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Abstract
On the domain of cooperative gameswith transferable utility, we introduce pathmono-
tonicity, a property closely related to fairness (van den Brink, in Int J Game Theory
30:309–319, 2001). The principle of fairness states that if a game changes by adding
another game in which two players are symmetric, then their payoffs change by the
same amount. Under efficiency, path monotonicity is a relaxation of fairness that guar-
antees that when the worth of the grand coalition varies, the players’ payoffs change
according to some monotone path. In this paper, together with the standard properties
of projection consistency (Funaki, in Dual axiomatizations of solutions of cooperative
games. Mimeo, New York, 1998) and covariance, we show that path monotonicity
characterizes the weighted surplus division solutions. Interestingly, replacing projec-
tion consistency by either self consistency (Hart and Mas-Colell, in Econometrica
57:589–614, 1989) or max consistency (Davis and Maschler, in Nav Res Logist Q
12:223–259, 1965)we obtain newaxiomatic characterizations of theweighted Shapley
values and the prenucleolus, respectively. Finally, by the duality approach we provide
a new axiomatization of the weighted egalitarian non-separable contribution solutions
using complement consistency (Moulin, in J Econ Theory 36:120–148, 1985).
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1 Introduction

A cooperative game with transferable utility (hereafter game) describes a situation
in which a society or community can profit from joint efforts. It consists of a finite
set of players and a real-valued function defined on the set of coalitions of players.
Assuming that the grand coalition will form, the question is how to allocate the gains
from cooperation among the players. A single-valued solution (or rule) is a mapping
that assigns to each game a feasible payoff vector, being one of the objectives of the
axiomatic method to identify a solution by a set of appealing properties.

Probably, the most relevant single-valued solution is the Shapley value (Shapley
1953b) which considers that players should be paid only according to their marginal
contributions to all coalitions. In front of this marginality principle, the equal surplus
division solution (Driessen and Funaki 1991)1 relies on egalitarian considerations: it
assigns to every player what they can achieve for themselves alone, and distributes
equally what is left of the gains of cooperation. Both solutions satisfy equal treatment
of equals. This property states that if two players have equal contributions to all
coalitions, they must receive the same payoff. Nevertheless, in many applications, and
because of external features of the players, the assumption that every player has the
same abilities may not be appropriated. The weighted Shapley values (Shapley 1953a)
and theweighted surplus division solutions (Calleja and Llerena 2016) take care of this
aspect by assigning exogenously each player to a strictly positive weight, representing
such abilities. A different prominent rule is the prenucleolus (Schmeidler 1969) that
takes specially care of minimizing complaints of coalitions to a particular allocation.

In this paper, we consider the problem of axiomatizing the weighted surplus divi-
sion solution on the domain of all games. Despite the equal surplus division solution
has recently been characterized,2 as far as we know, there is no proper axiomatic
characterization of its non-symmetric generalization. Interestingly, our results show
that, although the definitions of the weighted surplus division solutions, the weighted
Shapley values and the prenucleolus differ completely, from an axiomatic approach
the difference can be pointed out to one axiom: consistency, an outstanding relational
property in the axiomatic method.3

Together with projection consistency (Funaki 1998), Theorem 1 (i) characterizes
the family of the weighted surplus division solutions by means of the well estab-
lished property of covariance and path monotonicity, a sort of aggregate monotonicity
(Megiddo 1974) that distributes any variation in the worth of the grand coalition fol-
lowing a fixed pattern reflecting some exogenous circumstances or priorities among
players that are not captured by the characteristic function of the game. From a dif-
ferent angle, and under efficiency, path monotonicity can be viewed as a relaxation
of two equivalent properties (on the full domain of games): fairness, due to van den
Brink (2001) and inspired in the notion of fairness as introduced in Myerson (1977),
and differential marginality (Casajus 2011). Fairness (marginality) guarantees that

1 This solution is also known as the center-of-gravity of the imputation set.
2 See, for instance, van den Brink (2007), Chun and Park (2012), Casajus and Huettner (2014), Béal et al.
(2014), Calleja and Llerena (2016) or van den Brink et al. (2016).
3 See Thomson (2011, 2012) for essays on the consistency principle.
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if we add a game to another game in which two players are symmetric then, since
their marginal contributions to coalitions containing neither of them coincide in both
games, the players’ payoffs change by the same amount. Not surprisingly, fairness,
together with the standard property of efficiency, imply path monotonicity. Outstand-
ingly, replacing projection consistency in Theorem 1 (i) by either self consistency
(Hart and Mas-Colell 1989) or by max consistency (Davis and Maschler 1965) and
considering path monotonicity for two-person games only, we obtain new axiomatic
characterizations of the family of weighted Shapley values (Theorem 1 (ii)) and the
prenucleolus (Theorem 2). All these characterization results are collected in Sect. 3.

In Sect. 4 we observe that substituting path monotonicity in Theorem 1 by fairness
allows to get new axiomatic characterizations of the equal surplus division solution
(Theorem3 (i)) and theShapleyvalue (Theorem3 (ii)). Furthermore, the notionof dual-
ity in coalitional games (see, for instance, Oishi et al. 2016) leads to a new axiomatic
characterization of the egalitarian non-separable contribution solution (Moulin 1985)
(Theorem 3 (iii)).4 Finally, replacing path monotonicity by fairness (for two-person
games) in Theorem 2, we obtain a new characterization of the prenucleolus (Theorem
4).

The remainder of the paper is organized as follows. In Sect. 2 we introduce some
preliminaries on games. In Sect. 5 we introduce the dual property of path mono-
tonicity in order to provide, together with complement consistency (Moulin 1985)
and covariance, an axiomatic characterization of the family of weighted egalitarian
non-separable contribution solutions (Theorem 7). We conclude with some remarks
for future research and comparing our results with the characterizations provided in
Sobolev (1975), Hart and Mas-Colell (1989), Orshan (1993) and Driessen and Funaki
(1997). The “Appendix” contains the independence of the properties in the character-
ization results.

2 Preliminaries

The set of natural numbers N denotes the universe of potential players. A coalition is
a non-empty finite subset of N and let N denote the set of all coalitions of N. Given
S, T ∈ N ,we use S ⊂ T to indicate strict inclusion, that is, S ⊆ T and S �= T . By |S|
we denote the cardinality of the coalition S ∈ N . A transferable utility coalitional
game is a pair (N , v) where N ∈ N is the set of players and v : 2N −→ R is
the characteristic function that assigns to each coalition S ⊆ N a real number v(S),
representing what S can achieve by agreeing to cooperate, with the convention that
v(∅) = 0. Given a game (N , v), the dual game (N , vd) is defined by setting for all
S ⊆ N , vd(S) = v(N ) − v(N\S). For simplicity of notation, and if no confusion
arises, we write v(i), v(i j), . . . instead of v({i}), v({i, j}), . . .. By Γ we denote the
class of all games.

Given N ∈ N and ∅ �= N ′ ⊆ N , the unanimity game (N , uN ′) associated to N ′ is
defined as uN ′(S) = 1 if N ′ ⊆ S and uN ′(S) = 0 otherwise. Given a game (N , v) and

4 Previous axiomatic characterizations of the egalitarian non-separable contribution solution can be found
in Moulin (1985), Driessen and Funaki (1997) and Hwang (2006).
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∅ �= N ′ ⊂ N , the subgame (N ′, v|N ′) is defined as v|N ′(S) = v(S) for all S ⊆ N ′.
For any two games (N , v), (N , w), and α ∈ R, we define the game (N , v + w) as
(v + w)(S) = v(S) + w(S), and the game (N , α · v) as (α · v)(S) = α · v(S), for all
S ⊆ N . The null game (N , 0) is defined by 0(S) = 0 for all S ⊆ N .

Given N ∈ N , let RN stand for the space of real-valued vectors indexed by N ,
x = (xi )i∈N , and for all S ⊆ N , x(S) = ∑

i∈S xi , with the convention x(∅) = 0. For
each x ∈ R

N and T ⊆ N , x|T denotes the restriction of x to T : x|T = (xi )i∈T ∈ R
T .

Given two vectors x, y ∈ R
N , x ≥ y if xi ≥ yi , for all i ∈ N , while x > y if xi > yi ,

for all i ∈ N .
The set of feasible payoff vectors of (N , v) is defined by X∗(N , v) := {x ∈

R
N | x(N ) ≤ v(N )}, while the preimputation set contains the efficient payoff vec-

tors, that is, X(N , v) := {x ∈ R
N | x(N ) = v(N )}.

A solution on a class of games Γ ′ ⊆ Γ is a correspondence σ that associates with
each game (N , v) ∈ Γ ′ a subset σ(N , v) of X∗(N , v). Given a solution σ on Γ ′ ⊆ Γ

such that (N , v), (N , vd) ∈ Γ ′, the dual of σ , denoted by σ d , is defined by setting for
all (N , v) ∈ Γ ′, σ d(N , v) = σ(N , vd). A solution σ on Γ ′ ⊆ Γ is said to be single-
valued if |σ(N , v)| = 1 for all (N , v) ∈ Γ ′. In this case, σ(N , v) is treated as the
unique element of this singleton set. Notice that a single-valued solution is always non-
empty but not necessarily an efficient allocation.We say that a single-valued solution σ

on Γ ′ ⊆ Γ satisfies efficiency (E) if all the gains from cooperation are shared among
the players, that is, for all N ∈ N and all (N , v) ∈ Γ ′, it holds

∑
i∈N σi (N , v) = v(N ).

Apart from efficiency, a classical invariant requirement w.r.t. changes in scale that
are comparable with positive affine transformations is covariance. A single-valued
solution σ on Γ ′ ⊆ Γ satisfies covariance (CO) if for all N ∈ N , all (N , v) ∈ Γ ′,
all α > 0 and all d ∈ R

N , if (N , w) ∈ Γ ′ is such that w(S) = α · v(S) + d(S) for
all S ⊆ N , then σ(N , w) = α · σ(N , v) + d. Two players i and j are symmetric
in a game (N , v) if v(S ∪ {i}) = v(S ∪ { j}) for all S ⊆ N\{i, j}. A single-valued
solution σ on Γ ′ ⊆ Γ satisfies equal treatment of equals (ETE) if for all N ∈ N ,
all (N , v) ∈ Γ ′ and all symmetric players i, j ∈ N , then σi (N , v) = σ j (N , v).

On the dual of games Γ ′ ⊆ Γ that is closed under the duality operator, two prop-
erties are dual to each other if whenever a solution σ satisfies one of them, the dual
solution σ d satisfies the other. A property is self dual if it is dual to itself. It is not
difficult to check that efficiency, covariance and equal treatment of equals are self
dual.

For our purposes, we introduce some well-known efficient single-valued solutions
defined on Γ . Let N ∈ N and (N , v) ∈ Γ . The Shapley value, Sh, is defined by

Shi (N , v) :=
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!
|N |! (v(S ∪ {i}) − v(S)) for all i ∈ N .

Let αT = ∑
S⊆T (−1)|T |−|S|v(S) for all ∅ �= T ⊆ N . Then, we can express the game

(N , v) by a linear combination of the unanimity games as v = ∑
∅�=T⊆N αT uT . The

weighted Shapley value relative to a list of positive weights w = (wi )i∈N ∈ R
N++,

Shw, is defined by
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Shw(N , v) :=
∑

∅�=T⊆N

αT · Shw(N , uT ),

where

Shw
i (N , uT ) :=

{
wi∑
j∈T w j

if i ∈ T

0 if i ∈ N\T .

Notice that when wi = w j for all i, j ∈ N, then Shw(N , v) = Sh(N , v).
Let N ∈ N and (N , v) ∈ Γ . The equal surplus division solution, ES, is defined

by

ESi (N , v) := v(i) + 1

|N |

⎛

⎝v(N ) −
∑

j∈N
v( j)

⎞

⎠ for all i ∈ N .

The weighted surplus division solution relative to a list of positive weights w =
(wi )i∈N ∈ R

N++, ESw, is defined by

ESw
i (N , v) := v(i) + wi

∑
j∈N w j

⎛

⎝v(N ) −
∑

j∈N
v( j)

⎞

⎠ for all i ∈ N .

Given a list of positive weights w, ESw can be interpreted as a two-stage rule: after
assigning to every playerwhat they can achieve for themselves alone, it distributeswhat
is left of the gains of cooperation proportionally according to w, representing some
exogenous abilities or bargaining power of the players. Notice that when wi = w j for
all i, j ∈ N, then ESw(N , v) = ES(N , v).

The dual solutions of ES and ESw are, respectively, the egalitarian non-separable
contribution solution, ENSC , and theweighted egalitarian non-separable contri-
bution solution, ENSCw. Let N ∈ N and (N , v) ∈ Γ . The ENSC is defined by
setting, for all i ∈ N ,

ENSCi (N , v) := Mi (v) + 1

|N |

⎛

⎝v(N ) −
∑

j∈N
Mj (v)

⎞

⎠ ,

where Mj (v) = v(N ) − v(N\{ j}), for all j ∈ N . The ENSCw relative a list of
positive weights w = (wi )i∈N ∈ R

N++ is given, for all i ∈ N , by

ENSCw
i (N , v) := Mi (v) + wi

∑
j∈N w j

⎛

⎝v(N ) −
∑

j∈N
Mj (v)

⎞

⎠ .

Let N ∈ N and (N , v) ∈ Γ . With any preimputation x ∈ X(N , v) we associate
the vector of all excesses e(S, x) = v(S) − x(S), ∅ �= S ⊂ N , the components of
which are non-increasingly ordered. The prenucleolus, ν∗, is the preimputation that
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minimizes with respect to the lexicographic order5 the vector of excesses over the set
of preimputations.

For the two-agent case, theweighted standard solution relative to a list of positive
weights w = (wi )i∈N ∈ R

N++, STw, is defined as follows: for all N = {i, j} ∈ N
and all (N , v) ∈ Γ ,

STw
i (N , v) := v(i) + wi

wi + w j
(v(N ) − v(i) − v( j)) ,

STw
j (N , v) := v( j) + w j

wi + w j
(v(N ) − v(i) − v( j)) .

Many solutions in the literature coincide with the standard solution that show up
when all the players have the same weight.

Given a list of positive weights w ∈ R
N++, we say that a single-valued solution σ

on Γ ′ ⊆ Γ satisfies w−proportionality (w−P) if for all N = {i, j} ∈ N and all
(N , v) ∈ Γ ′, it holds σ(N , v) = STw(N , v). If all weights are identical, we say that
σ satisfies standardness (ST).

3 Consistency and pathmonotonicity

The main concern of this section is to characterize the weighted surplus division
solutions by means of consistency together with monotonicity and covariance. Inter-
estingly, our characterization result shows that, from an axiomatic point of view,
the consistency principle distinguishes the weighted surplus division solutions, the
weighted Shapley values and the prenucleolus.

Consistency is a sort of internal stability requirement that relates the solution of
a game to the solution of a reduced game that results when some agents leave. The
different ways in which the agents that remain evaluate the possible coalitions give
rise to different notions of reduced game. Here we deal with four ways of reducing
a game: the self reduced game (Hart and Mas-Colell 1989), the projection reduced
game (Funaki 1998), the complement reduced game (Moulin 1985) and the max
reduced game (Davis and Maschler 1965). The terminology is taken from Thomson
(2003).

Definition 1 Let σ be a single-valued solution, N ∈ N , (N , v) ∈ Γ and ∅ �= N ′ ⊂ N .

The self reduced game relative to N ′ at σ is the game
(
N ′, r N ′

S,σ (v)
)
defined by

r N
′

S,σ (v)(R) :=
{
0 if R = ∅,

v(R ∪ N\N ′) −
∑

i∈N\N ′ σi (R ∪ N\N ′, v|R∪N\N ′ ) if ∅ �= R ⊆ N ′.

5 Given two vectors x, y ∈ R
N , we say that x ≤lex y if either x = y, or x1 < y1 or there exists

k ∈ {2, . . . , |N |} such that xi = yi for all 1 ≤ i ≤ k − 1 and xk < yk .
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Definition 2 Let N ∈ N , (N , v) ∈ Γ , x ∈ R
N and ∅ �= N ′ ⊂ N . The projection

reduced game relative to N ′ at x is the game
(
N ′, r N ′

P,x (v)
)
defined by

r N
′

P,x (v)(R) :=
{

v(R) if R ⊂ N ′,
v(N ) − x(N\N ′) if R = N ′.

Definition 3 Let N ∈ N , (N , v) ∈ Γ , x ∈ R
N and ∅ �= N ′ ⊂ N . The complement

reduced game relative to N ′ at x is the game
(
N ′, r N ′

C,x (v)
)
defined by

r N
′

C,x (v)(R) :=
{
0 if R = ∅,

v(R ∪ N\N ′) − x(N\N ′) if ∅ �= R ⊆ N ′.

Definition 4 Let N ∈ N , (N , v) ∈ Γ , x ∈ R
N and ∅ �= N ′ ⊂ N . The max reduced

game relative to N ′ at x is the game
(
N ′, r N ′

M,x (v)
)
defined by

r N
′

M,x (v)(R) :=

⎧
⎪⎨

⎪⎩

0 if R = ∅,

max
Q⊆N\N ′ {v(R ∪ Q) − x(Q)} if ∅ �= R ⊂ N ′,

v(N ) − x(N\N ′) if R = N ′.

In the self reduced game (relative to N ′ at σ ), the worth of a coalition R ⊆ N ′ is
determined under the assumption that R joins all members of N\N ′, provided they
are paid according to σ in the subgame associated to R ∪ (N\N ′). In the projection
reduced game (relative to N ′ at x), when players in N\N ′ leave the game, for a proper
subcoalition R ⊂ N ′ cooperation is no longer possible with them. By contrast, in the
complement reduced game (relative to N ′ at x) each coalition R ⊆ N ′ is required to
join all themembers of N\N ′, provided that they are paid according to x . Finally, in the
max reduced game (relative to N ′ at x), the worth of a coalition R ⊂ N ′ is determined
under the assumption that R can choose the best partners in N\N ′, provided that they
are paid according to x .

The following notions of consistency rely on the above definitions of reduced game.
A single-valued solution σ on Γ ′ ⊆ Γ satisfies

• Self consistency (SC) If for all N ∈ N , all (N , v) ∈ Γ ′, all ∅ �= N ′ ⊂ N and

x = σ(N , v), then
(
N ′, r N ′

S,σ (v)
)

∈ Γ ′ and x|N ′ = σ
(
N ′, r N ′

S,σ (v)
)

.

• Projection consistency (PC) If for all N ∈ N , all (N , v) ∈ Γ ′, all ∅ �= N ′ ⊂ N

and x = σ(N , v), then
(
N ′, r N ′

P,x (v)
)

∈ Γ ′ and x|N ′ = σ
(
N ′, r N ′

P,x (v)
)

.

• Complement consistency (CC) If for all N ∈ N , all (N , v) ∈ Γ ′, all ∅ �= N ′ ⊂ N

and x = σ(N , v), then
(
N ′, r N ′

C,x (v)
)

∈ Γ ′ and x|N ′ = σ
(
N ′, r N ′

C,x (v)
)

.

• Max consistency (MC) If for all N ∈ N , all (N , v) ∈ Γ ′, all ∅ �= N ′ ⊂ N , and

x = σ(N , v), then
(
N ′, r N ′

M,x (v)
)

∈ Γ ′ and x|N ′ = σ
(
N ′, r N ′

M,x (v)
)

.
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The consistency principle states that in the corresponding reduced game the original
agreement should be confirmed. Funaki (1998) shows that projection consistency and
complement consistency are dual properties.

The next result links consistency with covariance (for two-person games) and effi-
ciency.

Proposition 1 Let σ be a single-valued solution on Γ that satisfies either projection
consistency, complement consistency, self consistency or max consistency and, for
two-person games, covariance. Then, σ satisfies efficiency.

Proof Let σ be a single-valued solution on Γ that satisfies CO for two-person games
and PC. Let ({i, j}, 0) be the null game. Then, by CO (for two-person games) we
have σ({i, j}, 0) = σ({i, j}, 2 ·0) = 2 ·σ({i, j}, 0) and, consequently, σ({i, j}, 0) =
(0, 0). Let ({i, j}, v) be a game such that v(i j) = v(i) + v( j). Then, by CO (for
two-person games) we have

σ({i, j}, v) = σ({i, j}, 1 ·0+(v(i), v( j)) = 1 ·σ({i, j}, 0)+(v(i), v( j)) = (v(i), v( j)).
(1)

Now, let ({i}, v) be a one-person game and, for some j ∈ N\{i}, consider the
game ({i, j}, v′) defined by v′(i) = v′(i j) = v(i) and v′( j) = 0. Since v′(i j) =
v′(i) + v′( j), from (1) it comes that σi ({i, j}, v′) = v(i) and σ j ({i, j}, v′) = 0.

It is easy to check that ({i}, v) =
(
{i}, r {i}

P,x (v
′)
)
being x = σ({i, j}, v′). By PC,

σ({i}, v) = v(i) which implies efficiency for one-person games. Let N ∈ N with
|N | ≥ 2, (N , v) ∈ Γ and i ∈ N . Then, efficiency for one-person games implies

σi

(
{i}, r {i}

P,x (v)
)

= r {i}
P,x (v)(i) = v(N ) − ∑

j∈N\{i} σ j (N , v), where x = σ(N , v).

ByPC,σi (N , v) = σi

(
{i}, r {i}

P,x (v)
)
and thusσi (N , v) = v(N )−∑

j∈N\{i} σ j (N , v),

which proves E.
The same arguments hold replacing PC by either CC, SC or MC. �
Several notions of monotonicity have played a role in characterizing solutions on

different frameworks.6 In this section, we introduce a variant of aggregate monotonic-
ity (Megiddo 1974), which states that nobody is worse off whenever the worth of the
grand coalition increases, while the worth of every other coalition remains unchanged.
By imposing some regularity in the way players share the extra profits (loses) if only
theworth of the grand coalition increases (decreases), we introduce pathmonotonicity.

Definition 5 A monotone path is a function f : N × R → ⋃
N∈N R

N satisfying the
following conditions: for all N ∈ N and all t ∈ R,

1. f (N , 0) = (0, . . . , 0) ∈ R
N ,

2. f (N , t) ∈ R
N and

∑
i∈N fi (N , t) = t ,

3. if t ′ ∈ R is such that t ′ > t , then fi (N , t ′) > fi (N , t) for all i ∈ N .

Notice that a monotone path assigns positive (negative) vectors to positive (negative)
real numbers. Let Fmon denote the class of monotone paths.

6 See, for instance, Kalai and Smorodinsky (1975), Kalai (1977), Kalai and Samet (1985), Young (1985)
or Thomson (1987).

123



Path monotonicity, consistency and axiomatizations. . . 295

Amonotone path f specifies a complete list of monotonic agreements. We assume
that whenever a set of players N ∈ N reaches an agreement (which can be different
for different sets) on how to distribute monotonically an amount t ∈ R, representing
the difference of the worth of the grand coalitions between two games, they will
respect this agreement by following the same principle, regardless of the games they
eventually play.

The family Fmon is very rich. Possibly, the simplest monotone path is to consider
that all players should be treated equally: for all N ∈ N , all t ∈ R and all i ∈ N ,

f̄i (N , t) = t

|N | . (2)

However, path monotonicity allows for treating players differently to reflect some
individual abilities or exogenous circumstances among them (like income or health
status) that are not captured by the mathematical description of the game. For instance,
given a list of exogenous weights w ∈ R

N++, define, for all N ∈ N , all t ∈ R and all
i ∈ N ,

f w
i (N , t) = wi

∑
j∈N w j

· t . (3)

A single-valued solution σ on Γ ′ ⊆ Γ satisfies

• Path monotonicity (P-MO) If there exists a monotone path f ∈ Fmon such that,
for all N ∈ N and all (N , v), (N , v′) ∈ Γ ′ with v(S) = v′(S) for all S ⊂ N , it
holds σ(N , v′) − σ(N , v) = f (N , v′(N ) − v(N )).

Obviously, pathmonotonicity implies aggregatemonotonicity, but the next example
shows that the reverse implication is not true.

Example 1 Define the single-valued solution ρ by setting, for all N ∈ N , all (N , v) ∈
Γ and all i ∈ N ,

ρi (v) := v(i) + |{ j ∈ N | v(i) ≥ v( j)}|
∑

k∈N |{ j ∈ N | v(k) ≥ v( j)}| ·
⎛

⎝v(N ) −
∑

j∈N
v( j)

⎞

⎠ .

Clearly, ρ satisfies aggregate monotonicity. Assume that ρ also satisfies path mono-
tonicity w.r.t. f ∈ Fmon , and consider two games (N , v1) and (N , v2) with player set
N = {1, 2} and characteristic functions: v1(1) = v2(2) = 1, v1(2) = v2(1) = 0 and
v1(N ) = v2(N ) = 2. Now define the associated games (N , (v1)′) and (N , (v2)′) by
(v1)′ = v1 − uN and (v2)′ = v2 − uN , respectively. Notice that, (a) ρ1(N , v1) = 5

3 ,
ρ1(N , (v1)′) = 1 and (b) ρ1(N , v2) = 1

3 , ρ1(N , (v2)′) = 0. Then, from (a),
f1(N , 1) = 2

3 and, from (b), f1(N , 1) = 1
3 , resulting in a contradiction. Hence, ρ

is not path monotonic.

The Shapley value, the equal surplus division solution and the egalitarian non-
separable contribution solution satisfy path monotonicity (w.r.t. f̄ ). For any list of
positive weights w ∈ R

N++, the weighted Shapley value and the weighted surplus
division solution also meet path monotonicity (w.r.t. f w). However, not all weighted
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egalitarian non-separable contribution solution satisfies aggregate monotonicity, and
so path monotonicity. Let us provide an example to check this point.

Example 2 Consider two games (N , v) and (N , v′) with set of players N = {1, 2, 3}
and characteristic functions as follow: v(S) = v′(S) for all S ⊂ N , v(i) = 0 for all
i ∈ N , v(12) = v(13) = 1, v(23) = 0, v(N ) = 1 and v′(N ) = 2. Let w ∈ R

N++
be a list of positive weights such that w1 = 3 and w2 = w3 = 1. A routine calculus
shows that ENSCw(v) = (1, 0, 0) and ENSCw(v′) = ( 4

5 ,
3
5 ,

3
5

)
. Hence, ENSCw is

not aggregate monotonic (and neither path monotonic).

Notice that, since ESw and ENSCw are dual to each other and ESw satisfies path
monotonicity, from Example 2 we may conclude that path monotonicity is not self
dual.

The next remark highlights that path monotonicity yields some structure on the
associated monotonic function f ∈ Fmon .

Remark 1 Interestingly, if σ is a single-valued solution on Γ satisfying path mono-
tonicity w.r.t f ∈ Fmon , then f is additive. That is, for all N ∈ N and all t, t ′ ∈ R,
f (N , t + t ′) = f (N , t) + f (N , t ′). To show it, consider three games (N , v), (N , v′)
and (N , v′′) such that v(S) = v′(S) = v′′(S) for all S ⊂ N , v(N ) − v′(N ) = t and
v′(N ) − v′′(N ) = t ′. By path monotonicity, we have

f (N , t + t ′) = f (N , v(N ) − v′′(N )) = σ(N , v) − σ(N , v′′)
= σ(N , v) − σ(N , v′) + σ(N , v′) − σ(N , v′′)
= f (N , v(N ) − v′(N )) + f (N , v′(N ) − v′′(N ))

= f (N , t) + f (N , t ′).

Moreover, if an additive function g : R → R is monotonic, then there exists a
constant k ∈ R such that g(x) = k · x for all x ∈ R (see, for instance, Theorem 2.1
in Jung 2011). Hence, there exist k1, . . . , kn ∈ R such that, for all N ∈ N and all
α, t ∈ R, f (N , α·t) = (k1 · α · t, . . . , kn · α · t) = α·(k1 · t, . . . , kn · t) = α· f (N , t).
Consequently, f ∈ Fmon is homogeneous.

The next two lemmas are important to prove an intermediate result showing that
imposing, for two-person games, covariance and path monotonicity, consistency
enables us to generate endogenously a collection of positive weights.

Lemma 1 Let σ be a single-valued solution on Γ that satisfies, for two-person games,
covariance and path monotonicity. Then, for all {i, j} ∈ N it holds

(i) σ({i, j}, u{i, j}) > (0, 0).
(ii) σ({i, j}, u{i, j}) = −σ({i, j},−u{i, j}).

Proof Let σ be a single-valued solution on Γ that satisfies CO and P-MO for two-
person games. Let N = {i, j} and consider the associated unanimity game (N , uN ).
By P-MO (for two-person games), there exists a monotone path f ∈ Fmon such that
σ(N , uN ) = σ(N , 0) + f (N , 1). Similarly, σ(N ,−uN ) = σ(N , 0) + f (N ,−1). By
CO (for two-person games), σ(N , 0) = (0, 0) (see expression (1) in Proposition 1)
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and thus σ(N , uN ) = f (N , 1) and σ(N ,−uN ) = f (N ,−1). Hence, σ(N , uN ) >

(0, 0) which proves (i). Moreover, since f is homogeneous (see Remark 1) we have
σ(N , uN ) + σ(N ,−uN ) = f (N , 1) + f (N ,−1) = (0, 0), which proves (ii). �
Lemma 2 Let σ be a single-valued solution on Γ that satisfies, for two-person games,
covariance and path monotonicity. Let N ∈ N with |N | = 3. Then, for all k, s ∈ N,

(i) if σ satisfies either projection consistency or self consistency, it holds

σk(N , uN )

σs(N , uN )
= σk

({k, s}, u{k,s}
)

σs
({k, s}, u{k,s}

) . (4)

(ii) if σ satisfies max consistency, it holds

σk(N , uN ) − r {k,s}
M,x (uN )(k)

σs(N , uN ) − r {k,s}
M,x (uN )(s)

= σk
({k, s}, u{k,s}

)

σs
({k, s}, u{k,s}

) , (5)

where x = σ(N , uN ).

Proof Let σ be a single-valued solution on Γ that satisfies, for two-person games,CO
and P-MO.

(i) If σ satisfies PC, let N ∈ N with |N | = 3 and denote x = σ (N , uN ).
For all pairs of agents k, s ∈ N , by PC it holds that

σ|{k,s}(N , uN ) = σ
(
{k, s}, r {k,s}

P,x (uN )
)

.

Let α = r {k,s}
P,x (uN )(ks). By the definition of projection reduced game

r {k,s}
P,x (uN ) = α · u{k,s}.

If α > 0, by CO (for two-person games) it follows

σ
(
{k, s}, r {k,s}

P,x (uN )
)

= α · σ
({k, s}, u{k,s}

)
.

If α = 0, as in the proof of Proposition 1 we have

σ
(
{k, s}, r {k,s}

P,x (uN )
)

= (0, 0).

If α < 0, notice first that α · u{k,s} = −α · (−u{k,s}). Then,

σ
(
{k, s}, r {k,s}

P,x (uN )
)

= σ
({k, s},−α · (−u{k,s})

)

= −α · σ
({k, s},−u{k,s}

)

= α · σ
({k, s}, u{k,s}

)
,
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where the second equality holds by CO (for two-person games) and the last one
by Lemma 1 (ii). Thus,

σ|{k,s}(N , uN ) = σ
(
{k, s}, r {k,s}

P,x (uN )
)

=
(
r {k,s}
P,x (uN )(ks)

)
· σ

({k, s}, u{k,s}
)
. (6)

By Lemma 1 (i), σ
({k, s}, u{k,s}

)
> (0, 0), which implies that σk(N , uN )

and σs(N , uN ) have the same sign. By Proposition 1, σ satisfies E, then∑
i∈N σi (N , uN ) = 1 and thus σi (N , uN ) > 0 for all i ∈ N . Finally, from

(6) it follows (4).
The same arguments hold replacing PC by SC.

(ii) If σ satisfies MC, let N ∈ N with |N | = 3 and denote x = σ (N , uN ).
For all pairs of agents k, s ∈ N , by MC it holds that

σ|{k,s}(N , uN ) = σ
(
{k, s}, r {k,s}

M,x (uN )
)

.

Let α = r {k,s}
M,x (uN )(ks)− r {k,s}

M,x (uN )(k)− r {k,s}
M,x (uN )(s). By the definition of max

reduced game

r {k,s}
M,x (uN ) = α · u{k,s} +

(
r {k,s}
M,x (uN )(k), r {k,s}

M,x (uN )(s)
)

.

If α > 0, by CO (for two-person games) it follows

σ
(
{k, s}, r {k,s}

M,x (uN )
)

= α · σ
({k, s}, u{k,s}

) +
(
r {k,s}
M,x (uN )(k), r {k,s}

M,x (uN )(s)
)

.

If α = 0, as in the proof of Proposition 1 we have

σ
(
{k, s}, r {k,s}

M,x (uN )
)

=
(
r {k,s}
M,x (uN )(k), r {k,s}

M,x (uN )(s)
)

.

If α < 0, notice first that α · u{k,s} = −α · (−u{k,s}). Then,

σ
(
{k, s}, r {k,s}

M,x (uN )
)

=σ
(
{k, s},−α · (−u{k,s}) +

(
r {k,s}
M,x (uN )(k), r {k,s}

M,x (uN )(s)
))

=−α · σ
({k, s},−u{k,s}

) +
(
r {k,s}
M,x (uN )(k), r {k,s}

M,x (uN )(s)
)

=α · σ
({k, s}, u{k,s}

) +
(
r {k,s}
M,x (uN )(k), r {k,s}

M,x (uN )(s)
)

,
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where the second equality holds by CO (for two-person games) and the last one
by Lemma 1 (ii). Thus,

σ|{k,s}(N , uN ) = σ
(
{k, s}, r {k,s}

M,x (uN )
)

=
(
r {k,s}
M,x (uN )(ks) − r {k,s}

M,x (uN )(k) − r {k,s}
M,x (uN )(s)

)
· σ

({k, s}, u{k,s}
)

+
(
r {k,s}
M,x (uN )(k), r {k,s}

M,x (uN )(s)
)

. (7)

By Lemma (i), σ
({k, s}, u{k,s}

)
> (0, 0), which implies

Sign
(
σk(N , uN ) − r {k,s}

M,x (uN )(k)
)

= Sign
(
σs(N , uN ) − r {k,s}

M,x (uN )(s)
)

. (8)

We claim that
σk(N , uN ) − r {k,s}

M,x (uN )(k) �= 0. (9)

Suppose, on the contrary, σk(N , uN ) − r {k,s}
M,x (uN )(k) = 0. Then, by equality (8),

σs(N , uN ) − r {k,s}
M,x (uN )(s) = 0. Consequently,

σk(N , uN ) = r {k,s}
M,x (uN )(k) = max{0, 0 − σl (N , uN )} ≥ 0,

σs(N , uN ) = r {k,s}
M,x (uN )(s) = max{0, 0 − σl (N , uN )} ≥ 0, (10)

being l ∈ N\{k, s}. Thus,

σk(N , uN ) = σs(N , uN ) ≥ 0. (11)

Now consider the max reduced game
(
{k, l}, r {k,l}

M,x (uN )
)
relative to {k, l} at x =

σ (N , uN ). From (11) it follows that

r {k,l}
M,x (uN )(k) = r {k,l}

M,x (uN )(l) = 0 and r {k,l}
M,x (uN )(kl) = 1 − σs (N , uN ) .

ByMC and, for two-person games,P-MO andCO (fromwhich it follows expres-
sion (1) in the proof of Proposition 1), there is a monotone path f ∈ Fmon such
that

σ|{k,l}(N , uN ) = σ
(
{k, l}, r {k,l}

M,x (uN )
)

= σ ({k, l}, 0) + f ({k, l}, 1 − σs (N , uN ))

= f ({k, l}, 1 − σs (N , uN )) . (12)

Since f ∈ Fmon and, by (11), σk(N , uN ) ≥ 0, we have 1 − σs (N , uN ) ≥ 0.
Consequently, σl(N , uN ) = fl ({k, l}, 1 − σs (N , uN )) ≥ 0. By expression (10),
this means that σk(N , uN ) = σs(N , uN ) = 0 and by E (see Proposition 1),
σl(N , uN ) = 1. Then, σl(N , uN ) − r {k,l}

M,x (uN )(l) = 1 − 0 = 1. Since expression
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(8) holds for any pair of agents, we have σk(N , uN ) − r {k,l}
M,x (uN )(k) > 0, in

contradiction with σk(N , uN ) = 0. This proves the claim, that is, inequality (9).
But then, from (7) it follows (5). �

Next, we connect consistency, covariance and path monotonicity with w−propor-
tionality.

Proposition 2 Let σ be a single-valued solution on Γ that satisfies either projection
consistency, self consistency or max consistency and, for two-person games, covari-
ance and path monotonicity. Then, σ satisfies w-proportionality.

Proof Let σ be a single-valued solution on Γ that satisfies PC and, for two-person
games, CO and P-MO. By Proposition 1, σ satisfies E. Next we see that σ satisfies
w−P w.r.t. the following collection of weights: fix a player l ∈ N and define

wk =
⎧
⎨

⎩

1 if k = l
σk({k, l}, u{k,l})
σl({k, l}, u{k,l})

otherwise

By Lemma 1 (i), w is well defined.
Let (N , v) be a game. If N = {i}, byEwehaveσ({i}, v) = v(i)+ wi

wi
(v(i)−v(i)) =

ESw({i}, v). If |N | = 2 we distinguish two cases:

1. Case 1 N = {l, i}.
Let us denote α = v(N ) − v(l) − v(i).
If α = 0, then by CO (for two-person games) (see expression (1) in the proof of
Proposition 1) we have σ(N , v) = (v(l), v(i)) = STw(N , v).
If α > 0, then for all k ∈ N , we have

σk(N , v) = σk(N , α · uN + (v(l), v(i)))

= α · σk (N , uN ) + v(k)

= α · σk (N , uN )

σl (N , uN ) + σi (N , uN )
+ v(k)

= α ·
σk (N ,uN )
σl(N ,uN )

1 + σi (N ,uN )
σl(N ,uN )

+ v(k)

= α · wk

wl + wi
+ v(k)

= STw
k (N , v),

where the second and the third equalities follow by CO (for two-person games)
and E, respectively.
If α < 0, notice first that v = −α · (−uN ) + (v(l), v(i)). By CO (for two-person
games) and Lemma 1 (ii), σ(N , v) = α ·σ (N , uN )+ (v(l), v(i)). Now, following
the reasoning above we obtain σk(N , v) = STw

k (N , v), for all k ∈ N .
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2. Case 2 N = {i, j} and l /∈ N .
By the definition of w, Lemma 2 (i) and E, it follows that

wi

wi + w j
= 1

1 + w j
wi

= 1

1 + σ j({ j,l},u{ j,l})
σl({ j,l},u{ j,l})

· σl({i,l},u{i,l})
σi({i,l},u{i,l})

= 1

1 + σ j({i, j,l},u{i, j,l})
σl({i, j,l},u{i, j,l})

· σl({i, j,l},u{i, j,l})
σi({i, j,l},u{i, j,l})

= 1

1 + σ j({i, j,l},u{i, j,l})
σi({i, j,l},u{i, j,l})

= 1

1 + σ j({i, j},u{i, j})
σi({i, j},u{i, j})

= σi
({i, j}, u{i, j}

)

σi
({i, j}, u{i, j}

) + σ j
({i, j}, u{i, j}

)

= σi
({i, j}, u{i, j}

)
. (13)

Similarly,
w j

wi + w j
= σ j ({i, j}, u{i, j}). (14)

Let us denote α = v(N ) − v(i) − v( j).
If α > 0, then CO (for two-person games) together with (13) imply

σi (N , v) = σi (N , α · uN + (v(i), v( j)))

= α · σi (N , uN ) + v(i)

= α · wi

wi + w j
+ v(i)

= STw
i (N , v).

In a similar way, CO (for two-person games) together with (14) imply

σ j (N , v) = STw
j (N , v).

Ifα ≤ 0, the reasoning used inCase 1 applies in this case. Consequently, σ satisfies
w−P.

The same arguments hold replacingPC bySC orPC byMC and taking into account
Lemma 2 (ii). �
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From Proposition 2 it turns out that the weighted surplus division solution and the
family of weighted Shapley values can be compared by means of consistency together
with covariance and path monotonicity.

Theorem 1 Let σ be a single-valued solution on Γ that satisfies covariance and path
monotonicity. Then,

(i) σ satisfies projection consistency if and only if there exists a list of positive weights
w ∈ R

N++ such that σ = ESw.
(ii) σ satisfies self consistency if and only if there exists a list of positive weights

w ∈ R
N++ such that σ = Shw.

Proof (i) Let w ∈ R
N++ be a list of positive weights. Clearly, ESw satisfies CO and

P-MO (w.r.t. the monotone path f w as defined in (3)). Moreover, Calleja and
Llerena (2016) show that it also satisfies PC.
To prove uniqueness, suppose there is a single-valued solution σ on Γ satisfying
these three properties. By Propositions 1 and 2, σ satisfies E and w−P (w.r.t a list
of positive weights w ∈ R

N++). Let (N , v) be a game. If |N | = 1, by E we have
σ(N , v) = ESw(N , v). If |N | = 2, by w−P we have σ(N , v) = ESw(N , v).
Finally, if |N | ≥ 3, fix i ∈ N and take an arbitrary j ∈ N\{i}. Let N ′ = {i, j} ⊂
N , then,

σi (N , v) = σi

(
N ′, r N ′

P,x (v)
)

= v(i) + wi

wi + w j

(
r N

′
P,x (v)(N ′) − v(i) − v( j)

)

= v(i) + wi

wi + w j

(
σi (N , v) + σ j (N , v) − v(i) − v( j)

)
,

where the first equality follows by PC, the second one by w−P and the definition
of projection reduced game, and the last one by E. Reordering terms, we obtain

σi (N , v)

(

1 − wi

wi + w j

)

= v(i) + wi

wi + w j

(
σ j (N , v) − v(i) − v( j)

)

= v(i)

(

1 − wi

wi + w j

)

+ wi

wi + w j

(
σ j (N , v) − v( j)

)
,

or, equivalently,

(σi (N , v) − v(i)) w j = (
σ j (N , v) − v( j)

)
wi .

Notice that this equality holds for all j ∈ N\{i}. Adding up,

(σi (N , v) − v(i))
∑

j∈N\{i}
w j = wi

∑

j∈N\{i}

(
σ j (N , v) − v( j)

)
,
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and summing up (σi (N , v) − v(i)) wi to both sides of the equality we obtain,

(σi (N , v) − v(i))
∑

j∈N
w j = wi

∑

j∈N

(
σ j (N , v) − v( j)

)

= wi

⎛

⎝v(N ) −
∑

j∈N
v( j)

⎞

⎠ ,

where the last equality follows from E. Hence,

σi (N , v) = v(i) + wi
∑

j∈N w j

(

v(N ) −
∑

i∈N
v(i)

)

= ESw
i (N , v).

(ii) Let w ∈ R
N++ be a list of positive weights. It is well known that Shw satisfies SC

andCO. In addition, it also satisfiesP-MO [w.r.t. themonotone path f w as defined
in (3)]. Uniqueness comes from Hart and Mas-Colell (1989) (Theorem C) taking
into account that P-MO implies monotonicity (by condition (3) in Definition 5)
and CO together with SC imply E (by Proposition 1).7

�
It is well known that the prenucleolus does not satisfy aggregate monotonicity8

(and thus path monotonicity). However, imposing this property for two-person games
only, we obtain a new characterization of the prenucleolus using max consistency.

Theorem 2 The prenucleolus is the unique single-valued solution on Γ that satisfies
max consistency, covariance and, for two-person games, path monotonicity.

Proof It is well-known that ν∗ satisfiesMC, CO and ST, which implies P-MO [w.r.t.
the monotone path f̄ as defined in (2)] for two-person games.

To prove uniqueness, suppose there is a single-valued solution σ on Γ satisfying
these three properties. By Propositions 1 and 2, σ satisfies E and w−P. From Hokari
(2005) (Proposition 1), E, w−P andMC jointly imply ST. Finally, sinceMC and ST
imply ETE, by Orshan (1993) (Theorem 3.2) it follows that σ coincides with ν∗. �
Remark 2 The characterizations (and the independence of the properties) stated in
Theorem 1 hold if we impose path monotonicity and covariance for two-person games
only. Thus, Theorems 1 and 2 allow for a comparison of the family ofweighted Shapley
values, the family ofweighted surplus division solutions and the prenucleolus bymeans
of consistency. Notice that, although with projection consistency or self consistency
together with covariance and path monotonicity (for two-person games) a large family
of solutions is characterized, when working with max consistency we obtain only the

7 In Hart and Mas-Colell (1989) monotonicity means that everybody is strictly better off whenever the
worth of the grand coalition increases and the worth of every other coalition remains unchanged. Notice
that monotonicity is a strong version of aggregate monotonicity and weaker that path monotonicity.
8 See, for instance, Hokari (2000).
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prenucleolus (not the family of weighted prenucleoli).9 The key result is provided
by Hokari (2005), who shows that efficiency, w-proportionality and max consistency
enforce indeed standardness and thus equal treatment of equals.

Formally, axiomatizations that require some properties for two-person games only
are more compelling than those that impose the properties meet for games with an
arbitrary number of players. However, axiomatizations that do not force any initial
condition for two-person games reflect more accurately the normative behaviour of
the solutions. In fact, sometimes we get impossibility results when the properties are
required over the full domain of games (see Theorem 5 in Sect. 4).

4 Consistency and fairness

By using fairness, a property due to van den Brink (2001) and related to fairness
as introduced by Myerson (1977), instead of path monotonicity, we obtain a new
axiomatic comparison of the Shapley value, the equal surplus division solution, the
egalitarian non-separable contribution solution and the prenucleolus.

A single-valued solution σ on Γ ′ ⊆ Γ satisfies

• Fairness (F) if for all (N , v), (N , v′) ∈ Γ ′ with (N , v + v′) ∈ Γ ′ and i, j ∈ N
such that i and j are symmetric in (N , v′) we have σi (N , v + v′) − σi (N , v) =
σ j (N , v + v′) − σ j (N , v).

Fairness means that if a game changes by adding another game in which two
players i and j are symmetric, then the payoffs of players i and j change by the same
amount. If we measure the relevance of a player in terms of marginality, fairness is
a quite natural requirement since adding such a game does not change the marginal
contributions of symmetric players. Making use of this property, van den Brink (2001)
andCasajus (2014) characterize the Shapley value.Not surprisingly, efficiency together
with fairness imply path monotonicity. It is not difficult to check that fairness is a self
dual property.

Proposition 3 Let σ be a single-valued solution on Γ that satisfies efficiency and
fairness. Then, σ satisfies path monotonicity.

Proof Let σ be a single-valued solution on Γ that satisfiesE and F. Let N ∈ N , t ∈ R

and consider two games (N , v), (N , v′) such that v(S) = v′(S) for all S ⊂ N and
v′(N ) − v(N ) = t . Notice that v′ = v + t · uN . Since all players are symmetric in the
game (N , t · uN ), by F we have σi (N , v′) − σi (N , v) = σ j (N , v′) − σ j (N , v) for all
i, j ∈ N . Finally, by E we obtain σi (N , v′) − σi (N , v) = t

|N | for all i ∈ N . Hence,

σ satisfies P-MO [w.r.t. the monotone path f̄ as defined in (2)]. �
Proposition 3 shows that, under efficiency, path monotonicity can be viewed as a

relaxation of fairness by allowing that when the worth of the grand coalition varies, the
players’ payoffs change in the same direction, but not necessarily by the same amount,

9 For a formal definition of weighted prenucleoli see, for instance, Derks and Haller (1999).
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as fairness suggests. Now, replacing path monotonicity by fairness in Theorem 1, we
obtain new axiomatic characterizations of the Shapley value and the equal surplus
division solution. Moreover, imposing complement consistency we provide a new
axiomatic characterization of the egalitarian non-separable contribution solution.

Theorem 3 Let σ be a single-valued solution on Γ that satisfies covariance and fair-
ness. Then,

(i) σ satisfies projection consistency if and only if it coincides with the equal surplus
division solution.

(ii) σ satisfies self consistency if and only if it coincides with the Shapley value.
(iii) σ satisfies complement consistency if and only if it coincides with the egalitarian

non-separable contribution solution.

Proof (i) It is clear that the equal surplus division solution satisfies PC, F and CO.
Let σ be a single-valued solution on Γ that satisfies these three properties. By
Proposition 1 and Proposition 3, σ obeys E and P-MO (w.r.t. the monotone path
f̄ ).Nowuniqueness comes following the proof ofTheorem1 (i) taking into account
that all players have the same weight.

(ii) It is well known that the Shapley value satisfies SC, F andCO. Let σ be a single-
valued solution on Γ that satisfies these three properties. By Proposition 1 and
Proposition 3, σ obeysE andP-MO (w.r.t. themonotone path f̄ ). It is not difficult
to check thatCO, E and P-MO (w.r.t. f̄ ) imply ST. Now uniqueness comes from
Hart and Mas-Colell (1989) (Theorem B).

(iii) Clearly, the egalitarian non-separable contribution solution satisfies CC, F and
CO. Let σ be a single-valued solution on Γ satisfying these three properties. The
dual solution σ d satisfies PC, F and CO since CC and PC are dual to each other
and CO and F are self dual properties. Thus, by statement (i), σ d = ES. In view
of the fact that the egalitarian non-separable contribution solution is dual to the
equal surplus division solution, we conclude that σ = ENSC .

�
Since the prenucleolus satisfies fairness for two-person games (because it satis-

fies standarness), from Propositions 1, 3 and Theorem 2 we obtain an alternative
characterization.

Theorem 4 The prenucleolus is the unique single-valued solution on Γ that satisfies
max consistency, covariance and, for two-person games, fairness.

Remark 3 The characterizations stated in Theorem 3 hold if we impose fairness for
two-person games only. Thus, Theorems 3 and 4 allow for a comparison of the Shapley
value, the equal surplus division solution, the egalitarian non-separable contribution
solution and the prenucleolus by means of consistency.

Since the prenucleolus does not satisfy neither path monotonicity nor fairness (see
Proposition 3) for games with an arbitrary number of players, two impossibility results
emerge from both Theorems 2 and 4.

Theorem 5 There is no single-valued solution on Γ that satisfies

(i) max consistency, covariance and path monotonicity.
(ii) max consistency, covariance and fairness.
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5 Concluding remarks

Theorem C in Hart and Mas-Colell (1989) characterizes the family of weighted
Shapley values by means of self consistency and, for two-person games, efficiency,
covariance and monotonicity. Nevertheless, from Proposition 1 it comes out that effi-
ciency can be dropped from their characterization result. Thus, it can be reformulated
as follows:

Theorem 6 A single-valued solution σ on Γ satisfies self consistency and, for two-
person games, covariance and monotonicity if and only if there exists a list of positive
weights w ∈ R++ such that σ = Shw.

This reformulation opens an interesting question: which is the set of rules that
emerges from substituting in Theorem 6 self consistency by either projection consis-
tency, complement consistency ormax consistency? Notice that we partially overcome
this problemworkingwith pathmonotonicity. Unfortunately, we have been unsuccess-
ful in our attempts to solve this problem using monotonicity as defined in Hart and
Mas-Colell (1989), and we leave it for future research.

It is well known that efficiency, covariance and equal treatment of equals for two-
person games are equivalent to standardness. The Shapley value, the equal surplus
division solution and the egalitarian non-separable contribution solution satisfy these
properties for any game. Moreover, covariance only for two-person games together
with either self consistency, projection consistency or complement consistency imply
efficiency (Proposition 1). Consequently, Theorem B’ in Hart and Mas-Colell (1989)
can be reformulated (dropping efficiency) in terms of covariance and equal treatment
of equals for two-person games, together with self consistency. Moreover, Corollary
4.4. (i) in Driessen and Funaki (1997) can be rewritten by means of covariance and
equal treatment of equals together with projection consistency, dropping efficiency
too. Finally, the egalitarian non-separable contribution solution can be characterized by
means of covariance, equal treatment of equals and complement consistency, which is
also a refinement of Corollary 4.4. (ii) in Driessen and Funaki (1997).10 Interestingly,
Sobolev (1975) characterizes the prenucleolus as the unique single-valued solution
that satisfies covariance, anonymity11 andmax consistency. Orshan (1993) shows that
anonymity can be weakened and replaced by equal treatment of equals. Theorems
2, 3 and 4 modify, respectively, these characterizations replacing equal treatment of
equals by pathmonotonicity/fairness (for two-person games). It is not difficult to check
that path monotonicity/fairness neither imply equal treatment of equals nor they are
implied by it.

As underlined in Sect. 3, not all weighted egalitarian non-separable contribution
solution, ENSCw, satisfy aggregate monotonicity (see Example 2). Therefore, com-
plement consistency, covariance and path monotonicity do not characterize the family
of ENSCw. However, for any list of positive weights, the ENSCw meets path mono-

10 In Driessen and Funaki (1997), efficiency is included in their definition of single-valued solution.
11 In words, anonymity simply says that the solution is independent of the names of the players (see Peleg
and Sudhölter 2007, for a formal definition).
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tonicity for two-person games.12 In viewof Theorem2, onemaywonder if complement
consistency, covariance and, for two-person games, path monotonicity, characterize
the family of ENSCw. At this point some difficulties appear. First, as the next exam-
ple shows, ENSCw does not satisfy w-proportionality. Let (N , v) be a game with
N = {1, 2}, v(1) = 1, v(2) = 0, v(N ) = 2 and consider w ∈ R

N++ such that w1 = 2

andw2 = 1. Then, ENSCw(N , v) = ( 4
3 ,

2
3

)
and STw(N , v) =

(
5
3 ,

1
3

)
.Thus, Propo-

sition 2 does not hold when imposing complement consistency. If we want to use the
duality approach from Theorem 1(i) (and taking into account Remark 2), a second
drawback is that path monotonicity for two-person games is neither self dual. To see
it, consider the single-valued solution � defined, for all N ∈ N and all (N , v) ∈ Γ ,
as follows:

�(N , v) :=
{
ES(N , v) if |N | �= 2,(
v(i) + 1

2v(N ), 1
2v(N ) − v(i)

)
if N = {i, j}.

Notice that � satisfies path monotonicity (w.r.f. f̄ as defined in (2)).
The dual solution �d is given by setting, for all N ∈ N and all (N , v) ∈ Γ ,

�d(N , v) :=
{
ENSC(N , v) if |N | �= 2,( 3
2v(N ) − v( j), v( j) − 1

2v(N )
)

if N = {i, j}.

Let (N , v), (N , v′) be two games with set of players N = {1, 2} and characteristic
functions: v(i) = v′(i) = 0 for all i ∈ N , v(N ) = 1 and v′(N ) = 2. Then,�d(N , v) =( 3
2 ,− 1

2

)
and �d(N , v′) = (3,−1), which proves that �d is not aggregate monotonic,

and hence path monotonicity is not self dual for two-person games. Thus, in future
research it could be interesting to pay attention to this issue.

Nevertheless, a characterization of the family of weighted non-separable contribu-
tion solutions can be derived introducing the dual property of path monotonicity.

A single-valued solution σ on Γ ′ ⊆ Γ satisfies

• Constant shift path monotonicity13 if there exists a monotone path f ∈ Fmon such
that, for all N ∈ N and all (N , v), (N , v′) ∈ Γ ′ with v′(N )−v(N ) = v′(S)−v(S)

for all ∅ �= S ⊂ N , it holds σ(N , v′) − σ(N , v) = f (N , v′(N ) − v(N )).

Constant shift path monotonicity says that if the impact in the game (N , v) is such
that all coalitions increase (decrease) in the same amount t and players agree on
how to distribute it, then they should respect this agreement regardless of the initial
game (N , v). It is not difficult to check that constant shift path monotonicity and path
monotonicity are dual to each other. This fact, together with Theorem 1 (i), lead to the
following characterization result.

12 Letw ∈ R
N++. It can be easily checked that ENSCw satisfies, for two-person games, path monotonicity

w.r.t. a monotone path gw ∈ Fmon such that, for all N = {i, j} ∈ N and all t ∈ R, gw
i (N , t) = w j

wi+w j
· t

and gw
j (N , t) = wi

wi+w j
· t . Notice that gw �= f w as defined in (3).

13 We thank an anonymous referee for providing us this property.
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Theorem 7 A single-valued solution σ onΓ satisfies complement consistency, covari-
ance and constant shift path monotonicity if and only if there exists a list of positive
weights w ∈ R

N++ such that σ = ENSCw.

To finish, a quite natural question is to study the implications of considering weakly
monotonic functions rather than strictly monotonic functions in the definition of a
monotone path (Definition 5). It turns out that imposing “weak” path monotonicity
in Theorem 1 (i) and (ii) provides larger classes of single-valued solutions than ESw

and Shw that include, for instance, any marginal contribution solution and any f π -
surplus division solution (see “Appendix” for formal definitions), respectively. On the
other hand, the single-valued solution introduced by Peleg and Sudhölter (2007) (see
Sect. 6.3.2. p. 118) satisfies, on the domain of balanced games,14 covariance, max
consistency and, for two-person games, “weak” path monotonicity. Consequently, on
balanced games, imposing“weak”pathmonotonicity inTheorem2does not character-
ize the prenucleolus. This may suggest that, on the full domain of games, Theorem 2
does not remain valid when working with this weaker form of path monotonicity,
although it is still an open question. In our opinion, dealing with such problems may
require a good understanding of weighted solutions and properties when zero weights
are allowed, in the line of the works of Kalai and Samet (1987), Monderer et al. (1992)
or Nowak and Radzik (1995) for the weighted Shapley values, or Hokari (2005) for
the prenucleolus.
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Appendix

This “Appendix” contains the independence of the properties used in the characteri-
zation results. To do this, let us first introduce the following single-valued solutions:

1. The equal divison solution, denoted by ED, is defined as follows: for all N ∈ N ,
all (N , v) ∈ Γ and all i ∈ N ,

EDi (N , v) := v(N )

n
.

2. Let π be a permutation on N, the marginal contribution solution relative to π ,
denoted by mcπ , is defined as follows: for all N ∈ N , all (N , v) ∈ Γ and all
i ∈ N

mcπ
i (N , v) := v ({ j ∈ N | π( j) ≤ π(i)}) − v ({ j ∈ N | π( j) < π(i)}) .

14 A game (N , v) is said to be balanced if C(N , v) = {x ∈ X(N , v)|x(S) ≥ v(S) for all S ⊆ N } �= ∅.
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3. Let π be a permutation on N, the f π−surplus division solution, denoted by
ES f π

, is defined as follows: for all N ∈ N , all (N , v) ∈ Γ and all i ∈ N ,

ES f π

i (N , v) := v(i) + f π
i

(

N , v(N ) −
∑

i∈N
v(i)

)

,

where f π is defined as follows: for all t ∈ R, f π (N , t) = t · e{ j}, being j ∈ N
such that π( j) ≥ π(i) for all i ∈ N . f π assigns all the amount t to the last player
in N according to π .

• Independence of the properties in Theorems 1, 3, 6 and Theorem 7:
ES f π

satisfies covariance and projection consistency but, for two-person games,
neither monotonicity (and thus path monotonicity) nor fairness. The dual solution
of ES f π

satisfies covariance and complement consistency but neither fairness
nor constant shift path monotonicity. Sh satisfies covariance, path monotonicity,
constant shift path monotonicity and fairness but neither projection consistency
nor complement consistency. ED satisfies path monotonicity, constant shift path
monotonicity, fairness, projection consistency, complement consistency and self
consistency but not covariance for two-person games. Additionally, the marginal
contribution solution, mcπ , satisfies covariance and self consistency but, for two-
person games, neither monotonicity nor fairness. ES satisfies covariance, path
monotonicity and fairness but not self consistency.

• Independence of the properties in Theorems 2 and 4:
ED satisfiesmax consistency, path monotonicity and fairness, but not covariance.
ES satisfies path monotonicity, fairness and covariance, but not max consistency.
Finally, to find a single-valued solution satisfyingmax consistency and covariance
but, for two-person games, neither path monotonicity nor fairness, see Lemma
6.3.15 in Peleg and Sudhölter (2007).
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