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Abstract We show that the classic placement games Col and Snort are PSPACE-
complete, resolving an open question of Schaefer (1978). We then show the related
placement games Fjords and NoGo PSPACE-complete on planar graphs. All but
NoGo are shown hard by reductions from Bounded 2- Player Constraint
Logic; we then reduce Col to NoGo. The only previous complexity results for these
games were that Col and Snort played on general graphs are PSPACE-complete,
and NoGo is NP-hard on general graphs.

Keywords Complexity · PSPACE · Combinatorial game

1 Introduction

Conway (2001) introduced the games Col (invented by Colin Vout) and Snort
(invented by SimonNorton). These games are in some sense opposites: inCol, players
take turn placing tokens of their own color on vertices of a planar graph (originally,
painting regions on a map); adjacent vertices may not hold the same color. The goal is
to make the last move. Snort is the same, but adjacent vertices may not hold different
colors. Both games have been studied in the context of Combinatorial Game The-
ory, and from a complexity perspective. Schaefer (1978) showed that Snort played
on general graphs is PSPACE-complete, and noted that “the complexity of the game
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restricted to planar graphs is of obvious interest”.While preparing this submission, we
discovered that Col played on general graphs was recently shownPSPACE-complete
as well (Fenner et al. 2015). The hardness of Col is especially interesting, because
Col is a “cold” game—each player can only worsen their position by making the next
move. Normally cold games are not hard.

We completely resolve the status of Col and Snort, played on planar graphs
as originally defined. It is remarkable that the complexity of these well-known and
extremely natural graph games has remained open for so long.1

Col and Snort are part of a larger family of placement games, as are Fjords
and NoGo, defined below. Fjords is an award-winning board game produced by Rio
Grande Games, played on a hexagonal grid. Here we consider a version played on
arbitrary planar graphs.NoGo is a simple variant of Go, played on a square grid, where
capturing is not allowed.NoGowas first studied by combinatorial game theorists, but
has since been an AI testbed at recent Computer Olympiads.2 Again, we consider the
version played on planar graphs, leaving open the complexity of both of these games
played on their standard grid graphs.

We show that all of these games are PSPACE-complete, indicating that we should
not expect a general theory for any of them. Our reductions are all (directly or indi-
rectly) from Bounded 2- Player Constraint Logic, which has become a useful
tool for showing two-player bounded-length games hard, especially where planarity
is important.

In Sect. 2 we provide background on Combinatorial Game Theory, placement
games, and Algorithmic Combinatorial Game Theory. In Sect. 3 we discuss Con-
straint Logic. In Sect. 4 through 7 we formally define each game and present our
hardness reductions.

2 Background

2.1 Combinatorial game theory

Combinatorial Game Theory is the study of games with:

– Two players alternating turns,
– No randomness, and
– Perfect information for both players.

A ruleset describes which moves each player can make from any game position.
The games we study in this paper use normal play rules, meaning if a player cannot
make a move on their turn, they lose the game (the last player to move wins).

The two players are commonly known asLeft andRight, or Blue and Red, or Black
and White. Here, for uniformity we will use Black and White. If both players always
have the same move options, the game is called impartial; otherwise it is partisan. All
the games we consider here are partisan.

1 Col was mistakenly cited as PSPACE-complete in Berlekamp et al. (2001) and, apparently as a result,
in Cincotti (2009). Both cite (Schaefer 1978), which analyzes Snort, but not Col.
2 https://www.game-ai-forum.org/icga-tournaments/game.php?id=47
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For more information on combinatorial game theory, the reader is encouraged to
look at Berlekamp et al. (2001) and Albert et al. (2007).

2.2 Placement games

A placement game, as defined in [3], is a combinatorial game ruleset played on a
graph, G = (V, E), that fulfills all of these requirements:

– Vertices are either marked (perhaps by a specific color) or unmarked,
– A move for a player consists of marking exactly one unmarked vertex, and
– Marks may never be moved or removed.

2.3 Algorithmic combinatorial game theory

Algorithmic Combinatorial Game Theory is the application of algorithms to combi-
natorial games. The difficulty of a ruleset is analyzed by studying the computational
complexity of determining whether the current player has a winning strategy. In this
paper, we choose White to always be the next player when posing this question.3 We
show that many games are PSPACE-complete, which means that no polynomial-time
algorithm exists to determine the winnability of all positions unless such an algorithm
exists for all PSPACE problems.

Usually determining the winnability of a ruleset is considered as the computational
problem of the same name. We continue to (ab)use that language here: saying for
example that Game X is PSPACE-complete means that the associated winnability
decision problem is PSPACE-complete.

The four rulesets we have results for are all placement games. Because marks may
never be moved or removed:

– The maximum number of turns taken during a game is always n = |V |.
– The maximum number of options on one turn is always ≤ n.

Because these are both polynomial in the size of the graph, the decision problem for
each of these games is in PSPACE—we can perform a depth-first search of the game
tree using polynomial space. Thus, by showing that these games are PSPACE-hard,
we also show that they are PSPACE-complete.

For more on algorithmic combinatorial game theory, the reader is encouraged to
look at Demaine and Hearn (2009).

3 Constraint logic

3.1 Definition

Constraint Logic is a family of games played on edge-weighted directed graphs,
parametrized by number of players (0, 1, 2, team) and whether the game is of bounded

3 We do this for consistency with established Constraint Logic conventions, and ease of presentation—
normally Black, or Left, is the first player in a combinatorial game.
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(a) AND (b) OR (c) FANOUT (d) CHOICE

(e) VARIABLE

Fig. 1 Basis vertices for Bounded 2CL

or unbounded length, with each specific version complete for its “natural” complexity
class (Demaine et al. 2008; Hearn and Demaine 2009). It has proven very useful in
showing games and puzzles hard, especially those for which planarity is important.

In a constraint-logic game, a move is to reverse the orientation of an edge in the
graph, consistentwith constraints at the incident vertices: the sumofweights of inward-
directed edges at each vertex (the inflow) must total at least a minimum threshold. The
game or puzzle is won when a given edge is reversed. Constraint-logic games are hard
on planar graphs, even for very restricted sets of vertex types. The games we consider
here are two-player, bounded-length games; the corresponding type of constraint logic
is calledBounded 2- Player Constraint Logic (Bounded 2CL). This game has
been used to show board games such as Amazons and Konane PSPACE-complete
(Hearn 2008).

In Bounded 2CL, each edge is controlled by either White or Black, and each
player has a distinct goal edge they need to reverse to win. Each edge is only allowed
to be reversed once; therefore the game is of (polynomially) bounded length.Bounded
2CL is PSPACE-complete even when the graph is planar, and the vertices are all one
of five types: AND, OR, FANOUT, CHOICE, or VARIABLE, shown in Fig. 1, with their
initial edge orientations.4 In these vertices, red (light gray) edges denote weight 1,
blue (dark gray) edges weight 2, and the minimum inflow constraint is 2. The edges
are shown filled with the color that controls them. The AND vertex, for example, needs
either the blue edge or both red edges directed inward to satisfy its inflow constraint. If
White reverses both red edges inward, then the blue edge may be reversed outward—
effectively this is a logical AND of the “inputs”. OR works similarly. FANOUT allows
a “signal” to be split, and CHOICE gives White an option of selecting one “output” or
the other to reverse if the “input” is first reversed. The only vertex type where player
interaction can occur is the VARIABLE. Whoever plays first in a VARIABLE prevents the
other player frommoving there, because that would violate the inflow constraint. Note
that Black’s moves occur only in VARIABLE gadgets.

The proof that Bounded 2CL itself is PSPACE-hard is a trivial reduction from
a standard game played on Boolean formulas, Gpos(POS CNF) (Hearn and Demaine
2009). The utility of reducing from Bounded 2CL to show other games hard, rather
than directly from a formula game, is that Constraint Logic has a generic crossover

4 We allow “half edges” in our graph, that is, edges connected to only one vertex—there is no way to
connect the Black edge in a VARIABLE vertex to any other vertex. These are irrelevant to our reductions.
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construction, meaning that all hardness results automatically apply when the graph is
planar. If we reduced from a formula game, we would need to find a way to explicitly
cross signals for each target game. Though not stated in Hearn and Demaine (2009), it
is clear from the Gpos(POS CNF) reduction that we may assume the constraint graph
to be acyclic.

Lemma 1 Bounded 2CL remains PSPACE-complete when restricted to acyclic con-
straint graphs.

Proof By inspection of the reduction employed in (Hearn and Demaine 2009, p. 58)
��

For the remainder of the paper, by Bounded 2CLwe refer to the version restricted
to planar, acyclic constraint graphs using only the above vertex types.

3.2 Reducing from constraint Logic

We reduce from Bounded 2CL to prove the hardness of Col, Snort, and Planar-
Fjords. For each reduction, we must implement the five vertex gadgets shown in
Fig. 1, show how to connect them together, and ensure that our game can be won if
and only if the corresponding constraint-logic game can be won. In order to avoid
confusion, for the rest of the paper we will always write “constraint-graph vertex”
or “constraint-graph edge” for the Bounded 2CL elements; otherwise “vertex” and
“edge” refer to elements in the target game.

We refer here and below to canonical play, indicating the way that gadgets “should”
be played in. In every case we show that deviation from canonical play cannot benefit
a player. (If they don’t have a winning strategy following canonical play, then they
don’t have any winning strategy.)

In all three reductions,we represent a constraint-graph edge statewith an I/Ogadget,
with the following properties:

– Each I/O gadget contains an Active vertex and an Inactive vertex.
– Under canonical play, White will play either the Active or the Inactive vertex, but
not both, in every I/O gadget. (Black may not play in all I/O gadgets, depending
on the reduction.)

– An I/O gadget whereWhite has played in the Active vertex is said to be activated;
if White plays in the Inactive vertex, or Black plays in the Active vertex, it is
inactivated. An activated I/O gadget represents the corresponding constraint-graph
edge having flipped from its initial orientation.

We only explicitly represent White-controlled constraint-graph edges; Black’s
moves in VARIABLE gadgets merely serve to block White, and are not connected to
anything else. Indeed, for all three reductions, the I/O gadget also serves as a VARIABLE
gadget. We also do not need to explicitly represent Black’s goal edge, because White
will block Black’s win on his first move (Black’s goal edge must be in a VARIABLE

gadget), and the only question is whether White can win (Hearn and Demaine 2009).
Note that the rules allow for no winner; Bounded 2CL is not strictly a combinatorial
game under normal play, where the last play wins.
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Fig. 2 Generic I/O gadget.
A = Active; I = Inactive

Fig. 3 Col I/O gadget and
VARIABLE

The details of the I/O gadget will vary depending on the reduction, but we will use
the abstraction shown in Fig. 2 in the constructions for the constraint-graph vertex
gadgets to hide the details.

4 COL

Col is a partisan placement game where players alternately mark vertices with their
color (Black or White) with the restriction that two neighboring vertices may not have
the same color. Thus a move consists of coloring an uncolored vertex not adjacent to
another vertex of the player’s color. Formally:

Definition 1 (Col) Col is a ruleset played on a planar graph, G = (V, E, c), where
c is a coloring of vertices c : V → {Black,White,Uncolored} such that ∀(v,w) ∈
E : either c(v) �= c(w) or c(v) = c(w) = Uncolored. An option for player A is a
graph G ′ = (V, E, c′) where ∃x ∈ V :
– ∀v �= x ∈ V : c′(v) = c(v), and
– c(x) = Uncolored, and
– c′(x) = A’s color, and
– ∀(y) such that (x, y) ∈ E : c(y) �= c′(x).

The computational complexity of Col has remained an unsolved problem since its
introduction in the 1970s. We show that Col is PSPACE-complete, even for planar
graphs. As remarked in the introduction, it is exceptional for a cold game to be hard.
Gadgets

Col is in PSPACE, as shown in Sect. 2.3. To show hardness, we reduce from
Bounded 2CL. We need to specify the details of the Col I/O gadget, and create
gadgets corresponding to each of the constraint-logic vertex types in Figure 1. We
will also need a “goal” gadget attached to White’s constraint-graph goal edge, to give
White the extra move needed to win the Col game just when White can flip that
edge in the Bounded 2CL game. Each vertex gadget gives White and Black an equal
number of moves under canonical play.

The I/O gadget, shown in Fig. 3, includes a single edge connecting the pair of
vertices. This prevents either player from being able to choose both (because two
same-colored vertices may not be adjacent). White will need to play either the Active
or the Inactive vertex in every I/O gadget to win. Black can only play in the I/O
gadgets in VARIABLEs; Black moves in all other output I/O gadgets are blocked by an
adjoining black vertex.

The VARIABLE gadget is simply a single I/O gadget. White activates it by playing in
its Active vertex, effectively flipping the White output constraint-graph edge; Black
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Fig. 4 AND gadget for Col

x

Fig. 5 OR gadget for Col

inactivates it by playing there. It can never helpWhite to choose not to flip a VARIABLE

output; doing so only eliminates potential paths to the goal edge. Therefore we may
assume the players move as described. Later the Inactive vertices will be played as
well, by the opposite player in each case.

The AND gadget, shown in Fig. 4, connects two input I/O gadgets to an output.
(Here and in the remaining figures, a filled circle in a vertex denotes a Black token,
an empty circle denotes a White token, and characters are labels.) The Active vertex
of the output is connected to each input’s Inactive vertex; this prevents White from
activating the output if either input is inactivated. In order to make up for Black’s free
play on the disjoint piece (White cannot play at x, because it is adjacent to a White
vertex), White must either activate or inactivate the output.

The OR gadget, shown in Fig. 5, connects three I/O gadgets (two input and one
output) to a 4-clique where one vertex is colored Black. If either of the inputs is
activated, then White can activate the output and also make an extra move in the
clique. Black is given two free moves in the disjoint piece; White must play in both
the output and the center-clique in order to have any chance to win.

The FANOUT gadget, shown in Fig. 6, connects one input I/O gadget to two outputs.
Both Active vertices of the outputs are connected to the Inactive vertex of the input. If
the input is activated, then the outputs may be activated. White plays in both outputs,
making up for the two free moves provided to Black in the disjoint section.

The CHOICE gadget, shown in Fig. 7, is exactly the same as the FANOUT gadget,
except that the Active vertices of the outputs are connected. Thus, White cannot play
in both of them.
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Fig. 6 FANOUT gadget for
Col

Fig. 7 CHOICE gadget for Col

Fig. 8 GOAL gadget for Col

The GOAL gadget, shown in Fig. 8, is attached to the I/O gadget corresponding to
White’s goal edge in the constraint graph. White can play in the uncolored vertex only
if the I/O gadget is not inactivated.

Theorem 1 Determining whether the next player in Col has a winning strategy is
PSPACE-complete, even when the maximum vertex degree is five.

Proof Given aBounded 2CL instance, we construct a correspondingCol instance as
described above, identifying input and output I/O gadgets between appropriate vertex
gadgets. No vertex in the construction has degree more than five: some Active vertices
have three connections on the input side, but none has more than a single connection
on the output side. The connection to the paired Inactive vertex makes five. Similarly,
Inactive vertices have degree at most four, as do the internal vertices in the gadgets.

Each vertex gadget reproduces the behavior of its corresponding constraint-graph
vertex, but only when inputs are played before outputs; we have no mechanism here to
enforce that play order. However, it never benefits White to play an output before an
input, as all I/O gadgets will eventually have to be activated or inactivated for White
to have enough moves to win. So, White cannot cheat by for example activating an
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AND output and later deactivating its inputs. We can therefore assume that all moves
are made in an order corresponding to legal Bounded 2CL play.

Therefore, White can win the Bounded 2CL game just when White can win
the corresponding Col game, by activating a sequence of outputs reaching the GOAL

gadget, and playing in it. ��

5 SNORT

Snort is a partisan placement game where players alternately mark vertices with
their color (Black or White) with the restriction that two neighboring vertices may not
have different colors. Thus a single turn consists of coloring an uncolored vertex not
adjacent to a vertex of the other player’s color. Formally:

Definition 2 (Snort) Snort is a ruleset played on a planar graph, G = (V, E, c),
where c is a coloring of vertices c : V → {Black,White,Uncolored} such that
∀(v,w) ∈ E : either c(v) = c(w) or at least one of {c(v), c(w)} = Uncolored. An
option for player A is a graph G ′ = (V, E, c′) where ∃x ∈ V :
– ∀v �= x ∈ V : c′(v) = c(v), and
– c(x) = Uncolored, and
– c′(x) = A’s color, and
– ∀(y) such that (x, y) ∈ E : c(y) = Uncolored ∨ c(y) = c′(x).

Snort has been known to be PSPACE-complete on general graphs since the early
days of computational complexity (Schaefer 1978). We improve upon that by using
Bounded 2CL to show that Snort is still hard on planar graphs.

Move ordering

For Col, we did not need to explicitly force gadget inputs to be played before outputs,
becauseBlackwas prevented fromplaying in any outputs and inappropriately blocking
White, and White could gain no advantage playing out of order. For Snort (and also
below for Planar- Fjords), our reduction does need to ensure Black has no interest
playing out of canonical order, so we define an incentive mechanism, described below,
to enforce correct order of play.

The constraint-graph vertex gadgets we construct force White to play in the output
I/O gadgets in such a way as to mimic the constraint-graph vertex properties. If White
deviates, Black can get some extra moves; any extra moves are enough to prevent
White from winning. However, the canonical play order lets White play first in every
I/O gadget apart from VARIABLEs; if Black deviates from canonical play and plays
first in an I/O gadget, they can force White to later play incorrectly in that gadget,
inappropriately giving Black extra moves. We prevent this from happening by making
out-of-order plays cost more moves than can be thus gained.

We topologically order all I/O gadgets, so that inputs occur before outputs for all
constraint-graph vertex gadgets, which we can do because the constraint graph is
acyclic, as mentioned in Sect. 3. Each play in either the Active or the Inactive vertex
in an I/O gadget grants the player t additional moves available to them, and not to the
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Fig. 9 Snort I/O gadget and
VARIABLE

other player, for some t that decreases by a sufficiently large constant per I/O gadget
in the topological order. We give all VARIABLE gadgets the same (maximal) incentive;
we can’t force the order of play in them and respect the Bounded 2CL rules.

If there are n I/O gadgets, and the largest gain Black can get as a result of White
playing incorrectly in one is k moves, then spacing the incentives apart by nk + 1 is
sufficient. (We can use k = 4 here, as no gadget gives Black more than 4 moves if
White plays incorrectly.) If Black “skips ahead” to play first in a lower-incentive I/O
gadget, White can win simply by playing any moves in incentive order. Black can gain
at most nk moves, but has already lost at least nk + 1. The I/O gadget with the GOAL

gadget attached has an incentive of 0; each preceding I/O gadget in the topological
order gains an additional incentive of nk +1. The total number of incentive moves we
must accommodate in our graphs is then O(n3), so our reductions remain polynomial.

Gadgets

Snort is in PSPACE, as shown in Sect. 2.3. To show hardness, we need to specify
the details of the Snort I/O gadget, and create gadgets corresponding to each of the
constraint-logic vertex types in Fig. 1. We will also need a “goal” gadget attached to
White’s constraint-graph goal edge, to give White the extra move needed to win the
Snort game just when White can flip that edge in the Bounded 2CL game. Each
vertex gadget gives White and Black an equal number of moves under canonical play.

I/O gadgets, shown in Fig. 9, contain incentives: t extra vertices each attached to
the Active and Inactive vertices. A play in either vertex grants that player t additional
moves available only to them, because adjacent vertices may not contain different
colors. We represent an I/O gadget with an abstraction that hides the extra vertices.

As in theCol reduction, a VARIABLE gadget is simply an I/O gadget.White activates
it by playing in the Active vertex; Black inactivates it by doing so, forcing White to
later play in the Inactive vertex. It is possible for one player to play in both the Active
and Inactive sides in a single variable, but never advantageous to do so (White only
benefits from activating variables, and Black from inactivating); we therefore assume
that each plays in each VARIABLE.

After all the VARIABLEs have been played, canonical play is for White to play in
the I/O gadget with the highest remaining incentive, and for Black to make the other
play in this gadget; then White proceeds to the next-highest incentive I/O gadget, etc.
As described above, for Black to deviate from this order costs more moves than can
be gained. White also loses moves playing out of order, but does not gain anything in
compensation, as all the potential extra moves are Black’s.

The AND gadget for Snort is shown in Fig. 10. White needs to earn an extra
move in order to make up for Black’s disjoint free play. White can earn the move
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Fig. 10 AND gadget for Snort

x y

Fig. 11 OR gadget for Snort

x

Fig. 12 FANOUT gadget for
Snort

x y z w

at y by choosing the Inactive output. However, if both of the inputs are activated,
then White can activate the output and still gain x for later; a Black play on either
input’s Active vertex prevents this. Note that if Black got to play first in the output,
they could inactivate it, potentially forcing White to later inappropriately activate it,
earning Black an extra move. But the incentive mechanism prevents this, by costing
Black more than this in incentive difference.

The OR gadget is shown in Fig. 11. White cannot play in the output Active vertex
without playing in at least one input Active vertex, or else Black will gain an extra
move at x.

The FANOUT gadget, shown in Fig. 12, includes two extra moves for Black that
White must make up. White can do so by activating both outputs and later playing on
x and z, but only after activating the input; a Black play on the input Active vertex
blocks White’s desired plays. Otherwise, White must inactivate both outputs, and
claim y and w, to keep up.
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Fig. 13 CHOICE gadget for
Snort

x

y z

Fig. 14 GOAL gadget for
Snort

x

The CHOICE gadget is shown in Fig. 13. Again, Black has two extra moves that
White must make up within the gadget. If White activates the input, then any White
plays in the two outputs will gain the two moves adjacent to those plays. But if White
chooses to activate both outputs, Black will also gain a move at x; White cannot afford
this, and so must activate at most one output. If Black plays on the input Active vertex,
then the only way for White to make the required two extra moves is to inactivate both
outputs, later playing y and z.

As with Col, the GOAL gadget for Snort, shown in Fig. 14, gives White the extra
move necessary to win if the corresponding I/O gadget is activated. A Black play at
A block’s White’s play at x.

Theorem 2 Determining whether the next player in Snort has a winning strategy is
PSPACE-complete.

Proof Given aBounded 2CL instance, we construct a correspondingSnort instance
as described above, identifying input and output I/O gadgets between appropriate
vertex gadgets. Each vertex gadget reproduces the behavior of its corresponding
constraint-graph vertex, and the incentives ensure that I/O gadget play reproduces
legal Bounded 2CL play.

Therefore, White can win the Bounded 2CL game just when White can win the
corresponding Snort game, by activating a sequence of outputs reaching the GOAL

gadget. After the incentives have all been claimed, both players play all the extramoves
they have reserved—these will be equal with canonical play—and finally White plays
the one extra move enabled in the GOAL gadget. ��

6 PLANAR-FJORDS

Planar- Fjords is a partisan placement gamewhere players alternatelymark vertices
using their color (Black or White), with the restriction that the newly marked vertex
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Fig. 15 Planar- Fjords I/O gadget and VARIABLE. Pt is a path graph with t vertices

must be adjacent to a vertex already marked with that player’s color. Note that the
initial position must contain both colored and uncolored vertices in order to have any
move options. Formally:

Definition 3 (Planar- Fjords) Planar- Fjords is a ruleset played on a planar
graph, G = (V, E, c), where c is a coloring of vertices
c : V → {Black,White,Uncolored}. An option for player A is a graph G ′ =
(V, E, c′) where ∃(x, y) ∈ E :
– ∀v �= x ∈ V : c′(v) = c(v), and
– c(x) = Uncolored, and
– c′(x) = A’s color, and
– c(y) = A’s color.

Planar- Fjords is a generalized version of the board game Fjords, which is
played on a hexagonal grid with some edges and vertices removed. Fjords was pub-
lished by Rio Grande games in 2005, but is currently out of print. In the published
version of Fjords, the initial configuration is generated through a randomized pro-
cess, but once that is complete, the remainder of the game (as described here) is strictly
combinatorial. We show that Planar- Fjords is PSPACE-hard; the computational
complexity of Fjords remains an open problem.

Gadgets

Planar- Fjords is in PSPACE, as shown in Sect. 2.3. To show hardness, we reduce
from Bounded 2CL. We need to specify the details of the Planar- Fjords I/O
gadget, and create gadgets corresponding to each of the constraint-logic vertex types
in Fig. 1. We will also need a “goal” gadget attached to White’s constraint-graph goal
edge, to give White the extra move needed to win the Planar- Fjords game just
when White can flip that edge in the Bounded 2CL game. Each vertex gadget gives
White and Black an equal number of moves under canonical play.

Our reduction is similar to the Snort reduction, in that we provide incentives to
ensure that inputs are played before outputs, so canonical Bounded 2CLmove order
is followed. The same argument presented in Sect. 5 shows that the incentives force
proper play order here as well. Again, the specific incentive t for each I/O gadget will
be determined by a topological sort of the constraint graph, with the incentives spaced
sufficiently far apart.

The I/O gadget, shown in Fig. 15, contains incentives: a play on either the Active or
the Inactive vertex grants the player an extra t moves later on. It also has extra vertices
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Fig. 16 AND gadget for
Planar- Fjords

Fig. 17 OR gadget for
Planar- Fjords

attached, allowing either player to play on either side. This is necessary, because play
can only occur adjacent to existing marked vertices. Again, a VARIABLE gadget is
simply an I/O gadget.

The AND gadget is shown in Fig. 16. If White activates the output when one or both
inputs are inactive, this will give Black two or four additional moves later, that White
cannot afford. If White inactivates the output, or activates both inputs, then Black and
White will split these four moves at the end of the game.

The OR gadget is shown in Fig. 17. If White plays on either input Active vertex or
the output Inactive vertex, then Black andWhite will split the four uncolored vertices
at the end of the game. But if White activates the output with both inputs inactive, all
these moves will go to Black.

The FANOUT gadget is shown in Fig. 18. Essentially this is an upside-down AND

gadget, as a constraint-logic FANOUT is also an upside-down AND. The same logic
applies here as for the AND: White must either activate the input or inactivate both
outputs to keep Black from gaining an extra two or four moves.

The CHOICE gadget is shown in Fig. 19. This is identical to the FANOUT, with the
addition of another two-move gain for Black if White activates both outputs. White
must play at least two of the input Active vertex and the output Inactive vertices to
avoid a loss here.
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Fig. 18 FANOUT gadget for
Planar- Fjords

Fig. 19 CHOICE gadget for
Planar- Fjords

Fig. 20 GOAL gadget for
Planar- Fjords

x

The GOAL gadget is shown in Fig. 20; it is attached to the I/O gadget corresponding
to White’s goal edge. Again, White gets the extra move at x if the I/O gadget is
activated. (In this gadget Black gets the extra move otherwise, though this move is not
needed for Black to win.)

Theorem 3 Determining whether the next player has a winning strategy in Planar-
Fjords is PSPACE-complete.

Proof Given a Bounded 2CL instance, we construct a corresponding Fjords
instance as described above, identifying input and output I/O gadgets between appro-
priate vertex gadgets. Each vertex gadget reproduces the behavior of its corresponding
constraint-graph vertex, and the incentives ensure that I/O gadget play reproduces legal
Bounded 2CL play.

Therefore, White can win the Bounded 2CL game just when White can win the
corresponding Fjords game, by activating a sequence of outputs reaching the GOAL

gadget. After the incentives have all been claimed, both players play all the extramoves
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they have reserved—these will be equal with canonical play—and finally White plays
the one extra move enabled in the GOAL gadget. ��

7 PLANAR-NOGO

Planar- NoGo is a partisan placement game where the players alternately mark
vertices using their color (Black or White) with the restriction that each connected
component of one color must be adjacent to an Uncolored vertex. Formally:

Definition 4 (Planar- NoGo) Planar- NoGo is a ruleset played on any graph,G =
(V, E, c), where c is a coloring of vertices c : V → {Black,White,Uncolored}.
A legal position (coloring) has that ∀ connected single-color components C ⊆
V : ∃(v,w) ∈ E where:

– v ∈ C , and
– w /∈ C , and
– c(w) = Uncolored.

An option for player A is a graph G ′ = (V, E, c′) where c′ is a legal coloring, and
∃x ∈ V :
– ∀v �= x ∈ V : c′(v) = c(v), and
– c(x) = Uncolored, and
– c′(x) = A’s color.

NoGo is the well-known version of Planar- NoGo played specifically on a grid
graph. Our hardness proof applies only to the more general Planar- NoGo; the com-
putational complexity of the grid version remains an open problem.

NoGo is itself a non-loopy Go variant where capturing moves are not allowed. In
Go, uncolored vertices adjacent to a connected component of one color are known as
liberties. Graph- NoGo enforces that a liberty must always exist for each connected
component. Resolving the computational complexity has been considered an open
problem since 2011, when a tournament was played among combinatorial game the-
orists at the Banff International Research Station. Planar- NoGo was discovered to
be NP-hard at that meeting; our proof of PSPACE-completeness improves on that.

To prove the hardness of Planar- NoGo, we reduce from Col, which was shown
to be PSPACE-hard in Theorem 1. The reduction uses only two gadgets.

Theorem 4 It is PSPACE-complete to determine whether the next player has a win-
ning strategy in Planar- NoGo.

Proof Planar- NoGo is in PSPACE, as shown in Sect. 2.3, so we only need to
show hardness. Given a Col instance G = (V, E, c), we construct a corresponding
Planar- NoGo instance G ′ = (V ′, E ′, c′).

For every vertex v ∈ V , we have the subgraph shown in Fig. 21a in G ′. We color
v the same as Col-vertex v is initially colored. Neither player can ever play at e; to
do so would remove the liberty from one of the adjacent connected components. As a
result, if v is colored, its connected component will always have a liberty.
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Fig. 21 Gadgets for
Planar- NoGo. a Col Vertex,
b Col Edge

v

e

(a) Col Vertex

x y

(b) Col Edge

Also, for each edge e = (x, y) ∈ E , we have the subgraph shown in Fig. 21b in
G ′. Here x and y are identified with v in the vertex gadgets for Col-vertices x and y,
respectively. If x and y are colored the same color, then either the Black or the White
vertex in Fig. 21b will have no liberty; this is not allowed. But if x and y are opposite
colors, all is well: each is connected to a liberty because of Fig. 21a.

Every uncolored vertex in V corresponds to an uncolored vertex in V ′, and the
only other uncolored vertices in V ′ are not playable. A move in G exists just when
the corresponding move in G ′ exists. Also, this reduction clearly preserves planarity.
Thus, play in the constructed Planar- NoGo instance exactly reproduces play in the
given Col instance. ��

8 Conclusion

We have shown computational hardness results for the four planar placement games
Col, Snort, Planar- Fjords, and Planar- NoGo: all are PSPACE-complete. The
resolution of Col and Snort is of particular interest, as these classic problems have
been open for decades.

These results highlight the utility of Bounded 2CL for showing planar games hard,
especially when combined with the incentive mechanism used for Snort and Fjords;
we expect that there are many further applications awaiting once these techniques
become more widely known.

Because the reduction proving hardness for Graph- NoGo starts from Col, we
also expect that Col will be useful as the source for other reductions. Indeed, we
started with a Bounded 2CL reduction for Graph- NoGo, which also required an
incentive mechanism; the Col reduction is much simpler.

9 Future work

There are still many placement games with unknown computational complexity. In
particular, it is still unknown whether NoGo (Planar- NoGo on grid graphs) and
Fjords (Planar- Fjords on subgraphs of a hexagonal grid) are computationally
difficult. Either of these would be a large improvement over the current result. For
NoGo in particular it seems very challenging to build gadgets in a grid graph. Is that
enough of a restriction to make the game easy? Fjords may be more approachable,
as allowing subgraphs of a hexagonal grid affords much more freedom.
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Normally for game complexity one considers the decision question of whether one
player has a forced win from a given position. However, because here the game boards
(graphs) themselves have structure, we can also ask about the complexity of these
games when the graph is initially uncolored, or has only constantly many vertices
colored. The reduction for Col on general graphs in Fenner et al. (2015) does show
hardness starting from an uncolored graph, so there is hope here.

There is also a version of Snort played on a grid graph, known as Cats and
Dogs,5 so it is natural to wonder about its complexity.

Open Problem 1 Is NoGo computationally hard?

Open Problem 2 Is Fjords computationally hard?

Open Problem 3 What is the hardness of Col, Snort, Planar- Fjords, and
Planar- NoGo if the graph is initially uncolored, or has constantly many colored
vertices?

Open Problem 4 Is Cats and Dogs computationally hard?
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