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Abstract In combinatorial game theory, under normal play convention, all games are
invertible, whereas only the empty game is invertible in misère play. For this reason,
several restricted universes of gameswere studied, in whichmore games are invertible.
Here, we study combinatorial games under misère play, in particular universes where
no player would like to pass their turn. In these universes, we prove that having one
extra condition makes all games become invertible. We then focus our attention on a
specific quotient, called QZ, and show that all sums of universes whose quotient is
QZ also have QZ as their quotient.

1 Introduction

A combinatorial game is a two-player game with no chance and perfect information.
The players, called Left and Right,1 alternate moves until one player is unable to
move. The last player to move loses the game under the misère play convention, while
that same player would win under normal play convention. In this paper, we are only
studying finite combinatorial games.

The conditions that make a game combinatorial ensure that one of the players has
a winning strategy. The main objective of combinatorial game theory is to determine
which player has a winning strategy and what this strategy is. A basic way would be
to look at all possible moves for both players all the way until the game ends in all

1 By convention, Left is a female player whereas Right is a male player.
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798 G. Renault

branches and backtrack the winning player up to the original position. Unfortunately,
thismethod is usually quite time-consuming andoften space-consuming aswell.Hence
other approaches were developed, some specific to particular games and some more
general. One general approach is to decompose the position into a sum of smaller
positions, study them separately and conclude on their sum. It is thus interesting to be
able to simplify the smaller positions before looking at the larger picture, including
intermediate sums.

Finding invertibility of games is one of the most efficient ways to simplify sums of
games. A gameG is said to be invertible if there is a game H such that the sumG+H is
equivalent to the zero game, that is, the game with nomove. Under normal convention,
all games are invertible (one actually just needs to reverse the role of the players in a
game to find its inverse), whereas in the misère version, the only invertible game is the
empty game (Mesdal and Ottaway 2007). Misère games were thus studied in a more
restrictive context (Allen 2009; Dorbec et al. 2014; McKay et al. 2014; Milley 2015;
Milley et al. 2012; Milley and Renault 2013; Plambeck 2005; Plambeck and Siegel
2008; Renault 2013), where more games are invertible. In some cases, all games are
invertible (McKay et al. 2014; Milley 2015; Milley and Renault 2013; Renault 2013).
This happens specifically in all contexts studied so far where no player would ever
want to pass their turn (Milley and Renault 2013; Renault 2013). Hence it is natural
to wonder if it is always the case.

1.1 Preliminaries

A game can be defined recursively by its sets of options G = {GL |GR}, where GL

is the set of games Left can reach in one move (called Left options), and GR the set
of games Right can reach in one move (called Right options). A typical Left option
of G is denoted GL , and a typical Right option of G is denoted GR . A follower of a
game G is a game that can be reached from G after a succession of (not necessarily
alternating) Left and Right moves. Note that a game G is considered one of its own
followers. The zero game 0 = {·|·}, is the game with no options (a dot indicates an
empty set of options). A Left end (resp. Right end) is a game where Left (resp. Right)
cannot move.

The disjunctive sum G + H of two games G and H is defined recursively as
G + H = {GL + H,G + H L | GR + H,G + H R}, where GL + H is understood to
range over all sums of H with an element of GL , thus G + H is the game where each
player can, on their turn, play one of their legal moves in one (but not both) of the
components. The conjugate G of a game G is recursively defined as G = {GR|GL},
where again GR is understood to range over all conjugates of elements of GR, thus G
is the game where Left’s and Right’s roles are reversed.

A game can also be depicted by its game tree, where the game tree for each option is
linked to the root by downward edges, Left-slanted for Left options and Right-slanted
for Right options. It can be more readable than the bracket notation. For instance, the
game trees of a few games are depicted in Fig. 1 with their bracket notations below
each tree, respectively.
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{{·|0}|0} {0|{·|0}}1 = {0|·} ∗ = {0|0}

Fig. 1 Some game trees
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Fig. 2 Partial ordering of outcomes

Under both conventions, we can sort all games into four sets according to their
outcomes. When Left has a winning strategy on a game G no matter which player
starts, we say G has outcome L, and G is an L-position. Similarly, N , P and R (for
next, previous and Right) denote respectively the outcomes of games on which the first
player, the second player and Right has a winning strategy regardless of who starts the
game. The misère outcome of a game G is denoted o−(G). P-positions are games in
which players would rather have their opponent start, that they would like to pass if it
was their turn. Outcomes are partially ordered according to Fig. 2, with Left preferring
greater games (by convention, and thus Right preferring smaller games).

Given two games G and H , we say that G is greater than or equal to H in misère
playwhenever Left always prefers the gameG rather than the game H , that isG �− H
if for every game X , o−(G + X) � o−(H + X). We say that G and H are equivalent
in misère play, denoted G ≡− H , when we have both G �− H and H �− G.

General equivalence and comparison are very limited in general misère play
(seeMesdal and Ottaway 2007; Siegel 2007), this is why Plambeck and Siegel defined
(in Plambeck 2005; Plambeck and Siegel 2008) an equivalence relationship under
restricted sets of games, which lead to a breakthrough in the study of misère play
games.

Definition 1 (Plambeck 2005; Plambeck and Siegel 2008) Let U be a set of games,
G and H two games. We say G is greater than or equal to H modulo U in misère
play and write G �−

U H if o−(G + X) � o−(H + X) for every X ∈ U . We say
G is equivalent to H modulo U in misère play and write G ≡−

U H if G �−
U H and

H �−
U G.
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800 G. Renault

Whenever U is closed under sum, ≡−
U is a congruence relation between elements

of U . Thus the disjunctive sum modulo U defines a monoid MU = U/ ≡−
U . We also

consider the tetrapartition of MU according to outcomes: given an outcome O, we
denote OU the set of equivalence classes of U with outcome O so that MU is the
disjoint union of PU , LU , RU and NU . The structure QU = (MU ,PU ,LU ,RU )

is the misère quotient of U , as defined by Plambeck and Siegel in Plambeck (2005),
Plambeck and Siegel (2008), with the addition ofL andR outcomes since we consider
partizan games.

This approach gave several results. For instance, Plambeck (2005) and Plambeck
and Siegel (2008) considered and solved the sets of all positions of given games, octal
games in particular. Other sets have been considered, including the sets of alternating
games A (Milley et al. 2012), impartial games I (Berlekamp and Conway 2001;
Conway 2001), dicot games D (Allen 2009; Dorbec et al. 2014; McKay et al. 2014),
dead-ending games E (Milley 2015;Milley andRenault 2013), and all gamesGMesdal
and Ottaway (2007).

We believe that some properties, namely being closed under disjunctive sum, con-
jugation and followers, make a set of games more relevant to be studied. We hence
define a universe to be a set of games closed under disjunctive sum, conjugation and
followers.

Another interesting property for a game is to be dead-ending. We say a Left (resp.
Right) end is a dead end if all its followers are Left (resp. Right) ends. A game is said
to be dead-ending if all its end followers are dead ends.

In Sect. 2, we look at universes with no P-positions, establish the invertibility of
all elements when they are all dead-ending, and give an example of a universe with
almost no invertible element when this last condition is dropped. In Sect. 3, we focus
on a particular quotient, QZ, and prove that if several universes share this quotient,
then their sum shares this quotient as well.

2 Invertibility modulo universes without P-positions

This section is dedicated to universes with no P-position. We first consider dead-
ending games.

We recall the following lemma from Milley and Renault (2013), which we use to
prove invertibility of games.

Lemma 2 (Milley andRenault 2013)LetU be a set of games closed under conjugation
and followers, and S a set of games closed under followers. If G+G+ X ∈ L− ∪N−
for every game G ∈ S and every Left end X ∈ U , then G + G ≡−

U 0 for every G ∈ S.

We can now prove that all games are invertible in dead-ending universes containing
no misère P-position.

Theorem 3 Let U be a set of games closed under conjugation, sum, and followers,
such that every game in U is dead-ending and no game in U has misère outcome P .
For any game G in U , we have G + G ≡−

U 0.

123



Invertibility modulo dead-ending no-P-universes 801

1 a a 1

Fig. 3 The four generators of c�(a, a)

Proof By Lemma 2, we just need to prove that Left wins G + G + X playing first
for every Left end X ∈ U and every G ∈ U . We actually prove that if X = 0, then
o−(G + G + X) = N , and otherwise o−(G + G + X) = L by induction on G and

X . If X = 0, then as G +G + X = G + G + X , the outcome of the game isN or P ,
but as no game in U has outcome P , its outcome is N .

Assume now X �= 0 and Right is the first to move in this game. If he plays in X ,
he ends up in a position with outcomeN or L by induction, where Left wins playing
first. If he plays in G + G, Left can answer with the symmetric move and leave her
opponent a position G ′ + G ′ + X , with G ′ an option of G, which has outcome L by
induction. Hence Left wins G+G+ X playing second. As no game in U has outcome
P , we have o−(G + G + X) = L.

We thus have the hypothesis of Lemma 2 and can conclude that every game of U
is invertible with its conjugate as inverse. ��

Unfortunately, that property is not true for all universes, as we now give a coun-
terexample in the general case. We define a game a = {·|2}, and we look at the closure
c�(a, a) of a and its conjugate under sum and followers, that is, c�(a, a) is the smallest
set closed under sum and followers that contains a and a. Since 1+1 = 2, an element
of c�(a, a) can be written under the form k11 + k2a + k3a + k41 (see Fig. 3). Note
that neither a nor a is dead-ending.

We first fully determine the outcomes of games in c�(a, a).

Theorem 4 Let G be a game in c�(a, a) and write G = k11 + k2a + k3a + k41. We
have

o−(G) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N if k1 + k2 = k3 + k4 or (k1 = k3 = 0 and k2 � k4) or

(k2 = k4 = 0 and k3 � k1)

L if k2 + k4 > 0 and k3 + k4 > k1 + k2
R if k1 + k3 > 0 and k1 + k2 > k3 + k4

Proof We prove the result by induction on G. If k1 = k3 = 0, then G is a Left end
and o−(G) � N . Similarly, if k2 = k4 = 0, then G is a Right end and o−(G) � N .

Assume first k1 = k3 = 0 and k2 � k4. If Right moves first, either there is no
move and he wins immediately, or he can play in one of the k2 a, moving from G to
2 ·1+ (k2−1)a+k41 which has outcomeR by induction since 2+k2−1 > k2 � k4.
If we have k4 > k2 instead, Right moving in an a would result in a similar game
with k4 � 2 + k2 − 1 and Right moving in a 1 would result in k2a + (k4 − 1)1 with
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802 G. Renault

k4 − 1 � k2, both having outcome N or L by induction. Similarly, if k2 = k4 = 0
and k3 � k1, Left wins playing first, and loses playing first if k1 > k3.

Assume now both k2 + k4 and k1 + k3 are positive. Playing first, Left can either
play on an a or a 1, both increasing the difference (k3 + k4) − (k1 + k2) by 1 while
not changing the fact that k2 + k4 is positive. By induction, if that difference was
non-negative, she moved to an L-position, and otherwise, she moved either to an N -
position or an R-position, both of which she loses playing second. The symmetric
result when Right plays first concludes the proof. ��

Note that no game has outcome P . Using this characterisation, we can now prove
that there are games in c�(a, a) that are not invertible. Worse, actually, only one of
them is.

Proposition 5 Let G be a game in c�(a, a). If G ≡−
c�(a,a) 0, then G = 0.

Proof We write G = k11 + k2a + k3a + k41. Assume k1 + k2 + k3 + k4 is positive.
Then at least one player has a move. Without loss of generality, we can assume Left
has a move. Now consider the game X = (k1 + k2 + k3 + k4 + 1)a. By Theorem 4,
we have o−(0 + X) = N , while o−(G + X) = R. Hence G �≡−

c�(a,a) 0. ��
This proves that 0 is the only invertible game in c�(a, a) since any sum of two

games in c�(a, a) stays in c�(a, a) and would thus need to be 0 to be equivalent to
0 modulo c�(a, a). Actually, the situation is even worse. These games are not even
cancellative.2

Proposition 6 The only cancellative game in c�(a, a) is 0.

Proof First note that 1+1+1 and 1 are not equivalent modulo c�(a, a) since o−(1+
1 + 1 + a + a) = L while o−(1 + a + a) = N . Similarly, 1 + 1 + 1 and 1 are not
equivalent modulo c�(a, a).

Now let G be any non-zero game in c�(a, a). G has either a Left or a Right option
(or both). Without loss of generality, we may assume it has a Right option. We claim
that G + 1 and G + 1 + 1 + 1 are equivalent modulo c�(a, a). Indeed, consider any
game X in c�(a, a) and write G+ X +1 = k11+k2a+k3a+k41. As G is not a Right
end, we have k2 + k4 > 0. We ensured k3 + k1 > 0 by having 1 in the sum. Hence the
outcome of G + X + 1 is fully determined by (k2 + k1) − (k3 + k4). Similarly, the
outcome of G+ X +1+1+1 is fully determined by (k2 + (k1 +1)− (k3 + (k4 +1)).
Since the two numbers are equal, the two games have the same outcome. Hence we
have G + 1 ≡−

c�(a,a) G + 1 + 1 + 1 but 1 �≡−
c�(a,a) 1 + 1 + 1, thus completing the

proof that G is not cancellative in c�(a, a). ��
Nevertheless, there exist universes with non-dead-ending positions but without P-

positions where all games are invertible. It could thus be interesting to characterise
which ones among them share this property.

2 A game X is said to be cancellative (modulo U ) if for all games G and H (in U ), whenever X + G and
X + H are equivalent (modulo U ), then G and H are equivalent (modulo U ).
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3 The quotient QZ

The simplest non-trivial universe with no P-position is UZ = {k11 + k21|k1, k2 ∈
N}. As 1 + 1 ≡−

UZ
0 (see Milley and Renault 2013), each equivalence class has a

representative of which at most one of k1 and k2 is positive.

Definition 7 We noteQZ the quotient of UZ, that is, we abuse notation by using Z as
index instead of UZ, MZ is the monoid generated by 1 and 1 where 1 + 1 simplifies
to 0, PZ is empty, LZ is the set of positions with a positive number of 1s, RZ is the
set of positions with a positive number of 1s, and NZ is {0}.
The set of equivalence classes of QZ is isomorphic to Z, with positive integers rep-
resenting games with outcome L, negative integers representing games with outcome
R, and 0 representing games with outcomeN . Actually, several other universes, such
that the universe of dead ends, the universe of canonical numbers (Milley and Renault
2013), and the universe of black and white Toppling Dominoes positions (Renault
2013), seemingly more complex, share this same quotient.

Proposition 8 A universe U has quotient QZ if and only if there exists a surjective
function f : U → Z such that:

(i) ∀G, H ∈ U , f (G + H) = f (G) + f (H),

(ii) o−(G) =
⎧
⎨

⎩

N if f (G) = 0,
L if f (G) < 0,
R if f (G) > 0.

In this case, we say that f is a quotient map from U to Z. We will see after
Lemma 14 that such a quotient map is actually unique.

Note that universes with positions that are not dead-ending can still have quotient
QZ. Still, all the positions are invertible.

We also define the sum of two sets of games as follows:

Definition 9 Let S1 and S2 be two sets of games. We define S1 + S2, the sum of these
sets, as follows:

S1 + S2 = {s1 + s2 | s1 ∈ S1 ∧ s2 ∈ S2}.

In Renault (2013), the author considered sums of universes having quotient QZ,
namely dead ends, canonical numbers and black and white Toppling Dominoes
positions, and these sums were sharing the same quotientQZ. Here we prove that this
is always the case.

First, we give another characterisation for a universe to have quotientQZ. The main
point of this characterisation is that it only considers the value of f through options of
a game to determine the value of f through that game. This is the major tool to prove
Theorem 17, which says that the sum of two universes with quotientQZ is a universe
with quotient QZ. The next lemma shows one way of the equivalence.

Lemma 10 Let U be a universe and f : U → Z a surjective function such that:
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804 G. Renault

a) ∀G ∈ U , n > 0, ( f (G) = n) ⇒ ((∃GL ∈ GL, f (GL) = n − 1) ∧ (∀GL ∈
GL, f (GL) � n − 1)),

b) ∀G ∈ U , n � 0, ( f (G) = n) ⇒
⎧
⎨

⎩

( ((GR �= ∅) ⇒ (∃GR ∈ GR,

1 � f (GR) � n + 1))
∧ (∀GR ∈ GR, f (GR) � n + 1))

,

c) ∀G ∈ U , n < 0, ( f (G) = n) ⇒ ((∃GR ∈ GR, f (GR) = n + 1) ∧ (∀GR ∈
GR, f (GR) � n + 1)),

d) ∀G ∈ U , n � 0, ( f (G) = n) ⇒
⎧
⎨

⎩

( ((GL �= ∅) ⇒ (∃GL ∈ GL,−1
� f (GL) � n − 1))

∧ (∀GL ∈ GL, f (GL) � n − 1))
.

Then U has quotient QZ, having f as a quotient map to Z.

Proof We prove that f satisfies the two conditions of Proposition 8 by induction on
the games in U . First consider a game G in U . If G has no option, then it cannot satisfy
the right part of the implications a) and c). Hence f (G) = 0 which corresponds to
condition (ii) of Proposition 8 since o−(G) = N .

Assume G is a game such that f (G) > 0. From a), it has a Left option, and all its
Left options have misère outcome N or R by induction. Hence Right has a winning
strategy playing second in G. From b), Right can move to a misère R-position by
induction if he has any move. Hence Right has a winning strategy playing first in G,
which proves G has misère outcome R.

We can prove similarly that if f (G) < 0, G has misère outcome L.
Now assume f (G) = 0. From b), Right can move to a misère R-position by

induction if he has any move. Hence Right has a winning strategy playing first in G.
Similarly, from d), Left has a winning strategy playing first in G. Hence G has misère
outcome N .

Now consider two games G and H in U . Assume first f (G) + f (H) > 0. Then
at least one among f (G) and f (H) is positive. Without loss of generality, we may
assume f (G) is positive. Bya), there exists aLeft optionGL1 ofG such that f (GL1) =
f (G)− 1. Hence we have a Left option GL1 + H of G + H such that f (GL1 + H) =
f (GL1) + f (H) = f (G) − 1+ f (H) by induction. By a), we have f (G + H) is at
most f (G)+ f (H). Similarly, as all Left options of G+H are of the formGL +H or
G+HL , using a) and d) and induction, we can say that they are all mapped to integers
greater than or equal to f (G) + f (H) − 1. By d), as G + H has a Left option and all
Left options mapped to non-negative integers, f (G + H) is positive. For any positive
integer k less than f (G) + f (H), there is no Left move from G + H to a position
mapped to k−1, so by a), f (G+H) cannot be k. Hence f (G+H) = f (G)+ f (H).

Similarly, we have that if f (G) + f (H) < 0, then f (G + H) = f (G) + f (H).
Now assume f (G) + f (H) = 0. First assume f (G) = f (H) = 0. If G + H has

no Left option, it cannot satisfy the right part of the implication a), hence it is mapped
to a non-positive integer. Assume now G + H has a Left option, it means G or H has
a Left option. Without loss of generality, we may assume G has a Left option. From
d), we know there exists a Left option GL1 of G such that f (GL1) = −1. Hence the
Left option GL1 + H of G + H is such that f (GL1 + H) = f (GL

1 ) + f (H) = −1
by induction, which implies that f (G + H) is non-positive, as the opposite would
contradict a). Similarly, we prove that f (G + H) is non-negative. Hence we have
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f (G + H) = 0. Assume now without loss of generality that f (G) > 0 > f (H).
From a), we get a Left option GL1 of G such that f (GL1) = f (G) − 1. Similarly as
above, this implies f (G+H) is non-positive.We prove that f (G+H) is non-negative
in a similar way. Hence we have f (G + H) = 0, which concludes the proof. ��

We now prove the other way in four steps. First we show that players cannot alter
the image of the game through f more than one to their advantage in one move.

Lemma 11 Let U be a universe with quotientQZ and f a quotient map from U to Z.
Then for any game G in U , for any Left option GL of G, we have f (GL) � f (G)−1.

Proof Let G be a game in U and n the image of G through f . As f is surjective, we
can find a game H in U such that f (H) = 1− n. We have f (G + H) = 1, so G + H
has misère outcomeR. Hence any first move of Left is losing, which means the image
through f of each Left option of G should be at least n − 1, concluding the proof. ��

We now show that when Left has a winning move under optimal play, she has a
move to a position where she wins whoever plays first.

Lemma 12 Let U be a universe with quotientQZ and f a quotient map from U to Z.
Let G be a game in U such that f (G) is non-positive and G has a Left option. Then
G has a Left option GL such that −1 � f (GL) � f (G) − 1.

Proof As f (G) is non-positive, G has misère outcome N or L. Hence Left wins
playing first in G, either because G has no Left option or because she has a winning
move. G having a Left option puts us in the second case and there is a winning Left
move from G to some GL . By Lemma 11, we have f (GL) � f (G) − 1. Since GL is
a winning move, it has outcome P or L. Hence f (GL) is negative by Proposition 8.
Therefore, we have −1 � f (GL) � f (G) − 1. ��

For the next part, we need to ensure we can find Right ends in U whose images
through the quotient map cover all positive integers. Hencewe consider the game {0|·}.
Lemma 13 Let U be a universe with quotientQZ and f a quotient map from U to Z.
Then {0|·} ∈ U and f ({0|·}) = 1.

Proof As f is surjective, there is an infinite number of games in U . As U is closed
under followers, there exists some game in U with birthday 1. The three games with
birthday 1 are {0|·}, {0|0} and {·|0}. As {0|0} has misère outcome P , it cannot be in U .
As U is closed under conjugation and {0|·} and {·|0} are each other’s conjugates, both
are in U . {0|·} has misère outcome R, hence its image through f must be positive.
Similarly, 0 has misère outcomeN and its image through f is 0. Having a Left option
to 0, whose image through f is 0, {0|·}’s image through f must be at most 1 by
Lemma 11. Hence f ({0|·}) = 1. ��

We can now prove that when Right loses playing first, he has a move whose image
through f is closer to 0 than the original game.

Lemma 14 Let U be a universe with quotientQZ and f a quotient map from U to Z.
Let G be a game in U such that f (G) is negative. Then G has a Right option GR such
that f (GR) = f (G) + 1.

123



806 G. Renault

Proof As f (G) is negative, G has misère outcome L, and Right has a move in G.
By Lemma 13, we have {0|·} in U and f ({0|·}) = 1. As U is closed under sum, we

have (− f (G)) · {0|·} in U . We have f (G+ ((− f (G)) · {0|·})) = 0 so G+ ((− f (G)) ·
{0|·})hasmisère outcomeN .HenceRight has awinningmove inG+((− f (G))·{0|·}),
which has to be in G since he has no move in (− f (G)) · {0|·}. Therefore, there is a
Right move from G to some GR such that f (GR) > f (G). By the conjugate version
of Lemma 11, no Right option ofG may have an image through f more than f (G)+1.
Hence GR is such that f (GR) = f (G) + 1. ��

Note that this proof implies that the quotient map toZ from a universe with quotient
QZ is unique.

Corollary 15 Let U be a universe with quotientQZ and f, f ′ two quotient maps from
U to Z. Then f = f ′.

Proof We get f ({0|·}) = 1 = f ′({0|·}) from Lemma 13. For any G in U , if f (G) is
negative, G + ((− f (G)) · {0|·}) has outcome N so f ′(G) + (− f (G)) · f ′({0|·}) =
f ′(G + ((− f (G)) · {0|·})) = 0 and f ′(G) = f (G); similarly when f (G) is positive;
when f (G) is 0, G has outcome N so f ′(G) is 0 as well. ��

We can now state the other way of the characterisation.

Theorem 16 Let U be a universe with quotientQZ. Then the quotient map f from U
to Z is such that:

a) ∀G ∈ U , n > 0, ( f (G) = n) ⇒ ((∃GL ∈ GL, f (GL) = n − 1) ∧ (∀GL ∈
GL, f (GL) � n − 1)),

b) ∀G ∈ U , n � 0, ( f (G) = n) ⇒
⎧
⎨

⎩

( ((GR �= ∅) ⇒ (∃GR ∈ GR, 1
� f (GR) � n + 1))

∧ (∀GR ∈ GR, f (GR) � n + 1))
,

c) ∀G ∈ U , n < 0, ( f (G) = n) ⇒ ((∃GR ∈ GR, f (GR) = n + 1) ∧ (∀GR ∈
GR, f (GR) � n + 1)),

d) ∀G ∈ U , n � 0, ( f (G) = n) ⇒
⎧
⎨

⎩

( ((GL �= ∅) ⇒ (∃GL ∈ GL,−1
� f (GL) � n − 1))

∧ (∀GL ∈ GL, f (GL) � n − 1))
.

Proof The result is a combination of Lemmas 11, 12, 14 and their conjugate versions.
��

With this characterisation, which says that the value of f through a game only
depends on the value of f through its options, we can now prove the main theorem of
this section.

Theorem 17 Let U1 and U2 be two universes with quotient QZ. Then U1 + U2 is a
universe having quotient QZ.

Proof Let G and H be two games in U1 + U2. We can write G = G1 + G2 and H =
H1 + H2 such that G1, H1 ∈ U1 and G2, H2 ∈ U2. Then G = G1 + G2 ∈ U1 + U2.
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2#0

2#20

Fig. 4 Game trees of 2#0 and 2#20

Hence U1 + U2 is closed under conjugation. G + H = (G1 + H1) + (G2 + H2) ∈
U1 + U2. Hence U1 + U2 is closed under disjunctive sum. A follower of G is the sum
of a follower of G1 with a follower of G2. Hence U1 + U2 is closed under followers.
Therefore U1 + U2 is a universe.

Let f1 and f2 be the quotient maps from U1 and U2 to Z respectively. We define
f : U1 + U2 → Z as f (G1+G2) = f1(G1)+ f2(G2) for any G1 in U1 and G2 in U2.
Let G = G1 + G2 be a game in U1 + U2 such that G1 ∈ U1 and G2 ∈ U2. We prove
by induction on G that f satisfies the hypothesis of Lemma 10, using the fact that
both f1 and f2 satisfy these hypothesis by Theorem 16. Any Left option of G is of the
form G1 + GL

2 or GL
1 + G2. As any GL

1 and GL
2 are such that f1(GL

1 ) � f1(G1) − 1
and f2(GL

2 ) � f2(G2) − 1, we have f (GL) � f (G) − 1 for any Left option GL of
G. Similarly, we have f (GR) � f (G) + 1 for any Right option GR of G.

Assume first f (G) is positive. Then f1(G1) or f2(G2) is positive. Without loss of
generality, we may assume f1(G1) to be positive. Then there exists a Left option GL

1
of G1 such that f1(GL

1 ) = f1(G1) − 1. Hence the Left option GL
1 + G2 of G1 + G2

has an image through f with value f (G) − 1. Similarly, if f (G) is negative, there
exists a Right option GR of G such that f (GR) = f (G) + 1.

Assume now f (G) is non-negative. If there is no Right option from G, there is
nothing to prove. Assume then Right has a move from G. If f1(G1) is negative, there
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is a Right option GR
1 of G1 such that f1(GR

1 ) = f1(G1) + 1, hence the Right option
GR

1 +G2 of G1 +G2 has an image through f with value f (G)+1. Similarly, there is
a Right option G1 +GR

2 of G1 +G2 having an image through f with value f (G)+ 1
whenever f2(G2) is negative. Assume both f1(G1) and f2(G2) are non-negative.
Without loss of generality, since Right has an option from G1 + G2, we may assume
G1 has a Right option. As f1(G1) is non-negative, there exists a Right option GR

1 of
G1 such that 1 � f1(GR

1 ) � f1(G1)+1. Then the Right option GR
1 +G2 of G1 +G2

is such that 1 � 1 + f2(G2) � f (GR
1 + G2) � f (G) + 1. Similarly, if f (G) is

non-positive, either Left has no move from G or there exists a Left option GL of G
such that −1 � f (GL) � f (G) − 1.

Therefore U1 + U2 is a universe with quotient QZ. ��
This result does not seem to generalise easily to other quotients since we had to

look at the possible moves of all positions in every equivalence class. Actually, the
result is not true for any quotient. Call ∗ the game {0|0}, ∗2 the game {0, ∗|0, ∗}, 2# the
game {∗2|∗2}, 2#0 the game {0, 2#|0, 2#} and 2#20 the game {0, ∗2, 2#|0, ∗2, 2#} (see
Fig. 4 for some game trees). Plambeck found that the closures c�(2#0) and c�(2#20)
by sum and followers of the last two games share the same quotient, but their sum
does not. Their common quotient can be seen as the following:

(〈a, b, c|a2 = 1, b3 = b, b2c = c, c3 = ac2〉, {a, b2, bc, c2},∅,∅)

with fourteen elements. What is surprising, and might explain why the sum gets a
bigger quotient, is that the common elements of these two universes are not always
mapped to the same element of the quotient. For example, ∗2 is mapped to b from
c�(2#0) but to ab from c�(2#20). This situation cannot happen with QZ because of
Lemma 13.
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