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Abstract We study a variation of Hotelling’s location model in which consumers
choose between firms based on travel distances as well as the number of consumers
visiting each firm. The model in which the network externality is the same for all
firms was proposed by Kohlberg (Econ Lett 11:211–216, 1983), who claims that no
equilibrium exists for more than two firms. We assume the network effects to be linear
and, in contrast to the claim in Kohlberg (Econ Lett 11:211–216, 1983), derive a
condition under which a subgame perfect Nash equilibrium exists for four and six
firms. Moreover, we show that for more than two firms the equilibrium locations of
the firms are different from the equilibrium locations in Hotelling’s location model.
Our results suggest that a subgame perfect Nash equilibrium exists if and only if the
number of firms is even. We also provide examples of subgame perfect equilibria in
which the network externality is different for some of the firms.
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1 Introduction

The seminal paper of Hotelling (1929) describes a simple model of spatial competi-
tion in which two firms compete for consumers. There are many generalizations of the
model that focus on different aspects of the problem, like the number of competitors,
the pricing behavior of the firms, and/or the market structure. We consider a version
in which firms want to maximize their market share by means of their location in the
presence of negative network externalities. The externality can be interpreted as for
example congestion: the larger the market share of a firm, the higher its expected wait-
ing time, or as snobbery: the smaller the market share of a firm, the higher its prestige.
This model applies particularly to products of which the price is fixed, such as news-
papers or brand products, and to political competition as introduced by Downs (1957).

Hotelling’s location model considers a game between n firms on the unit interval.
Consumers are assumed to be evenly distributed along the interval and want to visit
exactly one firm. The play of the game is as follows. First, each firm simultaneously
chooses a location, and second, each consumer visits the closest firm. Despite the
simple structure of the game, the payoff function of a firm is often discontinuous.
In order to circumvent this problem, Kohlberg (1983) proposed a modification in
which consumers care about the travel time as well as the expected waiting time
for service. The inclusion of these network effects into the model guarantees that
the payoff function of each firm is continuous. Despite this desired feature, Kohlberg
(1983) states that for n = 3 it is easy to verify that there is no equilibrium in which two
firms locate in the same place, and proves that there is no equilibrium if the three firms
locate at a different location. Then he concludes that the game has no equilibrium for
more than two firms and refers to Kohlberg (1982) for a proof for an arbitrary number
of firms. Kohlberg (1982) proves that for n > 3 no equilibrium exists if the locations
of the firms are different. He then claims that it is easy to verify that in equilibrium all
the firm locations must be different and concludes that the game has no equilibrium
for more than two firms. The claim that in equilibrium no two firms locate in the same
place is based on the result for n = 3. However, he does not provide any intuition why
the claim should be correct for arbitrary n, especially because the unique equilibrium
for two firms is such that both firms locate at the center of the market.

We assume that the network externality is linear in the number of consumers visiting
a firm and show that the claim that all the firm locations must be different is incorrect
for n ∈ {4, 6}. Our main results are as follows.

Results First, we assume that the network externality is the same for all firms.
Since the game played between firms and consumers involves an element of timing,
we focus on subgame perfect Nash equilibria. We derive a necessary and sufficient
condition underwhich a subgame perfect equilibrium exists for two, four and six firms.
For four and six firms, we find that the network effect should be sufficiently large for
a subgame perfect equilibrium to exist. We also show that the game has no subgame
perfect equilibrium for three and five firms. Based on these results, we conjecture that
the game has a subgame perfect equilibrium if and only if the number of firms is even
and the network effects are sufficiently large.

Second, we characterize the locations of the firms in a subgame perfect Nash equi-
librium. For four and six firms, we show that there are two firms that locate at the center
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Hotelling’s location model with negative network externalities 813

of the market, which is in contrast to the claim of Kohlberg that no two firms locate in
the same location. The equilibrium locations for four and six firms are also different
from the equilibrium locations in Hotelling’s location model. It is well known that in
Hotelling’s model the outside firms are always paired, whereas in the equilibria we
find, this is not necessarily the case.

Third, we consider a more general setting in which the network externality can be
different for different firms.We say that two firms are asymmetric if the network effect
for the two firms is different. We provide a necessary and sufficient condition under
which a subgame perfect Nash equilibrium exists for three firms. A subgame perfect
equilibrium exists if the network effect is the same for two out of three firms, and the
effect is sufficiently larger for the third firm. This explains the lack of equilibria for
three symmetric firms.

Fourth, we provide an example of a subgame perfect Nash equilibrium in which,
counter-intuitively, a firm with a larger network effect obtains a larger market share
than a firm with a smaller network effect due to their locations.

Related literature Hotelling’s model is primarily used to explain product differ-
entiation or the lack thereof. The original result found by Hotelling (1929) is that in
the case of a duopoly, firms want to locate in the middle of the market and minimize
differentiation. Eaton and Lipsey (1975) assume that prices are fixed and extend the
analysis to multiple firms and different market structures. They argue that firms have
a tendency to create local clusters, and minimum differentiation is just a special case
of a local cluster for two firms. The principle of minimum differentiation was criti-
cized by d’Aspremont et al. (1979) by showing that no pure price equilibrium exists if
locations are sufficiently close. They show that under quadratic transportation costs,
firms want to maximize differentiation. Osborne and Pitchik (1987) characterize a
mixed strategy pricing equilibrium for linear transportation costs in which firms have
substantial differentiation.

Closest to ours is Kohlberg (1983) who introduces negative network externalities
into Hotelling’s locationmodel. He shows that there are no equilibria in which all firms
locate at different locations. Palma and Leruth (1989) consider a model in which firms
first choose a capacity, and second, set a price. Their way of modelling congestion
corresponds to our way of modelling externalities. Navon et al. (1995) focus on the
pricing behavior of firms for fixed locations in the presence of negative or positive
network externalities. Negative network effects tend to lessen competition and increase
prices, whereas positive network effects make competition fiercer and lead to lower
prices. A similar analysis and conclusion is given in Grilo et al. (2001) for quadratic
instead of linear transportation costs. Ahlin and Ahlin (2013) consider a duopoly
with strategic pricing and negative network externalities, and show that differentiation
decreases with network effects. Lambertini and Orsini (2013) show that even in the
presence of network externalities, switching costs canbeused to eliminate the incentive
to undercut prices such that the minimum differentiation principle is restored.

There are also models that consider fixed locations on a circle, like Salop
(1979), and study price competition with network externalities. Navon et al. (1995)
assume that transportation costs are linear, whereas Heikkinen (2014) assumes
that transportation costs are quadratic. Friedman and Grilo (2005) consider a
model with externalities, where each consumer’s utility rises when similar con-

123
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sumers buy the same good and falls when sufficiently dissimilar consumers buy the
good.

Other recent work on Hotelling’s model considers graphs, see Pálvölgyi (2011),
Fournier and Scarsini (2014), Fournier (2016), finite sets of locations, see Núñez and
Scarsini (2016) and Núñez and Scarsini (2017), and optimal interval division, see Tian
(2015).

The organization of this paper is as follows. Section 2 explains the basic model
with linear network externalities and provides some preliminary results. In Sect. 3, we
consider the model with symmetric firms. Section 4 generalizes the setting and allows
firms to be asymmetric. Most of the proofs are relegated to the Appendix.

2 Preliminary results

2.1 The model

Let N = {1, . . . , n}, where n ≥ 2, be the set of firms. Each firm sells a homogeneous
product for a fixed price. The goal of each firm is to maximize its market share. We
assume that consumers are uniformly distributed on the interval [0, 1]. Each consumer
purchases one product. In order to do so, the consumer has to visit the location of one
of the firms and incurs transportation costs. We normalize the cost of travel to one per
unit distance. In addition, each consumer incurs waiting costs when visiting a firm
depending on the amount of consumers that visit that firm. So the total costs for a
consumer z ∈ [0, 1] of visiting firm i ∈ N with location xi ∈ [0, 1] and market share
si ∈ [0, 1] are

|xi − z| + wi (si ),

where wi : [0, 1] → R+. We assume that each consumer chooses a firm so as
to minimize his total costs. Kohlberg (1983) assumes that wi is the same strictly
increasing continuous function for each firm i ∈ N . We assume that wi is linear.
Moreover, we allow wi �= w j for some i, j ∈ N . An interpretation is that firms might
have different speeds with which consumers are served.

The game proceeds in two stages. In the first stage, each firm i simultaneously
selects a location xi . These simultaneous choices constitute a vector of locations
x = (x1, . . . , xn) of the firms.

In the second stage, the consumers simultaneously choose a firm based on these
locations. More formally, let X = [0, 1]n denote the collection of all possible vectors
of firm locations. A choice function is a measurable function f : X ×[0, 1] → N that,
for each consumer z ∈ [0, 1] and every vector x ∈ X of locations, assigns firm f (x, z)
to consumer z. In other words, given the vector x of locations of firms, consumer z
will visit firm f (x, z) according to choice function f .

A strategy profile (of the firms and the consumers) is a pair (x, f ), where x is a
vector of locations and f is a choice function.

Given a strategy profile (x, f ), the payoffs for the firms and the consumers are
defined as follows. Define f −1

i (x) = {z ∈ [0, 1] | f (x, z) = i} for all i ∈ N .
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Hotelling’s location model with negative network externalities 815

0 x1 = 1
2 x2 = 2

3
5
6 1

Fig. 1 An example of a Nash equilibrium which is not subgame perfect

Let si (x, f ) for all i ∈ N be the Lebesgue measure of the set f −1
i (x)1 and define

s(x, f ) = (si (x, f ))i∈N . We refer to si (x, f ) as the market share of firm i . The total
costs for a consumer at location z ∈ [0, 1] of visiting firm i ∈ N are

Cz,i (x, f ) = |xi − z| + ai · si (x, f ),

where ai ∈ R+ is the latency coefficient of firm i . We say that firm i ∈ N is less
efficient than firm j ∈ N if ai > a j . Each consumer seeks to minimize his total costs,
while each firm aims to maximize his market share.

2.2 Subgame perfect Nash equilibrium

Since consumers are reacting to the locations chosen by the firms, the game played
between firms and consumers involves an element of timing: first firms choose their
locations, and subsequently consumers make decisions based on the locations cho-
sen by the firms. Therefore we use subgame perfect Nash equilibrium as the natural
solution concept.

Definition 1 A strategy profile (x, f ) is a subgame perfect Nash equilibrium (SPE)
if the following two conditions are satisfied:

(i) for all i ∈ N , si (x, f ) ≥ si
(
(x ′

i , x−i ), f
)
for all x ′

i ∈ [0, 1].
(ii) for all x ∈ X and all z ∈ [0, 1], Cz, f (x,z)(x, f ) ≤ Cz,i (x, f ) for all i ∈ N .

Kohlberg (1983) refers to the subgame perfect Nash equilibria of the game specified
above as equilibria, or sometimes Cournot–Nash equilibria, because he only considers
choice functions that minimize costs for each of the consumers for every possible vec-
tor of locations of the firms. Thus, in Kohlberg (1983), condition (ii) of our definition
is hardwired into the model itself.

The following example motivates why we focus on subgame perfect Nash equilib-
rium and not merely on Nash equilibrium.

Example 1 Assume that n = 2, a1 = 0 and a2 = 1.
Consider the following choice function. For all x ∈ X and z ∈ [0, 1], define

f (x, z) =
{
1 if z ≤ 5

6 ,

2 otherwise,

(see Fig. 1). Then (x, f ) is not an SPE, since condition (ii) in Definition 1 only holds
for x = ( 12 ,

2
3 ). We will see in Lemma 3 that there is no choice function f such that

1 The choice function f is measurable, so the Lebesgue measure of f −1
i (x) is defined.
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(x, f ) is an SPE. However, notice that the strategy profile (x, f ) is a Nash equilibrium,
neither the firms nor the consumers have an incentive to deviate unilaterally. In fact,
we will see that for each x ∈ X there is a choice function f that minimizes costs for
all users and thus, for each x ∈ X , there is a strategy profile that is a Nash equilibrium,
by defining the choice function in a similar way as above.

The following result of Kohlberg (1983) is useful for the upcoming analysis. We
omit the proof.

Lemma 1 (Kohlberg 1983) Let ai > 0 for all i ∈ N. For each vector of locations x,
there are unique market shares s(x, f ) such that Cz, f (x,z)(x, f ) ≤ Cz,i (x, f ) for all
z ∈ [0, 1] and all i ∈ N for some choice function f .

Lemma 1 implies that each vector of locations has unique corresponding market
shares. Notice that this does not imply that the corresponding cost minimizing choice
function is unique. For example, if n = 2, a1 = a2 and x1 = x2 then every choice
function that yields a partition of [0, 1] such that both firms have a market share of
1/2 minimizes costs for consumers.

2.3 Properties of SPE

In this section we derive a few properties of SPE that are useful in the analysis in the
remainder of this paper. The next result follows from the costs minimization of the
consumers.

Lemma 2 Given x ∈ X, let f satisfy Cz, f (x,z)(x, f ) ≤ Cz,i (x, f ) for all z ∈ [0, 1]
and all i ∈ N.

(a) If xi = x j for some i, j ∈ N, then Cz,i (x, f ) = Cz, j (x, f ) for all z ∈ [0, 1].
(b) If xi < x j for some i, j ∈ N, then one of the following three statements is true.

(i) Cz,i (x, f ) = Cz, j (x, f ) for all z ∈ [0, xi ] and Cz,i (x, f ) > Cz, j (x, f ) for
all z ∈ (xi , 1].

(ii) Cz,i (x, f ) < Cz, j (x, f ) for all z ∈ [0, x j ) and Cz,i (x, f ) = Cz, j (x, f ) for
all z ∈ [x j , 1].

(iii) There is some y ∈ (xi , x j ) such that Cz,i (x, f ) < Cz, j (x, f ) for all z ∈ [0, y),
Cy,i (x, f ) = Cy, j (x, f ) and Cz,i (x, f ) > Cz, j (x, f ) for all z ∈ (y, 1].

Proof See Appendix.

Given x ∈ X , the above Lemma implies, among other things, that, even though
there may not be a unique choice function that minimizes costs for consumers, there
is a unique cost minimizing choice function f ∗

x that assigns intervals of consumers to
firm locations in a monotonic way. That is, if firm i is located to the left of firm j , then
the interval of consumers assigned to firm i is to the left of the interval of consumers
assigned to firm j .

The choice function f ∗
x is constructed as follows. Let the profile of firm locations

x ∈ X be given. Take a permutationσ of thefirms such that xσ(1) ≤ · · · ≤ xσ(n). Define
z0(x) = 0 and zσ(i)(x) = ∑i

j=1 sσ( j)(x, f ) for some cost minimizing choice function
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Hotelling’s location model with negative network externalities 817

f and all i ∈ N . We define choice function f ∗
x by f ∗−1

x,σ (i)(x) = [zσ(i−1)(x), zσ(i)(x))
for all i ∈ N and all x ∈ X , and f ∗

x (x, 1) = σ(n).
Next we argue that Lemma 2 implies that if (x, f ) is an SPE, then (x, f ∗

x ) is also
an SPE. Let (x, f ) be an SPE. Suppose we have a choice function f that yields a
partition such that there are two subintervals of consumers [a1, b1) and [a2, b2) with
b1 ≤ a2, so that the consumers in [a1, b1) visit firm i and the consumers in [a2, b2)
visit firm j with i > j . For simplicity, assume that b1−a1 = b2−a2. By Lemma 2, the
consumers in [a1, b1) and the consumers in [a2, b2) are indifferent between visiting
firm i or j [case (a), (b)(i), or (b)(ii) of Lemma 2 applies]. So the choice function f ′
that assigns consumers [a1, b1) to firm j , consumers [a2, b2) to firm i , and all other
consumers to the same firm as in f , is also an SPE. If we continue this process we
end up with f ∗

x .
Since we are merely interested in existence of SPE, we only consider the choice

function f ∗
x (essentially we are back to the setting in Kohlberg 1983). For simplifica-

tion, we write x instead of (x, f ∗
x ) in the remainder of this paper. We define s(x), z(x)

and Cz,i (x) for all x ∈ X , all z ∈ [0, 1] and all i ∈ N as before.
Let x be an SPE. Without loss of generality assume that x1 ≤ · · · ≤ xn . In order to

find themarket share si (x) of each firm i ∈ N , we have to solve the following systemof
equations which by Lemma 1 has a unique solution. Recall that zi (x) = ∑i

j=1 s j (x).
For i = 1, . . . , n − 1,

|xi − zi (x)| + ai · si (x) = |xi+1 − zi (x)| + ai+1 · si+1(x), (1)

and
∑n

i=1 si (x) = 1. The next result states some characteristics of subgame perfect
Nash equilibria.

Lemma 3 Let x be an SPE. Then:

(i) si (x) > 0 for all i ∈ N.
(ii) xi ∈ [zi−1(x), zi (x)].
(iii) x1 = s1(x) and xn = 1 − sn−1(x).
(iv) |{i ∈ N | xi = y}| ≤ 2 for all y ∈ [0, 1].
(v) if xi = x j for some i, j ∈ N, then ai = a j .

Proof See Appendix.

3 Symmetric firms

Assume that all firms have an equal latency coefficient, i.e. ai = a for all i ∈ N .
If a = 0 this is Hotelling’s location model and if a > 0 this is a special case of
Kohlberg’s model.

For a = 0, Eaton and Lipsey (1975) prove the following results.We omit the proofs.

Theorem 1 (Eaton and Lipsey 1975) Let a = 0.

(a) For n = 2, 4, 5, there is a unique SPE.
(b) For n = 3, there is no SPE.
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818 H. Peters et al.

(c) For n ≥ 6, there is an infinite number of SPEs.

For a > 0, Kohlberg (1982) proves the following result.

Theorem 2 (Kohlberg 1982) Let a > 0 and n > 2. There is no SPE in which x1 <

. . . < xn, z1(x) = x1, zi (x) ∈ (xi , xi+1) for all 1 < i < n − 1 and zn−1(x) = xn.

Proof See Appendix.

However, Kohlberg (1982) states that the nonexistence result is more general by
claiming that in an SPE all the firm locations must be different. We provide examples
with n ∈ {4, 6} and a sufficiently large for which an SPE exists, and in which two
firms choose the same location. For n ∈ {3, 5} the claim is valid as there are no SPEs.

3.1 Even number of firms

3.1.1 Two firms

Assume that n = 2 and a > 0. The following theorem is due to Kohlberg (1983). We
omit the proof.

Theorem 3 (Kohlberg 1983) An SPE exists for all a > 0. The SPE is given by
x = ( 1

2 ,
1
2

)
and s(x) = ( 1

2 ,
1
2

)
.

3.1.2 Four firms

Assume that n = 4 and a > 0.

Theorem 4 An SPE exists if and only if a ≥ 2 · (2+√
5).2 If an SPE exists, it is given

by

x =
(

1+a
2+4a , 1

2 ,
1
2 ,

1+3a
2+4a

)
and s(x) =

(
1+a
2+4a , a

2+4a , a
2+4a , 1+a

2+4a

)
.

Proof See Appendix.

Remark 1 Even though firms are symmetric, their market shares need not be equal.

Example 2 Let x be an SPE. By Theorem 4, we have that x → ( 1
4 ,

1
2 ,

1
2 ,

3
4

)
as a → ∞

(see Fig. 2). The locations of the firms differ from the equilibrium locations for four
firms found by Eaton and Lipsey (1975).

3.1.3 Six firms

Assume that n = 6 and a > 0.

2 a satisfies the inequality a2 − 8a − 4 ≥ 0.
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0 x1 = 1
4 x2 = x3 = 1

2 x4 = 3
4 1

s1(x) s2(x) s3(x) s4(x)

Fig. 2 Outcome of the SPE for four symmetric firms as a → ∞

0 x1 = 1
6 x2 = 1

3 x3 = x4 = 1
2 x5 = 2

3 x6 = 5
6 1

s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)

Fig. 3 Outcome of the SPE for six symmetric firms as a → ∞

Theorem 5 An SPE exists if and only if a ≥ 29.8873.3 If an SPE exists, it is given by

x =
(

1+2a+a2

2+6a+6a2
, 1+3a+2a2

2+6a+6a2
, 1
2 ,

1
2 ,

1+3a+4a2

2+6a+6a2
, 1+4a+5a2

2+6a+6a2

)
and

s(x) =
(

1+2a+a2

2+6a+6a2
, a+a2

2+6a+6a2
, a2

2+6a+6a2
, a2

2+6a+6a2
, a+a2

2+6a+6a2
, 1+2a+a2

2+6a+6a2

)
.

Proof See Appendix.

Example 3 Let x be an SPE. By Theorem 5, we have that x →
(
1
6 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

5
6

)
as

a → ∞ (see Fig. 3). The locations of the firms differ from the equilibrium locations
for six firms found by Eaton and Lipsey (1975).

3.2 Odd number of firms

3.2.1 Three firms

Assume that n = 3. The following result is due to Kohlberg (1983).We omit the proof.

Theorem 6 (Kohlberg 1983) For all a > 0, there is no SPE.

3.2.2 Five firms

Assume that n = 5.

Theorem 7 For all a > 0, there is no SPE.

Proof See Appendix.

3.3 Discussion

We have seen that in the symmetric setting there is a unique subgame perfect equi-
librium for two firms, independent of the value of a, and that there is no subgame

3 a satisfies the inequality a4 − 27a3 − 84a2 − 68a − 16 ≥ 0.
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perfect equilibrium for three firms, also independent of the value of a. These results
are in line with the results of Hotelling’s location model. However, for more than three
firms, we have either discovered new equilibrium locations (for four and six firms) or
no equilibria at all (for five firms). Particularly, the existence of SPEs for four and six
firms is surprising, showing that the claim of Kohlberg, that all the firm locations must
be different, is incorrect (see Figs. 2, 3).

Our results suggest that an SPE exists if and only if the number of firms is even
and the latency coefficient sufficiently large, but we have not been able to find a proof.
Therefore we state the following conjecture.

Conjecture 1 Let ai = a for all i ∈ N . An SPE exists if and only if n = 2k
for some k ∈ N and a is sufficiently high. The SPE is unique and given by

xi = 1 − x2k+1−i = (1+a)k

2((1+a)k−ak )
·
(
1 −

(
a

1+a

)i)
and si (x) = s2k+1−i (x) =

ai−1·(1+a)k−i

2((1+a)k−ak )
for all i ∈ {1, . . . , k}.

4 Asymmetric firms

In this section, we relax the assumption that all firms have an equal latency coefficient.
Recall that this setting is not considered by Kohlberg (1983), because he assumes that
firms are symmetric.

4.1 Two firms

Assume that n = 2.

Theorem 8 An SPE exists if and only if a1 = a2.

Proof Suppose that an SPE exists. Let x be an SPE. Then by Lemma 3 (iii), x1 =
s1(x) and x2 = 1 − s2(x). Since s1(x) + s2(x) = 1, we have x1 = x2 and thus by
Lemma 3 (iv), a1 = a2.

Suppose that a1 = a2. By Theorem 3, x = ( 1
2 ,

1
2

)
and s(x) = ( 1

2 ,
1
2

)
forms an

SPE.

4.1.1 Three firms

Assume that n = 3. The first lemma shows that, similar to what Kohlberg (1983)
proves for symmetric firms, there is no SPE where all three firms choose a different
location.

Lemma 4 Let x be an SPE. Then x1 = x2 or x2 = x3.

Proof See Appendix.

The main result for three firms is as follows.
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Hotelling’s location model with negative network externalities 821

0 x1 = x2 = 2
5 x3 = 4

5 1

s1(x) s2(x) s3(x)

Fig. 4 Outcome of an SPE with three firms

0 x1 = x2 = 121
310 x3 = 121

155 x4 = 55
62 1

s1(x) s2(x) s3(x) s4(x)

Fig. 5 SPE with four asymmetric firms

Theorem 9 An SPE exists if and only if (a) a1 = a2 and a3 ≥ a2 + 2, or (b) a2 = a3
and a1 ≥ a2 + 2.

For (a), the SPE is given by

x =
(

a3
1+a2+2a3

, a3
1+a2+2a3

, 2a3
1+a2+2a3

)
and s(x) =

(
a3

1+a2+2a3
, a3
1+a2+2a3

, 1+a2
1+a2+2a3

)
.

For (b), the SPE is given by

x =
(

1+a2
1+2a1+a2

, 1+a1+a2
1+2a1+a2

, 1+a1+a2
1+2a1+a2

)
and s(x) =

(
1+a2

1+2a1+a2
, a1
1+2a1+a2

, a1
1+2a1+a2

)
.

Proof See Appendix.

Example 4 Assume that a1 = a2 = 0, a3 = 2 and let x be an SPE. By Theorem 9,
we have that x = ( 2

5 ,
2
5 ,

4
5

)
(see Fig. 4).

4.2 Four firms

Assume that n = 4. The following example illustrates an equilibrium in which there
is a less efficient firm that obtains a larger market share due to its location.

Example 5 Assume that a1 = a2 = 0, a3 = 32
3 , and a4 = 42

5 . We claim that
x = ( 121310 ,

121
310 ,

121
155 ,

55
62 ) is an SPE (see Fig. 5). The locations of the firms are different

from the locations found in Theorem 4. Also s3(x) = 33
310 < 7

62 = s4(x).
In order to prove that x is an SPE, it is sufficient to show that firm 2 does not want

to deviate to the right, firm 3 does not want to deviate to the left nor to the right, and
firm 4 does not want to deviate to the left.

Since market shares are piecewise linear in the location of firm 2, we show that firm
2 has no incentive to locate at x ′

2 = x3: s2(x ′
2, x−2) = 121

310 . Then we show that firm 2
has no incentive to locate at x ′′

2 = x4: s2(x ′′
2 , x−2) = 103

310 . Since 1 − 103
310 < 55

62 , there
is also no incentive to locate as rightmost firm.

Observe that firm 3 could only improve by being the leftmost or rightmost firm.
Suppose firm 3 locates as leftmost firm at x ′

3 = s3(x ′
3, x−3). Then s3(x ′

3, x−3) = 363
4340 .

Suppose firm 3 locates as rightmost firm at x ′′
3 = 1− s3(x ′′

3 , x−3). Then s3(x ′′
3 , x−3) =
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2268
22475 . Since s3(x

′
3, x−3) < s3(x) and s3(x−3, x ′′

3 ) < s3(x), firm 3 has no incentive to
deviate.

Observe that firm 4 could only improve by being the leftmost firm. Suppose firm
4 locates as leftmost firm at x ′

4 = s4(x ′
4, x−4). Then s4(x ′

4, x−4) = 121
1674 . Since

s4(x ′
4, x−4) < s4(x), firm 4 has no incentive to deviate.

4.3 Discussion

The examples for three and four firms show that the set of equilibria increases if
we allow for asymmetries between the firms. Moreover, these new equilibria bear
surprising features, for example, a less efficient firm might have a larger market share
due to its location (see Example 5), that do not exist in the symmetric setting. However,
a full characterization of these equilibria remains an open question.
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Appendix

Proof (Lemma 2)

(a) Assume that xi = x j for some i, j ∈ N . Since |xi − z| = |x j − z| for all
z ∈ [0, 1], we can focus on the waiting costs. If ai · si (x, f ) < a j · s j (x, f ), then
a consumer z with f (x, z) = j could decrease his total costs by visiting firm i .
Similar for the reverse inequality. Hence Cz,i (x, f ) = |xi − z| + ai · si (x, f ) =
|x j − z| + a j · s j (x, f ) = Cz, j (x, f ).

(b) Assume that xi < x j for some i, j ∈ N .
(i) Suppose that C0,i (x, f ) = C0, j (x, f ). If z ∈ [0, xi ], then by assumption,

Cz,i (x, f ) = xi − z + ai · si (x, f ) = x j − z + a j · s j (x, f ) = Cz, j (x, f ).

If z ∈ (xi , x j ], then

Cz,i (x, f ) = z − xi + ai · si (x, f ) > xi − z + ai · si (x, f )

= x j − z + a j · s j (x, f ) = Cz, j (x, f ),

where the inequality follows from xi < z and the equality by assumption.
If z ∈ (x j , 1], then

Cz,i (x, f ) = z − xi + ai · si (x, f ) = z − x j + x j − xi + ai · si (x, f )

> z − x j + xi − x j + ai · si (x, f )= z− x j + a j · s j (x, f ) = Cz, j (x, f ),

where the inequality follows from xi < x j and the third equality by assumption.
(ii) Suppose that C1,i (x, f ) = C1, j (x, f ). Then, by symmetry of the problem, a

similar argument as for (i) holds.
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(iii) By (i) and (ii), we can suppose that xi < x j , C0,i (x, f ) �= C0, j (x, f )
and C1,i (x, f ) �= C1, j (x, f ). Suppose C0,i (x, f ) > C0, j (x, f ). By (i), we have
Cz,i (x, f ) > Cz, j (x, f ) for all z ∈ [0, 1]. By condition (ii) ofDefinition 1, this implies
that si (x) = 0. However, this means that C0,i (x, f ) < C0, j (x, f ), which contradicts
the assumption. By symmetry, a similar argument holds if C1,i (x, f ) < C1, j (x, f ).

So suppose that C0,i (x, f ) < C0, j (x, f ) and C1,i (x, f ) > C1, j (x, f ). This
implies that Cxi ,i (x, f ) < Cxi , j (x, f ) and Cx j ,i (x, f ) > Cx j , j (x, f ). But then there
is y ∈ (xi , x j ) with Cy,i (x, f ) = Cy, j (x, f ).

Proof (Lemma 3) (i) Suppose that si (x) = 0 for some i ∈ N . We show that
firm i can increase its market share by a unilateral deviation. Let x ′

i be such that∣∣{i ∈ N | xi = x ′
i }

∣∣ = 0. Since the transportation costs for consumer x ′
i are zero and∣∣{i ∈ N | xi = x ′

i }
∣∣ = 0, we must have si (x ′

i , x−i ) > 0. This however contradicts
condition (i) in Definition 1.

(ii) Suppose that xi /∈ [zi−1(x), zi (x)] for some i ∈ N . We show that firm i can
increase its market share by a unilateral deviation. See the figure below. If multiple
firms are located at xi , we consider the firm with the lowest number.

zi−1(x) zi(x) xi

si(x)

Since x is anSPE,wehaveCzi−1(x),i−1(x) = Czi−1(x),i (x) if i > 1 andCzi (x),i (x) =
Czi (x),i+1(x). If firm i locates at x ′

i , with zi (x) < x ′
i < xi , then the transportation costs

for each consumer z ∈ [zi−1(x), zi (x)] decrease. So in order to offset the decrease
in transportation costs, there must be an increase in the market share of firm i . This
however contradicts condition (i) in Definition 1.

(iii) We show that x1 = s1(x). Symmetry of the problem implies xn = 1− sn−1(x).
Suppose that x1 �= s1(x). We show that firm 1 can increase its market share by a

unilateral deviation. By (ii), we have that x1 < s1(x) ≤ x2. If firm 1 locates at x ′
1,

with x1 < x ′
1 < s1(x), we observe from Cs1(x),1(x) = Cs1(x),2(x) that s1(x) − x ′

1 +
a1 · s1(x) < x2 − s1(x)+a2 · s2(x). So in order to offset the decrease in transportation
costs, there must be an increase in the market share of firm 1. This however contradicts
condition (i) in Definition 1.

(iv) We show that |{i ∈ N | xi = x}| ≤ 2 for all x ∈ [0, 1]. Suppose
|{i ∈ N | xi = x}| > 2 for some x ∈ [0, 1].We derive a contradiction. Since si (x) > 0
for all i ∈ N , there is a firm i ∈ {i ∈ N | xi = x} such that xi /∈ [zi−1(x), zi (x)].
This however contradicts (ii).

(v) Assume that xi = x j for some i, j ∈ N . Suppose ai < a j . We derive a
contradiction. Define x ′ = (x1, . . . , xi+1, xi , . . . , xn). We obtain the following result.

Claim x is an SPE if and only if x ′ is an SPE.

Proof Suppose x is an SPE. By Lemma 2 (i), we have Cz,i (x) = Cz,i+1(x) for all
z ∈ [0, 1]. So in particular for all z ∈ [zi−1(x), zi+1(x)]. Consider the following
choice function
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f (x ′, z) =

⎧
⎪⎨

⎪⎩

i + 1 if z ∈ [zi−1(x), zi−1(x) + si+1(x)],
i if z ∈ [zi−1(x) + si+1(x), zi+1(x)],
f (x, z) if z ∈ [0, zi−1(x)) or z ∈ (zi+1(x), 1].

So the consumers visiting firm i + 1 are on the left of the consumers visiting firm i .
Note that si (x ′) = si (x) and si+1(x ′) = si+1(x) and so Cz,i (x ′) = Cz,i+1(x ′) for all
z ∈ [zi−1(x), zi+1(x)]. Since x is an SPE, x ′ is also an SPE.

Since the converse implication can be proven analogously, this completes the proof
of the Claim.

Since xi = xi+1, we have ai · si (x) = ai+1 · si+1(x) and thus by assumption
si (x) > si+1(x). We also have xi+1 = zi (x) = zi−1(x) + si (x) > zi−1(x) + si+1(x),
where the first equality follows from (ii). But then (ii) implies that x ′ is not an SPE (see
the figure below). Hence, by the above Claim, x is no SPE, which is a contradiction.

zi−1(x) xi = xi+1 zi+1(x)

si(x) si+1(x)

zi−1(x) xi+1 = xi zi+1(x)

si+1(x) si(x)

Proof (Theorem 2) The proof below follows the same lines as the proof in Kohlberg
(1982). Let x be an SPE with x1 < · · · < xn , z1(x) = x1, zi (x) ∈ (xi , xi+1) for all
1 < i < n − 1 and zn−1(x) = xn . Let k ∈ N with 1 < k < n.

Let sLi , s
R
i , z

L
i and zRi for all i ∈ N denote the left and right partial derivative of

si (x) and zi (x), respectively, with respect to xk .

We will prove by induction that
sLi
zLi

<
sRi
zRi

for all 1 < i < k. If firm k locates

marginally to the left, then by taking the derivative of the equation for firm 1 and 2,
see Eq. (1), we get

−zL1 + a · sL1 = −zL1 + a · sL2 .

If firm k locates marginally to the right, then we get

zR1 + a · sR1 = −zR1 + a · sR2 .

Since sL1 = zL1 and sR1 = zR1 , we have

sL2
zL1

= 1 < 1 + 2/a = sR2
zR1

,
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Hotelling’s location model with negative network externalities 825

and since zL2 = zL1 + sL2 and zR2 = zR1 + sR2 , we conclude that

sL2
zL2

= 1
(

sL2
zL1

)−1

+ 1

<
1

(
sR2
zR1

)−1

+ 1

= sR2
zR2

.

Now suppose that
sLi
zLi

<
sRi
zRi

for all i with 1 < i < k−1, we show that the inequality

also holds for firm i + 1. If firm k locates marginally to the left, we get

zLi + a · sLi = −zLi + a · sLi+1.

If firm k locates marginally to the right, we get

zRi + a · sRi = −zRi + a · sRi+1.

Since

sLi+1

zLi
= sLi

zLi
+ 2/a,

and

sRi+1

zRi
= sRi

zRi
+ 2/a,

we conclude that

sLi+1

zLi+1

= 1
(

sLi+1

zLi

)−1

+ 1

= 1
(

sLi
zLi

+ 2/a

)−1

+ 1

<
1

(
sRi
zRi

+ 2/a

)−1

+ 1

= 1
(

sRi+1

zRi

)−1

+ 1

= sRi+1

zRi+1

,

where the first equality follows from zLi+1 = zLi + sLi+1, the inequality from the
induction hypothesis, and the last equality from zRi+1 = zRi + sRi+1.

Moreover
sLi
zLi

> 0 for all 1 < i < k as both si and zi decrease once firm k moves

marginally to the left.

By symmetry we obtain that 0 <
sRi

−zRi−1
<

sLi
−zLi−1

for all k < i < n.

Also, if firm k moves marginally to the left, then by taking the derivative of the
equation for firm k − 1 and k, see Eq. (1), we get

zLk−1 + a · sLk−1 = 1 − zLk−1 + a · sLk ,
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and for firm k and k + 1, see Eq. (1), we get

zLk − 1 + a · sLk = −zLk + a · sLk+1.

Adding these two equations, and using that zLk − zLk−1 = sLk and that in equilibrium
sLk ≥ 0 yields

a · sLk−1 + a · sLk+1 = (2 + 2a) · sLk ≥ 0.

Dividing by zLk−1 > 0 and using that zLk−1 ≥ zLk and sLk+1 ≤ 0 yields

a · s
L
k−1

zLk−1

+ a · s
L
k+1

zLk
≥ 0,

and thus

sLk−1

zLk−1

≥ sLk+1

−zLk
.

By symmetry we obtain that

sRk−1

zRk−1

≤ sRk+1

−zRk
.

Combining all these inequalities yields

sLk−1

zLk−1

<
sRk−1

zRk−1

≤ sRk+1

−zRk
<

sLk+1

−zLk
≤ sLk−1

zLk−1

.

Hence we obtained a contradiction and can conclude that there is no SPE in which
x1 < · · · < xn , z1(x) = x1, zi (x) ∈ (xi , xi+1) for all 1 < i < n−1 and zn−1(x) = xn .

Proof (Theorem 4) By Lemma 3 (iv) and symmetry, we distinguish the following four
cases.

(1) Assume that x1 = x2 < x3 = x4. By Lemma 3 (iii), we obtain the figure below.

0 x1 = x2 z2 x3 = x4 1

s1(x) s2(x) s3(x) s4(x)

Solving the equalities corresponding to the above figure

a · s1(x) = a · s2(x)
s2(x) + a · s2(x) = s3(x) + a · s3(x)
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a · s3(x) = a · (1 − z3(x)),

yields s(x) = ( 1
4 ,

1
4 ,

1
4 ,

1
4

)
and thus x = ( 1

4 ,
1
4 ,

3
4 ,

3
4

)
. Suppose firm 2 locates at

x ′
2 = 1

2 . Solving

s1(x
′
2, x−2) − 1

4
+ a · s1(x ′

2, x−2) = 1

2
− s1(x

′
2, x−2) + a · s2(x ′

2, x−2)

z2(x
′
2, x−2) − 1

2
+ a · s2(x ′

2, x−2) = 3

4
− z2(x

′
2, x−2) + a · s3(x ′

2, x−2)

a · s3(x ′
2, x−2) = a · (1 − z3(x

′
2, x−2)),

yields

s2(x
′
2, x−2) = 8 + 15a + 4a2

8 · (4 + 7a + 2a2)
.

For this deviation to be unprofitable, wemust have a = 0. This contradicts the assump-
tion that a > 0.

(2) Assume that x1 < x2 = x3 < x4. By Lemma 3 (ii) and (iii), we obtain the
figure below.

0 x1 x2 = x3 x4 1

s1(x) s2(x) s3(x) s4(x)

Solving the equalities corresponding to the above figure yields s(x) =(
1+a
2+4a , a

2+4a , a
2+4a , 1+a

2+4a

)
and thus x =

(
1+a
2+4a , 1

2 ,
1
2 ,

1+3a
2+4a

)
. Suppose firm 2 locates

as leftmost firm at x ′
2 = s2(x ′

2, x−2). Then

s2(x
′
2, x−2) = (2 + a) · (2 + 3a + 2a2)

2 · (4 + 16a + 17a2 + 4a3)
.

For this deviation to be unprofitable, we must have a ≥ 2 · (2 + √
5).

To prove that the strategy profile is an SPE, it is sufficient to check that firm 1 does
not want to deviate to the right and firm 2 does not want to deviate to the left.

By Lemma 3 (iii), firm 1 has no incentive to deviate in between x1 and x2. By
symmetry and since there is an additional firm at x4, firm 1 has also no incentive to
deviate to the right of 1

2 .
Since market shares are piecewise linear in the location of firm 2, we show that

firm 2 has no incentive to locate at x ′
2 = x1:

s2(x
′
2, x−2) = (2 + a) · (2 + 5a + 4a2)

4 · (1 + 2a) · (4 + 7a + 2a2)
.
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Since s2(x ′
2, x−2) < s2(x) if a ≥ 2 ·(2+√

5), firm 2 has no incentive to deviate. Since
there is also no incentive to locate as leftmost firm, firm 2 has no profitable deviation.

(3) Assume that x1 = x2 < x3 < x4. By Lemma 3 (ii) and (iv), we obtain the figure
below. Note that you can show that there is no SPE with z2(x) < x3.

0 x1 = x2 x3 x4 1

s1(x) s2(x) s3(x) s4(x)

Solving the equalities corresponding to the above figure yields

s2(x) = a2

1 + 3a + 4a2
.

Suppose firm 2 locates at x ′
2 = x3. Then

s2(x
′
2, x−2) = a · (4 + 7a + 4a2)

2 · (3 + 2a) · (1 + 3a + 4a2)
.

For this deviation to be unprofitable, wemust have a = 0. This contradicts the assump-
tion that a > 0.

(4) Assume that x1 < x2 < x3 < x4.4 We show the proof if x2 < z2(x) < x3.
Other cases, z2(x) = x2 and z2(x) = x3, can be solved analogously.

Assume x2 < z2(x) < x3. Solving the equalities yields

s2(x) = a2 + a3 − (1 + 2a − a2) · x2 + (1 + 4a + 3a2) · x3
2 · (1 + 2a) · (1 + 3a + a2)

.

Suppose firm 2 locates an arbitrary small ε > 0 to the right. For this deviation to be
unprofitable, we must have a = 0. This contradicts the assumption that a > 0.

Proof (Theorem 5) By Lemma 3 (iv) and symmetry, we distinguish the following nine
cases.

(1) Assume that x1 = x2 < x3 = x4 < x5 = x6. By Lemma 3 (iii), we obtain the
figure below.

0 x1 = x2 x3 = x4 x5 = x6 1

s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)

Solving the equalities corresponding to the above figure

a · s1(x) = a · s2(x)
s2(x) + a · s2(x) = s3(x) + a · s3(x)

4 Kohlberg (1982) also proves that there is no equilibrium in this case.
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a · s3(x) = a · s4(x)
s4(x) + a · s4(x) = s5(x) + a · s5(x)

a · s5(x) = a · (1 − z5(x)),

yields s(x) = ( 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

)
and thus x =

(
1
6 ,

1
6 ,

1
2 ,

1
2 ,

5
6 ,

5
6

)
. Suppose firm 2

locates at x ′
2 = 1

5 . Solving

s1(x
′
2, x−2) − 1

6
+ a · s1(x ′

2, x−2) = 1

5
− s1(x

′
2, x−2) + a · s2(x ′

2, x−2)

z2(x
′
2, x−2) − 1

5
+ a · s2(x ′

2, x−2) = 1

2
− z2(x

′
2, x−2) + a · s3(x ′

2, x−2)

a · s3(x ′
2, x−2) = a · s4(x ′

2, x−2)

z4(x
′
2, x−2) − 1

2
+ a · s4(x ′

2, x−2) = 5

6
− z4(x

′
2, x−2) + a · s5(x ′

2, x−2)

a · s5(x ′
2, x−2) = a · (1 − z5(x

′
2, x−2))

yields

s2(x
′
2, x−2) = (8 + 5a) · (20 + 33a + 6a2)

60 · (16 + 36a + 21a2 + 3a3)
.

For this deviation to be unprofitable, wemust have a = 0. This contradicts the assump-
tion that a > 0.

(2) Assume that x1 = x2 < x3 = x4 < x5 < x6. By Lemma 3 (iii), we obtain the
figure below. Note that you can show that there is no SPE with z4(x) < x5.

0 x1 = x2 x3 = x4 x5 x6 1

s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)

Solving the equalities corresponding to the above figure yields

s2(x) = a2

1 + 3a + 6a2
.

Suppose firm 2 locates an arbitrary small ε > 0 to the right. For this deviation to be
unprofitable, we must have a = 0. This contradicts the assumption that a > 0.

(3) Assume that x1 = x2 < x3 < x4 = x5 < x6. By Lemma 3 (iii), we obtain the
figure below. Note that you can show that there is no SPE with z4(x) < x5.

0 x1 = x2 x3 x4 = x5 x6 1

s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)
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Solving the equalities corresponding to the above figure yields

s(x) = 1 + a

4 + 6a
.

Suppose firm 2 locates an arbitrary small ε > 0 to the right. For this deviation to be
unprofitable, we must have a = 0. This contradicts the assumption that a > 0.

(4) Assume that x1 = x2 < x3 < x4 < x5 = x6. By Lemma 3 (iii), we obtain the
figure below. Note that you can show that there is no SPE with z2(x) < x3, or with
z4(x) > x4.

0 x1 = x2 x3 x4 x5 = x6 1

s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)

Solving the equalities corresponding to the above figure yields

s2(x) = a

2 + 6a
.

Suppose firm 2 locates an arbitrary small ε > 0 to the right. This deviation is always
profitable.

(5) Assume that x1 < x2 = x3 < x4 = x5 < x6. By Lemma 3 (iii), we obtain the
figure below.

0 x1 x2 = x3 x4 = x5 x6 1

s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)

Solving the equalities corresponding to the above figure yields

s(x) = a

2 + 6a
.

Suppose firm 2 locates an arbitrary small ε > 0 to the right. For this deviation to be
unprofitable, we must have a = 0. This contradicts the assumption that a > 0.

(6) Assume that x1 < x2 < x3 = x4 < x5 < x6. By Lemma 3 (iii), we obtain the
figure below.

0 x1 x2 x3 = x4 x5 x6 1

s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)

Solving the equalities corresponding to the above figure yields s(x) =
( 1+2a+a2

2+6a+6a2
, a+a2

2+6a+6a2
, a2

2+6a+6a2
, a2

2+6a+6a2
, a+a2

2+6a+6a2
, 1+2a+a2

2+6a+6a2
)
and x =

(
1+2a+a2

2+6a+6a2
,

1+3a+2a2

2+6a+6a2
, 1
2 ,

1
2 ,

1+3a+4a2

2+6a+6a2
, 1+4a+5a2

2+6a+6a2

)
.
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To prove that the strategy profile is an SPE, it is sufficient to check that firm 1 does
not want to deviate to the right, firm 2 does not want to deviate to the left nor the right,
and firm 3 does not want to deviate to the left.

By Lemma 3 (iii), firm 1 has no incentive to deviate in between x1 and x2. Since
market shares are piecewise linear in the location of firm 1, firm 1 has no incentive to
deviate in between x2 and x3. By symmetry and since there are two additional firms
at x5 and x6, firm 1 has also no incentive to deviate to the right of 1

2 .
Since market shares are piecewise linear in the location of firm 2, we show that

firm 2 has no incentive to locate at x ′
2 = x1:

s2(x
′
2, x−2) = (1 + a) · (16 + 56a + 72a2 + 39a3 + 6a4)

4 · (1 + 3a + 3a2) · (16 + 36a + 21a2 + 3a3)
.

Then we show that firm 2 has no incentive to locate as leftmost firm at x ′′
2 =

s2(x ′′
2 , x−2):

s2(x
′′
2 , x−2) = (1 + a) · (16 + 72a + 124a2 + 105a3 + 44a4 + 6a5)

4 · (1 + 3a + 3a2) · (16 + 72a + 100a2 + 47a3 + 6a4)
.

Finally we show that firm 2 has no incentive to locate as rightmost firm at x ′′′
2 =

1 − s2(x ′′′
2 , x−2):

s2(x
′′′
2 , x−2) = (1 + a) · (16 + 72a + 124a2 + 101a3 + 40a4 + 6a5)

2 · (1 + 3a + 3a2) · (16 + 72a + 100a2 + 49a3 + 6a4)
.

Since s2(x ′
2, x−2) < s2(x), s2(x ′′

2 , x−2) < s2(x) and s2(x ′′′
2 , x−2) < s2(x) if a ≥

29.8873, firm 2 has no incentive to deviate.
Since market shares are piecewise linear in the location of firm 3, we show that

firm 3 has no incentive to locate at x ′
3 = x2:

s3(x
′
3, x−3) = a · (2 + 3a) · (8 + 18a + 13a2 + 2a3)

4 · (1 + 3a + 3a2) · (12 + 32a + 22a2 + 3a3)
.

Thenwe show that firm 3 has no incentive to locate at x ′′
3 = s1(x ′′

3 , x−3)+s3(x ′′
3 , x−3):

s3(x
′′
3 , x−3) = a · (16 + 76a + 132a2 + 111a3 + 47a4 + 6a5)

4 · (1 + 3a + 3a2) · (4 + 24a + 42a2 + 24a3 + 3a4)
.

Finally we show that firm 3 has no incentive to locate as leftmost firm at x ′′′
3 =

s3(x ′′′
3 , x−3):

s3(x
′′′
3 , x−3) = (1 + 2a) · (4 + 6a + a2) · (4 + 14a + 19a2 + 11a3 + 3a4)

2 · (1 + 3a + 3a2) · (16 + 96a + 204a2 + 184a3 + 65a4 + 6a5)
.

Since s3(x ′
3, x−3) < s3(x), s3(x−3, x ′′

3 ) ≤ s3(x) and s3(x ′′′
3 , x−3) < s3(x) if a ≥

29.8873, firm 3 has no incentive to deviate.
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(7) Assume that x1 = x2 < x3 < x4 < x5 < x6. By Lemma 3 (iii), we obtain the
figure below. Note that you can show that there is no SPE with z2(x) < x3, or with
z3(x) < x4, or with z4(x) < x5.

0 x1 = x2 x3 x4 x5 x6 1

s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)

Solving the equalities corresponding to the above figure yields

s2(x) = a4

1 + 5a + 10a2 + 10a3 + 6a4
.

Suppose firm 2 locates an arbitrary small ε > 0 to the right. This deviation is always
profitable.

(8) Assume that x1 < x2 = x3 < x4 < x5 < x6. By Lemma 3 (iii), we obtain the
figure below. Note that you can show that there is no SPE with z3(x) < x4, or with
z4(x) < x5.

0 x1 x2 = x3 x4 x5 x6 1

s1(x) s2(x) s3(x) s4(x) s5(x) s6(x)

Solving the equalities corresponding to the above figure yields

s3(x) = (1 + a) · a2 · a3
1 + 4a + 7a2 + 6a3

.

Suppose firm 3 locates an arbitrary small ε > 0 to the right. This deviation is always
profitable.

(9) Assume that x1 < x2 < x3 < x4 < x5 < x6.5 We show the proof if x2 <

z2(x) < x3, x3 < z3(x) < x4 and x4 < z4(x) < x5. Other cases can be solved
analogously.

Assume x2 < z2(x) < x3, x3 < z3(x) < x4 and x4 < z4(x) < x5. Solving the
equalities yields

s2(x) =
a4+a5−(4+16a+15a2−2a3−3a4) · x2+(4+22a+41a2+30a3+7a4) · x3+(2a+9a2+12a3+5a4) · x4+(a2+4a3+3a4) · x5

2 · (2+6a+3a2) · (2+8a+8a2+a3)

Suppose firm 2 locates an arbitrary small ε > 0 to the right. For this deviation to be
unprofitable, we must have a = 0. This contradicts the assumption that a > 0.

5 Kohlberg (1982) also proves that there is no equilibrium in this case.
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Proof (Theorem 7) Assume that a > 0. By Lemma 3 (iv) and symmetry, we distin-
guish the following five cases.

(1) Assume that x1 = x2 < x3 < x4 = x5. By Lemma 3 (ii) and (iv), we obtain the
figure below.

0 x1 = x2 x3 x4 = x5 1

s1(x) s2(x) s3(x) s4(x) s5(x)

We consider two subcases.
If z2(x) = x3, then solving the equalities corresponding to the above figure yields

s2(x) = a

3 + 5a
.

Suppose firm 2 locates at x ′
2 = x3. Then

s2(x
′
2, x−2) = a · (4 + 5a) · (4 + 6a + a2)

(3 + 5a) · (16 + 44a + 32a2 + 5a3)
.

For this deviation to be unprofitable, wemust have a = 0. This contradicts the assump-
tion that a > 0.

If z2(x) < x3 < z3(x), then solving the equalities corresponding to the above
figure yields

s2(x) = (3 + 5a)x3 + a + a2

9 + 18a + 5a2
.

Suppose firm 2 locates at x ′
2 = x2 + ε, where ε > 0 but arbitrary small. For this

deviation to be unprofitable, we must have a = 0. This contradicts the assumption
that a > 0.

(2) Assume that x1 = x2 < x3 = x4 < x5. By Lemma 3 (ii) and (iv), we obtain the
figure below.

0 x1 = x2 x3 = x4 x5 1

s1(x) s2(x) s3(x) s4(x) s5(x)

Solving the equalities corresponding to the above figure

s2(x) = a

1 + 5a
.

Suppose firm 2 locates at x ′
2 = z2(x ′

2, x−2). Then

s2(x
′
2, x−2) = a · (2 + a) · (3 + 5a)

(1 + a) · (1 + 5a) · (6 + 5a)
.
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For this deviation to be unprofitable, wemust have a = 0. This contradicts the assump-
tion that a > 0.

(3) Assume that x1 < x2 = x3 < x4 < x5. By Lemma 3 (ii) and (iv), we obtain the
figure below.

0 x1 x2 = x3 x4 x5 1

s1(x) s2(x) s3(x) s4(x) s5(x)

Solving the equalities corresponding to the above figure

s3(x) = a2

1 + 4a + 5a2
.

Suppose firm 3 locates at x ′
3 = x4. Then

s3(x
′
3, x−3) = a · (8 + 22a + 20a2 + 5a3)

(1 + 4a + 5a2) · (12 + 20a + 5a2)
.

For this deviation to be unprofitable, wemust have a = 0. This contradicts the assump-
tion that a > 0.

(4) Assume that x1 = x2 < x3 < x4 < x5. By Lemma 3 (ii) and (iv), we obtain the
figure below.

0 x1 = x2 x3 x4 x5 1

s1(x) s2(x) s3(x) s4(x) s5(x)

Solving the equalities yields

s2(x) = a3

1 + 4a + 6a2 + 5a3
.

Suppose firm 2 locates at x ′
2 = x3. Then

s2(x
′
2, x−2) = a2 · (6 + 10a + 5a2)

(8 + 5a) · (1 + 4a + 6a2 + 5a3)
.

For this deviation to be unprofitable, wemust have a = 0. This contradicts the assump-
tion that a > 0.

(5) Assume that x1 < x2 < x3 < x4 < x5.6 We show the proof if x2 < z2(x) < x3
and x3 < z3(x) < x4. Other cases can be solved analogously.

6 Kohlberg (1982) also proves that there is no equilibrium in this case.
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0 x1 x2 x3 1

s1(x) s2(x) s3(x)

Fig. 6 Three firms at different locations

Assume x2 < z2(x) < x3 and x3 < z3(x) < x4. Solving the equalities yields

s2(x) = a3 − (2 + 4a − 2a2) · x2 + (2 + 7a + 5a2) · x3 + (a + 3a2) · x4
(2 + 5a) · (2 + 5a + a2)

Suppose firm 2 locates an arbitrary small ε > 0 to the right. For this deviation to be
unprofitable, we must have a = 0. This contradicts the assumption that a > 0.

Proof (Lemma 4) Assume x1 < x2 < x3. By Lemma 3 (iii), we have x1 = s1(x) and
x3 = 1 − s3(x). See Fig. 6.

Solving the equalities corresponding to the above figure

a1 · s1(x) = x2 − x1 + a2 · s2(x)
x3 − x2 + a2 · s2(x) = a3 · (1 − z2(x)),

yields

s2(x) = a3 + a1a3 + (a1 − a3) · x2
1 + a1 + 2a2 + a3 + a1a2 + a1a3 + a2a3

.

Suppose firm 2 locates at x ′
2 = x1. Then

s2(x
′
2, x−2)

= a1 · (2a3 + 2a1a3 + 4a2a3 + a1a2a3 + a23 + a1a23 + a2a23 + (2 + a1 + 4a2 + a3) · x2)
(1 + a1 + 2a2 + a3 + a1a2 + a1a3 + a2a3) · (2a1 + 2a2 + a1a2 + a1a3 + a2a3)

.

Under the assumption that x1 < x2 < x3,

s2(x) ≥ s2(x
′
2, x−2) ⇒ a3 ≤ a1 − 2.

Suppose firm 2 locates at x ′′
2 = x3. Then

s2(x
′′
2 , x−2)

= a3 · (2 + 3a1+4a2+a3 + a21 + 4a1a2 + a21a2+2a1a3 + a21a3 + a1a2a3 − (2 + a1 + 4a2 + a3) · x2)
(1 + a1 + 2a2 + a3 + a1a2 + a1a3 + a2a3) · (2a2 + 2a3 + a1a2 + a1a3 + a2a3)

.

Under the assumption that x1 < x2 < x3,

s2(x) ≥ s2(x
′′
2 , x−2) ⇒ a3 ≥ a1 + 2.
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0 x1 = x2 x3 1

s1 s2 s3

Fig. 7 Two out of three firms locate at the same location

Since a3 ≤ a1 − 2 and a3 ≥ a1 + 2 are incompatible, firm 2 always has a profitable
deviation.

Proof (Theorem 9) Let x be an SPE. By Lemma 3 (iii), we have x1 = s1(x) and
x3 = 1 − s3(x). Lemma 4 implies x1 = x2 or x2 = x3. We show the analysis for
x1 = x2. A symmetric argument can be given for x2 = x3.

Let x1 = x2. By Lemma 3 (iv), we have a1 = a2 and thus s1(x) = s2(x). See
Fig. 7.

Solving the equalities corresponding to the above figure

a2 · s1(x) = a2 · s2(x)
s2(x) + a2 · s2(x) = a3 · (1 − z2(x)),

yields s(x) =
(

a3
1+a2+2a3

, a3
1+a2+2a3

, 1+a2
1+a2+2a3

)
and thus x =

(
a3

1+a2+2a3
,

a3
1+a2+2a3

, 2a3
1+a2+2a3

)
. Note that a3 > 0, since otherwise s1(x) = s2(x) = 0 and

then firm 1 has an incentive to locate at 1.
Suppose firm 2 locates at x ′

2 = x3. Then

s2(x
′
2, x−2) = a3 · (2 + 3a2 + a3 + a22 + 2a2a3)

(1 + a2 + 2a3) · (2a2 + 2a3 + a22 + 2a2a3)
.

So

s2(x) ≥ s2(x
′
2, x−2) ⇒ a3 ≥ a2 + 2.

To prove that the strategy profile is an SPE, it is sufficient to check that firm 2 does
not want to deviate to the right, and firm 3 does not want to deviate to the left.

Since market shares are piecewise linear in the location of firm 2, firm 2 has no
incentive to locate at x ′

2, with x2 < x ′
2 ≤ x3. Since 1 − s2(x ′

2, x−2) < x3 if x ′
2 = x3,

there is also no incentive for firm 2 to locate as the rightmost firm.
Observe that firm 3 could only improve by being the leftmost firm. Suppose firm 3

locates as leftmost firm at x ′
3 = s3(x ′

3, x−3). Then

s3(x
′
3, x−3) = (1 + a2) · (a2 + 2a3)

(1 + a2 + 2a3) · (2 + a2 + 2a3)
.

Since s3(x ′
3, x−3) < s3(x) if a3 ≥ a2 + 2, firm 3 has no incentive to deviate.

Hence the strategy profile is an SPE.
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