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Abstract This paper deals with sliding games, which are a variant of the better known
pushpush game. On a given structure (grid, torus…), a robot can move in a specific
set of directions, and stops when it hits a block or boundary of the structure. The
objective is to place the minimum number of blocks such that the robot can visit all
the possible positions of the structure. In particular, we give the exact value of this
number when playing on a rectangular grid and a torus. Other variants of this game
are also considered, by constraining the robot to stop on each case, or by replacing
blocks by walls.
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1 Background and definitions

Sliding/pushing puzzles are classical problems used for entertainment. In a sliding
puzzle, entities (often described as robots) are moving around on a grid, and trying
to reach a final position. Every time a robot starts a move in a direction, it slides and
cannot stop until it hits another element on the grid (a wall, a block or another robot). In
a pushing puzzle, the entities often may stop a move without hitting a wall, but mostly
they are also allowed to move some inert blocks by pushing them. Pushing games
exist on their own (e.g. Sokoban) or as puzzles inside video games (e.g. Zelda). They
have been thoroughly studied before, and we refer the reader to the pleasant survey
of Demaine (2001) which also provides a classification of these games. He gives a
very detailed overview of known computational complexity results about such games.
Without any surprise, a large majority of these are proved to be NP- or PSPACE-
complete. A distinction is also made between push and pushpush-games: in the first
game the blocks are pushed one square at a time, while in the second they slide until
they meet an obstacle whenever they are pushed.

Sliding games are still less studied, though there are many commercial games using
this principle. Rasende roboter, lunar lockout (marketed in 1999 by Binary
Arts) or its predecessor UFO are such examples. Before describing these games, we
propose a general definition. An ice slide game is a puzzle where one or more robots
are on a grid, trying to reach a flag [the name was initially given in TCS questions
& answers Website (2012)]. By reaching the flag, we mean going through it and not
necessarily stoping on it. Each move of a robot consists in sliding in one direction
until it meets an obstacle, which stops him. Obstacles include static obstacles, such as
walls or blocks, but also other robots. In such a setting, the natural question is whether
there is a sequence of moves for one robot to reach the flag. See Fig. 1 for an example
of this game.

This question, where obstacles are predefined, and a single robot is trying to reach
a final position was posed recently by Burke (2012), on his excellent blog devoted to
combinatorial game theory. Burke also asked for the minimum number of moves for
the robot to reach the goal. Actually, the resolution of this problem is not very hard, as
explained in TCS questions & answersWebsite (2012). Indeed, it reduces to the search

Fig. 1 Robot sliding game: a
solution with six moves
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Fig. 2 ισ P
B (G4,4) ≤ 2

Fig. 3 ισ S
W (G4,4) ≤ 9

for a shortest path between the starting and final squares in an underlying subgraph of
the grid. By way of consequence, a simple application of Djikstra’s algorithm yields to
a polynomial computation of the minimum number of moves of a solution (provided
the game representation is not sublinear in the number of squares).

Yet, another natural question arises when dealing with this problem: what if the
player can choose the positions of the obstacles on the board? Of course, if the initial
and final squares are fixed, at most one block is necessary, yielding to a solution with
at most two moves. But if we ask the player to be able to move the robot to reach any
position, the problem becomes considerably more challenging. More precisely, given
an initial square P of the grid, we ask what is the minimum number of blocks needed
(and also how they must be placed) to move the robot from P to any other square.
In that context, the question of the minimum number of moves becomes secondary.
Note that this problem can be considered as a good way to build new configurations
for the original Rasende Roboter game. Indeed, if one can ensure that the robot can
reach every square of the board, it provides game configurations where the flag can
be placed everywhere (Fig. 2).

In correlation with this problem, we have identified two research parameters that
slightly change the rules detailed above but raise new reflection on the topic:

• Blocks can be substituted bywalls in the problem. In otherwords, the robot bounces
when hitting an edge of the grid (instead of a square), as depicted in Fig. 3.

• Instead of just passing through the final square, the robot must stop on it. Note
that, if there is only one robot, it forces any square of the grid to be adjacent to a
block (or a wall).

In the following, we differentiate four situations of the game, depending on the precise
question and the nature of the obstacles. We denote the game ice slideP/S

B/W -K using a
superscript P or S depending whether we require that the robot simply Passes or need
to Stop on the flagged position, a subscript B or W depending whether the obstacles
are Blocks or Walls, and K for the number of robots that we are allowed to move.
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490 P. Dorbec et al.

For example, the marketed game Rasende roboter1 is related to the game ice
slideSW -4 with a particular setting of the obstacles. In Rasende roboter, the objec-
tive is to find the minimum number of moves of a solution where the initial and final
positions are fixed. Its originality is that three additional robots can also be moved
and be used as blocks on which bouncing could help the player. Rasende roboter
had a good marketing success and also raised research interest in algorithmic game
theory. Because of the presence of other robots and the size of the grid (16 × 16),
simple shortest path algorithms are no more efficient. To the best of our knowledge,
only AI algorithms based on multi-agent systems have been proposed to solve the
game (Butko et al. 2006).

Another popular game called lunar lockout (marketed in 1999 by Binary Arts)
is very close to ice slideSB-K, with a board with no bounding walls. As in Rasende
roboter, other robots can be used as movable blocks. Before its marketing, this
puzzle was first introduced in 1998 by Yoshigahara and called UFO. It was studied
in the literature under this original name. Hock proved in (2001) that deciding the
existence of a solution in UFO is NP-complete. In Hartline and Libeskind-Hadas
(2003), a variant ofUFO is proposed, calledGLLV, where robots with a fixed location
are allowed and played on a general rectangular grid. This version clearly meets ice
slideSB-K.Whereas the PSPACE-completeness ofUFO is open, it is proved inHartline
and Libeskind-Hadas (2003) that GLLV is PSPACE-complete.

Note that the two games ice slidePB/W -2 played on a rectangular grid are trivial,
in the sense that no block is needed. Engels and Kamphans (2005) proved that the
two games ice slideSB/W -3 are also trivial in any rectangular grid. Hence the most

interesting instances, at least on rectangular grids, seem to be ice slideP/S
B/W -1 and ice

slideSB/W -2. In this paper, we will focus on the games ice slideP/S
B/W -1, using a single

robot, and denote them simply by ice slideP/S
B/W . We use the following definition.

Definition 1 Let Gn,m be a rectangular grid with n rows andm columns. Each square
of the grid is denoted by a pair (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ m. The parameter
ισ

P/S
B/W (Gn,m) is the minimum number of Blocks (resp. Walls) that needs to be placed

on the grid so that, from the starting position (1, 1) and for every position (i, j) of
Gn,m which does not contain a block, there exists a sequence of moves making the
robot Pass over (resp. Stop on) (i, j).

Remark 2 Inwhat follows, we shall see that starting from the position (1, 1) is not very
restrictive. Indeed, our constructions often guarantee that from any starting position,
it is possible to move the robot and stop on (1, 1).

Remark 3 In the definition, one can replace the rectangular grid by any kind of grids
for which the moves of the robot is clear. For example, in Sect. 3, we consider king
grids and tori.

We proceed with the resolution of these problems for several instances, stressing
how this game is related to some well-known problems in graph theory. In Sect. 2, we

1 https://en.wikipedia.org/wiki/Ricochet_Robot.
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first give the definitions and results of related graph problems. In Sect. 3, we study ισ P
B

on different kinds of grids, such as rectangular grids, king grids and tori. In Sect. 4,
the three other variants of the game are explored.

2 Graph parameters related to ice slide

Thecurrent sectionpresents twooptimizationproblems ingraph theorywhich correlate
with our game.
Domination in graphs
Given a graphG, a set D ⊆ V (G) is said to be a dominating set (resp. a total dominating
set) of G if every vertex of V (G)\D (resp. V (G)) is adjacent to a vertex of D.

Definition 4 Let G be a graph. The value γ (G) (resp. γt (G)), called domination
number (resp. total domination number) ofG, corresponds to theminimum cardinality
of a dominating set (resp. total dominating set) in G.

In the next section, we relate the dominating set problem with ice slideSB . Indeed,
the ability to stop the robot anywhere means that a block must be adjacent to any
square of the grid. In other words, the set of blocks needs to be a dominating set of the
grid. Total dominating sets appear in the study of the game ice slidePB , as explained
further in Sect. 3.1.

Given any graph G, the computation of γ (G) and γt (G) are known to be NP-hard
problems. However, their values are known for simple classes of graphs, such as grids
or paths. As needed later, we give below the total domination number of paths.

Proposition 5 (Klobucar 2004). Let Pn denote the path with n vertices. We have

γt (Pn) =
{
2� n

4 � + 1 if n ≡ 1 (mod 4)
2� n

4 � otherwise

Edge cover in graphs
Given a graph G, a set S ⊆ E(G) is said to be an edge cover of G if every vertex of
G is incident to at least one edge of S.

Definition 6 Let G be a graph. The value ρ(G), called the edge covering number of
G, corresponds to the size of a minimum edge cover of G.

Unlike the domination number, the value ρ(G) can be computed in polynomial
time for any graph G. In Sects. 4.2 and 4.3, we observe how edge covers interact with
the game ice slide played with walls. For example, we use the value ρ(Pn), which
is straightforwardly equal to �n/2�.

3 ice slidePB played on various grids

Throughout this paper, we consider grids with n rows and m columns. We denote by
Ri (resp. C j ) the i th row (resp. j th column) of G. Position (i, j) is at the intersection
of Ri and C j . In the figures, unless something else is mentioned, (1, 1) is the top-left
square.
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3.1 Rectangular grids

In this part, we consider the game ice slidePB on a rectangular grid G = Gn,m : we
place blocks on G and the robot must be able to pass everywhere from the square
(1, 1).

Definition 7 Let B be a set of blocks. The row Ri , 2 ≤ i ≤ n − 1 (resp. column C j ,
2 ≤ j ≤ m − 1) is said to be totally dominated by B if there is at least one block of
B in row Ri−1 or Ri+1 (resp. in column Ci−1 or Ci+1).

If B is a set of blocks in Gn,m which totally dominates every column C j , 2 ≤ j ≤
m − 2, then, by moving blocks from columns C1 and Cm to columns C3 and Cm−2
respectively, every column is still totally dominated by B. Hence we get the following:

Observation 8 If B is a set of blocks in Gn,m which totally dominates every column
C j , 2 ≤ j ≤ m − 2, then |B| ≥ γt (Pm−2).

Proposition 9 For each n ≥ m, we have ισ P
B (Gn,m) ≥ γt (Pm−2).

Proof Consider an optimal solution B of ice slidePB for Gn,m . If every column
C j , 2 ≤ j ≤ m − 2, is totally dominated by B then, by Observation 8, we get
ισ P

B (Gn,m) ≥ γt (Pm−2).
Assume now that there exists a column C j , 2 ≤ j ≤ m − 2, which is not totally

dominated by B. Let I j = {i : (i, j) ∈ B} be the line indices of the blocks of C j . The
robot can not initiate a verticalmove inC j since to stop inC j it needs a block in column
C j−1 orC j+1. Hence it has to go horizontally through every row Ri , i ∈ [2, n−1]\I j .
Therefore, each such row must be totally dominated by B ′ = B\{(i, j) : i ∈ I j }. We
define the set of blocks B∗ as follows:

B∗ = B ′ ∪ {(i − 1, j) : i ∈ I j , i > 1}.

We claim that each row Ri , 2 ≤ i ≤ n − 1, is totally dominated by the set B∗. Indeed,
if i /∈ I j , then Ri is totally dominated by B ′ as observed above. Otherwise there is a
block in row Ri−1. We finally get

|B| ≥ |B∗| ≥ γt (Pn−2) ≥ γt (Pm−2)

by Observation 8 and the result follows. ��
Lemma 10 Assume that the pattern Pn of size n×8 depicted on Fig. 4a is in position
(1, j) ((1, j) being the top-left square of the pattern). Then, if a robot is able to enter
horizontally in all the four positions (1, j), (n, j), (2, j + 7), and (n − 1, j + 7), it
can pass vertically through all the columns C j to C j+7. In addition, if a robot enters
horizontally the pattern Pn in position (1, j), it can leave it horizontally on rows R2
and Rn−1 heading left and on rows R1 and Rn heading right (see Fig. 4b).

Proof The routes followed by the robot to satisfy the above lemma are shown on Fig.
4. ��
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1

n

j j+7

(a) Moving inside Pn (b) Leaving Pn

Fig. 4 Pattern of size n × 8 for ice slidePB on grid and its representation. a Moving inside Pn . b Leaving
Pn

Theorem 11 For any n ≥ m, m �= 10, we have ισ B
P (Gn,m) = γt (Pm−2).

For any n ≥ 10, we have ισ B
P (Gn,10) = 5.

Proof Let n ≥ m > 10. We consider the following cases:

• m − 2 ≡ 3, 4, 5, 6 or 7 (mod 8). The solution is built by gluing �m−2
8 � copies of

Pn starting from column C2 (leaving column C1 empty), the remaining columns
being filled by the patterns of Fig. 5. From Lemma 10, all the columns of all the
copies of Pn but the last one are visited. Figure 5 shows that all the remaining
rightmost columns can be visited by entering from the left on rows R1 and Rn .
The robot is also able to leave these columns from rows R2 and Rn−2, so that the
columns of the last copy of Pn can be visited.

• m − 2 ≡ 1 or 2 (mod 8). Using �m−10
8 � copies of Pn , the proof is similar to the

previous case using the patterns depicted in Fig. 6.
• m − 2 ≡ 0 (mod 8). The proof is again similar using �m−18

8 � copies of Pn (recall
that m �= 10) and the pattern depicted in Fig. 7.

We now consider the case m < 10, n ≥ m. If m = 1, 2, clearly no block is needed.
For m = 3, put a block in position (n, 3). For m = 4, put two blocks in positions
(n, 3) and (1, 4). For 5 ≤ m ≤ 9, leave columnC1 empty glued to the pattern of width
m − 1 given in Fig. 5.

In each case, the number of blocks used in our solutions is exactly γt (Pm−2).
In the case m = 10, one can easily show that five blocks are enough by using the

pattern of Fig. 6a without the first column. It now remains to be proven that γt (P8) = 4
blocks are not sufficient. Suppose, on the contrary, that ισ P

B (Gn,10) = γt (P8) = 4 for
n ≥ 10, and consider an optimal solution B. According to the proof of Proposition 9,
one can assume that every columnC j , 2 ≤ j ≤ m−2 is totally dominated by B. There
exists a unique minimum total dominating set in P8, depicted in Fig. 8. Consequently,
the four blocks of B are located in columns C3,C4,C7 and C8.
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(a) m − 2 ≡ 3 (mod 8) (b) m−2 ≡ 4 (mod 8)

(c) m − 2 ≡ 5 (mod 8) (d) m − 2 ≡ 6 (mod 8)

(e) m − 10 ≡ 7 (mod 8)

Fig. 5 Visiting the remaining columns when m − 2 ≡ 3, 4, 5, 6, 7 (mod 8). a m − 2 ≡ 3 (mod 8). b
m − 2 ≡ 4 (mod 8). c m − 2 ≡ 5 (mod 8). d m − 2 ≡ 6 (mod 8). e m − 10 ≡ 7 (mod 8)
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(a) m − 10 ≡ 1 (mod 8) (b) m − 10 ≡ 2 (mod 8)

Fig. 6 Visiting the remaining columnswhenm−10 ≡ 1, 2 (mod 8). am−10 ≡ 1 (mod 8). bm−10 ≡ 2
(mod 8)

Fig. 7 Visiting the remaining columns when m − 18 ≡ 0 (mod 8)

X X X X

Fig. 8 Minimum total dominating set in P8

Now, since column C2 is totally dominated by column C3, the block in C3 is
necessarily located on the first or last row. Otherwise, it would not be possible to make
the robot stop in column C2 since there is no block in C1. By symmetry, the block in
C8 is also located on the first or last row. Now, with the same argument, since C3 is
totally dominated by C4 and there are no blocks in C1 and C2, the only way to make
the robot stop on column C3 is to place the block of C4 in the first or last row, and not
adjacent to the block in C3. Ditto for the block in C7. There are thus only 4 possible
sets for B, but for each of them, the position (1, 5) is not reachable. ��
Remark 12 Note that our constructions preserves the accessibility of the robot to every
square of the grid if the starting position is different from (1, 1). Indeed, one can verify
that from any position in Pn or in the ending patterns, there exists a sequence of moves
landing in (1, 1).
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3.2 Tori

We now consider the torus grid Tn,m and compute the value ισ P
B (Tn,m) for any values

of n and m. Indices are taken modulo m for columns and modulo n for rows.
We first give a lower bound, similar to Proposition 9.

Proposition 13 For any n ≥ m, ισ P
B (Tn,m) ≥ � f racm − 12�.

Proof Consider an optimal solution B of ice slidePB for Tn,m . If for every column
C j which is not the starting column of the robot, there is a block in column C j−1 or
C j+1, then there are at least m−1

2 blocks in the solution.
Hence we assume that there exists a column C j , not the starting column of the

robot, such that there is no block in columns C j−1 and C j+1. Let n j be the number
of blocks in column C j . The robot cannot go vertically in column C j since to stop in
column C j it needs a block in column C j−1 or C j+1. Hence it has to go horizontally
through the n−n j free squares of the column. But to go horizontally on row Ri , either
the robot starts on this row, or there is a block in row Ri−1 or Ri+1. Thus, to go through
the n − n j free squares of C j , the robot needs at least

n−n j−1
2 blocks. Note that these

blocks are not on column C j . At the end, the solution has at least
n−n j−1

2 +n j ≥ m−1
2

blocks. ��
We will prove that this lower bound is reached for m ≥ 6. For that, we will prove

by induction the following stronger statement:

Proposition 14 For any m ≥ 6, there exists a solution of ice slidePB on Tm,m with
m−1
2 blocks, such that:

1. if im is the maximum index of a row with a block, the robot can pass horizontally
on the row Rim+1,

2. the robot can pass vertically on all the columns.

Proof Wewill use for the induction the pattern of size 4×8 of Fig. 9. The figure gives
a proof of the following lemma:

Lemma 15 Assume that the pattern of Fig. 9 is in position (i, j) ((i, j) is the top-left
square of the pattern) and that there is no block in any column and row intersecting
the pattern (i.e. rows Ri to Ri+3 and columns C j to C j+7). Then, if a robot enters
in position (i, j) horizontally in the pattern of Fig. 9, it can pass vertically on all the
columns C j to C j+7 and can go out of the pattern horizontally on rows Ri−1 and Ri+4
(by wrapping around the torus), in any direction.

Using this pattern, if we know a solution for Tm,m of size m−1
2 satisfying Conditions

(1) and (2) of the proposition, we can get a solution for Tm+8,m+8 of size m−1
2 +4 still

satisfying the conditions. Indeed, one can copy the solution of Tm,m and if im (resp.
jm) denotes the largest index of a row (resp. a column) containing a block, add the
pattern in position (im + 1, jm + 1) (see Fig. 10).

Hence we just have to prove the proposition for m = 6 to m = 13. This is proved
by Fig. 11. On this figure, we show the solutions for odd m. We get the solutions for
even m by removing the row and the column in gray. ��
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⇒ P

Fig. 9 Pattern for ice slidePB on torus and its representation

Fig. 10 Construction of a
solution for Tm+8,m+8 from a
solution of Tm,m . Conditions 1
and 2 of Proposition 14 remain
satisfied

Tm,m

P

Since all the columns are passed vertically, we can add as many rows as we want
to the torus and we get optimal solutions for Tn,m with n ≥ m ≥ 6:

Corollary 16 For n ≥ m ≥ 6, ισ B
P (Tn,m) = m−1

2

We now complete the study with the small values of m:

Proposition 17 We have:

• ισ B
P (Tn,1) = 0

• ισ B
P (Tn,2) = n − 2

• ισ B
P (Tn,3) = 3

• ισ B
P (Tn,4) = 3

• ισ B
P (Tn,5) = 3

Proof The case m = 1 is trivial.
Ifm = 2, assume that the robot starts at position (1, 1). Then it can only go vertically

on column 1, horizontally on row 1 and eventually horizontally on twomore rows i−1
and i + 1 if there is a block in position (i, 1). Hence n − 3 squares are not reachable
and we need to add blocks on these squares.

Form ∈ {3, 4, 5}, assume, by contradiction, there is a solutionwith starting position
(1, 1) and twoblocks in positions (i1, j1) and (i2, j2).Wemust have 1 ∈ {i1, j1, i2, j2}.

123
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(a) m = 6, 7 (b) m = 8, 9

(c) m = 10, 11

P

(d) m = 12, 13

P

P

Fig. 11 Small cases for induction for ice slidePB on torus. Since all columns are passed vertically, we
highlight only the significant rows. To get the even grids, remove the gray row and column. a m = 6, 7. b
m = 8, 9. c m = 10, 11. d m = 12, 13

Assume that i1 = 1 (other cases are similar). We have j1 �= 1, j1 �= j2 and i2 �=
1 (otherwise the robot can not go everywhere). Then one can check that the robot
can not go in position (i2, j1), which leads to a contradiction. Blocks in positions
{(1, 2), (2, 3), (3, 1)} is a solution with three blocks that works for m ∈ {3, 4, 5}. ��
Remark 18 In the torus, all the positions are equivalent. Also, if we know the starting
position before placing the blocks, we can always use our constructions. However,
if the solution must work for any starting position, then we need at least min(n,m)

blocks. Indeed, if there exists a row Ri and a columnC j with no block, a robot starting
in (i, j) will never be able to leave the squares of Ri ∪ C j .

3.3 King grids

We now consider the game ice slidePB played on the King grid n×m, denotedKn,m ,
also known as the strong product of two paths Pn � Pm . In the King grid, the robot
is also allowed to initiate moves diagonally. We begin with the following surprising
result about King grids.
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(a)On Kn+1,m+1 when gcd(n,m) = 3,
the robot can stop on grey squares.

(b) How we use blocks

Fig. 12 Block pass in the king grid. a On Kn+1,m+1 when gcd(n,m) = 3, the robot can stop on grey
squares. b How we use blocks

Theorem 19 Let m ≥ n be positive integers.
If gcd(n,m) ≤ 3, then ισ P

B (Kn+1,m+1) = 0.

Proof Let m ≥ n be positive integers such that gcd(n,m) ≤ 3, and consider the
game on the King grid Kn+1,m+1. We first observe that the robot can stop on all
positions (1, 1 + αn − βm) where 0 ≤ αn − βm ≤ m (see Fig. 12a). From (1, 1),
the robot can go diagonally to (1 + n, 1 + n) then up to (1, n + 1). Iterating the
process, it reaches (1, 1 + αn) for all 0 ≤ α ≤ m

n . Eventually, the robot reaches the
position (1, 1 + �m

n �n). Then, going diagonally, it reaches (1 + m − �m
n �n,m + 1),

then can slide to (1 + m − �m
n �n, 1), and can continue diagonally its movement to

(1 + n, 1 + (�m
n � + 1)n − m) from which it can go up to (1, 1 + (�m

n � + 1)n − m).
Iterating the same process, we get that it reaches all positions (1, 1+αn−βm) where
0 ≤ αn−βm ≤ m. Then, thanks to Bézout’s identity, we deduce that the robot reaches
all positions (1, 1 + α gcd(m, n)) where 0 ≤ α ≤ m

gcd(m,n)
.

Now, if gcd(m, n) = 1, from these positions, the robot can pass vertically any
position. If gcd(m, n) = 2, then the robot passes vertically all positions (x, 1 + 2y).
From (1, 1 + 2y), it can also reach by a diagonal (1 + 2y, 1), and thus can pass
horizontally all (1+ 2x, y). Positions (2x, 2y) can be reached from either (1+ 2(x −
y), 1) (if x ≥ y) or from (1, 1 + 2(y − x)) (otherwise). So the robot can pass all
positions. Finally, if gcd(m, n) = 3, the robot can pass vertically all (x, 1 + 3y) and
horizontally all (1+3x, y). The positions (2+3x, 2+3y) and (3x, 3y) can be reached
diagonally from (1+3(x− y), 1) or from (1, 1+3(y−x)). The positions (3x, 2+3y)
and (3x − 1, 3y) can be reached diagonally from (n + 1, 3(y + x) − n + 1) or from
(3(y + x) + 1, 1). ��

Theorem 20 For m ≥ n positive integers, we have

ισ P
B (Kn+1,m+1) ≤

⌈
gcd(n,m) − 3

8

⌉
.
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Proof Let k =
⌈
gcd(n,m)−3

8

⌉
, we prove now that using k blocks, the robot may pass

on every unoccupied position. For 0 ≤ i < k, we place a block Bi on position
(n + 1, n + 1 − 2i) when i is even, and (1, n + 1 − 2i) when i is odd (see Fig. 13).

Wefirst prove by induction that the robot can reach position (1, n+1− j) or position
(n+1, n+1− j) for all 0 ≤ j ≤ 2k, and thus, with two diagonal moves and possibly
one vertical move, the robot also reaches positions (1, 1 + j) and (n + 1, 1 + j). Let
j be an even positive integer in the range 0 ≤ j ≤ 2k − 2, and assume the robot
can reach the positions (1, 1 + j) and (n + 1, 1 + j). The base case, when j = 0, is
obvious. If j is even, from (1, j +1), the robot can slide to ( j +1, 1) then to (n, n− j)
where it get stopped by block B j

2
(see Fig. 12b). Then it can go up to (1, n − j) and

diagonally to (n + 1, n − j − 1), proving the property for j + 1 and j + 2.
From these positions, with similar arguments as in the previous lemma, we get that

the robot can always reach positions of type (1, 1 + α gcd(n,m) − j) or (n + 1, 1 +
α gcd(n,m)− j) aswell as (1+α gcd(n,m)+ j, 1) or (1+α gcd(n,m)+ j, n+1)with
0 ≤ j ≤ 2k (see Fig. 13). So consider now a position of type (1+α gcd(n,m)+x, 1+
β gcd(n,m)+y)where x and y are larger than 2k but less than gcd(n,m)−2k ≤ 6k+3.
If |x − y| ≤ 2k, then the robot can reach that position by sliding diagonally from
(1 + (α − β) gcd(n,m) + (x − y), 1) or (1, 1 + (α − β) gcd(n,m) + (x − y)). If
|x − y| ≥ 2k + 1, we deduce that

x + y − gcd(n,m) ≤ 2(gcd(n,m) − 2k − 1) − (2k + 1) − gcd(n,m) ≤ 2k

x + y − gcd(n,m) ≥ 2(2k + 1) + 2k + 1 − gcd(n,m) ≥ −2k

Therefore, if y′ = 1+α gcd(n,m)+x+n+1−(1+β gcd(n,m)+ y) is non negative,
then it can be written in the form 1+ γ gcd(n,m) + j or 1+ γ gcd(n,m) − j where
0 ≤ j ≤ 2k, and the position can be reached diagonally from (n + 1, x ′), otherwise
x ′ = n + 1 − y′ and then the position can be reached from (x ′, 1). ��

When gcd(m, n) > 3, it is not difficult to verify that there is no solution without any
block, by checking all the possible moves. We can observe that there is no possibility
to reach the position (2, 3) for example. However, we do not have any general proof
that our bound is optimal, and we leave it as an open question.

4 Other instances of ice slide

4.1 ice slideSB

In what follows, we consider the game ice slide played with blocks on a grid where
the robot has to stop on each square. An inner square of the grid is a square (i, j) such
that 2 ≤ i ≤ n − 1 and 2 ≤ j ≤ m − 1. Other squares are called border squares.

We obtain the following lower bound for ισ S
B(Gn,m):

Proposition 21 For each n ≥ m ≥ 3, we have ισ S
B(Gn,m) ≥ γ (Gn−2,m−2).

Proof Consider an optimal solution B of ice slideSB on Gn,m . Let (i, j) be an inner
square of the grid. There must be at least one block adjacent to (i, j) otherwise the
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Fig. 13 Two blocks for the King grid K20,20

robot cannot stop on it. LetG ′ be the grid induced by the inner squares. It is isomorphic
to Gn−2,m−2. Let B1 be the set of blocks of B that are located on inner squares. Let
Vb be the set of squares of G ′ that are not adjacent to a block of B1. Note that all
these squares are on the border of G ′, and that, for each square (i, j) of Vb, there is
at least one block on an adjacent square of (i, j) in the border of Gn,m . Thus we have
|B| ≥ |B1| + |Vb|. Now let us consider B ′ defined as the disjoint union of B1 and Vb.
Clearly, B ′ is a dominating set of Gn−2,m−2, and we have |B ′| ≤ |B|. Hence we have:

ισ S
B(Gn,m) = |B| ≥ |B ′| ≥ γ (Gn−2,m−2).

��
We now give a construction of a solution of ice slideSB on Gn,m .

Proposition 22 For any n ≥ m ≥ 2, we have

ισ S
B(Gn,m) ≤ γ (Gn−2,m−2) + 18

25
(m + n) + 28

5
.

Proof Let n ≥ m ≥ 2.
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Fig. 14 Solution of ice slideSB
on G8,10

2

2

2

2

2

2

2

3

3

Fig. 15 Pattern of the solution
of ice slideSB

We construct a solution B of ice slideSB in three steps. The construction is illus-
trated on Figs. 14 and 15.

Let first B1 be the set of blocks that are the translation of the block located on square
(1, 2) by linear combinations of the two vectors {(1, 2), (3, 1)} (see Fig. 14). Note that
B1 covers all the inner squares of Gn,m and that each inner square is covered exactly
once.

Let us call B ′
1 the subset of blocks which are located on the border. By construction,

there are at most 2
(⌈ n−2

5

⌉ + ⌈m−2
5

⌉) ≤ 2
5 (m+n)+2 such blocks. Clearly, the blocks

of B ′
1 cover a subset S

′ of the inner squares such that |B ′
1| = |S′|.

Let us denote S′′ the set of inner squares which are not in S′. Since each inner
square is covered exactly once, then the subset B ′′

1 of blocks of B1 that are located on
inner squares satisfies 5|B ′′

1 | = |S′′|.
On the other hand, since each square of the grid has atmost four neighbours, thenwe

have γ (Gn−2,m−2) ≥ 1
5 (|S′| + |S′′|). Hence we have γ (Gn−2,m−2) ≥ 1

5 |B ′
1| + |B ′′

1 |,
and since B1 is the disjoint union of B ′

1 and B ′′
1 then we have |B1| ≤ γ (Gn−2,m−2) +

8
25 (m + n) + 8

5 .
The blocks of B1 will be enough to ensure that the robot will be able to stop on

almost each inner square as soon as it may reach some of them. Indeed, if the robot
enters in a rectangle of size 4× 4 that has four blocks on its border (see as an example
the gray rectangle on Fig. 14), then it will be able to stop in the four inner squares of
this rectangle and thus to go out of the rectangle from these four places (see Fig. 15).
To ensure that the robot will be able to enter in those rectangles from the border of the
grid and to stop on the border, we add some blocks that will form the set B2.

For each block of B1 located on an inner square which is neighbour of a border
square, we add a block in B2 in the following way:

• for each block (2, j) ∈ B1, we add the block (1, j) to B2;
• for each block (n − 1, j) ∈ B1, we add the block (n, j) to B2;
• for each block (i, 2) ∈ B1, we add the block (i, 1) to B2;
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• for each block (i,m − 1) ∈ B1, we add the block (i,m) to B2.

By construction, we have |B2| ≤ 2
(⌈ n−2

5

⌉ + ⌈m−2
5

⌉) ≤ 2
5 (m + n) + 2.

Finally, we add blocks in the corners of Gn,m if these squares are not reachable by
the robot:

• if there is a block on (2,m − 1), then we add the block (1,m);
• if there is a block on (n − 1, 2), then we add the block (n, 1);
• if there is a block on (n − 1,m − 1), then we add the block (n,m).

These blocks form the set B3. Note that at most two blocks are added in B3,
since (1,m) is added if and only if m ≡ 0 mod 5, and (n, 1) is added if and only if
n ≡ 2 mod 5.

The set of blocks B = B1 ∪ B2 ∪ B3 form a solution of ice slideSB , of cardinality
at most γ (Gn−2,m−2) + 18

25 (m + n) + 28
5 . ��

By combining the lower and upper bounds and since γ (Gn,m) =
⌊

(n+2)(m+2)
5

⌋
−4

(Gonçalves et al. 2011), we obtain an asymptotic value for ισ S
B(Gn,m):

Corollary 23 If m and n are large enough, ισ S
B(Gn,m) = mn

5 + O(m + n).

Notice that the constructionofProposition22 is optimal forn = m = 2,n = m = 3,
and m = n = 4. We did not try to find the exact value of ισ S

B(Gn,m) in the general
case since we think that such a result does not deserve much interest compared to the
tedious case study it would need to be proven.

Remark 24 Remark that, in the torus, using an optimal dominating set we immediately
get ισ S

B(Tn,m) = nm
5 when n ≡ 0 mod 5 and m ≡ 0 mod 5. Similarly, in the general

case, one could also show that ισ S
B(Tn,m) = nm

5 + O(m + n).

4.2 ice slidePW

In what follows, we consider the game ice slide played with walls on a grid and
where the robot has to pass over each square. Unlike blocks, there will be two types
of walls: horizontal and vertical ones (see Fig. 3).

Definition 25 Let W be a set of walls. The row Ri , 2 ≤ i ≤ n − 1 (resp. column C j ,
2 ≤ j ≤ m − 1) is said to be covered by W if there is at least one horizontal wall of
W adjacent to row Ri (resp. one vertical wall adjacent to column Ci ).

By similar considerations to Sect. 3.1, we get the following observation (recall that
ρ has been defined in Definition 6):

Observation 26 If W is a set of walls in Gn,m which covers every column C j , 2 ≤
j ≤ m − 1, then |W | ≥ ρ(Pm−2).

This result leads to the following lower bound for ισ P
W (Gn,m):

Proposition 27 For each n ≥ m, we have ισ P
W (Gn,m) ≥ ρ(Pm−2).
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Fig. 16 Pattern of size n × 4 for
ice slidePW on grid

Proof Similar to the one of Proposition 9. If every column is covered by a wall, then
the proposition holds from Observation 26. Now consider an optimal solutionW such
that there exists a columnC j , 2 ≤ j ≤ m−1which is not covered by a wall. The robot
cannot move vertically in C j since there is no vertical wall adjacent to this column.
Hence it has to go horizontally through every row Ri , 2 ≤ i ≤ n − 1, implying that
each such row must be covered by a wall. Therefore we get the desired result:

|W | ≥ ρ(Pn−2) ≥ ρ(Pm−2).

��
The following lemma is the key to reach the lower bound of the above proposition:

Lemma 28 Assume that the pattern Pn of size n×4 depicted on Fig. 16 is in position
(1, j) ((1, j) being the top-left square of the pattern). Then, if a robot is able to enter
horizontally in (1, j), it can pass vertically through all the columns C j to C j+2. In
addition, if a robot enters horizontally the pattern Pn in position (1, j), it can leave it
horizontally on rows R1 heading right and Rn heading left.

A proof of this result is given by Fig. 16.

Theorem 29 For any n ≥ m ≥ 4, we have ισ P
W (Gn,m) = ρ(Pm−2).

For m = 3 and n ≥ m, we have ισ P
W (Gn,m) = 1.

For m ≤ 2 and n ≥ m, we have ισ P
W (Gn,m) = 0.

Proof Let n ≥ m ≥ 4. A solution is built by gluing �m−2
4 � copies of Pn starting

from column C2 and ending in Cm−1 (leaving columns C1 and Cm empty). In this
process, if (m − 2) �≡ 0 (mod 4), then remove the (m − 2) (mod 4) last columns
of the rightmost copy of Pn . Figure 16 ensures that all the columns (except the last
ones) of all the copies are visited by entering from row R1. It also shows that all the
rightmost columns of each pattern can be visited by entering from the right on row
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Rn . Note that it is also true for the rightmost copy of Pn since the robot can move
vertically in column Cm .
In the case where m = 3, it is straightforward to see that from position (1, 1), the
robot cannot visit all the squares if there is no wall. A vertical wall adjacent to position
(1, 2) is however sufficient. ��
Remark 30 Note that Theorem 29 remains valid for any starting position. It is not hard
to see that the pattern of Fig. 16 ensures the robot to reach (1, 1) from any position.

4.3 ice slideSW

In what follows, we consider the game ice slide played with walls on a grid where
the robot has to stop on each square. Constructions and proofs are similar to the ones
of Subsection 4.1. We obtain the following lower bound for ισ S

W (Gn,m):

Proposition 31 For each n ≥ m ≥ 3, we have ισ S
W (Gn,m) ≥ ρ(Gn−2,m−2).

Proof Consider an optimal solution W of ice slideSW on Gn,m . Let (i, j) be an inner
square of the grid, i.e 2 ≤ i ≤ n − 1 and 2 ≤ j ≤ m − 1. There must a wall adjacent
to (i, j) otherwise the robot cannot stop on it. Let G ′ be the grid induced by the inner
squares. It is isomorphic to Gn−2,m−2. Let W1 be the set of walls that are adjacent to
two inner squares of Gn,m . Let Vb be the set of squares of G ′ that are not adjacent to a
wall of W1. Note that all these squares are on the border of G ′ and for each square of
Vb, there is a wall between this square and the adjacent square on the border of Gn,m .
Hence one can add to W1 one wall adjacent to each square of Vb and this new set W ′
will have size at most |W |. The set W ′ naturally corresponds to a set of edges of G ′
that cover the vertices of G ′. Hence we have:

ισ S
W (Gn,m) = |W | ≥ |W ′| ≥ ρ(Gn−2,m−2).

��
We now give a construction of a solution of ice slideSW on Gn,m .

Proposition 32 For any n ≥ m ≥ 3, we have

ισ S
W (Gn,m) ≤ ρ(Gn−2,m−2) + 3(m + n)

4
+ 3.

Proof Let n ≥ m ≥ 3. We construct a solution W of ice slideSW in three steps. The
construction is illustrated on Figs. 17 and 18.

We denote by (i, j) − (i, j + 1) the vertical wall between the square (i, j) and
(i, j + 1) and use the same notation for horizontal walls. An inner wall is a wall that
is not touching the border (if it is a vertical wall, it means that 2 ≤ j ≤ m − 2 and i
is not constrained in the previous notation).

Let firstW1 be the set of innerwalls that are the translation of thewalls (2, 2)−(2, 3)
and (3, 2) − (4, 2) by linear combinations of the three vectors {(1, 1), (0, 4), (4, 0)}

123



506 P. Dorbec et al.

Fig. 17 Solution of ice
slideSW on G9,7

Fig. 18 Pattern of the solution
of ice slideSW

(see the inner walls of Fig. 17). Note that W1 covers all the inner squares of Gn,m and
that each square is covered exactly once. Some walls of W1 are located between an
inner square and a border square. There are at most 2

(⌈ n−2
4

⌉ + ⌈m−2
4

⌉) ≤ m+n
2 + 2

such walls. Hence |W1| ≤ ρ(Gn−2,m−2) + m+n
4 + 1.

The walls of W1 will be enough to ensure that the robot will stop on almost each
inner square as soon as it will enter to some of them. Indeed, if the robot enters in a
rectangle of size 3 × 2 that has four walls on its border (see as an example the gray
rectangle on Fig. 17), then it will be able to stop in the four corners of this rectangle
and thus to go out of the rectangle from these four places (see Fig. 18). To ensure
that the robot will enter in the rectangles of the border of the grid and stop on the
border, we add some walls that will form the set W2. For each wall of W1 located
between an inner square and a border square, we add a wall in W2 in the following
way:

• for each (1, j) − (2, j) ∈ W1, we add the wall (1, j) − (1, j + 1) to W2;
• for each (n − 1, j) − (n, j) ∈ W1, we add the wall (n, j − 1) − (n, j) to W2;
• for each (i, 1) − (i, 2) ∈ W1, we add the wall (i, 1) − (i + 1, 1) to W2;
• for each (i,m − 1) − (i,m) ∈ W1, we add the wall (i − 1,m) − (i,m) to W2.

We furthermore add the wall (2, 1)− (3, 1) toW2. Finally, if (n−2,m−1)− (n−
1,m − 1) (respectively (n − 1,m − 2) − (n − 1,m − 1)) is a wall, we add the wall
(n,m − 2) − (n,m − 1) (resp. (n − 2,m) − (n − 1,m)) toW2. Note that the first case
holds if and only if n − m ≡ 2 mod 4 and whereas the second case holds if and only
if n − m ≡ 3 mod 4.
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The final set of walls W1 ∪ W2 is a solution of ice slideSW of size at most

ρ(Gn−2,m−2) + 3(m + n)

4
+ 3.

��

By combining the lower and upper bounds and noticing that ρ(Gn,m) = ⌈ nm
2

⌉
, we

obtain an asymptotic value for ισ S
W (Gn,m):

Corollary 33 If m and n are large enough, ισ S
W (Gn,m) = mn

2 + O(m + n).

As for Sect. 4.1, we did not try to find the exact value of ισ S
W (Gn,m).

Remark 34 The solution built in Proposition 32 remains valid for any starting position
except the part of the border around the bottom-right corner when n − m ≡ 0 mod 4
or n − m ≡ 1 mod 4.

5 Conclusion and open problems

As mentioned in the introduction, the literature about sliding/pushing games is rather
wide. From our point of view, the game detailed in the current paper is worth to
be studied since it can be directly expressed with well-known graph optimization
problems. Although the exact determination of ισ (Gn,m) is the ultimate objective
when considering an instance of the game, we managed to compute it only for the
case where the robot must pass on each square of a grid. In the case where he must
stop everywhere, we saw that the exact value is a bit more tedious to obtain. We thus
proposed an upper bound in O(nm).

In addition, ice slide can naturally be declined under several variants that fit some
constraints of other related games. Here is a non-exhaustive list of variants that could
be considered:

• The presence of other robots is also a parameter that could be adjoined to our
problem, as it is the case in the original game Rasende roboter (which admits
three other robots). These additional robots are only used to make the main robot
bounce on them. As said in the introduction, the only non-trivial instances are ice
slideSB/W with two robots.

• In the game Rasende roboter, the objective is to find the minimum number
of moves of a solution with several robots. This aspect is not considered in our
version. It would imply that the blocks/walls are set at the beginning of the game,
as well as the starting and final positions of the robot.

• The configuration of the board can be changed, e.g. subgraphs of the grid, hexag-
onal grids, or grids without boundary, as it is the case in Lunar lockout.

• The robot may push blocks, as it is the case in all the variants of pushpush.

123



508 P. Dorbec et al.

References

Burke K (2012) CGT Blog. http://combinatorialgametheory.blogspot.fr/search?updated-max=2012-10-
05T10:28:00-07:00&max-results=7

Butko N, Lehmann KA, Ramenzoni V (2006) Ricochet robots—a case study for human complex problem
solving. Project thesis from the Complex System Summer School, Santa Fe Institute

Demaine E (2001) Playing games with algorithms: algorithmic combinatorial game theory. In: Proceedings
of the 26th international symposium on mathematical foundations of computer science

Engels B, Kamphans T (2005) On the complexity of Randolph’s Robot Game, Technical Report
Gonçalves D, Pinlou A, Rao M, Thomassé S (2011) The domination number of grids. SIAM J Discrete

Math 25(3):1443–1453
Hartline JR, Libeskind-Hadas R (2003) The computational complexity of motion planning. SIAM Rev

45(3):543–557
Hock M (2001) Exploring the complexity of the UFO puzzle. Undergraduate thesis, Carnegie Mellon

University. http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-02/hock.ps
Klobucar A (2004) Total domination numbers of cartesian products. Math Commun 9:35–44
TCS questions & answers Website (2012). http://cstheory.stackexchange.com/questions/10813/what-is-

the-known-complexity-of-this-game-similar-to-pushpush-1

123

http://combinatorialgametheory.blogspot.fr/search?updated-max=2012-10-05T10:28:00-07:00&max-results=7
http://combinatorialgametheory.blogspot.fr/search?updated-max=2012-10-05T10:28:00-07:00&max-results=7
http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-02/hock.ps
http://cstheory.stackexchange.com/questions/10813/what-is-the-known-complexity-of-this-game-similar-to-pushpush-1
http://cstheory.stackexchange.com/questions/10813/what-is-the-known-complexity-of-this-game-similar-to-pushpush-1

	Ice sliding games
	Abstract
	1 Background and definitions
	2 Graph parameters related to ice slide
	3 ice slideBP played on various grids
	3.1 Rectangular grids
	3.2 Tori
	3.3 King grids

	4 Other instances of ice slide
	4.1 ice slideBS
	4.2 ice slideWP
	4.3 ice slideWS

	5 Conclusion and open problems
	References




