nk) is a losing position if and only if{
n〈2〉
1 ⊕m n〈2〉

2 ⊕m · · · ⊕m n〈2〉
k = 0 (∃ j . n j > 1)

n〈2〉
1 ⊕m n〈2〉

2 ⊕m · · · ⊕m n〈2〉
k = i (∀ j . n j ≤ 1).

This theorem also means that we can know whether a given game position G
is a winning position by checking whether G has an option G ′ which satisfies this
condition.

For the case (m, i) = (2, 0) we can obtain Theorem 2, for the case (m, i) = (2, 1),
we can obtain Theorem 3 and for the case (m, i) = (m, 0), we can obtain Theorem 5
from this theorem. That is, this theorem reveal a hidden connection between misère
NIM and multiplayer NIM.

In order to prove this theorem, we prepare some definitions and lemmas. In follow-
ing Lemmas and Definitions, we consider i-misère play of m-player game in general.
Recall that in i-misère play, G is a losing position iff l(G) = (i − 1) mod m.

Lemma 1 In i-misère play,

l(G) =
⎧⎨
⎩m − 1

if G
is an end position

(min{(l(G ′) + 1 − i) mod m | G ′ ∈ opt(G)} + i) mod m otherwise.
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Multiplayer games as extension of misère games 787

Proof In i-misère play, A j = ( j + i) mod m. Therefore, by Definition 5,

l(G) =
{
m − 1 if G is an end position

(q + i) mod m otherwise

for q = min{ j ∈ N | l(G ′) + 1 = (i + j) mod m wi th G ′ ∈ opt(G)}
Definition 9 For r ≥ 1, we define Mr (G) as the set of game positions which are
reached in no more than r moves from G. That is, M1(G) = opt(G) and Mr (G) =
opt(Mr−1(G) ∪ G) for r > 1. In addition, we define Mr (G) = φ for r < 1.

Definition 10 We define Level(G) as follows:

Level(G) =
{
m − i if G is an end position

min({r(G),m − i + e(G)}) otherwise

where r(G) is the least number such that Mr(G)(G) contains a losing position and
e(G) is the least number such that Me(G)(G) contains an end position. If such an r(G)

does not exist, then we set r(G) = ∞.

Lemma 2 Level(G) ≤ m.

Proof Without loss of generality, assume that the current player is P0. Let x = l(G)

and

u =
{

(x − i) mod m (x �= i)

m (x = i).

If the game ends before Pu’s turn, then x ≤ i and Mx (G) contains an end position.
Otherwise, since we assumed that each player moves optimally, Pu is given a losing

position after u moves from the first move by P0. Therefore, Mu(G) contains a losing
position.

Lemma 3 l(G) = (Level(G) + i − 1) mod m.

Proof If G is an end position, then clearly l(G) = (Level(G) + i − 1) mod m. For
the rest of the proof, we assume that G is not an end position.

If Level(G) = 1 thenmin({r(G),m− i + e(G)}) = 1.m− i + e(G) �= 1 because
m ≥ i + 1 and e(G) > 0. Therefore, we have r(G) = 1 and it means that there is an
option G ′ ∈ opt(G) such that G ′ is a losing position. Since G ′ is a losing position,
l(G ′) = (i − 1) mod m. Therefore,

l(G) = (min{(l(Y ) + 1 − i) mod m | Y ∈ opt(G)} + i) mod m

= i

= (Level(G) + i − 1) mod m.

Otherwise, since Level(G) = min({r(G),m − i + e(G)}), there is an option
G ′ ∈ opt(G) such that Level(G ′) = min({r(G) − 1,m − i + e(G) − 1}). Note that
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this holds even if e(G) = 1 because there exists G ′ ∈ opt(G) such that G ′ is an end
position and by Definition 10, Level(G ′) = m − i . In addition, there is no option G ′
which satisfies r(G ′) ≤ r(G) − 2 nor m − i + e(G ′) ≤ m − i + e(G) − 2.

Therefore, there is an option G ′ ∈ opt(G) such that Level(G ′) = Level(G) − 1
and there is no option G ′ ∈ opt(G) such that 1 ≤ Level(G ′) ≤ Level(G) − 2.
By induction hypothesis, there is an option G ′ ∈ opt(G) such that l(G ′) = (i −
1 + Level(G) − 1) mod m and there is no option G ′ ∈ opt(G) such that l(G ′) =
(i − 1 + Level(G) − 2) mod m nor l(G ′) = (i − 1 + Level(G) − 3) mod m nor
…nor l(G ′) = i mod m. Therefore,

l(G) = (min{(l(G ′) + 1 − i) mod m | G ′ ∈ opt(G)} + i) mod m

= (((Level(G) − 1) mod m) + i) mod m

= (Level(G) + i − 1) mod m.

Lemma 4 Let S be a set of game positions of i-misère play. S is the set of losing
positions if and only if

(i) ∀G ∈ S ∀G ′ ∈ E . G ′ /∈ Mi−1(G)

(ii) ∀G,G ′ ∈ S. G ′ /∈ Mm−1(G)

(iii) ∀G /∈ S. (∃G ′ ∈ S,G ′ ∈ Mm−1(G)) ∨ (∃G ′′ ∈ E,G ′′ ∈ Mi−1(G)).

Here, E is the set of end positions.

Proof Note that if G is a losing position, then l(G) = (i − 1) mod m. Assume that
S is the set of losing positions. Then, by Lemma 3, ∀G ∈ S. Level(G) = m and by
Definition 10, min({r(G),m − i + e(G)}) = m. Therefore, (i) and (ii) hold. Next, by
Lemma 3, ∀G /∈ S, Level(G) < m and therefore (iii) holds.

On the other hand, assume that (i), (ii), and (iii) hold. From (i) and (ii), ∀G ∈
S. Level(G) = m and from (iii), ∀G /∈ S. Level(G) < m. Therefore, S is the set of
game position G such that l(G) = (i − 1) mod m.

Lemma 5 Letm beapositive integer. Assume that non-negative integers n1, n2, . . . , nk
satisfy n〈2〉

1 ⊕m n〈2〉
2 ⊕m · · ·⊕m n〈2〉

k �= 0. Then there exist n′
1, n

′
2, . . . , n

′
k(0 ≤ n′

j ≤ n j )

such that n′〈2〉
1 ⊕m n′〈2〉

2 ⊕m · · · ⊕m n′〈2〉
k = 0 and n j = n′

j for all but at most m − 1
values of j .

Proof Let u be the maximal length of binary notations of n j . Suppose that n〈2〉
j =

(n j,u, n j,u−1, · · · , n j,1) and if the length of n
〈2〉
j is shorter than u, then we prepend 0’s

to adjust its length. We calculate with the following algorithm a subset α of {1, . . . , k}
specifying the indices of the n j that will be reduced. First, we set v = u and α = φ

and start at step s = 0. At step s, let V = { j | j /∈ α, n j,v = 1}. Let p = |V | mod m. If
p ≤ m − |α| − 1, set n j,v = 0 for j ∈ α, choose a subset J ⊆ V of p elements, and
set n j,v = 0 for j ∈ J and add j ∈ J to α. If p ≥ m − |α|, choose a subset J ′ ⊆ α of
m − p elements, set n j,v = 1 for j ∈ J ′ and set n j,v=0 for j ∈ α \ J ′. Then we set
v = v − 1, and if v ≥ 1, proceed to step s + 1.
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Multiplayer games as extension of misère games 789

Lemma 6 Letm beapositive integer. Assume that non-negative integers n1, n2, . . . , nk
satisfy n〈2〉

1 ⊕m n〈2〉
2 ⊕m · · ·⊕m n〈2〉

k = 0. Then there does not exist n′
1, n

′
2, . . . , n

′
k(0 ≤

n′
j ≤ n j ) such that n

′〈2〉
1 ⊕m n′〈2〉

2 ⊕m · · · ⊕m n′〈2〉
k = 0 and n j = n′

j for all but at most

m − 1 values of j . However, one can obtain n′〈2〉
1 ⊕m n′〈2〉

2 ⊕m · · · ⊕m n′〈2〉
k = 0 by

reducing m of them unless n1 = n2 = · · · = nk = 0.

Proof We define f (n1, n2, . . . , nk) as the left-most non-zero component of n〈2〉
1 ⊕m

n〈2〉
2 ⊕m · · · ⊕m n〈2〉

k and if n〈2〉
1 ⊕m n〈2〉

2 ⊕m · · · ⊕m n〈2〉
k = 0, then we define

f (n1, n2, . . . , nk) = 0. If n〈2〉
1 ⊕m n〈2〉

2 ⊕m · · · ⊕m n〈2〉
k = 0, then reducing any

n j > 0 to n′
j (n

′
j < n j ), results in f (n1, n2, . . . , n j−1, n′

j , n j+1, . . . , nk) = m − 1.
And if f = f (n1, n2, . . . , n j−1, n j , n j+1, . . . , nk) > 0, then reducing any n j > 0
to n′

j (n
′
j < n j ), yields f (n1, n2, . . . , n j−1, n′

j , n j+1, . . . , nk) ∈ { f , f − 1,m − 1}.
Therefore one needs to reduce at least f members of {n1, n2, . . . , nk} in order to make
their generalized NIM sum 0. In addition, from Lemma 5, one can do so by reducing
at most m − 1 more members.

Lemma 7 Assume that k ≥ m − 1 and non-negative integers n1, n2, . . . , nk satisfy
n〈2〉
1 ⊕mn

〈2〉
2 ⊕m · · ·⊕mn

〈2〉
k = 0 and∀ j . n j ≤ 1. Then for any i(1 ≤ i ≤ m−1), and for

any subset J ⊆ {1, . . . , k} of cardinality m−1, there exist n′
1, n

′
2, . . . , n

′
k(∀ j . n′

j ≤ 1)

such that n′〈2〉
1 ⊕m n′〈2〉

2 ⊕m · · · ⊕m n′〈2〉
k = i and n j = n′

j for j /∈ J .

Proof Let p = n〈2〉
j1

⊕m n〈2〉
j2

⊕m · · · ⊕m n〈2〉
jm−1

for J = { j1, j2, . . . , jm−1}. If i ≤
m − 1 − p, then there are i elements whose values are 0 in n j1 , n j2 , . . . , n jm−1 and
otherwise, p ≥ m − i and it means that there are m − i elements whose values are
1. In the former case, by adding 1 to i elements whose values are 0, we can obtain
n′
1, n

′
2, . . . , n

′
k(n

′
j ≤ 1) such that n′〈2〉

1 ⊕m n′〈2〉
2 ⊕m · · · ⊕m n′〈2〉

k = i and n j = n′
j if

j /∈ J , and in the latter case, by reducing 1 from m − i elements whose values are 1,
we can also obtain such numbers.

Proof of Theorem 6 Let S1 = {(n1, n2, . . . , nk) | n〈2〉
1 ⊕m n〈2〉

2 ⊕m · · · ⊕m n〈2〉
k =

0 (∃ j . n j > 1)}, S2 = {(n1, n2, . . . , nk) | n〈2〉
1 ⊕m n〈2〉

2 ⊕m · · ·⊕m n〈2〉
k = i (∀ j . n j ≤

1)}, and S = S1 ∪ S2.
Assume that G = (g1, g2, . . . , gk) ∈ S and G ′ is the end position. There are two

cases:

(i)-1 G ∈ S1: By Lemma 6, G ′ /∈ Mi−1(G)

(i)-2 G ∈ S2: It is clear that G ′ /∈ Mi−1(G)

Next, assume thatG = (g1, g2, . . . , gk) ∈ S andG ′ = (g′
1, g

′
2, . . . , g

′
k) ∈ S. There

are three cases:

(ii)-1 G,G ′ ∈ S1: By Lemma 6, G ′ /∈ Mm−1(G).
(ii)-2 G,G ′ ∈ S2: It is clear that G ′ /∈ Mm−1(G).
(ii)-3 G ∈ S1 and G ′ ∈ S2: Since g

〈2〉
1 ⊕m g〈2〉

2 ⊕m · · · ⊕m g〈2〉
k = 0, G has at least m

elements which are larger than 1 and thus, G ′ /∈ Mm−1(G).

Therefore, if G,G ′ ∈ S, then G ′ /∈ Mm−1(G).
Next, assume that G = (g1, g2, . . . , gk) /∈ S. There are two cases:
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(iii)-1 There are less than i elements which are larger than 0 in G: Clearly ∃G ′′ ∈
E . G ′′ ∈ Mi−1(G).

(iii)-2 There are more than or equal to i elements which are larger than 0 in G: By
Lemma 5, there exist g′

1, g
′
2, . . . , g

′
k(0 ≤ g′

j ≤ g j ) such that g
′〈2〉
1 ⊕m g′〈2〉

2 ⊕m

· · ·⊕m g′〈2〉
k = 0 and g j = g′

j for all but at mostm−1 values of j . If there exist

g′
j > 1 then ∃G ′ = (g′

1, g
′
2, . . . , g

′
k) such that G

′ ∈ S1 and G ′ ∈ Mm−1(G).

On the other hand, if g′
j ≤ 1 for all j ≤ k, then there are two cases:

(iii)-2a There are less thanm elementswhich are larger than 0 inG: Since there are i or
more elements which are larger than 0 inG, one can reduce or remain them so
that i elements are 1 and the others are 0. Therefore, ∃G ′ = (g′

1, g
′
2, . . . , g

′
k)

such that G ′ ∈ S2 and G ′ ∈ Mm−1(G).
(iii)-2b There are m or more elements which are larger than 0 in G. Since g′〈2〉

1 ⊕m

g′〈2〉
2 ⊕m · · · ⊕m g′〈2〉

k = 0, there are m or more elements which are 1. Then
by Lemma 7, there also exists G ′′ = (g′′

1 , g
′′
2 , . . . , g

′′
k )(g

′′
j ≤ 1) such that

g′′〈2〉
1 ⊕m g′′〈2〉

2 ⊕m · · · ⊕m g′′〈2〉
k = i and g j = g′′

j for all but at most m − 1
values of j . Therefore, ∃G ′′ = (g′′

1 , g
′′
2 , . . . , g

′′
k ) such that G ′′ ∈ S2 and

G ′′ ∈ Mm−1(G).

Therefore, by Lemma 4, S is the set of losing positions of i-misère NIM.

4 m-Player misère Moore’s game

Moore’s game, or NIMt , is a game in which players can choose up to t heaps and
take any numbers of stones from them (Moore 1909) . Therefore, NIM1 is the original
NIM.

Theorem 7 (Moore 1909) A game position (n1, n2, . . . , nk) of N I Mt is a P-position
if and only if n〈2〉

1 ⊕t+1 n
〈2〉
2 ⊕t+1 · · · ⊕t+1 n

〈2〉
k = 0.

Robert Li (1978) showed the following theorem for multiplayer NIMt .

Theorem 8 (Robert Li 1978) In 0-misère play of m-player N I Mt , l(n1, n2, . . . , nk) =
0 if and only if n〈2〉

1 ⊕v n
〈2〉
2 ⊕v · · · ⊕v n

〈2〉
k = 0 where v = t(m − 1) + 1.

We can also extend this theorem to i-misère play.

Theorem 9 In i-misère play of m-player N I Mt , (n1, n2, . . . , nk) is a losing position
if and only if, {

n〈2〉
1 ⊕v n

〈2〉
2 ⊕v · · · ⊕v n

〈2〉
k = 0 (∃ j . n j > 1)

n〈2〉
1 ⊕v n

〈2〉
2 ⊕v · · · ⊕v n

〈2〉
k = u (∀ j . n j ≤ 1)

where v = t(m − 1) + 1 and{
u = 0 (i = 0)

u = t(i − 1) + 1 (1 ≤ i ≤ m − 1).

.
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Proof Let S1 = {(n1, n2, . . . , nk) | n〈2〉
1 ⊕v n〈2〉

2 ⊕v · · · ⊕v n〈2〉
k = 0 (∃ j . n j > 1)}

and S2 = {(n1, n2, . . . , nk) | n〈2〉
1 ⊕v n〈2〉

2 ⊕v · · · ⊕v n〈2〉
k = u (∀ j . n j ≤ 1)}, and

S = S1 ∪ S2.
Assume that G = (g1, g2, . . . , gk) ∈ S and G ′ is the end position. There are two

cases:

(i)-1 G ∈ S1: By Lemma 6, G ′ /∈ Mi−1(G)

(i)-2 G ∈ S2: It is clear that G ′ /∈ Mi−1(G)

Next, assume thatG = (g1, g2, . . . , gk) ∈ S andG ′ = (g′
1, g

′
2, . . . , g

′
k) ∈ S. There

are three cases:

(ii)-1 G,G ′ ∈ S1: By Lemma 6, G ′ /∈ Mm−1(G).
(ii)-2 G,G ′ ∈ S2: It is clear that G ′ /∈ Mm−1(G).
(ii)-3 G ∈ S1 and G ′ ∈ S2: Since g

〈2〉
1 ⊕v g〈2〉

2 ⊕v · · · ⊕v g〈2〉
k = 0, G has at least v

elements which are larger than 1 and thus, G ′ /∈ Mm−1(G).

Therefore, if G,G ′ ∈ S, then G ′ /∈ Mm−1(G).
Next, assume that G = (g1, g2, . . . , gk) /∈ S. There are two cases:

(iii)-1 There are less than u elements which are larger than 0 in G: Clearly ∃G ′′ ∈
E . G ′′ ∈ Mi−1(G).

(iii)-2 There are more than or equal to u elements which are larger than 0 in G: By
Lemma 5, there exist g′

1, g
′
2, . . . , g

′
k(0 ≤ g′

j ≤ g j ) such that g′〈2〉
1 ⊕v g′〈2〉

2 ⊕v

· · ·⊕v g
′〈2〉
k = 0 and g j = g′

j for all but at most v − 1 values of j . If there exist

g′
j > 1 then ∃G ′ = (g′

1, g
′
2, . . . , g

′
k) such that G

′ ∈ S1 and G ′ ∈ Mm−1(G).

On the other hand, if g′
j ≤ 1 for all j ≤ k, then there are two cases:

(iii)-2a There are less than v elementswhich are larger than 0 inG: Since there are u or
more elements which are larger than 0 inG, one can reduce or remain them so
that u elements are 1 and the others are 0. Therefore, ∃G ′ = (g′

1, g
′
2, . . . , g

′
k)

such that G ′ ∈ S2 and G ′ ∈ Mm−1(G).
(iii)-2b There are v or more elements which are larger than 0 in G. Since g′〈2〉

1 ⊕v

g′〈2〉
2 ⊕v · · · ⊕v g′〈2〉

k = 0, there are v or more elements which are 1. Then
by Lemma 7, there also exists G ′′ = (g′′

1 , g
′′
2 , . . . , g

′′
k )(g

′′
j ≤ 1) such that

g′′〈2〉
1 ⊕v g′′〈2〉

2 ⊕v · · · ⊕v g′′〈2〉
k = u and g j = g′′

j for all but at most v − 1
values of j . Therefore, ∃G ′′ = (g′′

1 , g
′′
2 , . . . , g

′′
k ) such that G ′′ ∈ S2 and

G ′′ ∈ Mm−1(G).

Therefore, by Lemma 4, S is the set of losing positions of i-misère Moore’s game.

5 Reverse form

In Sects. 3 and 4, we considered i-misère play where each player’s preference order is
the same as the play order. In this section, we study the situation that for each player
Pi , her preference order is reverse to the play order.
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Definition 11 For 0 ≤ i ≤ m − 1, we say that preference-based play of an m-player
game is an i -reverse play if it is a preference-impartial game and the preference matrix
is the following:

[
i (i − 1) · · · 1 0 (m − 1) · · · (i + 1)

]
In i-misère play, if l(G) = (i − 1) mod m, then G is a losing position. On the other
hand, in i-reverse play, if l(G) = (i − 1) mod m then the secondly preferred player
of the current player is going to be the last moving player of G.

In two-play normal and misère NIM. for all j(1 ≤ j ≤ k) and for all non-negative
integers n1, n2, . . . , n j−1, n j+1, . . . , nk , there is exactly one non-negative integer n j

such that (n1, n2, . . . , n j−1, n j , n j+1, . . . , nk) is a P-position. In i-misère play with
m > 2, there is no such uniqueness. However, we show that there exists such a
uniqueness in i-reverse play. This result suggests that i-reverse play is also a natural
extension of two-player normal and misère play.

Theorem 10 In i-reverse play, for all j(1 ≤ j ≤ k) and for all non-negative integers
n1, n2, . . . , n j−1, n j+1, . . . , nk, there is exactly one non-negative integer n j such that
l(n1, n2, . . . , n j−1, n j , n j+1, . . . , nk) = (i − 1) mod m.

Proof Without loss of generality, we assume j = k and we prove there is
exactly one nk such that l(n1, n2, . . . , nk−1, nk) = (i − 1) mod m for all non-
negative integers n1, n2, . . . , nk−1. First, we show that there is at most one nk
such that l(n1, n2, . . . , nk−1, nk) = (i − 1) mod m. Assume for a contradiction
that l(G) = l(G ′) = (i − 1) mod m where G = (n1, n2, . . . , nk−1, nk) and
G ′ = (n1, n2, . . . , nk−1, n′

k)(nk < n′
k). Then, the current player can move from

G ′ to G. Since l(G) = (i − 1) mod m, l(G ′) = i , which is a contradiction.
Next, we show that there is at least one nk such that l(n1, n2, . . . , nk−1, nk) =

(i − 1) mod m. Assume for a contradiction that there exist (n1, n2, . . . , nk−1) such
that for all non-negative integer nk , l(n1, n2, . . . , nk−1, nk) �= (i − 1) mod m. Sim-
ilarly to the case of i − 1, for each s (s �≡ i(mod m)), there is at most one nk
such that l(n1, n2, . . . , nk−1, nk) = s. Therefore, there are infinitely many nk such
that l(n1, n2, . . . , nk−1, nk) = i . Then, the current player has a move to G ′ such
that l(G ′) = (i − 1) mod m. It can not be a move to take some stones from
nk , because we assumed for all non-negative integer n′

k , l(n1, n2, . . . , nk−1, n′
k) �=

(i − 1) mod m. From the pigeonhole principle, there exist n′
k , n

′′
k (n′

k < n′′
k ) and

n′
1(n

′
1 < n1) such that l(G1) = l(n′

1, n2, . . . , nk−1, n′
k) = (i − 1) mod m and

l(G2) = l(n′
1, n2, . . . , nk−1, n′′

k ) = (i − 1) mod m. On the other hand, the current
player can move from G2 to G1. Since l(G1) = (i − 1) mod m , l(G2) = i , which is
a contradiction.

6 Asymmetric forms in three-player NIM

Finally, we study the case that each player has a different preference order for the case
of three-player NIM. We have already studied the cases named 0-misère, 1-misère,
and 2-misère play;
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⎡
⎣0 1 2
0 1 2
0 1 2

⎤
⎦ ,

⎡
⎣ 1 2 0
1 2 0
1 2 0

⎤
⎦ ,

⎡
⎣2 0 1
2 0 1
2 0 1

⎤
⎦

and the cases named 0-reverse, 1-reverse, and 2-reverse play;

⎡
⎣0 2 1
0 2 1
0 2 1

⎤
⎦ ,

⎡
⎣ 1 0 2
1 0 2
1 0 2

⎤
⎦ ,

⎡
⎣ 2 1 0
2 1 0
2 1 0

⎤
⎦ .

Weshowed someproperties of l(G, t) though its characterization is anopenproblem
for some of the cases. In this section, we study the following preference orders which
are not symmetric.

Semi-normal form Each player prefers herself first. Two players secondly prefer
the same player and the other player secondly prefers her next player. There are
three possibilities of preference orders which are essentially the same.

⎡
⎣0 1 2
0 2 1
0 1 2

⎤
⎦ ,

⎡
⎣ 0 1 2
0 1 2
0 2 1

⎤
⎦ ,

⎡
⎣0 2 1
0 1 2
0 1 2

⎤
⎦

Semi-reverse form Each player prefers herself first. Two players secondly prefer
the same player and the other player secondly prefers her previous player. There
are three possibilities of preference orders which are essentially the same.

⎡
⎣0 2 1
0 2 1
0 1 2

⎤
⎦ ,

⎡
⎣ 0 1 2
0 2 1
0 2 1

⎤
⎦ ,

⎡
⎣0 2 1
0 1 2
0 2 1

⎤
⎦

Without loss of generality, we consider semi-normal form

⎡
⎣0 1 2
0 2 1
0 1 2

⎤
⎦

and semi-reverse form ⎡
⎣0 2 1
0 2 1
0 1 2

⎤
⎦ .

Theorem 11 The overall result for the semi-normal form is listed in Table 1 and
for the semi-reverse form is listed in Table 2. Here, (α;β; γ ) means that l(G, 0) =
α, l(G, 1) = β, and l(G, 2) = γ .
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Table 1 Semi-normal form

(I) 3n heaps

(I-1) each heap has 1 stone; (1, 1, . . . , 1) (2; 2; 2)
(I-2) (3n − 1) heaps have 1 stone and the other heap has x(≥ 2) stones;
(1, 1, . . . , 1, x)

(0; 0; 0)

(I-3) otherwise (0; 2; 1)
(II) (3n + 1) heaps

(II-1) 3n heaps have 1 stone and the other heap has x(≥ 1) stones;
(1, 1, . . . , 1, x)

(0; 0; 0)

(II-2) otherwise (0; 2; 1)
(III) (3n + 2) heaps

(III-1) each heap has 1 stone; (1, 1, . . . , 1) (1; 1; 1)
(III-2) (3n + 1) heaps have 1 stone and the other heap has 2 stones;
(1, 1, . . . , 1, 2)

(1; 2; 1)

(III-3) otherwise (0; 2; 1)

Table 2 Semi-reverse form

(I) 3n heaps

(I-1) each heap has 1 stone; (1, 1, . . . , 1) (2; 2; 2)
(I-2) (3n − 1) heaps have 1 stone and the other heap has x(≥ 2) stones;
(1, 1, . . . , 1, x)

(0; 0; 0)

(I-3) (3n − 2) heaps have 1 stone, one heap has 2 stones and the other heap
has x(≥ 2) stones; (1, 1, . . . , 1, 2, x)

(0; 2; 0)

(I-4) if n = 1 and each heap has 2 stones; (2, 2, 2) (0; 1; 1)
(I-5) otherwise (0; 2; 1)
(II) (3n + 1) heaps

(II-1) 3n heaps have 1 stone and the other heap has x(≥ 1) stones;
(1, 1, . . . , 1, x)

(0; 0; 0)

(II-2) (3n − 1) heaps have 1 stone and the other two heaps have 2 stones;
(1, 1, . . . , 1, 2, 2)

(0; 1; 1)

(II-3) otherwise (0; 2; 1)
(III) (3n + 2) heaps

(III-1) each heap has 1 stone; (1, 1, . . . , 1) (1; 1; 1)
(III-2) (3n + 1) heaps have 1 stone and the other heap has 2 stones;
(1, 1, . . . , 1, 2)

(2; 2; 1)

(III-3) (3n + 1) heaps have 1 stone and the other heap has x(≥ 3) stones;
(1, 1, . . . , 1, x)

(0; 2; 0)

(III-4) 3n heaps have 1 stone, one heap has 2 stones and the other heap has
x(≥ 2) stones; (1, 1, . . . , 1, 2, x)

(0; 2; 0)

(III-5) if n = 0 and each heap has 3 stones; (3, 3) (0; 1; 1)
(III-6) otherwise (0; 2; 1)
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Proof We prove the semi-normal case by induction.

– (I-1): If each heap has 1 stone, then every player has only one choice to take one
stone from a heap and the result is (2; 2; 2).

– (I-2): The current player can be the last moving player by taking all but one stone
from the maximal heap. From (I-1), she becomes the last moving player.

– (II-1): The current player can be the last moving player by taking all stones from
the maximal heap. From (I-1), she becomes the last moving player.

– (III-1): If each heap has 1 stone, then every player has only one choice to take one
stone from a heap and the result is (1; 1; 1).

– (III-2): The current player has no way to be the last moving player. From (II), she
can make her next player the last moving player by taking a stone from a heap
which has 1 stone. From (III-1), she can make her previous player the last moving
player by taking a stone from a heap which has 2 stones. Since this is semi-normal
form, the result is (1; 2; 1).

– (I-3),(II-2),(III-3): If there are 3n+2 heaps and one heap has 3 or more stones and
the other heaps have one stone, then player P1 and player P2 have no strategies
to be the last moving player because they cannot make the game position (I-1).
On the other hand, they can make P0 the last moving player by taking all stones
from the maximal heap. In addition, player P0 can be the last moving player by
taking all but two stones from the maximal heap. Therefore, the result is (0; 2; 1).
In other cases, there are two heaps which have two or more stones. Assume that
player P0 is the first player. If there are just two heaps and they have just two
stones, then player P0 can be the last moving player by taking a stone from one
heap. Otherwise, by induction, player P0 becomes the last moving player because
she can always move so that the two heaps have two or more stones.
If player P1 is the first player, then she cannot bring the game to position (I-1), so
she cannot be the last moving player. However, if there are just two heaps which
have just two stones, then she can take a stone from one heap and make P0 the last
moving player. Otherwise, she can make P0 the last moving player by induction.
Finally, if player P2 is the first player, then she cannot bring the game to position
(I-1), so she cannot be the last moving player. However, if there are just two heaps
which have just two stones, then she can take all stones from one heap and make
P0 the last moving player. Otherwise, she can make P0 the last moving player by
induction.

We can prove the semi-reverse case by induction as the semi-normal case, but it is
more complex, so we omit it.
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