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Abstract This paper explores a voluntary contribution game in the presence of warm-
glow effects. There are many public goods and each public good benefits a different
group of players. The structure of the game induces a bipartite network structure,
where players are listed on one side and the public good groups they form are listed
on the other side. The main result of the paper shows the existence and uniqueness of
a Nash equilibrium. The unique Nash equilibrium is also shown to be asymptotically
stable. Then the paper provides some comparative statics analysis regarding pure
redistribution, taxation and subsidies. It appears that small redistributions of wealth
may sometimes be neutral, but generally, the effects of redistributive policies depend
on how public good groups are related in the contribution network structure.

Keywords Multiple public goods · Warm-glow effects · Bipartite contribution
structure · Nash equilibrium · Comparative statics
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1 Introduction

In many real life situations, people are organized in social groups with a common
goal whose achievement has the characteristics of a public good (Olson 1965; Cornes
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and Sandler 1986). When individual actions are unobservable, a joint work by a team
of co-workers can be regarded as such (Holmstrom 1982). Colleagues working on a
joint project, students working on a group report, neighbors creating a good social
atmosphere or friends planning a party are only a few examples of social groups
providing their members with a public good.1 As a result, people’s well-being is often
dependent on the private provision of many public goods. Securing the sustainability
of these goods, forwhich generally nomarketmechanism exists, is therefore a problem
of considerable practical importance.

On the academic side, theoretical work with multiple public goods has mainly con-
cerned models in which voluntary contributions are driven by “ pure altruism ”.2 In
other words, people are supposed to be indifferent to the means by which the pub-
lic goods are provided, and to only care for the total supply of each public good
(Kemp 1984; Bergstrom et al. 1986; Cornes and Schweinberger 1996; Cornes and
Itaya 2010). Controlled laboratory experiments, however, contradict this assumption.
In practice, for moral, emotional or even social reasons, people enjoy a private ben-
efit, commonly called and henceforth referred to as “ warm-glow ”, from the act of
contributing, independently of the utility they gain from the aggregate amounts of
contributions (Andreoni 1993, 1995; Palfrey and Prisbrey 1996, 1997; Andreoni
and Miller 2002; Eckel et al. 2005; Gronberg et al. 2012; Ottoni-Wilhelm et al.
2014).

Although a great deal is known about the effect of warm-glow on the provi-
sion of a single public good (see, e.g., Andreoni 1990), there exists no theoretic
analysis of voluntary contributions to multiple public goods in the presence of warm-
glow. Further analysis is then required since the extension to many public goods
may be related to different types of strategic behavior (see, e.g., Cornes and Itaya
2010). This problem is addressed here by focusing on multiple public goods for
which people’s preferences are not separable. The set of voluntary contributions is
modelled as a directed bipartite network or graph (henceforth, graph) in which con-
tributions flow through links that connect a set of agents to a set of public goods.3

For example in graph g0 of Fig. 1, where a1, a2, a3 are the agents and p1, p2, p3
are the public goods, the presence of a link from a1 to p1 captures the fact that a1
belongs to the group providing p1. This means that a1 can contribute to and ben-
efit from the provision of p1. The absence of a link from a1 to p3, by contrast,
means that a1 does not belong to the group providing p3, i.e., a1 cannot contribute
to and benefit from the provision of p3. Hence, the bipartite graph reflects existing
membership structure; links represent membership ties between people and social
groups.

Agents are initially endowed with a fixed amount of a private good and decide on
their contributions to the various public goods they are connected to. Two key assump-
tions underlie this analysis. First, the warm-glow part of preferences is separable in

1 See, e.g., Brekke et al. (2007) for more stylized examples.
2 See Becker (1974) for an early analysis of altruism and voluntary contributions.
3 Bipartite graphs have previously been used, for example, to model economic exchange when buyers have
relationships with sellers (Kranton and Minehart 2001), and water extraction when users draw on resource
from multiple sources (Ilkiliç 2011).
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Fig. 1 A bipartite graph with 3
agents and 3 public goods

each public good. This assumption is consistent with experimental findings that indi-
cate an imperfect substitution between the various contributions made by individuals
(Reinstein 2011). People enjoy warm-glow over contributions to individual public
goods, rather than over their total contribution. Agents are therefore distinguishable
in terms of substitution patterns between public goods. Second, the marginal warm-
glow of a contribution decreases in the size of the contribution. This assumption is
consistent with observed behavior of individuals who generally prefer to make smaller
contributions to more public goods (Null 2011).

The purpose of this paper is to analyze voluntary contributions to several pub-
lic goods under warm-glow preferences. The main result establishes the existence
and uniqueness of a Nash equilibrium. Using a continuous adjustment process,
the unique Nash equilibrium is also shown to be asymptotically stable. Further
assuming that every agent contributes to every public good (as, e.g., in Kemp
1984), the paper extends existing results regarding the effects of pure redistribu-
tion, taxation and subsidies.4 Specifically, it is shown that redistributive policies
often yield both desirable and undesirable effects whose intensity depends on
two main factors: the topology of the contribution graph structure and the altru-
ism coefficients of all agents. Hence, a significant contribution of this work lies
in the introduction of warm-glow in the literature on multiple public goods.5

This work also enriches the analysis of public good games played on fixed net-
works by considering multidimensional strategies and non-linear best-response
functions.6

Themessage emerging from this analysis is that while Andreoni (1990)’s existence,
uniqueness and stability results go through with multiple public goods, the conditions

4 Furthermore, the comparative statics results involving corner solutions carry over exactly from the pure
altruism case with many public goods (see Cornes and Itaya 2010).
5 Previous results in this literature are restricted to purely altruistic agents. See Kemp (1984), Bergstrom
et al. (1986) and Cornes and Itaya (2010) for neutrality and other comparative statics results. For the design
of efficient mechanisms, see Cornes and Schweinberger (1996) and Mutuswami and Winter (2004). For
the characterization of strategy-proof social choice functions, see Barberà et al. (1991) and Reffgen and
Svensson (2012).
6 Much of this literature is concerned with games in which agents decide how much to contribute to a
single public good (i.e., strategies are unidimensional). See Bramoullé and Kranton (2007), Bloch and
Zenginobuz (2007) and Bramoullé et al. (2014) for the case of linear best-responses. For the non-linear
case, see Bramoullé et al. (2014), Rébillé and Richefort (2014) and Allouch (2015).
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required for the usual comparative statics results to hold are more restrictive in the
presence of many related public goods and separable warm-glow effects. In the next
section, the model of warm-glow giving with multiple public goods is presented. In
Sect. 3, the existence of a unique and stable equilibrium is established. Sect. 4 solves for
the sufficient conditions for neutrality ofwealth redistribution to hold. Sect. 5 examines
the implications of government tax policies. A discussion of the main contributions
and limitations concludes the paper.

2 A model of impure altruism with multiple public goods

There are n agents a1, . . . , an ,m public goods p1, . . . , pm and one private good. Each
agent ai consumes an amount qi of the private good and participates in the provision of
one or more public goods. The set of possible contributions is called the contribution
structure, which is represented as a directed bipartite graph g.

To this end, the contribution structure is formalized as a triplet g = (A, P, L),
where A = {a1, ..., an} and P = {p1, ..., pm} are two disjoint sets of nodes formed
by agents and public goods, and L is a set of directed links, each link going from an
agent to a public good. A link from agent ai to public good p j is denoted as i j . Agent
ai is a member of the group providing p j if and only if i j is a link in L . In this case,
agent ai is said to be a potential contributor to public good p j . It is assumed, without
loss of generality, that the corresponding undirected bipartite graph of g, obtained by
removing the direction of the links, is connected.7 Let r(g) be the number of links in
L .

Example 1 Figure 2 presents the directed bipartite graphs of two simple contribution
structures g1 and g2. The corresponding undirected graph of g1 belongs to the class
of complete bipartite graphs. Connected graphs of this class contain m × n links. The
corresponding undirected graph of g2 belongs to the class of acyclic bipartite graphs.
Connected graphs of this class containm+n−1 links. A large number of contribution
structures lies between these two polar cases.

Given a contribution structure g, let Ng(ai ) be the set of public goods to which ai
can potentially contribute, i.e.,

Ng (ai ) = {p j ∈ P such that i j ∈ L
}
,

and similarly, Ng(p j ) is the group of potential contributors to public good p j . The
number of public goods in Ng(ai ) and the number of agents in Ng(p j ) are respectively
denoted rg(ai ) and rg(p j ). It is assumed, without restricting the generality of the
model, that each agent belongs to at least one public good group, i.e., rg(ai ) ≥ 1
for all ai ∈ A, and each public good group is composed of at least two agents, i.e.,
rg(p j ) ≥ 2 for all p j ∈ P .

Let xi j ≥ 0 be the contribution by agent ai to public good p j . Agent ai is endowed
withwealthwi which he allocates between the private goodqi and his total contribution

7 An undirected bipartite graph is connected if any two nodes are connected by a path.
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Fig. 2 Two different
contribution structures for the
provision of two public goods

Xi = ∑
p j∈Ng(ai ) xi j . For convenience, it is assumed that each public good can be

produced from the private good with a unit-linear technology.8 It is also assumed that
agents are impurely altruistic, i.e., an agent ai involved in the provision of a public
good p j cares about both p j ’s total supply, given by G j = ∑

ai∈Ng(p j )
xi j , and his

own contribution to p j .9

The utility function Ui : Rr(g)
+ → R+ of agent ai is given by

Ui =
∑

p j∈Ng(ai )

{
b j
(
G j
)+ δi j

(
xi j
)}+ ci (qi ),

where b j : R+ → R+ is the collective benefit from p j ’s total supply, δi j : R+ → R+
is the warm-glow from own contribution to p j , and ci : R+ → R+ is the personal
benefit fromprivate consumption.10 Hence, a contribution xi j enters the utility function
of ai three times: once as part of G j , once alone like a private good, and once as part
of qi = wi − Xi . Accordingly, the utility function of agent ai is not separable with
respect to each public good. The marginal utility with respect to xi j does depend on
the contributions by ai to public goods other than p j .

Warm-glow effects vary from public good to public good, as well as from agent
to agent. Thus, agents can be distinguished by their marginal rates of substitution,
as in Kemp (1984), Bergstrom et al. (1986), Cornes and Schweinberger (1996) and
Cornes and Itaya (2010). This specification is also consistent with recent empirical
findings by Null (2011) and Reinstein (2011), who show that contributions to multiple
public goods are imperfectly substitutable. Moreover, for the rest of the paper, the
value functions will satisfy the following properties.

8 This assumption is almost innocuous. See, e.g., Bergstrom et al. (1986, p. 31) for a discussion.
9 There exist at least three alternative approaches to model impure altruism: one in which people care about
the well-being of others (Margolis 1982; Bourlès et al. 2017), another one in which voluntary contributions
are subject to a principle of reciprocity (Sudgen 1984), and a third one in which public goods are jointly
produced with private goods (Cornes and Sandler 1984).
10 When P = {p1}, the utility function of agent ai reduces to

Ui = b1 (G1) + δi1 (xi1) + ci (qi ) .

This specification complies with the assumptions of the usual impure altruism model with a single public
good (Andreoni 1990). It is also a special case of the joint production model by Cornes and Sandler (1984).
This further indicates that the model developped in this paper is not a direct extension of Bramoullé and
Kranton (2007)’s network public good game.
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Assumption 1 For each link i j ∈ L , b j , δi j and ci are increasing, twice continuously
differentiable functions, with b j concave, δi j strongly concave and ci concave.

Increasing value functions yield to Samuelson’s efficiency condition like in the pure
altruism model (see, e.g., Cornes and Itaya 2010). The rest of the above assumption
reflects the convexity of preferences with respect to each individual contribution.
Hence, Assumption 1 is consistent with empirical findings by Null (2011), who show
that agents prefer to distribute their total contribution between many public goods
rather than giving all to a single public good.11 For simplicity, assume further that
the private good is essential and consider the following multiple public goods game.
Given a contribution structure g, each agent ai ∈ A faces the optimization problem

max{xi j s.t. p j∈Ng(ai )},qi

∑

p j∈Ng(ai )

{
b j
(
G j
)+ δi j

(
xi j
)}+ ci (qi )

s.t. qi + Xi = wi ,

Xi =
∑

p j∈Ng(ai )
xi j ,

G j =
∑

ai∈Ng(p j )
xi j ,

xi j ≥ 0, for all p j ∈ Ng(ai ).

Pure strategy Nash equilibria under simultaneous decision-making are investigated.

3 Existence, uniqueness and stability of the Nash equilibrium

First, the existence anduniqueness of aNash equilibrium is established.By substituting
the budget constraint into the utility function, and in turn by using the specifications
for Xi and G j , the maximization problem of agent ai is equivalent to

max{xi j s.t. p j∈Ng(ai )}

∑

p j∈Ng(ai )

⎧
⎨

⎩
b j

⎛

⎝
∑

ai∈Ng(p j )

xi j

⎞

⎠+ δi j
(
xi j
)
⎫
⎬

⎭
+ ci

⎛

⎝wi −
∑

p j∈Ng(ai )

xi j

⎞

⎠

s.t. xi j ≥ 0, for all p j ∈ Ng(ai ).

The problemof agent ai is to choose rg(ai ) nonnegative numbers. His strategy space
is therefore a subset of the rg(ai )-dimensional Euclidean space, and themultiple public
goods game belongs to the class of the “concave N -person games” studied by Rosen
(1965). Using Rosen’s analysis, the following result is obtained.

Theorem 1 Let Assumption 1 be satisfied. Then, the multiple public goods game
admits a unique Nash equilibrium.

11 Assumption 1, though, does not prevent the model from exhibiting free-riding effects.

123



Warm-glow giving in networks with multiple public goods 1217

Proof The proof of Theorem 1, together with all of the other proofs, appears in the
Appendix. ��

Three comments on Theorem 1 are in order. First, this result extends the existence
and uniqueness result of Andreoni (1990) to themore general setting ofmultiple public
goods with additive separable utility functions. To get an intuition for this result, it is
interesting to note that ai ’s maximization problem could be replaced by

max{xi j s.t. p j∈Ng(ai )}

� =
∑

p j∈P

⎧
⎨

⎩
b j

⎛

⎝
∑

ai∈Ng(p j )

xi j

⎞

⎠

⎫
⎬

⎭
+
∑

i j∈L

{
δi j
(
xi j
)}+

∑

ai∈A

⎧
⎨

⎩
ci

⎛

⎝wi −
∑

p j∈Ng(ai )

xi j

⎞

⎠

⎫
⎬

⎭

s.t. xi j ≥ 0, for all p j ∈ Ng(ai ),

without changing the first-order conditions. In otherwords,� is a best-response poten-
tial of the multiple public goods game (Voorneveld 2000). Under Assumption 1, � is
strongly concave with respect to xi j for all i j ∈ L . Following Bourlès et al. (2017), this
potential propertymight be used to construct an alternative proof of Theorem 1. There-
fore, clearly, it appears that the key to the uniqueness result in the private provision of
many public goods under warm-glow preferences is the assumption of separable and
strongly concave warm-glow functions.12

Second, Theorem1extends the uniqueness result of Ilkiliç (2011) to non-linear best-
response functions. To see this, consider the first-order condition of ai ’s maximization
problem with respect to xi j , i.e.,

b′
j

(
G j
)+ δ′

i j

(
xi j
)− c′

i (wi − Xi ) + μi j = 0,

with

μi j xi j = 0, μi j ≥ 0,

where μi j is the Karush–Kuhn–Tucker multiplier associated with the constraint xi j ≥
0. Ilkiliç (2011) studies a game with linear quadratic utility functions where a player’s
first-order condition would become here

α − βG j − βxi j − γ Xi + μi j = 0,

with

μi j xi j = 0, μi j ≥ 0,

where α, β, γ > 0. Hence, it is clear that the first-order conditions coincide when b j ,
δi j and ci are some specific concave down quadratic functions. In this case, Theorem 3

12 This claim is confirmed by a close inspection of the actual proof of Theorem 1.
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of Ilkiliç (2011), which expresses the equilibrium as a function of a network centrality
measure (i.e., a modified Bonacich centrality measure), applies to the model presented
in this paper.13

Third, it is worth checking whether Theorem 1 carries over heterogeneous benefit
functions or not. Suppose, for instance, that ai ’s utility function is given by

Ui =
∑

p j∈Ng(ai )

{
bi j
(
G j
)+ δi j

(
xi j
)}+ ci (qi ) ,

where bi j : R+ → R+ is ai ’s benefit from p j ’s total supply. Following the same
lines as in the proofs of Lemma 1 and Theorem 2 in Rébillé and Richefort (2015),
a sufficient condition for the uniqueness of a Nash equilibrium is that the Jacobian
matrix of marginal utilities be a strictly row diagonally dominant matrix.14 Here, this
condition is equivalent to

δ′′
i j <

[
rg(p j ) − 2

]
b′′
i j + [rg(ai ) − 2

]
c′′
i ,

for all ij ∈ L . When each agent belongs to at most two public good groups and each
public good group is composed of exactly two agents (like for example in graphs g0,
g1 and g2), the above uniqueness condition is satisfied, thanks to the strong concavity
of warm-glow functions. Otherwise, additional conditions on the concavity of all three
value functions are necessary.

The dynamic stability of the unique Nash equilibrium is now explored. For this
purpose, the best-response functions at each link of the contribution structure are
considered. The best-response functions specify the optimal contribution at each link
for each fixed contribution level at the other links. Let G−i, j = G j − xi j denote the
sum of all contributions to public good p j by agents other than ai and Xi,− j = Xi −xi j
denote the sum of all contributions by agent ai to public goods other than p j . Under
the Nash assumption, G−i, j and Xi,− j are treated exogenously. Hence, solving the
first-order condition with respect to xi j yields the best-response

xi j = max
{
0, φi j

(
G−i, j , wi − Xi,− j

)}
,

where φi j is a non-linear function defined on R. By definition, the solution of the
system of best-response functions is the unique Nash equilibrium of the multiple
public goods game.

The following autonomous dynamic system, adapted from the Cournot literature
on multiproduct firms (see, e.g., Zhang and Zhang 1996), is specified:

ẋij = dxij
dt

= max
{
0, φij

(
G−i, j , wi − Xi,− j

)}− xij, for all ij ∈ L .

13 This would establish that a contribution increases (resp. decreases) with the number of even (resp. odd)
length paths that start from it in the (corresponding undirected) contribution structure.
14 In particular, it can be shown that all Nash equilibria admitted by the multiple public goods game are
solutions to a non-linear complementarity problem (Rébillé and Richefort 2015). See, e.g., Karamardian
(1969) for fundamental results in the field.
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Warm-glow giving in networks with multiple public goods 1219

This system assumes that agents continuously adjust their contributions at each link
by choosing the best-response to the contributions at the other links. Hence, by con-
struction, a stationary state of this system is a Nash equilibrium. Moreover, a Nash
equilibrium is said to be asymptotically stable if this system converges back to the
Nash equilibrium following any small enough perturbation.15 Let G∗

j denote the total
equilibrium supply of public good p j and X∗

i denote the total equilibrium contribu-
tion by agent ai . Following Bramoullé et al. (2014) and Allouch (2015), the links are
partitioned into three sets: the set of clearly active links

B =
{
i j ∈ L s.t. b′

j

(
0 + G∗−i, j

)
+ δ′

i j (0) − c′
i

(
wi − 0 − X∗

i,− j

)
> 0
}

formed by links that would still be active even after a small pertubation; the set of
inactive links being just at the margin of becoming active

C =
{
i j ∈ L s.t. b′

j

(
0 + G∗−i, j

)
+ δ′

i j (0) − c′
i

(
wi − 0 − X∗

i,− j

)
= 0
}

formed by links that might become active after a small pertubation; and the set of
clearly inactive links

D =
{
i j ∈ L s.t. b′

j

(
0 + G∗−i, j

)
+ δ′

i j (0) − c′
i

(
wi − 0 − X∗

i,− j

)
< 0
}

formed by links that would still be inactive even after a small pertubation. The stability
analysis will be restricted to set B ∪ D, i.e., contribution structures in which all links
are either clearly active or clearly inactive.

Assumption 2 C = ∅.
This assumption, also used in Allouch (2015), is very reasonable. In fact, a Nash

equilibrium inwhichoneormore inactive linkswould be just at themargin of becoming
active is quite unlikely to occur (see, e.g., footnote 16 and its proof in Bramoullé et al.
2014). Using this assumption, the asymptotic stability of the Nash equilibrium is
established.

Theorem 2 Let Assumptions 1 and 2 be satisfied. Then, the Nash equilibrium of the
multiple public goods game is asymptotically stable.

Theorem 2 extends the stability result of Andreoni (1990) to multidimensional
strategy spaces. A different way to see this is to solve the first-order conditions of
clearly active links with respect to the total supply of public goods. The first-order
condition of a clearly active link i j may be written

b′
j

(
G j
)+ δ′

i j

(
G j − G−i, j

)− c′
i

(
G−i, j − G j + wi − Xi,− j

) = 0.

15 See, e.g., Definition 4.1 in Khalil (2002).
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Totally differentiating this expression and rearranging yields

dG j = δ′′
i j

b′′
j + δ′′

i j + c′′
i
dG−i, j + c′′

i

b′′
j + δ′′

i j + c′′
i

(
dG−i, j + dwi − dXi,− j

)
,

where the term δ′′
i j/(b

′′
j + δ′′

i j + c′′
i ) comes from the warm-glow component of ai ’s

preferences and denote ai ’s marginal willingness to contribute to public good p j

for egoistic reasons. Furthermore, the second term c′′
i /(b

′′
j + δ′′

i j + c′′
i ) comes from

the altruistic component of ai ’s preferences and denote ai ’s marginal willingness to
contribute to public good p j for altruistic reasons. Under Assumption 1, both terms
are between zero and one, meaning that all warm-glow effects, all public goods and
the private good are supposed to be normal, just like in the single public good case.

4 Neutral redistributions of wealth

The inefficiency of theNash equilibrium is a famous outcomeof voluntary contribution
models (see, e.g., Cornes and Sandler 1986). Public goods are under-produced because
contributions are strategic substitutes and generate positive externalities.Hence, agents
have incentives to contribute less than the optimal level. To minimize this inefficiency,
it is important to have a better understanding of individual reactions to various public
policies, as well as welfare effects of these policies. This section examines the effects
of wealth transfers between agents. For this purpose, a slightly stronger assumption
about the convexity of individual preferences is stated.

Assumption 1’ For each link i j ∈ L , b j , δi j and ci are increasing, twice continuously
differentiable functions,with b j concave, δi j strongly concave and ci strongly concave.

Moreover, it is also assumed that all links are active and that the set of active links
remains unchanged after the (small enough) redistribution.

Assumption 2’ C = D = ∅.
There are two main justifications for this assumption. First, interior equilibria are

more likely to emerge under warm-glow preferences than under pure altruism.16 Sec-
ond, the comparative statics involving corner solutions with purely altruistic agents
is now well-established (see, e.g., Bergstrom et al. 1986; Cornes and Itaya 2010).
According to Andreoni (1990, p. 466), the results obtained in the pure altruism case
shall extend to warm-glow preferences. Hence, considering corner equilibria here will
not add to the insights of Bergstrom et al. (1986) and Cornes and Itaya (2010).17

Following Andreoni (1990), agents are identified by their altruism with respect to
the different public goods they are connected to. The altruism of agent ai with respect
to public good p j is given by

16 See, e.g., Cornes and Itaya (2010, p. 364) for a discussion.
17 Another possible justification for Assumption 2’ may be that agents must be active, even very slightly,
to secure their memberships in public good groups. The interiority of the equilibrium would then be the
result of group formation processes, not studied in this paper and well worth exploring in future research.
See, e.g., Brekke et al. (2007) for the analysis of a group formation game in which group membership is
only available to active agents.
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Fig. 3 Contribution structure
with n agents and m public
goods, candidate for neutral
redistributions of wealth

αi j = c′′
i

δ′′
i j + c′′

i
∈ (0, 1).

If ai has high altruism with respect to p j , δ′′
i j will be close to zero, so αi j will be close

to one. If ai has low altruism with respect to p j , δ′′
i j will be far distant from zero, so

αi j will be close to zero. More generally, the closer δ′′
i j is to zero, the nearer αi j is to

one, hence the more agent ai can be thought of as having high altruism with respect
to public good p j . The following partial neutrality result is then obtained.

Proposition 1 Let Assumptions 1’ and 2’ be satisfied. Then, a wealth transfer between
any agents such that

∑
ai∈A dwi = 0 will not change the total supply of each public

good whenever agents have identical altruism with respect to each public good, i.e.,
αi j = α j for all i j ∈ L, and the contribution structure g is complete.

A few comments on Proposition 1 are useful. First, a contribution structure is said
to be complete whenever each agent is involved in the provision of all public goods,
in other words, whenever each agent is a member of each public good group and can
therefore potentially contribute to and benefit from the provision of each public good.
Such a membership structure is depicted in Fig. 3. Along with Assumption 2’, this
means that every agent contributes positively to every public good.18 This is a fairly
strong assumption. Thus, consistent with empirical findings (see, e.g., Hochman and
Rodgers 1973; Reinstein 2011), the above result shows first of all that redistributions
of wealth will generally not be neutral.

However, when every agent contributes to every public good, Proposition 1 shows
that pure altruism is indeed sufficient for neutrality: if αi j tends to one for all i j ∈ L ,
then dG j tends to zero for all p j ∈ P , as in Kemp (1984) and to a lesser extent as
in Cornes and Itaya (2010), although in this case, the equilibrium may not be unique
and stable (see, e.g., Rébillé and Richefort 2015). Proposition 1 also shows that pure
altruism is only one of the cases in which small redistributions of wealth are neutral.

18 An example of such a situation is given in Kemp (1984), in which agents are countries and public
goods are international pure public consumption goods or global-level common-pool resources. In this
case, warm-glow can be thought of as being a local, country-specific benefit derived from own contribution.
For instance, national policy measures to protect the environment provide benefits which are both local
(i.e., private) and global (i.e., collective). See, e.g., Kaul et al. (1999) for more details and examples.
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Fig. 4 Wealth transfer from
agent a2 to agent a1 in presence
of n agents and a single public
good

In fact, this property holds whenever agents are equally altruistic with respect to each
public good, as long as the contribution structure is complete and all links are active.19

Regardless of the contribution structure, the proof of Proposition 1 shows that a
transfer between any two agents, say agents a1 and a2, such that dw1 = −dw2 =
dw > 0, has an effect on the supply of each public good such that

dG j = k j
(
α1 j − α2 j

)
dw − k j

∑

ai∈Ng(p j )

αi j d Xi,− j , for all p j ∈ P,

where k j ∈ (0, 1]. Three simple cases are now discussed in more details.

• In presence of a single public good, the above result reduces to the same expression
obtained by Andreoni (1990), i.e.,

dG1 = k1 (α11 − α21) dw,

where k1 ∈ (0, 1]. The transfer does not change G1 if and only if α11 = α21. It has
the desired effect on G1 if and only if α11 > α21. In this case, the only possible
contribution structure is the complete n × 1 bipartite graph, depicted in Fig. 4.

• When there are two agents and two public goods, the contribution structure is also
necessarily complete (see the 2×2 bipartite graph g1). In this case, a transfer from
a2 to a1 such that dw1 = −dw2 = dw > 0 yields

dG1 = k1 [α11 (dw − dx12) − α21 (dw + dx22)]

and

dG2 = k2 [α12 (dw − dx11) − α22 (dw + dx21)] ,

where k1, k2 ∈ (0, 1]. If α1 j = α2 j = α j for a given public good p j , the transfer
does not changeG1 if and only if it does not changeG2. Accordingly, if α1 j = α2 j

19 For example, quadratic value functions such that

δi j
(
xi j
) = σi j xi j − θ j

2
x2i j and ci (qi ) = ξi qi − ψ

2
q2i

for all i j ∈ L , where σi j , ξi > 0, θ j ∈ (0, σi j /wi ) and ψ ∈ (0, ξi /wi ), fulfil the neutrality condition over
the altruism coefficients.
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Fig. 5 Wealth transfer from
agent a2 to agent a1 in presence
of three agents and two public
goods

for all p j , the transfer does not change G1 and G2 simultaneously. Furthermore, if
α1 j > α2 j for a given public good p j , the transfer increases G1 if it decreases G2,
and vice versa. Hence, if αi1 > αk1 and αi2 > αk2 for a given agent ai , where ak is
the other agent, the transfer might increase or decrease G1 andG2 simultaneously.

• When there are three agents and two public goods, the contribution structure may
not be complete. If the third agent is connected to both public goods, four con-
tribution structures, depicted in Fig. 5, are possible. In the complete graph g8, a
transfer of wealth from a2 to a1 yields

dG1 = k1 [α11 (dw − dx12) − α21 (dw + dx22) − α31dx32]

and

dG2 = k2 [α12 (dw − dx11) − α22 (dw + dx21) − α32dx31] ,

where k1, k2 ∈ (0, 1]. Thus, it is easy to show that the above conclusions from the
2 × 2 bipartite graph still hold. Suppose now that some links are removed, as in
graphs g5, g6 and g7. The contribution structure is therefore no longer complete.20

In these graphs, the transfer might increase or decreaseG1 andG2, simultaneously
or not, depending on the altruism coefficients of the three agents, as well as their
position in the contribution structure.

Lastly, Proposition 1 can also be expressed as follows.

Proposition 2 Let Assumptions 1’ and 2’ be satisfied, and let the contribution struc-
ture g be complete. Then, the total supply of each public good is independent of the
distribution of wealth if and only if each best-response function can be written in the
form

20 Intuitively, considering incomplete contribution structures almost amounts to relaxing the assumption
that D = ∅, since clearly inactive links could be practically treated as missing links (see, e.g., Ilkiliç 2011).
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xi j = φ∗
i j

(
G−i, j

)+ α j
(
wi − Xi,− j

)
,

where α j ∈ (0, 1), φ∗
i j is a decreasing function for all i j ∈ L, and α j is identical

across all agents for any p j ∈ P.

For complete contribution structures, the class of best-response functions specified
in Proposition 2 will be sufficient for each public good to be independent of redistri-
butions of wealth. However, the quasi-linear form of these functions, along with all
other sufficient conditions, highlights the fact that neutrality, even partial, would only
hold for very particular game structures. An interesting way to think of this result may
be to consider the case of complete neutrality.

Indeed, if both the set of public goods and the consumption of the private good are
required to be independent of wealth redistributions, it can be shown that Proposition 2
gives rise to an impossibility result. Totally differentiating the best-response functions
in Proposition 2 yields

dxi j = φ∗
i j

′dG−i, j + α j
(
dwi − dXi,− j

)
.

Assuming dG j = 0 and rearranging, it appears that

dwi = dXi,− j + 1 + φ∗
i j

′

α j
dxi j .

It follows that φ∗
i j must be an affine function since dqi = 0 if and only if dwi = dXi

if and only if φ∗
i j

′ = α j − 1. Thus, φ∗
i j (G−i, j ) = ζi j + (α j − 1

)
G−i, j , where ζi j is a

constant. The best-response functions in Proposition 2 may then be written

xi j = ζi j + (α j − 1
)
G−i, j + α j

(
wi − Xi,− j

)
,

or equivalently,

ζi j + (α j − 1
)
G j + α j (wi − Xi ) = 0.

Hence, complete neutrality requires that warm-glow functions be linear functions,
which contradicts Assumption 1’.

5 Subsidies and direct grants

In this section, it is assumed that public goods may be provided both publicly and
privately.21 Suppose that each individual contribution xi j is subsidized at a rate si j ∈
(0, 1) by the government and suppose that these subsidies are financed through lump

21 The effects of government intervention on the private provision of public goods has a long tradition
in economics. The main question is to which extent public provision crowds out private contributions.
See, e.g., Abrams and Schmitz (1984), Andreoni (1993), Eckel et al. (2005), Gronberg et al. (2012) and
Ottoni-Wilhelm et al. (2014) for empirical studies on this issue.
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sum taxes τi j > 0. All net tax receipts are dedicated to the provision of public goods,
either through subsidies towards individual contributions, or through direct grants.

For all p j ∈ P , let Tj = ∑
ai∈Ng(p j )

{τi j − si j xi j } be the government’s net tax

receipts with respect to public good p j , and let G̃ j = G j + Tj be the joint supply of
public good p j . The utility function of agent ai is now given by

Ui =
∑

p j∈Ng(ai )

{
b j

(
G̃ j

)
+ δi j

(
xi j
)}+ ci (qi ).

Let x̃i j = xi j (1− si j ) + τi j represents ai ’s contribution to public good p j . Then, ai ’s
budget constraint becomes wi = qi + X̃i , where X̃i =∑p j∈Ng(ai ) x̃i j . It follows that
ai ’s maximization problem may be written

max
{x̃i j s.t. p j∈Ng(ai )}

∑

p j∈Ng(ai )

⎧
⎨

⎩
b j

⎛

⎝
∑

ai∈Ng(p j )

x̃i j

⎞

⎠+ δi j

(
x̃i j − τi j

1 − si j

)
⎫
⎬

⎭
ci

⎛

⎝wi −
∑

p j∈Ng(ai )

x̃i j

⎞

⎠

s.t. x̃i j − τi j ≥ 0, for all p j ∈ Ng(ai ).

Similarly to the neutrality analysis, it is assumed that all links are active and that
the set of active links remains unchanged after a (small enough) change in lump sum
taxes and/or subsidies (Assumption 2’). Hence, substituting X̃i = x̃i j + X̃i,− j and
G̃ j = x̃i j + G̃−i, j into the first-order condition of ai ’s maximization problem with
respect to x̃i j yields

b′
j

(
x̃i j + G̃−i, j

)
+ 1

1 − si j
δ′
i j

(
x̃i j − τi j

1 − si j

)
− c′

i

(
wi − x̃i j − X̃i,− j

)
= 0.

Solving this with respect to x̃i j yields the best-response

x̃i j = φi j

(
G̃−i, j , si j ,

τi j

1 − si j
, wi − X̃i,− j

)
.

The second argument, si j , appears because of the expressionmultiplying ai ’s marginal
warm-glow function in the first-order condition. The third argument comes from the
warm-glow component of ai ’s utility function. The altruism coefficient is now given
by

α̃i j = c′′
i

δ′′
i j

(1−si j )2
+ c′′

i

∈ (0, 1).

The effects of changing lump sum taxes are first analyzed.
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Proposition 3 Let Assumptions 1’ and 2’ be satisfied, let the contribution structure g
be complete, and let α̃i j = α̃ j for all i j ∈ L. Then, any increase (resp. decrease) in
the lump sum taxes with respect to a given public good, say public good p1, will:

(i) increase (resp. decrease) the total supply of p1,
(ii) decrease (resp. increase) the total supply of any other public good,
(iii) increase (resp. decrease) the total amount of contributions.

The above proposition establishes that direct grants financed by lump sum taxation
will incompletely crowdout private contributions. In fact, regardless of the contribution
structure, the proof of Proposition 3 shows that changing lump sum taxes affects the
total supply of each public good such that

dG̃ j = k̃ j
∑

ai∈Ng(p j )

{(1 − α̃i j
)
dτi j − α̃i j d X̃i,− j }, for all p j ∈ P,

where k̃ j ∈ (0, 1] and dτi j is the change in ai ’s tax rate with respect to p j . In presence
of a single public good, the above result reduces to the same expression obtained by
Andreoni (1990), just like in the previous section. In this case, any change in the lump
sum taxes has the desired effect on the total supply of the single public good, and since
agents are impurely altruistic, the crowding out effect is incomplete because agents
always prefer the bundle with the highest warm-glow.

In a complete contribution structure composed of equally altruistic agents with
respect to each public good, changing lump sum taxes with respect to a given public
good, say p1, yields

dG̃1 = k̃1 (1 − α̃1) dτ1 − k̃1α̃1

∑

p j∈P\{p1}
dG̃ j

and

dG̃l = −k̃l α̃l
∑

p j∈P\{pl }
dG̃ j , for all pl ∈ P\{p1},

where k̃ j ∈ (0, 1] for all p j ∈ P and dτ1 is the variation in p1’s total tax revenue,
i.e., dτ1 = ∑ai∈Ng(p1) dτi1. Hence, any change in τ1 produces desired effects on the
total supply of p1 and undesired effects on the total supply of any other public good
pl . Moreover, these effects depend on the altruism of all agents with respect to each
public good:

• The more altruistic the agents are with respect to p1, the lower the change in G1;
• The more altruistic the agents are with respect to any other public good pl , the
higher the change in Gl .

This result is therefore consistent with empirical findings by Feldstein and Taylor
(1976) andReece (1979), who show that different public goods, thus inducing different
warm glow effects, exhibit different responses to tax policy changes.

A similar result is now established with subsidies.
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Proposition 4 Let Assumptions 1’ and 2’ be satisfied, let the contribution structure g
be complete, and let α̃i j = α̃ j for all i j ∈ L. Then, any increase (resp. decrease) in
the subsidy rates with respect to a given public good, say public good p1, will:

(i) increase (resp. decrease) the total supply of p1,
(ii) decrease (resp. increase) the total supply of any other public good,
(iii) increase (resp. decrease) the total amount of contributions.

In presence of a single public good, subsidies are always more desirable than direct
grants because impurely altruistic agents prefer to contribute directly rather than indi-
rectly (Andreoni 1990). To check the robustness of this fact when there are multiple
public goods, suppose that the government raises the subsidy rates with respect to
public good p1 and finances this by raising lump sum taxes with respect to p1. Totally
differentiating the best-response functions and rearranging as in the proofs yields

dG̃1 = k̃1
∑

ai∈Ng(p1)

{
(1 − α̃i1) dτi1 +

(
α̃i1κi1 + (1 − α̃i1)

τi1

1 − si1

)
dsi1 − α̃i1d X̃i,−1

}
,

where κi1 > 0. In a complete contribution structure composed of equally altruistic
agents with respect to each public good, it holds that

dG̃1 = k̃1 (1 − α̃1) dτ1 − k̃1α̃1
∑

ai∈A

d X̃i,−1 + k̃1
∑

ai∈A

{(
α̃1κi1 + (1 − α̃1)

τi1

1 − si1

)
dsi1

}

= dG̃1

∣∣∣
grants

+ k̃1
∑

ai∈A

{(
α̃1κi1 + (1 − α̃1)

τi1

1 − si1

)
dsi1

}

> dG̃1

∣∣∣
grants

> 0,

and since dG̃l is a linear decreasing function of dG̃1,

dG̃l < dG̃l

∣∣∣
grants

< 0, for all pl ∈ P\{p1}.

Hence, lump sum taxes with respect to p1 spent on subsidizing contributions yield
greater effects than lump sum taxes with respect to p1 spent on direct grants. First,
they have a greater desired effect on the total supply of p1, just like in the single public
good case. Second, they have a greater undesired effect on the total supply of any other
public good.

It is therefore interesting to check whether subsidies or direct grants Pareto-
dominate. Suppose that direct grants dedicated to the provision of public good p1
are increased by dτi1. Totally differentiating ai ’s utility function yields

dUi |grants = Ki − δ′
i1

1 − si1
dτi1,
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where Ki = ∑
p j∈Ng(ai ) {b′

j dG̃ j + δ′
i j d x̃i j/(1 − si j )} − c′

i d X̃i . Now, suppose that
direct grants dedicated to the provision of p1 and subsidies with respect to p1 are
increased simultaneously by (d τ̂i1, dsi1), so that the same change in the equilibrium
supply of each public good and in ai ’s equilibrium contributions occurs. Totally dif-
ferentiating ai ’s utility function yields

dUi |subsidies = Ki − δ′
i1

1 − si1

(
d τ̂i1 − xi1dsi1

)
,

where xi1 = (x̃i1 − τi1)/(1− si1) ≥ 0. From the above, it is known that d τ̂i1 ≤ dτi1.
Hence, in a complete contribution structure composed of equally altruistic agents with
respect to each public good,

d τ̂i1 − xi1dsi1 ≤ dτi1 ⇐⇒ dUi |subsidies ≥ dUi |grants .

Consequently, an increase in the subsidy rates will increase utility more than an equiv-
alent increase in direct grants.

6 Conclusion

This paper explores a voluntary contribution game with m public goods in which
players enjoy warm-glow for their contributions. Each public good benefits a different
group of players. Players are initially endowed with a fixed amount of a private good
anddecide on their contributions to the various public goodgroups they are affiliated to.
Under this framework, the contribution structure forms a bipartite graph between the
players and the public goods. The main result of the paper is to show the existence and
uniqueness of aNash equilibrium. The asymptotic stability of the unique equilibrium is
also established. These findings confirm the crucial role played by warm-glow effects
in the equilibrium analysis, whether there is one public good, like in Andreoni (1990)’s
analysis, or many related public goods.

Then the paper provides some comparative statics analysis regarding pure redis-
tribution and public provision. When applied to the case of m = 1 public good, the
results presented in this paper provide the same conditions as those obtained in the
existing literature. However, the comparative statics of the single public good case
cannot be extended to the more general setting of multiple public goods: in general,
the neutrality conditions for m public goods in isolation are not generalizable to m
related public goods. Moreover, the multiple public goods game leads to an intuitive
conclusion that cannot be achieved when only one public good is considered: the
impact of direct grants and subsidies is highly dependent on how public good groups
are related in the contribution graph structure.

These results suggest three important reasons for examining the private provision
of multiple public goods in a bipartite graph context. First, it makes it possible to show
that Ilkiliç (2011)’s results on equilibrium characterization apply to themultiple public
goods game with quadratic preferences. Second, it serves to illustrate a significant
feature of the usual neutrality result: under pure altruism, neutrality requires that the
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agents involved in the redistribution be embodied in a path of clearly active links
(Cornes and Itaya 2010), while under warm-glow preferences, the agents need to be
embodied in a complete structure of clearly active links. Third, it helps to demonstrate
that a complete contribution structure is necessary for Andreoni (1990)’s comparative
statics results.

Still, it is likely that the comparative statics results presented in this paper can be
extended further by relaxing the requirement on the completeness of the contribution
structure. In fact, the comparative statics analysis will not be over until conditions on
the contribution structure will be found which are both necessary and sufficient. This
could probably be achieved by considering some specific, tractable utility functions.
Furthermore, the results on the existence, uniqueness and stability of the Nash equi-
librium do not impose any structural requirements. They are based on properties of
individual preferences, andmay eventually be extended to the general class of network
games of strategic substitutes with multidimensional strategy spaces and non-linear
best-response functions.

Appendix

Given a contribution structure g, let xg stand for the column vector of contributions:
xg is the link by link profile of contributions and has size r(g). The links in xg are
sorted in lexicographic order: the contribution xi j is listed above the contribution xkl
when i < k or when i = k and j < l. For the contribution structures g1 and g2 given
in Fig. 2,

xg1 =

⎛

⎜⎜
⎝

x11
x12
x21
x22

⎞

⎟⎟
⎠ and xg2 =

⎛

⎜⎜
⎝

x11
x21
x22
x32

⎞

⎟⎟
⎠ .

The Nash equilibrium of the multiple public goods game is noted x∗
g .

Proof of Theorem 1 Because of the budget constraints, the allowed contributions are
limited by the requirement that xg be selected from a convex and compact set S such
that

S =
∏

i j∈L
[0, wi ] ⊂ R

r(g)
+ .

Then, the existence of a Nash equilibrium follows from fixed point arguments (such
as Kakutani fixed point theorem) as in Theorem 1 of Rosen (1965).

To prove the uniqueness of theNash equilibrium, Theorems 2 and 6 of Rosen (1965)
are applied, which entail that the Nash equilibrium of the multiple public goods game
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is unique whenever the r(g) × r(g) Jacobian matrix of marginal utilities J(xg) is a
symmetric negative definite matrix for all xg ∈ S. Observe that, for all i j ∈ L ,

∂2Ui

∂xkl∂xij

(
xg
) =

⎧
⎪⎪⎨

⎪⎪⎩

b′′
j

(
G j
)+ δ′′

i j

(
xi j
)+ c′′i (wi − Xi ) , for kl ∈ L s.t. kl = ij;

c′′i (wi − Xi ) , for kl ∈ L s.t. k = i and l �= j;
b′′
j

(
G j
)
, for kl ∈ L s.t. k �= i and l = j;

0, for kl ∈ L s.t. k �= i and l �= j,

so J(xg) is a symmetric matrix which can be decomposed as

J
(
xg
) = B

(
xg
)+ �

(
xg
)+ C

(
xg
)
,

where B(xg) is the Jacobian matrix of marginal collective benefits, �(xg) is the Jaco-
bian matrix of marginal warm-glow, and C(xg) is the Jacobian matrix of marginal
private consumption. Both B(xg), �(xg) and C(xg) are symmetric matrices. More-
over, �(xg) is a diagonal matrix with all diagonal elements negative since under
Assumption 1, δ′′

i j (.) < 0 for all i j ∈ L . Then, �(xg) is negative definite for all
xg ∈ S. In the following lemmas, it is shown that both B(xg) and C(xg) are nega-
tive semidefinite for all xg ∈ S, so J(xg) is a sum of a symmetric negative definite
matrix and two symmetric negative semidefinite matrices. Hence, J(xg) is symmetric
negative definite for all xg ∈ S, and uniqueness is established. ��
Lemma 1 B(xg) is negative semidefinite for all xg ∈ S.

Proof To show thatB(xg) is negative semidefinite for all xg ∈ S, it is proved that there
exists a matrix Rg , with possibly dependent columns, such that −B(xg) = Rg

TRg

(see Strang 1988, p. 333). Observe that, for all i j ∈ L ,

− ∂2b j

∂xkl∂xi j

(
xg
) =

{−b′′
j

(
G j
)
, for kl ∈ L s.t. l = j;

0, for kl ∈ L s.t. l �= j,

so −B(xg) is a symmetric matrix. For s ∈ {1, . . . ,m}, let vs ∈ R
r(g)
+ be such that

vsi j =
{√

−b′′
j (G j ), for i j ∈ L s.t. j = s;

0, for i j ∈ L s.t. j �= s.

Define Rg as a partitioned matrix such that

Rg
T = (v1 . . . vm

)
r(g)×m .

It is straightforward to check that−B(xg) = Rg
TRg , soB(xg) is negative semidefinite

for all xg ∈ S. ��
Lemma 2 C(xg) is negative semidefinite for all xg ∈ S.
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Proof Let’s prove that there exists a matrix Rg such that −C(xg) = Rg
TRg . Observe

that, for all i j ∈ L ,

− ∂2ci
∂xkl∂xi j

(
xg
) =

{−c′′
i (wi − Xi ) , for kl ∈ L s.t. k = i;

0, for kl ∈ L s.t. k �= i,

so −C(xg) is a symmetric matrix. For t ∈ {1, . . . , n}, let wt ∈ R
r(g)
+ be such that

wt
i j =

{√
−c′′

i (wi − Xi ), for i j ∈ L s.t. i = t;
0, for i j ∈ L s.t. i �= t.

Define Rg as a partitioned matrix such that

Rg
T = (w1 . . . wn

)
r(g)×n .

It is straightforward to check that−C(xg) = Rg
TRg , soC(xg) is negative semidefinite

for all xg ∈ S. ��
Proof of Theorem 2 Since asymptotic stability is a local property, it can be assumed
that clearly inactive links remain inactive following a small change of contributions at
the other links (see, e.g.,Bramoullé et al. 2014; Allouch 2015). Hence, under Assump-
tion 2, the dynamic system reduces to

ẋij = φi j
(
G−i, j , wi − Xi,− j

)− xij, for all i j ∈ B.

Let Z(xB) be the r(B) × r(B) Jacobian matrix of the function zi j (xB) =
φi j (G−i, j , wi − Xi,− j ) − xi j for all i j ∈ B. To prove the asymptotic stability of the
Nash equilibrium, Lyapunov’s indirect method is applied. This entails that the Nash
equilibrium of the multiple public goods game is asymptotically stable whenever the
real part of each eigenvalue of Z(x∗

B) is negative.22

For all i j ∈ B, observe that

∂zi j
∂xkl

(xB) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1, for kl ∈ B s.t. kl = ij;
−c′′

i (wi−Xi )

b′′
j (G j)+δ′′

ij(xi j)+c′′
i (wi−Xi )

, for kl ∈ B s.t. k = i and l �= j;
−b′′

j (G j)
b′′
j (G j)+δ′′

i j(xi j)+c′′
i (wi−Xi )

, for kl ∈ B s.t. k �= i and l = j;
0, for kl ∈ B s.t. k �= i and l �= j,

so Z(xB) is an asymmetric matrix which can be decomposed as

Z (xB) = Y (xB) J(xB),

22 See, e.g., Theorem 4.7 in Khalil (2002).
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where J(xB) is the Jacobianmatrix of marginal utilities andY(xB) is a diagonal matrix
with all diagonal elements positive, i.e.,

[Y (xB)]i j,i j = − 1

b′′
j

(
G j
)+ δ′′

i j

(
xi j
)+ c′′

i (wi − Xi )
> 0, for all i j ∈ B.

Then,Y(xB) is a symmetric positive definite matrix for all xB ∈ SB =∏i j∈B [0, wi ].
It has been shown in the proof of Theorem 1 that under Assumption 1, J(xg) is a
symmetric negative definite matrix for all xg ∈ S. Given that any principal submatrix
of a symmetric negative definite matrix is symmetric negative definite, J(xB) is a
symmetric negative definite matrix for all xB ∈ SB . It follows that −Z(xB) is the
product of two symmetric positive definite matrices,Y(xB) and−J(xB). By Theorem
2 in Ballantine (1968), all the eigenvalues of −Z(xB) are real and positive for all
xB ∈ SB . Thus, all the eigenvalues of Z(x∗

B) are real and negative, and asymptotic
stability of the Nash equilibrium is established. ��

Proof of Proposition 1 Totally differentiating the best-response functions at each link
i j ∈ B yields

dxi j = ∂φi j

∂G−i, j
dG−i, j + ∂φi j

∂(wi − Xi,− j )

(
dwi − dXi,− j

)
.

It follows that

dxi j = − b′′
j

b′′
j + δ′′

i j + c′′
i
dG−i, j + c′′

i

b′′
j + δ′′

i j + c′′
i

(
dwi − dXi,− j

)
,

or equivalently, since dG−i, j = dG j − dxi j ,

dxi j = − b′′
j

δ′′
i j + c′′

i
dG j + αi j

(
dwi − dXi,− j

)
.

Since C = D = ∅, all links are clearly active, i.e., L = B. Hence, summing across
all ai ∈ Ng(p j ) and solving for dG j yields

dG j = k j
∑

ai∈Ng(p j )

{
αi j
(
dwi − dXi,− j

)}
, for all p j ∈ P, (1)

where

k j =
⎛

⎝1 +
∑

ai∈Ng(p j )

b′′
j

δ′′
i j + c′′

i

⎞

⎠

−1

∈ (0, 1] .
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Since αi j = α j for all i j ∈ L , Eq. (1) becomes

dG j = k jα j

∑

ai∈Ng(p j )

{dwi − dXi,− j }, for all p j ∈ P.

Moreover, since g is a complete bipartite graph, it holds that Ng(ai ) = P for all
ai ∈ A, and equivalently Ng(p j ) = A for all p j ∈ P . Hence,

∑

ai∈Ng(p j )

dwi =
∑

ai∈A

dwi = 0

and

∑

ai∈Ng(p j )

dXi,− j =
∑

ai∈A

dXi,− j =
∑

pl∈P\{p j }
dGl .

It follows that, for all p j ∈ P ,

dG j = −k jα j

∑

pl∈P\{p j }
dGl .

From this last equation, it appears that

∑

pl∈P

dGl =
(
1 − 1

k1α1

)
dG1 = . . . =

(
1 − 1

kmαm

)
dGm,

so it holds that

sign (dG1) = . . . = sign (dGm) .

Then, for all p j ∈ P ,

sign
(
dG j

) = sign

⎛

⎝
∑

pl∈P\{p j }
dGl

⎞

⎠

= sign

⎛

⎝k jα j

∑

pl∈P\{p j }
dGl

⎞

⎠

= sign
(−dG j

)

if and only if dG j = 0. ��
Proof of Proposition 2 When the contribution structure is complete, a best-response
function of the form given is sufficient since identical values of the altruism coefficient
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among all agents with respect to each public good is sufficient. The remainder of the
proof is therefore devoted to the necessary condition.

Since C = D = ∅, xi j = φi j (G−i, j , wi − Xi,− j ) holds for all i j ∈ L . Moreover,
since dG j = 0 for all p j ∈ P , the total differential of the best-response functions
given in the proof of Proposition 1 yields

dxi j = α j
(
dwi − dXi,− j

)
, for all i j ∈ L ,

where α j = α j (x∗
g). This implies that φi j (G−i, j , wi − Xi,− j ) is linear in wi − Xi,− j .

Then, it holds that

xi j = φi j
(
G−i, j , wi − Xi,− j

) = φ∗
i j

(
G−i, j

)+ α j
(
wi − Xi,− j

)
, for all i j ∈ L ,

where φ∗
i j is decreasing since ∂φi j/∂G−i, j = −b′′

j /(b
′′
j + δ′′

i j + c′′
i ) ≤ 0. ��

Proof of Proposition 3 Totally differentiating the best-response functions at each link
i j ∈ B while keeping dsi j = dwi = 0 yields

dx̃i j = ∂φi j

∂G−i, j
dG−i, j + ∂φi j

∂(
τi j

1−si j
)

× 1

1 − si j
dτi j − ∂φi j

∂(wi − Xi,− j )
dXi,− j ,

or equivalently,

dx̃i j = − b′′
j

b′′
j + δ′′

i j

(1−si j )2
+ c′′

i

dG−i, j +
δ′′
i j

(1−si j )2

b′′
j + δ′′

i j

(1−si j )2
+ c′′

i

dτi j − c′′
i

b′′
j + δ′′

i j

(1−si j )2
+ c′′

i

d Xi,− j .

Since C = D = ∅, all links are clearly active, i.e., L = B. Hence, rearranging as in
the proof of Proposition 1 yields

dG̃ j = k̃ j
∑

ai∈Ng(p j )

{(
1 − α̃i j

)
dτi j − α̃i j d X̃i,− j

}
, for all p j ∈ P, (2)

where

k̃ j =
⎛

⎜
⎝1 +

∑

ai∈Ng(p j )

b′′
j

δ′′
i j

(1−si j )2
+ c′′

i

⎞

⎟
⎠

−1

∈ (0, 1] .

Let τ j = ∑ai∈Ng(p j )
τi j denote the total lump sum taxes with respect to public good

p j . Since the contribution structure is complete and α̃i j = α̃ j for all i j ∈ L , Equation
(2) can be rearranged as

dG̃ j = k̃ j
(
1 − α̃ j

)
dτ j − k̃ j α̃ j

∑

pl∈P\{p j }
dG̃l , for all p j ∈ P.
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Hence, assuming that dτ1 �= 0 and dτl = 0 for all pl ∈ P\{p1} yields

dG̃1 = k̃1 (1 − α̃1) dτ1 − k̃1α̃1

∑

pl∈P\{p1}
dG̃l

and

dG̃l = −k̃l α̃l
∑

p j∈P\{pl }
dG̃ j , for all pl ∈ P\{p1}.

From this last equation, it appears that

∑

p j∈P

dG̃ j =
(
1 − 1

k̃2α̃2

)
dG̃2 = ... =

(
1 − 1

k̃m α̃m

)
dG̃m . (3)

Hence, it holds that

dG̃l = βldG̃1, for allpl ∈ P\{p1}, (4)

where

βl =
⎛

⎝− 1

k̃l α̃l
−

∑

p j∈P\{p1,pl }

⎧
⎨

⎩

1 − 1
k̃l α̃l

1 − 1
k̃ j α̃ j

⎫
⎬

⎭

⎞

⎠

−1

∈ (−1, 0).

Now, let dτ1 > 0 and suppose that dG̃1 ≤ 0. Then, from Equation (4), dG̃l ≥ 0 for
all pl ∈ P\{p1}, and therefore, from Equation (3),

∑
p j∈P dG̃ j ≤ 0. Hence,

−dG̃1 ≥
∑

pl∈P\{p1}
dG̃l ≥ 0.

It follows that

dG̃1 = k̃1 (1 − α̃1) dτ1 − k̃1α̃1
∑

pl∈P\{p1}
dG̃l

≥ k̃1 (1 − α̃1) dτ1 − k̃1α̃1

(
−dG̃1

)

= k̃1 (1 − α̃1) dτ1 + k̃1α̃1dG̃1.

Then, it appears that

dG̃1

(
1 − k̃1α̃1

)
≥ k̃1 (1 − α̃1) dτ1 ⇐⇒ dG̃1 ≥ k̃1(1 − α̃1)

1 − k̃1α̃1
dτ1 > 0,

a contradiction. The same contradiction can easily be obtained under the assumption
that dG̃1 ≥ 0 when dτ1 < 0. Hence, sign(dτ1) = sign(dG̃1) = sign(−dG̃l) for all
pl ∈ P\{p1} = sign(

∑
p j∈P dG̃ j ). ��
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Proof of Proposition 4 Totally differentiating the best-response functions at each link
i j ∈ B while keeping dτi j = dwi = 0 yields

dx̃i j = ∂φi j

∂G−i, j
dG−i, j + ∂φi j

∂si j
dsi j + ∂φi j

∂(
τi j

1−si j
)

× τi j

(1 − si j )2
dsi j − ∂φi j

∂(wi − Xi,− j )
dXi,− j ,

or equivalently,

dx̃i j = − b′′
j

b′′
j + δ′′

i j

(1−si j )2
+ c′′

i

dG−i, j −
δ′
i j

(1−si j )2
− δ′′

i j τi j

(1−si j )3

b′′
j + δ′′

i j

(1−si j )2
+ c′′

i

dsi j − c′′
i

b′′
j + δ′′

i j

(1−si j )2
+ c′′

i

d Xi,− j .

Since C = D = ∅, all links are clearly active, i.e., L = B. Hence, rearranging as in
the proof of Proposition 1 yields

dG̃ j = k̃ j
∑

ai∈Ng(p j )

{(
α̃i jκi j + (1 − α̃i j

) τi j

1 − si j

)
dsi j − α̃i j d X̃i,− j

}
,

for all p j ∈ P, (5)

where

κi j =
∂φi j
∂si j
∂φi j

∂(wi−X̃i,− j )

=
− δ′

i j

(1−si j )2

c′′
i

> 0,

and k̃ j ∈ (0, 1] as in the proof of Proposition 3. Since the contribution structure is
complete and α̃i j = α̃ j for all i j ∈ L , Equation (5) can be rearranged as

dG̃ j = k̃ j
∑

ai∈A

{(
α̃ jκi j + (1 − α̃ j

) τi j

1 − si j

)
dsi j

}
− k̃ j α̃ j

∑

pl∈P\{p j }
dG̃l ,

for all p j ∈ P.

Hence, assuming that dsi1 �= 0 for at least one agent ai ∈ Ng(p1) and dsil = 0 for
all ai ∈ Ng(pl) for all pl ∈ P\{p1} yields

dG̃1 = k̃1
∑

ai∈A

{(
α̃1κi1 + (1 − α̃1)

τi1

1 − si1

)
dsi1

}
− k̃1α̃1

∑

pl∈P\{p1}
dG̃l

and

dG̃l = −k̃l α̃l
∑

p j∈P\{pl }
dG̃ j , for all pl ∈ P\{p1}.
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From this last equation, observe that Equations (3) and (4) hold, and since

α̃1κi1 + (1 − α̃1)
τi1

1 − si1
> 0, for all ai ∈ A,

the same contradiction as in the proof of Proposition 3 can easily be obtained. ��
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