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Abstract We study a q-player variation of the impartial avoidance game introduced
byAnderson andHarary,whereq is a prime. The game is played by theq players taking
turns selecting previously-unselected elements of a finite group. The losing player is
the one who selects an element that causes the set of jointly-selected elements to be a
generating set for the group, with the previous player winning. We introduce a ranking
system for the other players to prevent coalitions. We describe the winning strategy
for these games on cyclic, nilpotent, dihedral, and dicyclic groups.
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1 Introduction

The game Do Not Generate was introduced by Anderson and Harary Anderson and
Harary (1987). In this game, two players take turns selecting previously unselected
elements of a finite group until the group is generated by the jointly-selected elements.
The losing player is the first player who selects an element that causes the jointly-
selected elements to generate the entire group. The strategies were classified in Barnes
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(1988), and the strategies and nim-numbers for these games were classified in Benesh
et al. (2016a) and Benesh et al. (2016b). Do Not Generate cannot be played on the
trivial group, as in this case the empty set generates the entire group implying there are
no legal moves for either player. Thus, we will assume that all groups are nontrivial.
We modify this game to include q players for a prime q, and we use the notation
DNGq(G) to denote the game on a nontrivial finite group G with q players.

If n is an integer, we define [n]q to be the unique integer i in {1, 2, 3, . . . , q} such
that n ≡ i mod q. We will simply write [n] for [n]q if there is no risk of confusion, and
we will write [H ] instead of [|H |] if H is a group. Additionally, let P1, P2, . . . , Pq
denote the q players of DNGq(G) for a nontrivial finite group G, where Pi makes the
i th move of the game.

We give two results on DNGq(G) on finite nilpotent groups G, which are finite
groups that can be written as a direct product of their Sylow subgroups. The first is a
special case of the second, and d(G) denotes the minimum size of a generating set of
a group G.
Theorem 7 Let G be a nontrivial finite cyclic group of order n. Let p be a prime divisor
of n such that [n/p] is minimal. Then P[n/p]has a winning strategy in DNGq(G).
Theorem 12 Let Gbe a nontrivial finite nilpotent group. If qis a prime that divides
|G|,then the winner of DNGq(G)is

1. Pj if |G| ≡ jq mod q2 for some j ∈ {1, 2, . . . , q − 1} and d(G) ≤ j
2. Pqif |G| ≡ jq mod q2 for some j ∈ {1, 2, . . . , q − 1} and d(G) > j
3. Pqif |G| ≡ 0 mod q2.

If we are considering DNG3(G), we can be more specific than the previous result.
Corollary 13 Let G be a nontrivial finite nilpotent group, and let Hbe the direct
product of Sylow r -groups of Gsuch that r ≡ 1 mod 3and Kbe the direct product of
Sylow t-groups of G such that t ≡ 2 mod 3. Then for DNG3(G),

1. P1has a winning strategy in the following cases.
(a) |G| ≡ 1 mod 3 and 2d(H) ≥ d(K ) + 1
(b) |G| ≡ 2 mod 3 and 2d(K ) ≥ d(H) + 1
(c) |G| ≡ 3 mod 9 and d(G) = 1

2. P2has a winning strategy in the following cases.
(a) |G| ≡ 1 mod 3 and 2d(H) < d(K ) + 1
(b) |G| ≡ 2 mod 3 and 2d(K ) < d(H) + 1
(c) |G| ≡ 6 mod 9 and d(G) ≤ 2

3. P3has a winning strategy in the following cases.
(a) |G| ≡ 0 mod 9
(b) |G| ≡ 3 mod 9 and d(G) ≥ 2
(c) |G| ≡ 6 mod 9 and d(G) ≥ 3

Our final result is about dihedral and dicyclic groups, where dicyclic groups are
generalizations of the quaternion group of order 8.
Theorem 15 Let Gbe a dihedral group or dicyclic group and define

W = {[|G|/p] : p | |G|, p odd}
X = {[|G|/p] : p | |G|, p odd, [|G|/p] �= 1}
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We let m = minWif W �= ∅and m′ = min Xif X �= ∅.Then for DNGq(G),

1. P[|G|/2] has a winning strategy if one of the following is true.
(a) |G| = 2k for some k.
(b) [|G|/2] ≤ m
(c) 1 = m < [|G|/2], X = ∅, and |G|/2 is even
(d) 1 = m < [|G|/2] ≤ m′, X �= ∅

2. Pmhas a winning strategy if one of the following is true.
(a) 1 < m < [|G|/2]
(b) m = 1, X = ∅, and |G|/2 is odd

3. Pm′has a winning strategy if 1 = m < m′ < [|G|/2] and X �= ∅.

2 Preliminaries

We are generalizing a 2-player game to a q-player game for a prime q ≥ 2. This
introduces the possibility of the players forming coalitions, which greatly adds to
the complexity of the game. Such games were studied in Li (1978), Propp (2000),
and Straffin (1985), with various strategies for reducing the complexity. We adopt the
convention from Li (1978), which is described next.

We will call the players P1, . . . , Pq , where Pi makes the nth move if and only if
n ≡ i mod q. If Pm makes the last legal move, we say that Pm wins, and we rank each
player in the following order:

Pm, Pm+1, Pm+2, . . . , Pq , P1, P2, . . . , Pm−1.

Thus, Pm wins, Pm+1 is runner-up, Pm+2 is the second runner-up, and so on. Thus,
if Pm wins, then Pi ends up in [i −m + 1]th place. We will assume that each Pi plays
optimally to optimize the Pi ’s rank at the end of the game by minimizing [i −m + 1].

The intuition for the game DNGq(G) on a nontrivial finite group G follows. Once
the game is over, theq playerswill realize that they simply took turns selecting elements
from a single maximal subgroup M , although they may not realize what M is early
in the game. To see this, consider that if the elements X := {x1, . . . , xn} have been
selected after the nth turn of the game, then one considers the subgroup H := 〈X〉 to
determine whether the game is over. If H < G, play continues. Because G is a finite
group, H is contained in a maximal subgroup M . The [n + 1]st player will be able to
avoid losing on the (n + 1)st turn exactly when X �= M by selecting any g ∈ M\X .
If X = M , then 〈X ∪ {h}〉 = G for any h ∈ G\X .

Thus, for every DNGq(G) game, there will be a unique maximal subgroup M such
that every element of M will be selected if the game is played optimally; let M denote
this maximal subgroup. We can now determine the outcome of the game according to
the value of [M].
Lemma 1 For any nontrivial finite group G, P[M] wins DNGq(G).

Proof We can use the Division Algorithm to write |M| = nq + r for some 0 ≤ r ≤
q − 1. Then we see that each of the q players contributes n elements to the pool of
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Fig. 1 This is an optimally
played game for DNG3(G) on
G := D8 × Z3 with
D8 = 〈r, f 〉 of order 8 and
Z3 = {0, 1, 2}. Notice that the
game is determined with the
selection of (f, 0), since that
guarantees that |M | will be
8 ≡ 2 mod 3, guaranteeing a
victory for P2 by Lemma 1

Player Element selected Subgroup generated

1 (r, 0) Z4
2 (f ,0) D8
3 (e, 0) D8
1 (r2, 0) D8
2 (rf, 0) D8
3 (r3f, 0) D8
1 (r3, 0) D8
2 (r2f, 0) D8
3 g ∈ G \ D8 × {0} G

Fig. 2 This is an optimally
played game for DNG3(G) on
G := Z2 × Z2 × Z3 with
Z2 = {0, 1} and Z3 = {0, 1, 2}.
Notice that the game is
determined with the selection of
(0, 0, 1), since that guarantees
that |M | will be divisible by 3,
guaranteeing a victory for P3 by
Lemma 2

Player Element selected Subgroup generated

1 (1, 0, 0) Z2
2 (0,0,1) Z2 × Z3
3 (0, 0, 2) Z2 × Z3
1 (1, 0, 1) Z2 × Z3
2 (0, 0, 0) Z2 × Z3
3 (1, 0, 2) Z2 × Z3
1 g ∈ G \ Z2 × {0} × Z3 G

selected elements, and the first r players get to select an additional element of M .
Therefore, Pr+1 must select an element outside of M , and hence generates the group
and loses. Because r = [M] if r > 0 and Pq wins if r = 0, we see that P[M] wins
DNGq(G).

The following lemma describes Pq ’s advantage, noting that Cauchy’s Theorem
guarantees that an element of order q exists.

Lemma 2 Let G be a nontrivial finite group G and X = {x1, . . . , x j } denote the set
of elements selected by P1, . . . , Pj . If 〈X〉 < G and X contains an element of order
q, then Pq wins DNGq(G).

Proof Since X ⊆ M , M will contain an element of order q. By Lagrange’s Theorem,
q divides |M|. By Lemma 1, P[M] = Pq wins.

Let D8 denote the dihedral group of order 8. Figure 1 shows an optimally played
game of DNG3(G) for the nilpotent group G := D8 × Z3, where P2 wins with the
help of P1 by Lemma 1. Figure 2 shows an optimally played game where P3 wins on
DNG3(G) on G := Z2 × Z2 × Z3 by Lemma 2, with help from P2.

Let d(G) denote the minimum size of a generating set of a group G. We end with
a couple of general results.

Proposition 3 If G is a finite group such that q divides |G| and d(G) ≥ q + 1, then
Pq has a winning strategy in DNGq(G).

Proof Suppose that Pi selects xi for 1 ≤ i ≤ q − 1. If there is a i such that xi has
order q, then Pq wins by Lemma 2. So suppose that none of the xi have order q. By
Cauchy’s Theorem, there is an element t of order q in G, and 〈x1, . . . , xq−1, t〉 < G
since d(G) ≥ q + 1. Then Pq wins by Lemma 2.
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We now discuss some qualities of groups where Lemma 2 applies, which will allow
us topartially generalize the results aboutDNG2(G) fromBenesh et al. (2016b).Before
stating the results for DNG2(G), we state a definition.

Definition 4 Let G be a noncyclic finite group, and denote the set of maximal sub-
groups ofG byMG .We say that a subsetX ofMG n-covers G if for every n elements
g1, . . . , gn ∈ G, there is a maximal subgroup M ∈ X such that g1, . . . , gn ∈ M .

One of the main results of Benesh et al. (2016b) about DNG2(G) is below.

Corollary 5 [Benesh et al. (2016b), Corollary 5.5] If G is a noncyclic group of even
order, then the second player has a winning strategy if and only if the set of maximal
subgroups of even order 1-covers G.

We let Mq
G be the set of maximal subgroups of G with orders divisible by q. The

next proposition is a first approximation for a DNGq(G) version of the Corollary 5.

Proposition 6 Let G be a finite noncyclic group. IfMq
G j-covers G, then Pi does not

have a winning strategy for 1 ≤ i ≤ j for DNGq(G). In particular, Pq has a winning
strategy if Mq

G (q − 1)-covers G. Additionally, if Mq
G does not 1-cover G, then Pq

does not have a winning strategy for DNGq(G).

Proof Suppose that Mq
G j-covers G and Pi initially selects an element xi of G for

1 ≤ i ≤ j . Because Mq
G j-covers G, there is a maximal subgroup M ∈ Mq

G such
that x1, . . . , x j ∈ M . Since Pj+1 prefers Pq to win over Pi for 1 ≤ i ≤ j , Pj+1
could prevent such Pi from winning by selecting an element t of M of order q, which
would result in a win for Pq by Lemma 2. Since Pj+1 may have a better strategy than
selecting t , we conclude that Pk will win for some j + 1 ≤ k ≤ q. So if j = q − 1,
then Pq wins.

Now assume thatMq
G does not 1-cover G. Recall that P1 prefers any player to win

over Pq . Since Mq
G does not 1-cover G, P1 can choose an element not contained in

∪Mq
G . Then M /∈ Mq

G , so Pq does not win by Lemma 1. 
�

3 Cyclic groups

We start by considering a cyclic group G with generator g and order n. In the case
of cyclic groups, P1 can determine M by selecting gp on the first move to generate
a maximal subgroup of order n/p for some prime p. This allows us to conclude the
following.

Theorem 7 LetG beanontrivial finite cyclic groupof order n. Let p be a primedivisor
of n such that [n/p] is minimal. Then P[n/p] has a winning strategy in DNGq(G).

Proof By Lemma 1, it suffices to consider the maximal subgroups of G. It is well-
known that every maximal subgroup M of G has order n/t for some prime t if G is
cyclic, so we conclude that the winner will be P[n/t] for some t . Because G is cyclic,
every subgroup is also cyclic, and P1 can optimize its ranking by selecting a generator
of a maximal subgroup of order n/p such that [n/p] is minimal. Thus, P[n/p] wins by
Lemma 1.
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Corollary 8 Let G be a nontrivial finite cyclic group of order n, and suppose that the
game is DNG3(G).

1. If n ≡ 1 mod 3 and there is a prime number p dividing n such that p ≡ 1 mod 3,
then P1 has a winning strategy.

2. If n ≡ 1 mod 3 and every prime number p dividing n is such that p ≡ 2 mod 3,
then P2 has a winning strategy.

3. If n ≡ 2 mod 3, then P1 has a winning strategy.
4. If n ≡ 0 mod 9, then P3 has a winning strategy.
5. If n ≡ 3 mod 9, then P1 has a winning strategy.
6. If n ≡ 6 mod 9, then P2 has a winning strategy.

Proof If n ≡ 1 mod 3, then [n/p] = 1 if p ≡ 1 mod 3 and [n/p] = 2 otherwise.
Thus, P1 wins if there is a prime p such that [n/p] = 1 and P2 wins otherwise when
n ≡ 1 mod 3. If n ≡ 2 mod 3, then there must be a prime p such that p ≡ 2 mod 3.
Then [n/p] = 1 and P1 wins.

So assume that n ≡ 0 mod 3, in which case [n/p] = 3 for all primes p �= 3. If
n ≡ 0 mod 9, then [n/3] = 3 as well, and hence P3 wins regardless of strategy. If
n ≡ 3 mod 9, then [n/3] = 1 and P1 wins. If n ≡ 6 mod 9, then [n/3] = 2, and P2
wins because P1 prefers P2 over P3.

4 Nilpotent groups

Recall that nilpotent groups are a generalization of abelian groups and have the fol-
lowing properties.

Theorem 9 [Isaacs (2009), Theorem 8.19] Let G be a finite group. Then the following
are equivalent.

1. G is nilpotent.
2. Every maximal subgroup of G is normal in G.
3. G is isomorphic to a direct product of its Sylow subgroups.

Proposition 10 [Isaacs (2009), Problem 8.11] If M is a maximal subgroup of a finite
nilpotent group G, then |M | = |G|/p for some prime divisor p of |G|.
Corollary 11 If p is a prime and G is a nontrivial finite p-group of order pn, then
P[pn−1] wins DNGq(G).

Proof Every maximal subgroup has order |G|/p = pn−1, so P[pn−1] wins by
Lemma 1.

We will generalize Theorem 7 in the theorem below by determining the outcomes
whend(G) ≥ 2 in the casewhereq divides |G|. ByLemma1, the orders of themaximal
subgroups are key to proving the next result. Thus, we will first use Proposition 10 to
determine the orders of the maximal subgroups, and then we will determine which of
those orders can be the order of M .
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Theorem 12 Let G be a nontrivial finite nilpotent group. If q is a prime that divides
|G|, then the winner of DNGq(G) is

1. Pj if |G| ≡ jq mod q2 for some j ∈ {1, 2, . . . , q − 1} and d(G) ≤ j
2. Pq if |G| ≡ jq mod q2 for some j ∈ {1, 2, . . . , q − 1} and d(G) > j
3. Pq if |G| ≡ 0 mod q2.

Proof If d(G) ≥ 1 and |G| ≡ 0 mod q2, then |G|/p ≡ 0 mod q for all such p
dividing |G|, including p = q. Therefore, Pq wins in this case, regardless of strategy.

So suppose |G| ≡ jq mod q2 for some j ∈ {1, . . . , q−1}. Then for everymaximal
subgroup M , [M] = [|G|/p] = j if p = q and [M] = q otherwise. Thus, Pj and Pq
are the only two players who can win, with Pk preferring Pj to win for k ∈ {1, . . . , j}
and Pl preferring Pq to win for l ∈ { j + 1, j + 2, . . . , q}.

We can write G = Q × H for some subgroup Q of order q and subgroup H such
that q does not divide |H |. Note that Q is cyclic, so d(G) = d(H) since G = Q × H
and gcd(|Q|, |H |) = 1. If d(H) = d(G) ≤ j , then P1 to Pd(H) will select generators
of H with their first moves, with H a maximal subgroup of order |G|/q. Thus, Pj will
win.

If d(H) = d(G) > j , then suppose that P1 to Pj select elements x1, . . . , x j ∈ G
with X := 〈x1, . . . , x j 〉 with their first moves. If q divides |X |, then Pq will win by
Lemma 1. If q does not divide |X |, then X is a subgroup of H . But d(H) > j , so X
is a proper subgroup of H . Since Pj+1 prefers Pq to win, Pj+1 can select an element
t ∈ G of order q, yielding a proper subgroup isomorphic to Q × X < Q × H = G.
Thus, q divides |〈x1, . . . , x j , t〉| and Pq wins by Lemma 2.

Note that Theorem 12 agrees with Theorem 7 for cyclic groups.

Corollary 13 Let G be a nontrivial finite nilpotent group, and let H be the direct
product of all Sylow ri -groups of G such that ri ≡ 1 mod 3 and K be the direct
product of Sylow t j -groups of G such that t j ≡ 2 mod 3. Then the following is true
for DNG3(G).

1. P1 has a winning strategy in the following cases.
(a) |G| ≡ 1 mod 3 and 2d(H) ≥ d(K ) + 1
(b) |G| ≡ 2 mod 3 and 2d(K ) ≥ d(H) + 1
(c) |G| ≡ 3 mod 9 and d(G) = 1

2. P2 has a winning strategy in the following cases.
(a) |G| ≡ 1 mod 3 and 2d(H) < d(K ) + 1
(b) |G| ≡ 2 mod 3 and 2d(K ) < d(H) + 1
(c) |G| ≡ 6 mod 9 and d(G) ≤ 2

3. P3 has a winning strategy in the following cases.
(a) |G| ≡ 0 mod 9
(b) |G| ≡ 3 mod 9 and d(G) ≥ 2
(c) |G| ≡ 6 mod 9 and d(G) ≥ 3

Proof The results follow from Theorem 12 if 3 divides |G|, so we may assume that 3
does not divide |G|. Thus, we may write G = H × K , and P3 cannot win because no
maximal subgroup has order divisible by 3. Then P3 will help P1 and, after the first
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two elements are selected, P1 effectively selects two elements for every element P2
selects.

Suppose first that |G| ≡ 1 mod 3. Note that since |H | and |K | are coprime, the
maximal subgroups of G have the form L × K and H × J for maximal subgroups
L of H and J of K by Thévenaz (1997, Lemma 1.3). Since P1 wants [M] = 1, P1
wants |M| = |G|/ri for some i . In other words, P1 wants {e} × K ≤ M . Therefore,
P1 and P3 should select elements of the form (e, k) ∈ H × K where e is the identity
of H and k is an element of a generating set of minimal size of K . Similarly, P2 will
select elements of the form (h, e′) where e′ is the identity of K and h is an element
of a generating set of H of minimal size. Because P1 and P3 each get to choose a
generator of K for every generator of H that P2 chooses, we see after some simple
algebra that P1 (with P3’s help) will be able to generate K before P2 can generate
H if and only if 2d(H) ≥ d(K ) + 1. A similar argument shows that P1 wins when
|G| ≡ 2 mod 3 if and only if 2d(K ) ≥ d(H) + 1.

5 Dihedral and dicyclic groups

Let D2n denote a dihedral group of order 2n and Q4n denote the dicyclic group of order
4n, which has the presentation 〈a, x | a2n = 1, x2 = an, x−1ax = a−1〉 where 1 is
the identity of Q4n . Note that Q8 is isomorphic to the quaternion group. Additionally,
D2 ∼= Z2 × Z2 ∼= Q4 if n = 1, and D2 is not usually considered a dihedral group
and Q4 is not usually considered a dicyclic group. However, the results below hold
for n = 1, so we will allow for n = 1.

Notice that both D2n and Q4n have a cyclic subgroup C of index 2 such that every
element not in C acts on C by inversion. We start with a statement about the maximal
subgroups of certain metacyclic groups that are similar to D2n and Q4n .

Proposition 14 Let G be finite group with a cyclic subgroup C of index 2 such that
every g ∈ G\C acts on C via inversion. If M is a maximal subgroup of G, then either
|M | = |G|/2 or |M | = |G|/p for some prime p dividing |C |. Moreover, there is a
maximal subgroup L of each such order in G, where d(L) = 1 if L = C and d(L) = 2
otherwise.

Proof Let M be a maximal subgroup ofG. If M ≤ C , then M = C with |G : M | = 2.
Then C is a maximal subgroup of order |G|/2 with d(C) = 1.

So assume that M is not contained inC , let H = M∩C , and let t be any element of
order 2 in M\C . The element t acts by inversion on all elements of C , so t normalizes
H and hence H〈t〉 is a subgroup of M . We will show that M = H〈t〉. It is clear
that H〈t〉 ≤ M , so it suffices to show that M is contained in H〈t〉. Let x ∈ M . If
x ∈ M ∩ C = H , then x ∈ H〈t〉. So assume that x is not in C . Since G = C〈t〉, we
see that x = ct for some c ∈ C . Then c = (ct)t = xt ∈ M , so c ∈ M ∩ C = H and
x = ct ∈ H〈t〉. Therefore, M ≤ H〈t〉, and we conclude that M = H〈t〉.

If H is not maximal inC , then there is proper subgroup K ofC properly containing
H . Because t acts by inversion on all of C , we have M = H〈t〉 < K 〈t〉 < C〈t〉 = G,
which contradicts the maximality of M . Therefore, H is maximal in C and has order
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|C |/p for some prime divisor p of |C |. Then

|M | = |H〈t〉| = |H ||〈t〉|/|H ∩ 〈t〉| = |H ||〈t〉| = (|C |/p)(2) = |G|/p.

Finally, let p be an odd prime divisor of |G|. Then p divides |C |. Because C is
cyclic, it has a maximal subgroup D of order |C |/p. Then L := D〈t〉 is a maximal
subgroup of G of order |G|/p for any t ∈ G\C . Since L = 〈D, t〉 and D is cyclic,
d(L) = 2.

We can now again determine the outcomes of the avoidance game on dihedral and
dicyclic groups by considering the orders of maximal subgroups.

Theorem 15 Let G be a dihedral group or dicyclic group and define

W = {[|G|/p] : p divides |G|, p odd}
X = {[|G|/p] : p divides |G|, p odd, [|G|/p] �= 1}

We let m = minW if W �= ∅ and m′ = min X if X �= ∅. Then for DNGq(G),

1. P[|G|/2] has a winning strategy if one of the following is true.
(a) |G| = 2k for some k.
(b) [|G|/2] ≤ m
(c) 1 = m < [|G|/2], X = ∅, and |G|/2 is even
(d) 1 = m < [|G|/2] ≤ m′, X �= ∅

2. Pm has a winning strategy if one of the following is true.
(a) 1 < m < [|G|/2]
(b) m = 1, X = ∅, and |G|/2 is odd

3. Pm′ has a winning strategy if 1 = m < m′ < [|G|/2] and X �= ∅.
Proof If |G| = 2k for some k, then every maximal subgroup of G has order 2k−1 by
Proposition 14. Thus, P[|G|/2] will win. So suppose that |G| is not a power of 2. Then
an odd prime divides |G|, so W is nonempty and m is defined.

LetC denote the cyclic subgroup of order |G|/2. By Proposition 14, Pk will win for
some k = [|G|/p] for a prime p that divides |G|, and P1 will prefer that k is [|G|/2]
if |G|/2 ≤ m and m otherwise. Because C has order |G|/2, P1 will select a generator
of C on the first move if [|G|/2] ≤ m, so P[|G|/2] will win in this case.

So suppose that m < [|G|/2]. This means that P1 wants Pm to win, and thus will
help generate a maximal subgroup of order |G|/p for some odd p dividingG. Let p be
an odd prime dividing |G|. Then there is a maximal subgroup Mp of order |G|/p with
d(Mp) = 2 by Proposition 14. Since d(Mp) = 2, P1 cannot unilaterally determine
M unless M = C , which P1 does not want.

If 1 < m < [|G|/2], then P2 also prefers Pm to win. Since all maximal subgroups
are 2-generated by Proposition 14, P1, and P2 can select elements that generate a
maximal subgroup of order |G|/p such that [|G|/p] = m. Thus, Pm wins.

If 1 = m < [|G|/2], however, then P2 does not prefer Pm = P1 to win. If X = ∅,
then [|G|/p] = 1 for all odd primes p that divide |G| and P2 prefers that P[|G|/2]
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wins. If |C | = |G|/2 is odd, then P1 can pick any t ∈ G\C , which implies M will
have order |G|/p for some odd prime p dividing |C |. Then [M] = 1 and P1 wins.

If X = ∅ and n is even, then M will have order |G|/2 or |G|/p for some p dividing
|C | with [|G|/p] = 1 if p is odd. In this case, P2 prefers |M| = |G|/2. If P1 picks
an element of C , then P2 selects a generator of C to ensure that M = C . If P1
picks a t ∈ G\C , then P2 selects an element c ∈ C such that |〈c〉| = |C |/2. Then
|〈t, c〉| = |G|/2. In either case, P[|G|/2] wins.

Suppose now that 1 = m < [|G|/2] and X �= ∅. In this case, P1 could potentially
win, but P2 still prefers that anyone but P1 wins. Because X �= ∅, there is a y ∈ C
such that |C : 〈y〉| = pm′ for some prime pm′ with [|G|/pm′ ] = m′.

1. If P1 selects some x ∈ C on the first move, then because C is cyclic, P2 can select
any y ∈ C such that 〈x, y〉 = C . Then M = C and P[C] = P[|G|/2] wins.

2. If P1 selects any t ∈ G\C on the first move, then P2 selects y so that Pm′ wins.

Therefore, P1 cannot win. If [|G|/2] ≤ m′, P1’s second preference is for P[|G|/2]
to win. Then P1 can select a generator of C on the first move so that P[|G|/2] wins. If
m′ < |G|/2, then P1 and P2 both want Pm′ to win, and will select t and y as above.

Corollary 16 Let D2n be a dihedral group. Then for DNG3(D2n),

1. P1 has a winning strategy if and only if n ≡ 1 mod 3.
2. P2 has a winning strategy if and only if n ≡ 2 mod 3 or n ≡ 3 mod 9.
3. P3 has a winning strategy if and only if n ≡ 0 mod 9 or n ≡ 6 mod 9.

Proof We will use the notation from Theorem 15. If n ≡ 1 mod 3, then [|G|/2] =
[n] = 1 ≤ m, so P1 wins. If n ≡ 0 mod 9, then [|G|/2] = 3 = m, so P3 wins. If
n ≡ 3 mod 9, then [|G|/2] = 3 and [|G|/p] = [2n/p] is 2 if p = 3 and 3 otherwise,
so m = 2. Thus, P2 wins if n ≡ 3 mod 9 since 1 < 2 = m < 3 = [|G|/2].

If n ≡ 6 mod 9, then [|G|/3] = 1 and [|G|/p] = 3 if p �= 3. This implies that
m = 1. Since n ≡ 6 mod 9, either n = 2k · 3 for some k ≥ 1 or there is an odd
prime p �= 3 that divides n. If n = 2k · 3, then X = ∅ and |G|/2 = 2k · 3 is
even, so P[|G|/2] = P3 wins by Item 1c of Theorem 15. If such an odd p exists, then
[|G|/p] = 3 �= 1 and X �= ∅. This time, P3 wins by Item 1d of Theorem 15. In either
case, P3 wins.

Now suppose that n ≡ 2 mod 3, in which case n must have a prime divisor u such
that u ≡ 2 mod 3. Additionally, 3 will not divide |M|, so P3 cannot win. However,
we see that there is no case in Theorem 15 where P1 wins since [|G|/2] = 2 is not
odd and 1 /∈ {[|G|/2],m′}. Because P3 cannot win, we conclude that P2 wins.

The proof of the next corollary exactly mirrors that of Corollary 16, and is thus
omitted. The only difference worth noting is that the cyclic subgroup of index 2 in a
dicyclic group has order 2n rather than n.

Corollary 17 Let Q4n be a dicyclic group. Then for DNG3(Q4n),

1. P1 has a winning strategy if and only if 2n ≡ 1 mod 3.
2. P2 has a winning strategy if and only if 2n ≡ 2 mod 3 or 2n ≡ 3 mod 9.
3. P3 has a winning strategy if and only if 2n ≡ 0 mod 9 or 2n ≡ 6 mod 9.
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6 Further questions

We close with some open questions.

1. What are the strategies and outcomes for groups other than cyclic, dihedral, and
nilpotent groups? Perhaps supersolvable or simple groups could be classified—
supersolvable groups are a next logical generalization of nilpotent groups, and a
lot is known about the maximal subgroups of finite simple groups.

2. Can we generalize these results for the analogous game involving n players when
n is not prime? In this case, Lemma 2 may not apply because Cauchy’s Theorem
does not guarantee an element of order n.

3. What are the winning strategies in the analogous achievement game where the
player who generates the group wins, rather than loses?

4. Can we extend the result in Proposition 6 by determining exactly who wins ifMq
G

j-covers G? This has been done in Benesh et al. (2016b) for DNG2(G), as stated
in Corollary 5.
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