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Abstract We provide a necessary and sufficient condition under which core allo-
cations of arbitrary TU-games treat substitute players equally. The core satisfies the
equal treatment property if and only if no player needs the participation of all of her
substitutes to attain her core payoffs. We show how, without the requirement of a large
number of players, this condition generalizes and unifies other sufficient conditions
proposed in the literature (in the context of large games and economies) and it helps
derive new results for particular classes of games.
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1 Introduction

Fairness and coalitional stability are two important principles in cooperative game
theory. The Shapley value is the most well-known example of a fair division of value,
while the core is the most used stability solution concept. It is well-known that the two
are not necessarily compatible outside of particular classes of games. For example, if
the game is not “convex” Shapley (1971) (or simply if the core is empty) the Shapley
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value may not be a stable allocation. This paper investigates the relationship between
the core and a weaker notion of fairness: equal treatment of equals.

Two agents in a pure-exchange economy are considered “equals” and are called
substitutes if they have the same endowments and preferences. Two players in a trans-
ferable utility (TU) game are substitutes if they contribute equally to every coalition.
A solution concept treats equal players equally—and thus satisfies the equal treatment
property (ETP)—if it assigns equal payoffs to substitute players. While the Walrasian
allocations, the Shapley value, the kernel, the nucleolus, and most well-known bar-
gaining solutions satisfy this principle, the core stands out as one of the few game
theoretic concepts which fails to comply with ETP; given an arbitrary TU-game, sub-
stitute players may receive different payoffs at some core allocation. On the other
hand, it is known that the unequal treatment of substitute players at (approximate)
core payoffs is attenuated as the number of players in the game increases. This sug-
gests that the increased competition among coalitions to lure players away by offering
them valuable alternative options is central to eliminating inequality between substi-
tute players. Our paper makes this idea precise by deriving a necessary and sufficient
condition for the core of an arbitrary TU-game to satisfy ETP.

The equal treatment property, as formulated above, may be seen as too strong of
a requirement for a multi-valued solution concept such as the core.1 Aumann (1987)
argues, for example, that symmetry is a more reasonable requirement in this case. The
core is indeed symmetric in the sense that interchanging two substitute players does not
change the core as a whole. We think that both notions are important and meaningful
in the context of a multi-valued solution concept like the core. The following analogy
is useful in drawing the comparison between the two. If each of n identical agents is
offered an equal chance of winning a prize according to the outcome of throwing an n-
sided die, then agents are treated equally ex-ante, but not necessarily ex-post. Throwing
the die is, therefore, an “equal opportunity” mechanism which may result in unequal
allocations. Similarly, symmetry guarantees that the core, as a policy instrument, is
“ex-ante fair” to substitute players, while ETP insures its “ex-post fairness.” The
goal of this paper is to explain what drives such “ex-post” equal treatment at a core
allocation.

Dating back to Edgeworth (1881), and Debreu and Scarf (1963), it is known that
equal treatment is achieved at a core allocation of an economy when the number of
agents of each type is the same (and some convexity and monotonicity conditions are
satisfied). What drives the result is the following argument: if one player of a certain
type is the worst treated among his/her peers, then that player could form a coalition
with all worst treated individuals of each type and be better off. It is also known that this
argument fails if the sets of agents’ types are of different cardinality (with their largest
common divisor equal to 1). In that case, the coalition of worst treated individuals
may not have enough resources to support an improving allocation and therefore, the
core of such an economy may fail to satisfy ETP. The fundamental difference between
these two cases, which triggers the differential treatment of substitute players, is the
availability of outside options (for every player of a certain type).

1 We thank an associate editor for raising this point.
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We show how this simple insight obtained from replica economies can be translated
to arbitrary TU-games and used to derive a necessary and sufficient condition for
the equal treatment of equals at the core allocations of such games (or some core
extensions, when the core is empty). We prove that the core of a game satisfies ETP
if and only if no player needs the participation of all of her equals (or substitute
players) in order to attain her core payoffs. Intuitively, not needing all of a player’s
substitutes boils down to not needing any particular substitute to attain a core payoff.
The availability of outside options without depending on a particular player, a concept
reminiscent of objections in the context of bargaining sets Aumann and Maschler
(1964), is precisely what allows a player to improve upon any payoff distribution in
which a substitute fairs better than her.

A similar idea appears in the context of equilibrium pricing of perfect complement
and perfect substitute goods. If x ∈ R

n+ is a consumption vector of n goods and
u : R

n+ → R denotes the utility of an agent, both perfect complements (goods i, j
for which u(x) depends on (xi , x j ) only through min{xi , x j }) and perfect substitutes
(u(x) depends on (xi , x j ) through xi + x j ) contribute to the agent’s utility equally, in
the sense that u(x) = u(xi↔ j ), where xi↔ j is the consumption bundle obtained from
x by swapping xi and x j . In that sense, perfect complements and perfect substitutes
are similar to substitute players in a TU-game. This analogy is made precise in direct
markets Shapley and Shubik (1969) and assignment markets Shapley and Shubik
(1971), for which the following core equivalence result holds: the sets of Walrasian
equilibrium prices of those markets coincide with the cores of their associated games.
Yet, perfect complements (which have to be consumed together to generate utility
for the agent) need not be priced equally at a Walrasian equilibrium, while perfect
substitutes must sell at equal prices.

The literature on cooperative games has been limited to obtaining sufficient condi-
tions for ETP to hold in the core. Furthermore, such sufficient conditions are applicable
to very specific situations: replica games of partitioning games, or games with a suf-
ficiently large number of players. On the other hand, in the context of pure-exchange
economies, Green (1972) and Khan and Polemarchakis (1978) derive a necessary
condition for identical consumers to receive identical allocations at a core outcome.
The literature on market games points out that there is a close connection between
cooperative games and economies by showing that certain subclasses of cooperative
games can be mapped, bijectively, into particular classes of economies (see, for exam-
ple, Shapley and Shubik (1969), or Garratt and Qin (2000) for mappings between
cooperative games and pure-exchange economies, and Billera (1970) or Bejan and
Gómez (2012) for production economies). Yet, the sufficient conditions appearing
in the cooperative games literature and the necessary condition for pure-exchange
economies are not directly comparable. Our paper makes this comparison possible.
We derive a condition that is both necessary and sufficient for the core of a TU-game
to satisfy ETP. When applied to quasi-linear pure-exchange economies, our condition
strengthens Green (1972) decomposability assumption; within the class of TU-games,
it weakens several proposed sufficient conditions for the ETP to hold in large games.

The idea that outside options play an important role for the equal treatment of
equal players at core allocations appeared in the literature before, in various forms.
For example, Section 5 in Wooders (2010) comments on the importance of alternative
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opportunities for achieving almost equal treatment. Wooders (1983, 2010) show that,
under certain conditions, and if a game is large enough, most equal players are treated
nearly equally at a core allocation. This means that, as the number of players in a game
increases, some substitute players receive allocations that are very close to each other,
and the fraction of those who do not shrinks to zero (see also Hildenbrand and Kirman
(1973) for similar results in the context of economies). Green (1972) shows that equal
treatment at core outcomes of an economy cannot happen unless such outcomes can be
“attained through the independent actions of two disjoint subeconomies.”We improve
upon these results in several ways. First, we weaken the condition and show that it
is enough to hold for balanced families of coalitions supporting the core allocations
(rather than partitions of the set of players). Second, we show that this new condition
is both necessary and sufficient for the equal treatment of equals in the core. Third, our
result can also be extended to non-balanced games, as our condition can be applied to
the aspiration core Bennett (1983), a non-empty core extension, and to certain types
of epsilon-cores. Finally, the condition applies to arbitrary TU-games, regardless of
the number of players in the game.

Our characterization of the games in which the core satisfies the ETP has interesting
implications in a variety of settings. We show how it can be used to obtain new
results for particular classes of games. For partitioning games Kaneko and Wooders
(1982), we obtain a new sufficient condition which is reminiscent of the “small group
effectiveness” condition used by Wooders (2010) to prove almost equal treatment at
approximate core allocations of sufficiently large replica games. Our condition, by
contrast, applies to any partitioning game and delivers exact equal treatment. On the
class of multi-assignment games, we prove that the core satisfies ETP whenever no
two players in different families are substitutes to each other. Finally, we propose a
new way of defining replica games which has the advantage that the (approximate)
core of every game along the sequence satisfies ETP. This allows for more streamlined
convergence results.

The paper is organized as follows. Section 2 introduces the definitions and notation,
and presents our main result which applies to balanced games. Section 3 extends the
results to core-like concepts defined over the space of non-balanced games. Section 4
links our characterization to the rest of the literature and shows how it applies to various
classes of games and the convergence of replica games, while Sect. 5 illustrates how
the result can be applied to quasi-linear economies.

2 TU-games

A TU-game is a pair (N , v) such that N is a finite set of playerswith cardinality n and
v : 2N → R is a function such that v(∅) = 0. The family of all TU-games is called
�. Let N denote the collection of all non-empty subsets of N . Every such subset is
called a coalition. For every S ∈ N , v(S) is called the worth of coalition S. The game
(N , v) is said to be super-additive if v(S ∪ T ) ≥ v(S) + v(T ) for every S, T ∈ N
such that S ∩ T = ∅.

A possible outcomeof the game (N , v) is represented by apayoff vector x ∈ R
N that

assigns to every player i a payoff xi . Given x ∈ R
N and S ⊆ N , let x(S) := ∑

i∈S xi ,
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with the convention that x(∅) = 0. A payoff vector x ∈ R
N is feasible for coalition S

if x(S) ≤ v(S). We say that a coalition S is able to improve upon the outcome x ∈ R
N

if x(S) < v(S). For every payoff vector x ∈ R
N , define its generating collection as

GC(x) := {S ∈ N | x(S) ≤ v(S)}, that is, the family of coalitions for which x is
feasible.

A solution concept on the set of games � is a mapping that assigns to every game
(N , v) ∈ � a (possibly empty) set of payoff vectors σ(N , v) ⊆ R

N . The core Shapley
(1955), Gillies (1959)2 is a solution concept on � defined as

C(N , v) :=
{
x ∈ R

N | x(S) ≥ v(S) ∀S ∈ N and x(N ) = v(N )
}

.

2.1 Equal treatment property

Given a game (N , v) ∈ �, two players i, j ∈ N are called substitute players if they
contribute equally to every coalition. That is, for every (possibly empty) set of players
T ⊆ N\{i, j}, v(T ∪ {i}) = v(T ∪ { j}). This equivalence relation, denoted as i ∼ j ,
partitions the set N into equivalence classes. Let A(N , v), or just A when there is no
ambiguity, be the family of all such equivalence classes. An element A ∈ A is called
a class of substitutes. For every coalition S ∈ N , let ρ(S) ∈ Z

A+ be the profile of S,
defined for every A ∈ A as ρA(S) := |S ∩ A|. Two coalitions S, T ∈ N are called
substitute coalitions if ρ(S) = ρ(T ), and we denote this by S ∼ T . Notice that S ∼ T
implies |S| = |T | and v(S) = v(T ).

Definition 2.1 Given a game (N , v) ∈ �, a payoff vector x ∈ R
N is said to satisfy

the Equal Treatment Property (ETP) over the set of players S ⊆ N in game (N , v)

if, for every i, j ∈ S, i ∼ j implies xi = x j . If no set of players S is specified, it is
understood that S = N . A set X ⊆ R

N satisfies ETP if every x ∈ X satisfies ETP.
A solution concept σ on the family of games � is said to satisfy ETP if, for every
(N , v) ∈ �, σ(N , v) satisfies ETP.

It is well known that, in general, the core does not satisfy ETP. The following
example illustrates this point.

Example 2.2 The n-player bridge game: Let (N , vnbr ) be the TU-game defined by

N = {1, . . . , n} and vnbr (S) =
[ |S|

4

]
for every S ⊆ N , where [x] denotes the greatest

integer smaller than or equal to x . All players are substitutes of each other in this game.
However, for n = 4, the core of this game coincides with the three-dimensional unit
simplex of R

4, thus violating ETP.

2.2 Balancedness and essential coalitions

A family of coalitionsB ⊆ N is called balanced if every S ∈ B can be associated with
a non-negative number λS such that, for every i ∈ N ,

∑
S∈B,S
i λS = 1. The numbers

2 We thank a referee for drawing our attention to Zhao (2017) paper and Shapley’s contribution to the
definition of the core solution concept.
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λS are called balancing weights. The game (N , v) is said to be balanced if and only if,
every balanced family B, with weights (λS)S∈B, satisfies that

∑
S∈B λSv(S) ≤ v(N ).

If all members of a balanced family are proper coalitions (that is, non-empty, strict
subsets of N ), such family is said to be proper. The balanced family B is called
optimally balanced if it maximizes

∑
S∈B λSv(S) over the set of balanced families.

Such maximum always exists and it is denoted by v̄(N ). As {N } is a balanced family,
the game (N , v) is balanced if and only if v̄(N ) = v(N ). It is well known that the
core of a game is non-empty if and only if the game is balanced Bondareva (1963),
Shapley (1967).

Definition 2.3 For every game (N , v), a coalition S∗ is said to be essential if there
exists an optimally balanced family of coalitions B, with associated weights (λS)S∈B,
such that S∗ ∈ B ⊆ N \{N } and λS∗ > 0. The set of essential coalitions is denoted by
Ess(N , v).

Essential coalitions play a particularly important role in our ETP result. The reason
is that, as the following lemma explains, a player belonging to an essential coalition
has a different way, other than the formation of the grand coalition, of achieving her
core payoffs. Next section shows how these outside options prevent unequal treatment
of substitute players.

Lemma 2.4 If x ∈ C(N , v) and S∗ is an essential coalition, then x(S∗) = v(S∗).

Proof Let B be an optimally balanced family of coalitions with associated weights
(λS)S∈B, such that S∗ ∈ B ⊆ N \{N } and λS∗ > 0. Assume that x(S∗) > v(S∗).
Since x(S) ≥ v(S) for every S ∈ B, multiplying each of these inequalities by the
corresponding λS and adding over the members of B we obtain that:

v(N ) = x(N ) =
∑

S∈B
λSx(S) >

∑

S∈B
λSv(S) = v̄(N ),

where the inequality is a consequence of λS∗ being strictly positive.
However, this is a contradiction to v̄(N ) = v(N ), and therefore x(S∗) = v(S∗). ��
Lemma 2.5 If S∗ is an essential coalition and S∗ ∼ T ∗, then T ∗ is also essential.

Proof Let B be an optimally balanced family of coalitions with associated weights
(λS)S∈B, such that S∗ ∈ B ⊆ N \{N } and λS∗ > 0. Consider a bijection φ : N −→ N
such that:

1. For every i ∈ N , i ∼ φ(i).
2. φ(S∗) = T ∗.

Then,

∑

S∈B
λSv(φ(S)) =

∑

S∈B
λSv(S) = v̄(N ),

and thus T ∗ = φ(S∗) must be essential. ��
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2.3 Main characterization

Our main result characterizes the set of games for which the core satisfies ETP.

Theorem 2.6 Let (N , v) be a balanced game. Its core satisfies ETP if and only if,
for every class of substitute players A ∈ A with |A| ≥ 2, there exists an essential
coalition S∗

A that contains at least one but not all members of A.

Proof Sufficiency: Let A ∈ A be a multiple-player class of substitutes such that the
essential coalition S∗

A contains at least one but not all members of A. We will show
that every x ∈ C(N , v) satisfies ETP over any such A.

Pick arbitrary players i ∈ S∗
A ∩ A and j ∈ A\S∗

A. Thus, i ∼ j , S∗
A ∼ (S∗

A\{i})∪{ j}
and, due to Lemma 2.5, (S∗

A\{i}) ∪ { j} is also an essential coalition. We now use
Lemma 2.4 to conclude that any payoff vector x such that xi < x j cannot belong to
the core. Indeed, x can be improved upon by S∗ because

v(S∗) = v((S∗\{i}) ∪ { j}) = x((S∗\{i}) ∪ { j}) > x(S∗).

To prove necessity we need the following result:

Lemma 2.7 For every balanced game (N , v), there exists a vector x̄ ∈ C(N , v) such
that GC(x̄)\{N } ⊆ Ess(N , v).

Proof of the lemma Consider the game (N , vε
ess) defined as vε

ess(S) = v(S) if S is
essential or S = N , and vε

ess(S) = v(S) + ε otherwise. We claim that, for ε small
enough , v̄ε

ess(N ) = v(N ). If this claim is proved, then vε
ess is balanced and any vector

x̄ ∈ C(N , vε
ess) also belongs toC(N , v). Then, if x̄(S) = v(S), it must be the case that

S is essential, otherwise the definition of vε
ess would imply that x̄(S) < v(S) + ε =

vε
ess(S), a contradiction.
We detail next the construction of ε. A balanced family of coalitions is said to be

minimal balanced if no proper subcollection is balanced. It is known that (see Kannai
1992): (i) If B ⊆ N is minimal balanced, then |B| ≤ n and its corresponding weights
are rational, strictly positive, and unique, (ii) There is only a finite number of minimal
balanced families of coalitions, and (iii) There is a minimal balanced family B with
associated weights (λS)S∈B such that

∑
S∈B λSv(S) = v̄(N ) = v(N ).

Consequently, it is always possible to choose ε so that

0 < ε <
v̄(N ) − ∑

S∈B′ λSv(S)

n

for every minimal balanced collection B′ that is not optimally balanced. For any such
B′, using that |B′| ≤ |N |, we have:

∑

S∈B′
λSv

ε
ess(S) ≤

∑

S∈B′
λSv(S) + ε

∑

S∈B′
λS ≤

∑

S∈B′
λSv(S) + |N |ε < v̄(N ).

Hence v̄ε
ess(N ) will be achieved by using a minimal and optimally balanced family

of coalitions in the original game v. It follows that v̄ε
ess(N ) = v̄(N ) = v(N ), as we

wanted. ��
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Necessity: Suppose that a multiple-player class of substitutes A ∈ A is such that,
if coalition S∗ is essential, then S∗ ∩ A ∈ {∅, A}. We will show that, in such case,
C(N , v) cannot satisfy ETP over A.

Let x̄ ∈ C(N , v) be as described in Lemma 2.7. By assumption, not every proper
coalition S satisfies x̄(S) = v(S), otherwise every proper coalition would be essential
and some essential coalition would separate the elements of A. Therefore, we can
choose ε such that

0 < ε < min
{
x̄(S) − v(S) | S ∈ N and x̄(S) �= v(S)

}
.

Let i, j ∈ A be such that i �= j and define the payoff vector x̂ as follows. Let
x̂i = x̄i + ε, x̂ j = x̄ j − ε and, for every k ∈ N\{i, j}, define x̂k = x̄k . Our choice
of ε implies that x̂(S) > v(S) whenever x̄(S) > v(S). Also, if x̄(S) = v(S) and
S ∈ N \{N }, S is essential so S ∩ A ∈ {∅, A} and x̂(S) = v(S). Clearly x̂(N ) =
x̄(N ) = v̄(N ), so x̂ ∈ C(N , v). However, x̄ and x̂ cannot simultaneously satisfy ETP,
reaching a contradiction. ��

Themaindriver of the sufficiencyproof is the existenceof anoutside option (namely,
forming coalition S∗) that prevents a given player to be treated unfairly with respect
to her substitutes. Our result reinforces the idea that the existence of outside options
is intrinsically related to equal treatment.

For example, going back to the bridge game (see Example 2.2), four bridge players
do not have alternative options and thus are vulnerable to be treated differently. This
does not happen in the 8-player bridge game, whose core is a singleton assigning the
same amount to every player. Intuitively, as the number of players in a game increases,
the opportunities for outside options increase as well, thus explaining why inequality
tends to disappear in large enough games.

The same type of dynamic is at work in the well-known gloves game.

Example 2.8 Consider the gloves game with l ≥ 1 left gloves and r ≥ 1 right gloves,
denoted by (N , v

l,r
gl ). The set of players is N = L ∪ R where |L| = l, |R| = r , and

L ∩ R = ∅. For every S ⊆ N define v
l,r
gl (S) = min{|S ∩ L|, |S ∩ R|}. As long as

l ≥ 2 (or r ≥ 2) all players in L (respectively R) form a class of substitutes. To obtain
a positive payoff, each player in L (respectively R) does not need to associate with
her substitutes and the conditions of Theorem 2.6 are satisfied.Thus, its core (which
is known to be non-empty) satisfies ETP. Notice that, if r = l = 1 then ETP is not
satisfied. In this case, even though each player owns a different type of glove, they
are substitutes of each other. The only option each player has is to associate with her
substitute, explaining how the conditions of Theorem 2.6 fail to hold.

The main idea behind the necessity portion of the theorem is that a “thick” core
cannot satisfy ETP. If the relative interior of the core is non-empty, it is possible to
take away a small amount of payoff from a player and give it to one of her substitutes
without leaving the core. However, the new vector does not satisfy ETP. In a nutshell,
we show that violating our condition leads to a “thick” core.

How “thin” must the core be to satisfy ETP? The previous discussion might suggest
that, if a game satisfies the condition of Theorem 2.6 and thus ETP holds at every core
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allocation, then the projection of the core on a familyA of substitute players must be
a singleton.3 As the next example illustrates, that need not be true.

Example 2.9 Consider the four-player game ({1, 2, 3, 4}, v2,2gl ). Say that players 1

and 2 own a right glove while players 3 and 4 own a left glove. Then, C(N , v
2,2
gl ) =

{(a, a, 1 − a, 1 − a) | a ∈ [0, 1]} and it satisfies ETP, but its projection on {1, 2} is
not a singleton.

3 Empty-core games

A number of important economic settings (indivisibilities, non-convexities and exter-
nalities among others) give rise to non-balanced games. The next two subsections
describe alternative solution concepts for empty-core games. The approximate (or
epsilon) core approach makes it harder for proper coalitions to form and improve
upon payoff vectors. On the other hand, the aspiration approach relaxes the feasibility
condition, so that the grand coalition is no longer required to form. The remaining sub-
sections extend our results for both settings, making our characterization applicable
to general TU-games.

3.1 Approximate cores

One way to tackle empty-core games and enforce the formation of the grand coalition
is to make it more costly for proper coalitions to form by “taxing” their members.With
a large enough tax, every TU-game will eventually have feasible payoff vectors which
cannot be improved upon by any coalition. The literature on this type of approximate
cores focuses on asymptotic results showing that, as the number of players grows, the
tax needed to prevent an empty core converges to zero.

The approximate cores (see Shapley and Shubik 1966) are defined as follows. For
every ε ∈ R the strong ε-core of (N , v) is

Cε(N , v) :=
{
x ∈ R

N | x(N ) = v(N ) and x(S) ≥ v(S) − ε, ∀S ∈ N
}

and the per-capita (or weak) ε-core is

Cε(N , v) :=
{
x ∈ R

N | x(N ) = v(N ) and x(S) ≥ v(S) − ε|S|, ∀S ∈ N
}

.

Note that Cε(N , v) = C(N , vε) and Cε(N , v) = C(N , vε), where (N , vε) and
(N , vε) are defined as follows: vε(N ) = vε(N ) = v(N ), vε(S) = v(S) − ε, and
vε(S) = v(S) − ε|S|, for every S � N . Then Cε(N , v) �= ∅ if and only if the game
(N , vε) is balanced, which is equivalent to

∑
S∈B λSv(S) ≤ v(N ) + nε for every

proper balanced family B with weights (λS)S∈B. A game (N , v) that satisfies this last
property is said to be ε-balanced.

3 We thank an Associate Editor for raising this conjecture.
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The strong least core Maschler et al. (1979) LC(N , v) (respectively per-capita
least core LC(N , v) Young et al. 1982) is defined as the intersection of all non-empty
strong ε-cores (respectively per-capita ε-cores) of the game. Both least core concepts
are non-empty for every TU-game.

Proposition 3.1 With the possible exception of the strong and per-capita least cores,
every other non-empty ε-core violates ETP.

Proof Define ε in such a way that Cε(N , v) = LC(N , v). Let ε < ε and choose x ∈
LC(N , v) � Cε(N , v). Then, for every S ⊆ N , x(S) ≥ v(S) − ε|S| > v(S) − ε|S|.
Pick two substitute players i and j and construct a new vector, x̃ ∈ R

N , by taking away
an amount δ from xi and adding it to x j . The above inequality ensures that, for small
enough δ, x̃ still belongs toCε(N , v). It is then clear that either x or x̃ violates ETP. An
analogous argument works for the strong version of the ε-core and its corresponding
least core. ��

A similar argument shows that a necessary condition for the core to satisfy ETP is
that v(N ) be “tight” relative to the worth of proper coalitions or, in other words, that
v(N ) = ∑

S∈B λSv(S) for some balanced familyB, withweights (λS)S∈B and N /∈ B.
A related necessary condition for the equal treatment of equals at a core allocation,
called strong-superadditivity, was proposed, in the context of market economies, by
Green (1972). In Sect. 5 we show how our condition strengthens Green (1972) on
the domain of quasi-linear economies. On the other hand, Zhao (2001) linked the
“tightness” of v(N ) to the non-emptiness of the core and its relative interior. As the
following example illustrates, although necessary,“tightness” of v(N ) is not sufficient
for the equal treatment of equals.

Example 3.2 The following example shows that the strong and per-capita least cores
may violate ETP. Consider the following game with set of players N = {1, 2, 3}. Let
v(1) = 1, v(2) = v(3) = v(1, 2) = v(1, 3) = 0, and v(2, 3) = v(1, 2, 3) =
2. Then LC(N , v) = {( 1

2 , x,
3
2 − x

) ∈ R
3 | x ∈ [− 1

2 , 2
]}

and LC(N , v) =
{( 2

3 , x,
4
3 − x

) ∈ R
3 | x ∈

[
− 1

3 ,
5
3

]}
. Despite the fact that players 2 and 3 are sub-

stitutes, they may receive unequal allocations at either the strong or the weak least

core. Note also that LC(N , v) = C(N , v
1
2 ), LC(N , v) = C(N , v 1

3
) and both games,

v
1
2 and v 1

3
, are “tight”.

Lemma 3.3 Let two games (N , v1) and (N , v2) differ only in the worth they assign to
the grand coalition. Then, LC(N , v1) satisfies ETP if and only if LC(N , v2) satisfies
ETP.

Proof We will show that LC(N , v2) = LC(N , v1) + { 1
n (v2(N ) − v1(N ))1N

}
, and

then the result follows. Let εi be such that Cεi
(N , v) = LC(N , vi ) for i ∈ {1, 2}. By

definition, x ∈ LC(N , v1) if and only if:

x(N ) = v1(N ) and x(S) ≥ v1(S) − |S|ε1 ∀S �= N

x(N ) = v1(N ) and x(S) + |S|(ε1 − ε2) ≥ v2(S) − |S|ε2 ∀S �= N

y(N ) = v1(N ) + n(ε1 − ε2) and y(S) ≥ v2(S) − |S|ε2 ∀S �= N
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Equal treatment without large numbers 1249

where, for every i ∈ N , yi = xi + ε1 − ε2. The ε-balancedness condition implies
that v1(N ) + nε1 = v2(N ) + nε2 so that ε1 − ε2 = 1

n (v2(N ) − v1(N )). Finally,
y(N ) = v1(N ) + n(ε1 − ε2) = v2(N ). We conclude that x ∈ LC(N , v1) iff y =
x + 1

n (v2(N ) − v1(N ))1N ∈ LC(N , v2) as desired. ��
Given a game (N , v), let M = max

∑
S∈B λSv(S) where the maximum is taken

over all proper balanced families B with weights (λS)S∈B. Note that M �= v̄(N ) only
if Ess(N , v) = ∅. Define then the game (N , vM ) as vM (N ) = M and vM (S) = v(S)

for S �= N .

Lemma 3.4 Theper-capita least coreand the coreof (N , vM ) coincide: LC(N , vM ) =
C(N , vM ).

Proof If ε = 0 then Cε(N , vM ) = C(N , vM ) which is non-empty by definition of
M . Also, if ε is negative and Cε(N , vM ) �= ∅, ε-balancedness implies that, for every
proper balanced family B with weights (λS)S∈B,

∑
S∈B λSv(S) ≤ M + nε < M ,

contradicting the definition of M . Therefore, LC(N , vM ) = C(N , vM ) as desired. ��
Even when the core is empty or it violates ETP, our characterization remains useful

to analyze the per-capita least core.

Theorem 3.5 The per-capita least core of a game (N , v) satisfies ETP if and only if,
for every class of substitute players A ∈ A with |A| ≥ 2, there exists an essential
coalition S∗

A ∈ Ess(N , vM ) that contains at least one but not all members of A.

Proof By Lemmas 3.3 and 3.4, LC(N , v) satisfies ETP iff LC(N , vM ) = C(N , vM )

satisfies ETP. Theorem 2.6 applied to (N , vM ), together with the fact thatA(N , v) =
A(N , vM ), finishes the proof. ��

Note that if Ess(N , v) �= ∅, then M = v̄(N ) and Ess(N , vM ) = Ess(N , v). This
could happen either if the game (N , v) is non-balanced, or if it is balanced and “tight.”

The following example shows that the condition of Theorem 3.5 is not necessary
for the strong least core to satisfy ETP.

Example 3.6 Let (N , v) be the game defined by v({1}) = 2, v({2}) = v({3}) = 0,
v({1, 2}) = v({1, 3}) = 6, v({2, 3}) = 8, and v({1, 2, 3}) = 7. Players 2
and 3 are substitutes. This game is non-balanced and, even though no member of
Ess(N , v) = Ess(N , vM ) = {{1}, {2, 3}} contains just one of them, the strong least
core, LC(N , v) = {(1, 3, 3)}, satisfies ETP.

3.2 Aspirations

The feasibility assumption of the core implies that the outcome of the game brings all
players together to form the grand coalition. Inmany games, for examplewhen the core
is empty, this is not a reasonable assumption. The idea behind the concept of aspirations
is to allow players to obtain their payoff via the formation of proper coalitions. The
core-like competition between players to lure potential coalition members will lower
their aspirations, refining the set of likely outcomes. This process leads to a new
solution concept.
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1250 C. Bejan, J. C. Gómez

Definition 3.7 The aspiration core Bennett (1983) of the game (N , v) is defined as

AC(N , v) := argmin
{
x(N ) | x ∈ R

N , x(S) ≥ v(S),∀S ∈ N
}

.

One important advantage of considering proper coalitions is expanding the applica-
bility of core-based ideas to a considerably more general scope of situations. Indeed,
we will show that our characterization remains valid for arbitrary TU-games via the
aspiration core. The next proposition shows a number of useful properties of the aspi-
ration core. For their proofs and discussion we refer the reader to Bennett (1983) and
Bejan and Gómez (2009).

Proposition 3.8 Bennett (1983) For every game (N , v) ∈ �, the aspiration core
satisfies the following:

1. AC(N , v) �= ∅,
2. If C(N , v) �= ∅, then AC(N , v) = C(N , v),
3. AC(N , v) = {x ∈ R

N | x(S) ≥ v(S) ∀S ∈ N and x(N ) = v̄(N )}.
Arribillaga (2015), working with the class of partitioning games, shows that, as a

game is replicated sufficiently many times, the ε-core converges to the aspiration core
as ε goes to zero. Theorem 3.9 shows that the relation between these two solution
concepts is far deeper, as it is not limited to either partitioning or large games. The
literature seldom relates approximate cores with the aspiration approach. We establish
the close link between these two, up to now seemingly far apart, branches of the
literature.

Theorem 3.9 For every game (N , v) let ε0 = min{ε ≥ 0 | Cε(N , v) �= ∅}. Then,
Cε0(N , v) = AC(N , v) − {ε0 · 1N }.
Proof Define ε∗ := v̄(N )−v(N )

n . We prove first that Cε∗(N , v) = AC(N , v) − {ε∗1N }
and second that ε∗ = ε0. Let x ∈ AC(N , v) and define the payoff vector x∗ :=
x − ε∗1N . Then

x ∈ AC(N , v) ⇐⇒ x(S) ≥ v(S) ∀S ∈ N and x(N ) = v(N ),

⇐⇒ x∗(S) ≥ v(S) − ε∗|S| ∀S and x∗(N ) + nε∗ = v(N ),

⇐⇒ x∗(S) ≥ v(S) − ε∗|S| ∀S and x∗(N ) = v(N ),

⇐⇒ x∗ ∈ Cε∗(N , v),

and the first claim is proved. Non-emptiness of the aspiration core implies then that
Cε∗(N , v) �= ∅.

We show next that if ε ≥ 0 and Cε(N , v) �= ∅, then ε ≥ ε∗. In such case the
ε-balancedness condition implies that for every balanced family of coalitions B with
associated weights (λS)S∈B,

∑
S∈B λSv(S) ≤ v(N ) + nε. In particular, if B is an

optimally balanced family, we have that v(N ) ≥ v(N ) − εn and, consequently, ε ≥
v(N )−v(N )

n = ε∗, as desired. ��
The previous proposition, which shows the bijection between the aspiration core

and the per-capita ε-core, helps to clarifywhen the aspiration core satisfies ETP. In fact,
the following theorem generalizes our main result to the entire family of TU-games.
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Theorem 3.10 The aspiration core of a game (N , v) satisfies ETP if and only if, for
every class of substitute players A ∈ Awith |A| ≥ 2, there exists an essential coalition
S∗
A that contains at least one but not all members of A.

Proof If C(N , v) �= ∅, then AC(N , v) = C(N , v) and the result follows because of
Theorem 2.6. If C(N , v) = ∅, then Theorem 3.9 delivers the result. ��
Example 3.11 Consider again the n-player bridge game, (N , vnbr ) (described in Exam-
ple 2.2) for n ≥ 5. In this case C(N , vnbr ) �= ∅ only if n is a multiple of four. Still, the
family of all 4-player coalitions of this game is an optimally balanced family (with

all weights equal to
(n−1

3

)−1
) that satisfies the conditions of Theorem 3.10 and thus

AC(N , v) satisfies ETP. In fact, for n ≥ 5, AC(N , vnbr ) = {( 14 , . . . , 1
4 )}.

4 Applications

In this section we analyze the implications of our main result for different types of
cooperative games.

4.1 Partitioning games

Partitioning games are those for which a set of “fundamental” coalitions determines
the worth of every other coalition in the game. For example, the worth of any coalition
is dictated by four-player coalitions in the bridge game and particular two-player
coalitions in the gloves game. Partitioning games were first defined by Kaneko and
Wooders (1982). The formal definition is given below.

Given a finite set of players N , let F ⊆ N be a family of coalitions such that,
for every i ∈ N , {i} ∈ F . The elements of F are called basic coalitions. For every
S ∈ N denote by 	(S) the set of all partitions of S. A partition π ∈ 	(S) is called
an F-partition of S if π ⊆ F . Let 	F (S) denote the set of F-partitions of S.

Definition 4.1 Given a finite set of players N , a partitioning game Kaneko and
Wooders (1982) with respect to the basic family F ⊆ N is a super-additive game,
denoted by (N ,F , v), which satisfies, for every S ∈ N ,

v(S) := max

{
∑

F∈π

v(F) | π ∈ 	F (S)

}

.

Clearly, every super-additive game is a partitioning game with respect to the basic
family F = N . However, partitioning games that are of interest for applications are
those whose families of basic coalitions are strict (and typically small) subsets of N .
For example, the bridge game (with an arbitrary number of players) is a partitioning
game inwhich the family of basic coalitions consists of sets with atmost four elements.

Lemma 4.2 Every partitioning game has an optimally balanced family containing
only basic coalitions.
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Proof Let B be an optimally balanced family of coalitions with weights (λS)S∈B. For
every S ∈ B there exists a partition π(S) ∈ 	F (S) such that v(S) = ∑

F∈π(S) v(F).

Let B′ = ⋃
S∈B π(S). It is enough to show that B′ ⊆ F is optimally balanced.

Define, for every F ∈ B′, λ′
F = ∑

π(S)
F λS . The family B′ is balanced because, for
every i ∈ N ,

∑

F∈B′,F
i
λ′
F =

∑

F∈B′,F
i

∑

π(S)
F
λS =

∑

S∈B,S
i
λS = 1.

B′ is also optimally balanced as

∑

F∈B′
λ′
Fv(F) =

∑

F∈B′

∑

π(S)
F
λSv(F) =

∑

S∈B

∑

F∈π(S)

λSv(F) =
∑

S∈B
λSv(S) = v̄(N ).

This completes the proof. ��
Our next theorem provides a characterization of the basic families that is enough

to guarantee that ETP is satisfied at any (aspiration) core allocation.

Theorem 4.3 Let (N ,F , v) be a partitioning game such that no basic coalition con-
tains an entire class A ∈ A with |A| ≥ 2. Then the core (and more generally the
aspiration core) of the game satisfies ETP. If the core is empty, the per-capita least
core satisfies ETP.

Proof By Lemma 4.2, there exists an optimally balanced family of basic coalitions
B′. Without loss of generality assume strictly positive weights (λ′

S)S∈B′ so that every
proper member of B′ is essential. For every A ∈ A such that |A| ≥ 2, there is a
basic coalition F∗ ∈ B′ such that F∗ ∩ A �= ∅. As F∗ is basic, the assumption of the
theorem implies that F∗∩A � A. Thus, F∗ is an essential coalition that contains some
but not all the members of A. This procedure can be followed for every multi-player
class A ∈ A so Theorem 2.6 (and 3.10) implies that the core (and the aspiration core)
satisfies ETP. Finally, if the core is empty, Theorem 3.9 implies that the per-capita
least core satisfies ETP. ��

The assumption of the previous theorem guarantees that theworth of every coalition
canbe obtainedby forming smaller sub-coalitions,which donot include allmembers of
any particular class of substitutes. The condition resembles, to some extent, Wooders
(2010) “small group effectiveness”, which was proved to be sufficient for the near
equal treatment of most players of the same type in sufficiently large games.

4.2 Assignment games

Among partitioning games, the so-called assignment games have a special place
because of their relation to the matching literature. They were introduced by Shapley
and Shubik, who also showed that two-sided assignment games (arising from two-
sided matching markets) always have a non-empty core (see also Kaneko 1982). By
contrast, m-sided assignment games with m > 2 may have empty cores Quint (1991).

123



Equal treatment without large numbers 1253

Definition 4.4 Given an integer m ≥ 2, an m-sided assignment game Shapley and
Shubik (1971) is defined as a partitioning game such that:

1. The set of players N can be partitioned into m disjoint assignment families of
players, namely (Kt )t=1,...,m .

2. The set of basic coalitions is defined as

F =
{
{i} : i ∈ N

}
∪

{
S ∈ N : |S ∩ Kt | = 1 ∀t

}
.

The following example shows that the set of classes of substitute playersA and the
set of assignment families {K1, . . . , Kt } need not be the same.

Example 4.5 Consider a real estate assignment game with three assignment families:
buyers, sellers, and agents. Basic coalitions have a member of each family and are
worth 1. Consider the game with one buyer, one seller and two realtors where N =
{b, s, r1, r2}. Notice that b ∼ s and r1 ∼ r2, so there are only two equivalence
classes of substitute players. The core of this game does not satisfy ETP. Indeed,
C(N , v) = {(a, 1 − a, 0, 0) | a ∈ [0, 1]}.

In the previous example substitute players b and s, who are treated differently by
core payoff vectors, belong to different assignment families. The following theorem
generalizes this observation for general assignment games.

Theorem 4.6 The core (andmore generally the aspiration core) of anm-sided assign-
ment game satisfies ETP if every pair of subsitute players belongs to the same
assignment family.

Proof Let (N ,F , v) be an m-sided assignment game with families Kt such that N =⋃m
t=1 Kt . For every equivalence class A ∈ A with |A| ≥ 2, choose two substitute

players i, j ∈ A. By Lemma 4.2, there is an essential and basic coalition F∗ ∈ F such
that i ∈ F∗. Since, by assumption, i and j belong to the same assignment family and
F∗ is basic, then j /∈ F∗. Theorem 2.6 (and 3.10) implies then that the core (and the
aspiration core) satisfies ETP. ��

4.3 Replica games

Definition 4.7 Given r ≥ 1, the r th replica of the super-additive game (N , v) is
defined as the partitioning game (Nr ,Fr , vr ) (or simply (Nr , vr )) where:

(i) Nr = N × {1, . . . , r} and the typical player (i, q) ∈ Nr is called the qth replica
of player i .

(ii) The profile function ρr : 2Nr −→ Z
A+ is defined, for every Sr ⊆ Nr and every

A ∈ A, as ρr
A(Sr ) := ∣

∣Sr ∩ {(i, q) ∈ Nr | i ∈ A}∣∣.
(iii) Fr := {Sr ⊆ Nr |∃S ∈ N such that ρr (Sr ) = ρ(S)} .

(iv) For every Sr ∈ Fr , let S ∈ N be such that ρr (Sr ) = ρ(S). Then vr (Sr ) := v(S).

A few remarks are in order. First, the basic function vr : Fr −→ R is well-defined:
if two coalitions S, S′ ∈ N are such that, for some Sr ⊆ Nr , ρ(Sr ) = ρ(S) = ρ(S′),
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then S ∼ S′ and vr (Sr ) = v(S) = v(S′). Also, super-additivity of the game (N , v)

ensures that it coincides with its first replica (N1, v1). Finally, notice that for every
Sr , Tr ∈ Nr , ρr (Sr ) = ρr (Tr ) implies vr (Sr ) = vr (Tr ). Then we conclude that
players (i, q), (i ′, q ′) ∈ Nr are substitutes in the replica game if and only if i and i ′
are substitutes in the original game. Thus, every equivalence class in A(Nr , vR) is of
the form {(i, q) ∈ Nr : i ∈ A} for some A ∈ A(N , v).

Similar replication techniques have been defined in the context of partitioning
games. In our setting, the vector ρ(Sr ) has |A| coordinates, each of them count-
ing the number of substitutes within an equivalence class A ∈ A contained in Sr . In
Kaneko and Wooders (1982) and Arribillaga (2015), the vector ρ(Sr ) has |N | coor-
dinates, each of them counting the number of replicas of a player i ∈ N contained in
Sr . If the original game contains no pairs of substitute players, the two definitions are
equivalent. However, if players i, j ∈ N are such that i ∼ j , the next example shows
that, according to Kaneko andWooders (1982) definition, players (i, 1) and ( j, 1)may
fail to be substitutes in subsequent replicas.

Example 4.8 Consider the second replica of the 4-player Bridge Game. All players
are substitutes in the original game, so any four-player coalition is basic. Thus, our
second replication delivers the 8-player Bridge Game. With the Kaneko and Wooders
(1982) and Arribillaga (2015) replication techniques,

vr ({(2, 1), (2, 2), (3, 2), (4, 2)}) = 0

while

vr ({(1, 1), (2, 2), (3, 2), (4, 2)}) = 1

and thus, even though 1 ∼ 2 in the original game, (1, 1) is not a substitute of (2, 1) in
the r th replica for r ≥ 2.

The role of the equal treatment property in this type of games is clear: it allows a
direct comparison between solution concepts of replica games and solution concepts
in the original game. The next result describes the behavior of the core as a TU-game
is replicated.

Theorem 4.9 If r ≥ 2, the core (and, more generally, the aspiration core) of the r th

replica of a game satisfies ETP. Moreover, if the core is empty, the per-capita least
core of the r th replica satisfies ETP.

Proof For every equivalence class in the replica game, Ar = {(i, q) ∈ Nr | i ∈ A},
we have that |Ar | = r |A|. However, basic coalitions contain at most |A| players of
Ar . Thus, the condition of Theorem 4.3 is satisfied, which implies the result. ��

A similar result, in the context of NTU-games was obtained by Wooders (1983)
by imposing a condition related to ours, called the “minimum efficient scale.” While
Wooders (1983) result applies to more general sequences of replicas than the ones
described here, it only obtains the (almost) equal treatment of substitute players in the
(aspiration) core allocations of sufficiently large games .
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Our condition for ETP at core allocations and its link to replica games allows for
more streamlined convergence results. Previous findings in the literature invariably
referred to the equal treatment portion of the ε-core of the replica games. However,
allowing players to collaborate across replicas with players of their same type implies
that every vector in the per-capita least core treats substitute players equally.

Let (N , v) be a game, let (Nr , vr )r be its sequence of replicas, and define the core
subset CET (N , v) := {x ∈ C(N , v) | x satisfies ETP }. For every x ∈ R

n , denote
by xr ∈ R

rn its r th replica defined as xr (i, q) = xi , for every i ∈ N and every
q ∈ {1, . . . , r}. The next proposition shows that the allocations in the core of a replica
game can be naturally embedded in the core of the original game. In fact, all payoff
vectors that violate ETP are eliminated as early as the second replica.

Theorem 4.10 Considered a balanced game (N , v). For every r ≥ 2, the core of its
r th replica is the r th replica of the subset of the core that satisfies ETP. In other words,
C(Nr , vr ) = {xr ∈ R

rn | x ∈ CET (N , v)}.
Proof Step 1: C(Nr , vr ) ⊆ {xr ∈ R

rn | x ∈ CET (N , v)}
Let xr ∈ C(Nr , vr ) and define x̄ ∈ R

n as x̄i := xr (i, 1), for every i ∈ N . By
Theorem 4.9, xr satisfies ETP in (Nr , vr ) and, therefore, xr = x̄r and x̄ satisfies ETP
in the original game. It suffices then to show that x̄ ∈ C(N , v).

For every coalition S ⊆ N , define S1 = ⋃
i∈S{(i, 1)} � Nr . Then x̄(S) = xr (S1) ≥

vr (S1) = v(S), which shows that x̄ is stable in (N , v). We show next that vr (Nr ) =
rv(N ), which implies that x̄(N ) = 1

r xr (Nr ) = 1
r vr (Nr ) = v(N ), and thus concludes

the first part of the proof.
Consider the partition of Nr into the r replicas of the set N , that is, the family{⋃
i∈N {(i, t)}|t = 1, . . . , r

}
. Then vr (Nr ) ≥ ∑r

t=1 vr (
⋃

i∈N {(i, t)}) = rv(N ). On
the other hand, there is a partition of basic coalitions π(Nr ) ∈ 	(Nr ) such that
vr (Nr ) = ∑

Tr∈π(Nr )
vr (Tr ). For every Tr ∈ π(Nr ) choose a coalition T ⊂ N such

that ρr (Tr ) = ρ(T ). Notice that the family of such coalitions T is balanced with
weights equal to 1

r . Then, the fact that the original game is balanced implies that
vr (Nr ) = ∑

Tr∈π(Nr )
vr (Tr ) = ∑

T v(T ) = r
∑

T
1
r v(T ) ≤ rv(N ).

Step 2: {xr ∈ R
rn | x ∈ CET (N , v)} ⊆ C(Nr , vr )

Let x ∈ CET (N , v). We know that xr (Nr ) = rv(N ) = vr (Nr ). For every
Sr ⊆ Nr there is a partition of basic coalitions π(Sr ) ∈ 	(Sr ) such that vr (Sr ) =∑

Tr∈π(Sr ) vr (Tr ). For every Tr ∈ π(Sr ) choose a coalition T ⊂ N such that
ρr (Tr ) = ρ(T ). Then vr (Sr ) = ∑

Tr∈π(Sr ) vr (Tr ) = ∑
T v(T ) ≤ ∑

T x(T ). As
x satisfies ETP in (N , v), vr (Sr ) ≤ ∑

T x(T ) = ∑
Tr∈π(Sr ) x

r (Tr ) = xr (Sr ), as
desired. ��

The next result extends Theorem 4.10 to the family of non-balanced games.

Theorem 4.11 If a game (N , v) is not balanced, then

lim
r→∞ LC(Nr , vr ) =

{
xr ∈ R

rn | x ∈ ACET (N , v)
}

.

Proof Let εr be such that LC(Nr , vr ) = Cεr
(Nr , vr ). Since the original game has an

empty core, εr > 0. By Theorem 3.9, we then know that LC(Nr , vr ) = AC(Nr , vr )−
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{εr · 1N } and εr = v̄r (Nr )−vr (Nr )
rn . On the other hand, the arguments in the proof of

Theorem 4.10 can be generalized to show that AC(Nr , vr ) = {xr ∈ R
r N | x ∈

ACET (N , v)}. Hence, all that remains to be proved is that limr→∞ εr = 0.
We know that v̄(N ) = ∑

S∈B λSv(S) for some balanced family of coalitions B and
(rational) weights λS . Let m be the least common denominator of all the balancing
weights. Then:

mv̄(N ) =
∑

S∈B
kSv(S),

where the integers (kS)S∈B satisfy
∑

S
i,S∈B kS = m ∀i ∈ N . This shows a way of
arranging the m (or any multiple of m) replicas of N so that v̄m(Nm) = vm(Nm).

Let r = am + b where a and b are integers and 0 ≤ b < m. Then

εr = v̄r (Nr ) − vr (Nr )

rn
≤ v̄r (Nr ) − v̄am(Nam)

rn
= bv̄(N )

rn
,

which converges to zero as r grows large. ��

5 ETP in the core of quasi-linear economies

We show next that Theorem 2.6, when applied to the TU-game associatedwith a quasi-
linear pure-exchange economy, is closely related to Green (1972) necessary condition
for ETP.

Consider a pure-exchange economy with L consumption goods indexed by l =
1, . . . , L and a medium of exchange, called money, which is used to make transfers.
The economy is populated by a finite set of agents N , which is partitioned into disjoint
classes A ∈ A such that

⋃
A∈A A = N . All agents within a class A have identical

preferences and endowments represented by the utility function U A : R × R
L+ → R

withU A(m, y) = m+uA(y) and uA : R
L+ → R continuous and strictly concave, and,

respectively, the vector ωA ∈ R
L++. There is no endowment of money. Such economy

is denoted by [N , (uA, ωA)A∈A].
For every coalition of agents S ⊆ N , define an allocation for S as a vector (m, y) ∈

R
|S| ×R

|S|L
+ that assigns the bundle of goods and transfers (mi , yi ) ∈ R×R

L+ to every
agent i ∈ S. An allocation (m, y) is said to be feasible for S if

∑
i∈S yi = ∑

i∈S ωi

and
∑

i∈S mi = 0. An allocation (m, y) for N can be improved upon by a coalition
S ⊆ N if there exists a feasible allocation (m̂, ŷ) for S such that, for every i ∈ S,
Ui (m̂i , ŷi ) ≥ Ui (mi , yi ), with strict inequality for some j ∈ S. The core of the
economy is the set of allocations that cannot be improved upon by any coalition
S ⊆ N and it is denoted byC[N , (uA, ωA)A∈A]. The core satisfies the equal treatment
property if and only if, for every (m, y) ∈ C[N , (uA, ωA)A∈A], every A ∈ A and every
i, j ∈ A, (mi , yi ) = (m j , y j ).

A Walrasian equilibrium of [N , (uA, ωA)A∈A] is a vector (p∗, (m∗, y∗)) ∈ R
L+ ×

R
n × R

nL+ such that
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(i) For every A ∈ A and every i ∈ A, (m∗i , y∗i ) maximizes U A over the budget set
{(m, y) ∈ R × R

L+ | m + p∗y ≤ p∗ωA}.
(ii)

∑
i∈N y∗i = ∑

A∈A |A|ωA and
∑

i∈N m∗i = 0.

Our assumptions guarantee the existence of a Walrasian equilibrium. Also, every
equilibrium allocation belongs to the core of the economy.

A subeconomyof [N , (uA, ωA)A∈A] is an economy [S, (uA, ωA){A∈A|A∩S �=∅}] con-
sisting of a subset of agents S � N who inherit their utility functions and endowments
from the original economy.

Theorem 5.1 The core of the economy [N , (uA, ωA)A∈A] satisfies ETP if and only
if, for every A ∈ A with |A| ≥ 2, there exists a coalition S∗

A � N which contains
at least one but not all members of A, and a price p∗ ∈ R

L+ which is an equilibrium
vector for the subeconomy [S∗

A, (uA, ωA){A∈A|A∩S∗
A �=∅}] as well as its complement,

[N\S∗
A, (uA, ωA){A∈A|A∩(N\S∗

A) �=∅}].
Proof For every non-empty coalition S ⊆ N define its worth as

v(S) = max
y∈RL|S|

++

{
∑

i∈S
ui (yi ) |

∑

i∈S
yi =

∑

i∈S
ωi

}

Clearly, for every A ∈ A and every i, j ∈ A, players i and j are substi-
tutes in the associated game (N , v). Moreover, since each uA is strictly concave,
C[N , (uA, ωA)A∈A] satisfies ETP if and only if C(N , v) does. This allows us to use
our TU-game characterization to prove the result.

Sufficiency: Fix a class A ∈ A and let S∗
A be the coalition satisfying the hypotheses

of the theorem. Then, according to Theorem 2.6, it is enough to prove that {S∗
A, N\S∗

A}
is an optimally balanced family, which amounts to proving that v(S∗

A) + v(N\S∗
A) =

v(N ).
For any p ∈ R

L+, let Di (p) ∈ R×R
L+ denote agent i’s demand at price p. Since pref-

erences are strictly convex, the demand is single-valued. Let p∗ be an equilibrium price
vector for [S∗

A, (uB, ωB){B∈A|B∩S∗
A �=∅}] and [N\S∗

A, (uB , ωB){B∈A|B∩(N\S∗
A) �=∅}].

Then p∗ is also an equilibrium price vector for [N , (uA, ωA)A∈A]. Using the first
welfare theorem we have that

v(S∗
A) + v(N\S∗

A) =
∑

i∈S∗
A

Ui (Di (p∗)) +
∑

i∈N\S∗
A

Ui (Di (p∗))

=
∑

i∈N
Ui (Di (p∗)) = v(N ),

as we wanted.
Necessity: Suppose that the core of the economy [N , (uA, ωA)A∈A] satisfies ETP.

Let (p∗, (m∗, y∗)) be aWalrasian equilibrium for economy [N , (uA, ωA)A∈A]. Then,
the payoff vector x∗ ∈ R

N , defined for every i ∈ N as x∗i = Ui (m∗, y∗i ), belongs
to C(N , v). Since C(N , v) satisfies ETP, Theorem 2.6 implies that, for every A ∈ A
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such that |A| ≥ 2, there exists an essential coalition S∗
A which contains at least one

but not all members of A.
Since S∗

A is essential, there exists an allocation (m, y) which is feasible for S∗
A and

satisfies x∗(S∗
A) = v(S∗

A) = ∑
i∈S∗

A
ui (yi ). Define then a new allocation (m̂, ŷ) for

S∗
A as follows. For every i ∈ S∗

A, let ŷ
i = yi and m̂i = x∗i −ui (yi ). Notice that (m̂, ŷ)

is feasible for S∗
A and, for every i ∈ S∗

A, U
i (m̂i , ŷi ) = Ui (m∗i , y∗i ). Strict concavity

of utilities implies then that

m̂i + p∗ ŷi ≥ m∗i + p∗y∗i ,

with equality if and only if ŷi = y∗i and m̂i = m∗i . Summing up these inequalities
over i ∈ S∗

A and using Walras’ law we obtain that each inequality must hold with
equality and thus (m̂i , ŷi ) = (m∗i , y∗i ) = Di (p∗). This implies that the vector
(m∗i , y∗i )i∈S∗

A
is feasible for S∗

A and, therefore, that (m∗i , y∗i )i∈N\S∗
A
is feasible for

N\S∗
A. We conclude that p∗ is a price equilibrium vector for both the subeconomy

[S∗
A, (uA, ωA){A∈A|A∩S∗

A �=∅}] and its complementary subeconomy. ��
The necessity of the condition is equivalent to the conclusion of Lemmas 1 and 2

in Green (1972). Sufficiency is a new result. Therefore, we proved that Green (1972)
necessary condition is “almost” tight, in the sense that it is also sufficient for the core
allocations to satisfy ETP if the economy is quasi-linear.
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