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Abstract We introduce a class of impartial combinatorial games, Multi-player Last
Nim with Passes, denoted by MLNim(s)(N , n): there are N piles of counters which
are linearly ordered. In turn, each of n players either removes any positive integer of
counters from the last pile, or makes a choice ‘pass’. Once a ‘pass’ option is used, the
total number s of passes decreases by 1.When all s passes are used, no player may ever
‘pass’ again. A pass option can be used at any time, up to the penultimate move, but
cannot be used at the end of the game. The player who cannot make a move wins the
game. The aim is to determine the game values of the positions of MLNim(s)(N , n)

for all integers N ≥ 1 and n ≥ 3 and s ≥ 1. For n > N + 1 or n = N + 1 ≥ 3,
the game values are completely determined for any s ≥ 1. For 3 ≤ n ≤ N , the game
values are determined for infinitely many triplets (N , n, s). We also present a possible
explanation why determining the game values becomes more complicated if n ≤ N .

Keywords Impartial combinatorial game · Multi-player · Last Nim · Alliance · Pass

1 Introduction

Combinatorial game theory is a branch ofmathematics devoted to studying the optimal
strategy in perfect-information games where typically two players are involved. In a
2-person perfect information game two players alternate moves until one of them is
unable to move at his turn. Among the games of this type, as a non-exhaustive list,
are Nim (Albert and Nowakowski 2004; Bouton 1901; Flammenkamp et al. 2003;
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Holshouser et al. 2003; Liu and Zhao 2016), End-Nim (Albert and Nowakowski 2001;
Fraenkel and Lorberbom 1991), etc.

Last Nim with two players introduced by Friedman (2000) is played with piles of
counters which are linearly ordered. The two players take turns removing any positive
integer of counters from the last pile. Under normal play convention, all P-positions
of Last Nim with two players are those containing an odd number of piles containing
1 counter.

1.1 Multi-player combinatorial game

During the last few years, the theory of 2-player perfect information games has been
widely studied. Naturally it is of interest to generalize asmuch as possible of the theory
to n-player games. In 2-player perfect information games, one can always talk about
what the outcome of the game should be, when each player plays it right, i.e. when
each player adopts an optimal strategy. But when there are more than two players,
it may not make sense to talk about the same thing. For instance, it may so happen
that one of the players can help any of the players to win, but anyhow, he himself has
to lose. So the outcome of the game depends on how coalitions are formed among
the players. In previous literature, several possibilities were investigated:multi-player
without alliance,multi-playerwith twoalliances andmulti-playerwith alliance system.

• Multi-player without alliance

N-player Nimwithout alliancewas introduced by Li (1978). Straffin (1985) attempted
to classify three-player games using somewhat restrictive assumptions regarding the
behavior of each player. Thisworkwas also investigated byLoeb (1996) by introducing
the notion of a stable winning coalition (where amember of this coalition is guaranteed
a winner). Other work done by Propp (1996) analyzed the required circumstances
which allow one player to have a winning strategy against the combined forces of the
others. Cincotti (2010) gave an analysis of n-player partizan games.

• Multi-player with two alliances

The game of n-player one-pile bounded Nim with two alliances, denoted by OBN,
was investigated by Kelly (2006, 2011): given an integerm ≥ 1 and a pile of counters,
suppose that n ≥ 2 players form two alliances and that each player is in exactly one
alliance. Also assume that each player will support his alliance’s interests. Each player
is allowed to remove � counters from the pile, where � ∈ {1, 2, . . . ,m}. Under misère
play convention, the alliance which takes the last counter is the loser (the other alliance
is the winner); under normal play convention, the alliance which takes the last counter
is the winner (the other alliance is the loser).

A position is defined to be an unsafe position of one alliance if the game begins from
this position and no matter what move this alliance makes, when the other alliance
plays optimally, this alliance must lose. Under misère play convention, Kelly (2006,
2011) gave all unsafe positions of OBN for some special structures of two alliances.

More general structures of two alliances were investigated by Zhao and Liu (2016),
and all unsafe positions of OBN were determined for more general structures of
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two alliances. Moreover, the authors also pointed out that some conclusions given
by Kelly are not correct, and presented a possible explanation for Kelly’s inaccurate
conclusions.

• Multi-player with alliance system

Krawec (2012) assumed that every player has a fixed set of allegiances to all n players,
i.e. an alliance system may be defined arbitrarily before the start of a game. While the
alliance system used is fixed for the duration of the game, Krawec provided a method
of analyzing n-player impartial games, and derived a recursive function capable of
determining which of the n players has a winning strategy.

Krawec (2015) also developed a method of analyzing n-player impartial combi-
natorial games where n − 1 players behave optimally while one of the players plays
randomly, i.e. one player chooses games at random without strategy.

1.2 Two-player combinatorial games with pass

Guy and Nowakowski (2009) wrote that “David Gale would like to see an analysis of
Nim played with the option of a single pass by either of the players, which may be
made at any time up to the penultimate move. It may not be made at the end of the
game. Once a player has passed, the game is as in ordinary Nim. The game ends when
all heaps have vanished.”

Morrison et al. (2012) used a dynamical systems approach to analyze ‘Three-Heap
Nim with a Pass’. Their findings indicated a deep and rich complexity when a pass
is added, and suggested that obtaining a complete analytical solution (in the spirit of
Bouton) may be intractable. Low and Chan (2015) gave a partial analysis of ‘Nim
with a pass’. To the best of our knowledge, no further result was proved.

1.3 Our games and results

In the present paper we introduce a class of impartial combinatorial games, Multi-
player Last Nim with Passes, assuming that the standard alliance matrix (to be defined
shortly) is adopted.

Definition 1 (i) “Multi-player Last Nimwithout Passes”: There are N piles of coun-
ters (x1, x2, . . . , xN ) which are linearly ordered. There are n players, who take
turns in sequential unchanging order. Each player, at his turn, removes any posi-
tive integer number of counters from the last pile if that pile contains at least one
counter (if the last pile contains no counter, the pile of size xN−1 becomes a new
last pile, and the game continues). The first player who cannot make any legal
move wins. For brevity, this game is denoted by MLNim(N , n).

(ii) “Multi-player Last Nim with s passes”, denoted by MLNim(s)(N , n): It is played
likeMLNim(N , n)with s passes and each pass can be used only once. Once a pass
option is used, the game continues in MLNim(s−1)(N , n), i.e. the total number of
passes decreases by 1. Once all s passes are used, no further pass option can be
used, and the game continues as in “Multi-player Last Nim without Passes”, i.e.
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MLNim(0)(N , n) =MLNim(N , n). A pass option can be used at any time, up to
the penultimate move, but cannot be used at the end of the game. The player who
cannot make a move wins the game.

Let (p; s) = (x1, x2, . . . , xN ; s) with xi ≥ 1 for all i ∈ {1, 2, . . . , N } be a position
of MLNim(s)(N , n). The aim of the present paper is to determine the game values
g(p; s) (to be defined shortly, but loosely speaking, the game value g(p; s) determines
the winning player of game (p; s)) for all integers N ≥ 1 and n ≥ 3 and s ≥ 0. In
order to determine the game values g(p; s) where s ≥ 1 (with s passes), we must first
determine the game values g(p; 0) (without pass).

In Sect. 3 the game values g(p; 0) (for brevity, g(p)) of MLNim(N , n) are com-
pletely determined for two cases: n > N + 1 (Theorem 1) and n = N + 1 (Theorem
2). For 3 ≤ n ≤ N , by letting d = N − n ≥ 0, MLNim(N , n) can be rewritten as
MLNim(n+ d, n) with d ≥ 0 and n ≥ 3. The game values g(p) of MLNim(n+ d, n)
are completely determined for three cases: n ≥ d + 3 (Theorem 3), n = d + 2 ≥ 3
(Theorem 4), and n = d +1 ≥ 3 (Theorem 5). Theorem 6 gives the game values g(p)

where n = d = 3, which explains partly why determining the game values g(p) for
the case 3 ≤ n ≤ d is more difficult.

Section 4 aims to determine the game values g(p; s) of MLNim(s)(N , n) for any
integer s ≥ 1:

• For the case n > N +1, Theorem 7 in Sect. 4.1 shows that g(p; s) = g(p; 0) = N
for all integers s, N ≥ 1, i.e. the game value of a position (p; s) is equal to the
number N of the piles of p which do not depend on the number s of the total
passes.

• For n = N + 1 ≥ 3, Theorem 9 in Sect. 4.2 shows that g(p; s) = g(p; s̄) for all
integers s ≥ 1 and N ≥ 2, where s̄ = s mod n. Before giving this result, Theorem
8 in Sect. 4.2 shows that for s̄ ∈ {1, 2, . . . , n − 2}, g(p; s̄) = s̄ − 1 if xn−1 = 1,
or s̄ if xn−1 > 1; and that for s̄ = n − 1, g(p; s̄) = s̄ − 1 if xn−1 = 1, or s̄ if
xn−1 = 2, or s̄ + 1(= 0) if xn−1 > 2.

• The case 3 ≤ n ≤ N is also investigated in Sects. 4.3, 4.4 and 4.5:

Theorem 10 shows that g(p; s) ∈ {d + s, d + s + 1} if n ≥ s + d + 3. Theorem 11
shows that g(p; s) ∈ {n − 2, n − 1, 0} if n = s + d + 2 ≥ 3. Based on Theorems 10
and 11, we see that g(p; s) = g(p; 0)+ s, i.e. the game value of (p; s) (with s passes)
is equal to the sum of the game value of (p; 0) (without passes) and the number s of
the total passes.

Theorem 12 gives g(p; s) ∈ {n − 1, 0, 1} for the case n = s + d + 1. It turns out
that g(p; s) = g(p; 0) + s does not hold for this case.

In Sect. 5 we give a summary of our findings and in Sect. 6 we present some future
work.

2 Basic definitions

Throughout the paper, we employ some definitions and notation used by Krawec
(2012, 2015).
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Definition 2 (i) A player shall be referenced as Pi where i is an integer between 0
and n−1 inclusive. Unless otherwise stated, player P0 is the first to move followed
by P1 and so on. After player Pn−1’s turn, P0 will play again. Hence any arithmetic
in the subscript (e.g., Pi+ j ) is done modulo n.

(ii) Given an n-player game G, the game value of G (denoted by g(G, i)) is an
integer between 0 and n − 1 (inclusive) which specifies the player, relative to the
current player Pi , that can win. For instance, if it is player Pi ’s turn, and the game
value g(G, i) = j , then Pi+ j (with subscript mod n) has a wining strategy, i.e.
P(i+ j) mod n is the winning player.

(iii) An endgame, denoted by ∅, is a game where no legal move is available to the
current player. Given an n-player game G, we denote by Opt (G) the set of all
options that the current player can move to in one legal move.

Definition 3 (i) Analliance system, is represented by ann×nmatrix of the following
form, known to all players before the start of the game,

⎛
⎜⎜⎜⎝

A0,0 A0,1 · · · A0,n−1
A1,0 A1,1 · · · A1,n−1
...

...
...

An−1,0 An−1,1 · · · An−1,n−1

⎞
⎟⎟⎟⎠

where each entry Ai, j determines the most preferred player choice for player Pi ,
with left-most entries being more preferred over right-most entries (i.e., smaller
values of j specify more preferred players).

(ii) The following alliance system is called the Standard Alliance Matrix (for brevity,
SAM)

⎛
⎜⎜⎜⎝

0 1 · · · n − 1
0 1 · · · n − 1
...

...
...

0 1 · · · n − 1

⎞
⎟⎟⎟⎠

Definition 3 implies that, given any i, j ∈ {0, 1, 2, . . . , n − 1}, the j-th pre-
ferred player for player Pi would be P(i+Ai, j ) mod n (Pi prefers P(i+Ai,0) mod n over
P(i+Ai,1) mod n over P(i+Ai,2) mod n . . . over P(i+Ai,n−1) mod n). For example, let n = 4,
i.e. there are four players P0, P1, P2 and P3. Assume that

P0 prefers P0 over P1 over P2 over P3,
P1 prefers P1 over P3 over P0 over P2,
P2 prefers P2 over P0 over P3 over P1 and
P3 prefers P2 over P1 over P0 over P3.
Then the alliance system is

⎛
⎜⎜⎝
0 1 2 3
0 2 3 1
0 2 1 3
3 2 1 0

⎞
⎟⎟⎠
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In particular, if we adopt SAM then for each i ∈ {0, 1, 2, . . . , n − 1}, player Pi
prefers Pi over Pi+1 over . . . over Pn−1 over P0 over . . . over Pi−1.

Using above definitions, Krawec (2012) introduced a function g : CG × Zn →
Zn (where CG denotes the set of all impartial combinatorial games and Zn =
{0, 1, . . . , n − 1}): for any i ∈ Zn ,

g(G, i) =
{
0, if G = ∅,

Ai,�, otherwise,
(1)

such that

� = min{ j ∈ Zn | g(G ′, i + 1) + 1 = Ai, j with G ′ ∈ Opt (G)},

where all arithmetic are done modulo n.
When using SAM, the game value function g(G, i) defined by Eq. (1) actually takes

on a much simpler form shown below in Eq. (2). To see this just note that since every
row in SAM is identical there is no need to keep track of turn parameter i . Furthermore
Ai, j = j so Ai,� = � = min{ j ∈ Zn | g(G ′, i +1)+1 = j} = min{g(G ′, i +1)+1}.

g(G) =
{
0, if G = ∅,

min{g(G ′) + 1 | G ′ ∈ Opt (G)}, otherwise.
(2)

Applying Eq. (2), we have the following observations: for a fixed n and game G,

Observation 1 g(G) = 0 if and only if G = ∅ or there exists an option G ′ of G such
that g(G ′) = n − 1.

Observation 2 g(G) = i ∈ {1, 2, . . . , n − 2} if and only if i − 1 ≤ g(G ′) ≤ n − 2
for any option G ′ ∈ Opt (G) and there exists at least one option G ′ ∈ Opt (G) such
that g(G ′) = i − 1.

Observation 3 g(G) = n − 1 if and only if g(G ′) = n − 2 for any option G ′ ∈
Opt (G).

3 Game values of MLNim(N, n) without passes

In this section we consider the gamesMLNim(N , n) for all integers N ≥ 1 and n ≥ 3,
assuming that SAM is adopted. Any position of MLNim(N , n) can be represented by
a vector p = (x1, x2, . . . , xN )with xi ≥ 1 for all i ∈ {1, 2, . . . , N }, as any pile of size
0 can be omitted. We also use the notation p → p′ to represent that there exists a legal
move which leads p to an option p′. Given a position p = (x1, x2, . . . , xN−1, xN ) of
MLNim(N , n), let pm = (x1, x2, . . . , xN−1,m) be the position obtained from p by
replacing xN with m. In particular, p0 = (x1, x2, . . . , xN−1) is obtained from p by
removing all counters from the last pile of size xN (p0 and pm (m ≥ 1) are positions
of N − 1 and N piles, respectively). It follows from the definition of MLNim(N , n)
that the set of all options of a given position p = (x1, x2, . . . , xN−1, xN ) is
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Opt (p) = {p0}∪{pm = (x1, x2, . . . , xN−1,m)|1 ≤ m ≤ xN − 1}. (3)

Hence Eq. (2) can be rewritten as

g(p) =
{
0, if p = ∅,

min{g(pt ) + 1 | 0 ≤ t ≤ xN − 1}, otherwise.
(4)

The game values g(p) of MLNim(N , n) are completely determined for two cases:
n > N + 1 (Sect. 3.1, Theorem 1) and n = N + 1 (Sect. 3.2, Theorem 2). The case
n ≤ N is analyzed in Sect. 3.3.

3.1 Game values of MLNim(N, n) where n > N + 1

Theorem 1 Consider MLNim(N , n) and any position p = (x1, x2, . . . , xN ). If n >

N + 1, then g(p) = N for all N ≥ 1. In other words, if n > N + 1 then the game
value of a position p is equal to the number of the piles of p.

Proof If N = 0, P0 cannot make any legal move i.e., P0 wins. Hence g(0) = 0. We
proceed by induction on N ≥ 1:

(i) For N = 1, we will show that g(x1) = 1 by induction on x1 ≥ 1: For x1 = 1, we
have g(1) = min{g(0) + 1} = 1. Assume that g(m) = 1 for 1 ≤ m < x1. By Eq.
(4)wehave g(x1) = min({g(0)+1}∪{g(m)+1 | 1 ≤ m < x1}) = min{1, 2} = 1.
Hence g(x1) = 1 for all x1 ≥ 1.

(ii) Assume that g(x1, x2, . . . , xN ′) = N ′ if 1 ≤ N ′ ≤ N − 1. We take some fixed
N ≥ 2 and show that g(pt ) = N by induction on t ≥ 1:

Base case: t = 1. Now p1 only has one option p0 = (x1, x2, . . . , xN−1) with
N ′ = N − 1 piles. By induction hypothesis on N ′ = N − 1 we have g(p0) = N − 1.
Thus g(p1) = min{g(p0) + 1} = N .

Induction step: t ≥ 2. Assume that g(pm) = N for all 1 ≤ m < t . It follows from
Eq. (4) that

g(pt ) = min({g(p0) + 1} ∪ {g(pm) + 1 | 1 ≤ m < t})
= min{N , N + 1} = N .

(5)

By letting t = xN in Eq. (5), we have g(p) = N , as required. 	


3.2 Game values of MLNim(N, n) where n = N + 1

Theorem 2 Consider MLNim(N , n) and any position p = (x1, x2, . . . , xN ). If n =
N + 1 ≥ 3 then for any N ≥ 2,

g(p) =
{
N , if xN = 1,
0, if xN > 1.

(6)
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Proof (i) For xN = 1, the position p = (x1, x2, . . . , xN−1, 1) only has one option
p0 = (x1, x2, . . . , xN−1)with N ′ = N−1 piles and n = N+1 = N ′+2 > N ′+1.
Theorem 1 gives g(p0) = N ′ = N − 1. Thus g(p) = min{g(p0) + 1} = N .

(ii) For xN > 1, the position p has p1 = (x1, x2, . . . , xN−1, 1) as an option. By (i)
we have g(p1) = N = n − 1. Observation 1 gives g(p) = 0. 	


Remark 1 If n = N + 1 then g(x1, x2, . . . , xN ) ∈ {N , 0} = {n − 1, 0}. This implies
that any player Pi , i ∈ {1, 2, 3, . . . , n − 2}, has no chance to win the game p =
(x1, x2, . . . , xn−2, xn−1). In other words, if P0 is the first player then the winner will
be Pn−1 if xn−1 = 1, or P0 if xn−1 > 1:

(i) For the position p1 = (x1, x2, . . . , xn−2, xn−1) with xn−1 = 1, the first player
P0 must remove 1 counter from the pile of size xn−1 = 1, the player P1 removes
all counters from the pile of size xn−2, · · · , the player Pn−2 removes all counters
from the pile of size x1. Now the player Pn−1 faces an endgame and wins, i.e. the
first player P0 has no chance to win.

(ii) For the position p = (x1, x2, . . . , xn−2, xn−1) with xn−1 > 1, P0 has chance to
win! The first player P0 removes xn−1 − 1 counters from the pile of size xn−1
and leaves P1 to the position p1 = (x1, x2, . . . , xn−2, 1) to play. By the analysis
of (i), starting from p1, the player P1 must remove 1 counter from the pile of size
xn−1 = 1, the player P2 removes all counters from the pile of size xn−2, · · · , the
player Pn−1 removes all counters from the pile of size x1. Hence the first player
P0 faces an endgame and wins. 	


3.3 Game values of MLNim(N, n) where n ≤ N

In this subsection we consider MLNim(N , n) where 3 ≤ n ≤ N . Let d = N − n and
rewrite MLNim(N , n) as MLNim(n + d, n) where n ≥ 3 and d ≥ 0. We will give the
game values ofMLNim(n+d, n) by distinguishing n ≥ d+3 (Theorem 3), n = d+2
(Theorem 4) and n = d + 1 (Theorem 5).

Theorem 3 gives the game values of MLNim(n + d, n) for all integers d ≥ 0 and
n ≥ d+3. It turns out that the game values of MLNim(n+d, n) only have two values,
d and d + 1, which depend only on whether xn−1 = 1. All games MLNim(n + d, n)
solved by Theorem 3 are labeled by under-dash-line in Table 1.

Theorem 4 gives the game values of MLNim(n + d, n) for n = d + 2 ≥ 3, i.e.
(n + d, n) ∈ W = {(2d + 2, d + 2) | d ≥ 1} = {(4, 3), (6, 4), (8, 5), (10, 6), . . .}.
All games MLNim(n + d, n) solved by Theorem 4 are labeled by under-wave-line in
Table 1.

Theorem 5 gives the game values of MLNim(n + d, n) for n = d + 1 ≥ 3, i.e.
(n + d, n) ∈ W

∗ = {(2d + 1, d + 1) | d ≥ 2} = {(5, 3), (7, 4), (9, 5), (11, 6), . . .}.
All gamesMLNim(n+d, n) solved by Theorem 5 are labeled by under-line in Table 1.

Given a position p = (x1, x2, . . . , xn−1, xn, xn+1, . . . , xn+d) of MLNim(n+d, n),
we define an auxiliary function

δ =
{
0, if xn−1 = 1,
1, if xn−1 > 1.
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Table 1 All games of MLNim(n + d, n) where n ≥ 3 and d ≥ 0

n = 3 4 5 6 7 8 9 10 · · ·
d = 0 (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10) · · ·
1

���
(4,3) (5,4) (6,5) (7,6) (8,7) (9,8) (10,9) (11,10) · · ·

2 (5,3)
���
(6,4) (7,5) (8,6) (9,7) (10,8) (11,9) (12,10) · · ·

3 (6, 3) (7,4)
���
(8,5) (9,6) (10,7) (11,8) (12,9) (13,10) · · ·

4 (7, 3) (8, 4) (9,5)
����
(10,6) (11,7) (12,8) (13,9) (14,10) · · ·

5 (8,3) (9,4) (10, 5) (11,6)
����
(12,7) (13,8) (14,9) (15,10) · · ·

6 (9,3) (10,4) (11, 5) (12, 6) (13,7)
����
(14,8) (15,9) (16,10) · · ·

7 (10,3) (11,4) (12,5) (13, 6) (14, 7) (15,8)
����
(16,9) (17,10) · · ·

8 (11,3) (12,4) (13,5) (14, 6) (15, 7) (16, 8) (17,9)
�����
(18,10) · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Theorem 3 Consider MLNim(n + d, n) and a position p = (x1, x2, . . . , xn+d). For
any d ≥ 0, if n ≥ d + 3 then

g(p) = d + δ =
{
d, if xn−1 = 1,
d + 1, if xn−1 > 1.

(7)

Proof We proceed by induction on d ≥ 0.

(i) Base case: d = 0. Now p = (x1, x2, . . . , xn−2, xn−1, xn).We show that g(p) = δ

for all integers n ≥ 3: The position p has p0 as an option. Note that p0 is a position
of MLNim(N ′, n) with N ′ = n − 1 ≥ 2 i.e. n = N ′ + 1 ≥ 3. We consider the
following two cases:
• xn−1 = 1. Theorem 2 gives g(p0) = N ′ = n − 1 as xN ′ = xn−1 = 1. By
Observation 1 we have g(p) = 0.

• xn−1 > 1. Theorem 2 shows that g(p0) = 0 as xN ′ = xn−1 > 1. We
will show that g(pt ) = 1 by induction on t ≥ 1: For t = 1, the posi-
tion p1 = (x1, . . . , xn−2, xn−1, 1) only has one option p0, thus g(p1) =
min{g(p0) + 1} = 1. Suppose that g(pm) = 1 for all 1 ≤ m < t . Thus
g(pt ) = min({g(p0) + 1} ∪ {g(pm) + 1 | 1 ≤ m < t}) = min{1, 2} = 1. By
letting t = xn , we have g(p) = 1, as required.

(ii) Induction step: d ≥ 1. Assume that g(x1, x2, . . . , xn+d ′) = d ′+δ for 0 ≤ d ′ < d
and n ≥ d ′ + 3. We will show that g(pt ) = d + δ by induction on t ≥ 1:

Base case: t = 1. Now p1 only has an option p0 which is a position of MLNim(n+
d ′, n) with d ′ = d − 1 and n ≥ d + 3 = d ′ + 4 > d ′ + 3. The induction hypothesis
on d ′ implies that g(p0) = d ′ + δ. Thus g(p1) = g(p0) + 1 = d + δ.

Induction step: t ≥ 2. Suppose that g(pm) = d + δ for all 1 ≤ m < t . It follows
from Eq. (4) that

g(pt ) = min({g(p0) + 1} ∪ {g(pm) + 1 | 1 ≤ m < t})
= min{d + δ, d + δ + 1} = d + δ.

(8)
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By letting t = xn+d in Eq. (8), we have g(p) = d + δ, as required. 	

Remark 2 If n ≥ d + 3 then starting from p = (x1, x2, . . . , xn+d), the winner will be
Pd if xn−1 = 1, or Pd+1 if xn−1 > 1. The winning strategy is as follows:

The first d + 1 players P0, P1, . . . , Pd remove all counters from the piles of size
xn+d , xn+d−1, . . ., xn , respectively. Now it is Pd+1’s turn and begin to play the game
p∗ = (x1, x2, . . . , xn−1) which is a position of MLNim(N ′, n) with N ′ = n − 1. It
follows from Theorem 2 that g(p∗) = N ′ = n − 1 if xn−1 = 1, or 0 if xn−1 > 1. This
means that the player Pd+1 starts from p∗, the winer is Pd+1+n−1 = Pd if xn−1 = 1,
or Pd+1+0 = Pd+1 if xn−1 > 1 (Remark 1 gives the corresponding winning strategy).

Theorem 4 Consider MLNim(n + d, n) and a position p = (x1, x2, . . . , xn+d). If
n = d + 2 ≥ 3 then for any d ≥ 1, we have

g(p) =
⎧⎨
⎩
d(= n − 2), if xn−1 = 1,
d + 1(= n − 1), if xn−1 > 1 and xn+d = 1,
d + 2(= 0), if xn−1 > 1 and xn+d > 1.

(9)

Proof (i) If xn−1 > 1 and xn+d = 1, p = p1 only has an option p0. By letting
d ′ = d − 1 we have n = d + 2 = d ′ + 3. Theorem 3 gives g(p0) = d ′ + 1 = d.
Hence g(p1) = d + 1.

(ii) If xn−1 > 1 and xn+d > 1, p has p1 = (x1, x2, . . . , xn+d−1, 1) as an option. By
(i) we have g(p1) = d + 1 = n − 1. Observation 1 gives g(p) = 0.

(iii) For the case xn−1 = 1, we show that g(pt ) = d by induction on t ≥ 1: for t = 1,
p1 only has an option p0. By letting d

′ = d − 1 ≥ 0 we have n = d + 2 = d ′ + 3.
Theorem 3 gives g(p0) = d ′ = d−1, thus g(p1) = min{g(p0)+1} = d ′+1 = d.
Suppose that g(pm) = d for all values 1 ≤ m < t . Then g(pt ) = min({g(p0) +
1} ∪ {g(pm) + 1 | 1 ≤ m < t}) = min{d, d + 1} = d. By letting t = xn+d , we
have g(p) = d, as required. 	


Theorem 5 Consider MLNim(n + d, n) and a position p = (x1, x2, . . . , xn+d). If
n = d + 1 ≥ 3 then

g(p) =

⎧⎪⎪⎨
⎪⎪⎩

d(= n − 1), if xn−1 = 1 and xn+d = 1,
d + 1(= 0), if (xn−1 = 1 and xn+d > 1)

or (xn−1 > 1 and xn+d−1 = 1),
d + 2(= 1), if xn−1 > 1 and xn+d−1 > 1.

(10)

Proof (i) xn−1 = 1 and xn+d = 1. Now p = p1 = (x1, x2, . . . , xn+d−1, 1) only has
one option p0 = (x1, . . . , xn−2, 1, xn, . . . , xn+d−1). By letting d ′ = d − 1 ≥ 1
we have n = d + 1 = d ′ + 2 ≥ 3. Theorem 4 gives g(p0) = d ′ = d − 1. Hence
g(p) = d ′ + 1 = d.

(ii) xn−1 = 1 and xn+d > 1. Now p has p1 as an option. By (i) we have g(p1) =
d = n − 1. Observation 1 gives g(p) = 0.

(iii) xn−1 > 1 and xn+d−1 = 1. Now p = (x1, x2, . . . , xn+d−2, 1, xn+d) has p0 =
(x1, x2, . . . , xn+d−2, 1) as an option. By letting d ′ = d − 1 ≥ 1 we have n =
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d +1 = d ′ +2 ≥ 3. Theorem 4 gives g(p0) = d ′ +1 = d = n−1. Observation 1
means that g(p) = 0.

(iv) xn−1 > 1 and xn+d−1 > 1. Now p0 = (x1, x2, . . . , xn+d−1). By letting d ′ =
d − 1 ≥ 1 we have n = d + 1 = d ′ + 2 ≥ 3. Theorem 4 gives g(p0) = d ′ + 2 =
d + 1 = 0. We show that g(pt ) = 1 by induction on t = xn+d ≥ 1: For t = 1, p1
only has an option. Thus g(p1) = 1. Suppose that g(pm) = 1 for all 1 ≤ m < t .
It follows from Eq. (4) that g(pt ) = min({g(p0) + 1} ∪ {g(pm) + 1 | 1 ≤ m <

t}) = min{1, 2} = 1. By letting t = xn+d , we have g(p) = 1, as required.
	


Remark 3 Let p = (x1, x2, . . . , xn+d−1, xn+d) and p0 = (x1, x2, . . . , xn+d−1). The-
orems 3, 4 and 5 show that the game values g(p) depend on one parameter xn−1 if
n ≥ d + 3, two parameters xn−1 and xn+d if n = d + 2, three parameters xn−1 and
xn+d and xn+d−1 if n = d + 1, respectively.

We analyze the case n = d + 1. Now the position p has p0 as an option, which
is a position of MLNim(n + d ′, n) with d ′ = d − 1 and n = d + 1 = d ′ + 2. In
order to determine g(p0), we must use Theorem 4 which shows that the value g(p0)
depends on a new parameter xn+d ′ = xn+d−1. This fact implies that the game value
g(p) depends on three parameters xn−1, xn+d and xn+d−1.

Similarly, if n = d then the position p has p0 as an option, which is a position of
MLNim(n + d ′, n) with d ′ = d − 1 and n = d = d ′ + 1. In order to determine g(p0),
we must use Theorem 5, and hence a new parameter xn+d ′−1 = xn+d−2 appears. This
fact implies that the game value g(p) depends on four parameters xn−1, xn+d , xn+d−1
and xn+d−2. The following Theorem 6 gives an example where n = d = 3 and the
four parameters are xn−1 = x2, xn+d = x6, xn+d−1 = x5 and xn+d−2 = x4.

Theorem 6 Consider MLNim(6, 3), i.e. three players and six piles. Then for any
position p = (x1, x2, x3, x4, x5, x6) with xi ≥ 1 for all i ∈ {1, 2, . . . , 6}, we have

g(p) =

⎧⎪⎪⎨
⎪⎪⎩

2, if x2 > 1 and x4 > 1 and x6 = 1,
0, if (x2 > 1 and x4 > 1 and x6 > 1)

or (x2 = 1 and x5 = 1),
1, if (x2 = 1 and x5 > 1) or (x2 > 1 and x4 = 1).

(11)

Proof Let p0 = (x1, x2, x3, x4, x5) and pt = (x1, x2, . . . , x5, t) for any t ≥ 1. Note
that p0 is a position of MLNim(5, 3) with d = 5 − 3 = 2 and n = 3 = d + 1. We
proceed by considering the following cases:

(i) x2 > 1 and x4 > 1 and x6 = 1. Theorem 5 gives g(p0) = 1. The position p = p1
only has one option p0, thus g(p) = min{g(p0) + 1} = 2.

(ii) x2 > 1 and x4 > 1 and x6 > 1. Now p has p1 = (x1, x2, x3, x4, x5, 1) as an
option (p1 is obtained by removing x6 − 1 counters from the last pile). By (i) we
have g(p1) = 2 = n − 1. Observation 1 gives g(p) = 0.

(iii) x2 = 1 and x5 = 1. The position p has p0 = (x1, x2, x3, x4, 1) as an option.
Theorem 5 gives g(p0) = 2 = n − 1. By Observation 1 we have g(p) = 0.

(iv) (x2 = 1 and x5 > 1) or (x2 > 1 and x4 = 1). For both cases, we show that
g(pt ) = 1 by induction on t ≥ 1: for t = 1, p1 only has one option p0 and
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Theorem 5 gives g(p0) = 0, thus g(p1) = min{g(p0) + 1} = 1. Suppose that
g(pm) = 1 for all integers 1 ≤ m < t . Thus g(pt ) = min({g(p0)+1}∪{g(pm)+
1 | 1 ≤ m < t}) = min{1, 2} = 1. By letting t = x6, we have g(p) = 1, as
required. 	


4 Multi-player Last Nim with s passes

In this section we consider the games MLNim(s)(N , n) for all integers N ≥ 1 and
n ≥ 3 and s ≥ 1, assuming that SAM is adopted.A position ofMLNim(s)(N , n) can be
represented by (p; s) = (x1, x2, . . . , xN ; s)with xi ≥ 1 for each i ∈ {1, 2, . . . , N }. By
g(p; s) we denote the game value of the position (p; s). In particular, g(p; 0) = g(p).
Given a position (p; s) with s ≥ 1, it follows from the definition of MLNim(s)(N , n)

that (p; s) has two kinds of legal moves:

• The player makes a choice ‘pass’ i.e. (p; s) → (p; s − 1) if s > 0.
• The player removes 1 ≤ m ≤ xN counters from the pile of size xN i.e. (p; s) =

(x1, x2, . . . , xN ; s) → (pt ; s) = (x1, x2, . . . , xN−1, t; s) where t = xN − m.

Hence Eq. (2) can be rewritten as

g(p) =
{
0, if p = ∅,

min({g(p; s − 1) + 1} ∪ {g(pt ; s) + 1 | 0 ≤ t ≤ xN − 1}), otherwise.
(12)

This section is to determine the game values g(p; s) of MLNim(s)(N , n). Section
4.1 is devoted to the case n > N + 1. Theorem 7 shows that the game value g(p; s) =
g(p; 0) = N for any N ≥ 1 and s ≥ 1 i.e. the game value of a position (p; s) is equal
to the number of the piles of p. In other words, the game value g(p; s) depends on
neither the size xi nor the total number s of passes.

Section 4.2 is devoted to the case n = N + 1 ≥ 3. The game values g(p; s) of
MLNim(s)(N , n) are completely determined for all N ≥ 2 and s ≥ 1.

The case 3 ≤ n ≤ N is analyzed in Sects. 4.3, 4.4 and 4.5.

4.1 Game values of MLNim(s)(N, n) where n > N + 1

Theorem 7 Consider MLNim(s)(N , n) and p = (x1, x2, . . . , xN ). For all integers
s ≥ 0 and N ≥ 1, if n > N + 1 then

g(p; s) = g(p; 0) = N . (13)

In other words, if n > N + 1 then the game value of a position (p; s) is equal to the
number of the piles of (p; s). In particular, this does not depend on the parameter s.

Proof It suffices to show that g(pt ; s) = N for all s ≥ 0, N ≥ 1 and t ≥ 1.
We proceed by induction on s ≥ 0. Theorem 1 gives g(pt ; 0) = N for all N ≥ 1

and t ≥ 1. Assume that g(pt ; s′) = N for 0 ≤ s′ ≤ s − 1 and all N ≥ 1 and t ≥ 1.
We take some fixed s ≥ 1 and show that g(pt ; s) = N by induction on N ≥ 1:

123



Multi-player Last Nim with Passes 685

(i) Base case: N = 1. For N = 1 and n > N + 1 = 2, we show that g(x1; s) = 1
by induction on x1 ≥ 1:

(i.1) Base case: x1 = 1. The position (1; s) only has two options (1; s − 1) and
(0; s). The induction hypothesis on s′ = s − 1 implies that g(1; s − 1) = 1. We
have g(0; s) = 0 as (0; s) is an endgame. Hence g(1; s) = min{g(1; s − 1) +
1, g(0; s) + 1} = min{2, 1} = 1.

(i.2) Induction step: x1 ≥ 2. Assume that g(m; s) = 1 for all 1 ≤ m < x1. It follows
fromEq. (12) that g(x1; s) = min({g(x1; s−1)+1, g(0; s)+1}∪{g(m; s)+1 |
1 ≤ m < x1}) = min{2, 1, 2} = 1.

(ii) Induction step: N ≥ 2. Assume that g(x1, x2, . . . , xN ′ ; s) = N ′ for 1 ≤ N ′ ≤
N − 1. We take some fixed N ≥ 2 and show that g(pt ; s) = N by induction on
t ≥ 1.

(ii.1) Base case: t = 1. Now (p1; s) only has two options: (p1; s − 1) and (p0; s)
with N ′ = N − 1 pile. The induction hypothesis on s′ = s − 1 implies that
g(p1; s − 1) = N . The induction hypothesis on N ′ = N − 1 means that
g(p0; s) = N ′ = N−1. Thus g(p1; s) = min{g(p1; s−1)+1, g(p0; s)+1} =
min{N + 1, N } = N .

(ii.2) Induction step: t ≥ 2. Assume that g(pm; s) = N for all 1 ≤ m < t . The
induction hypothesis on s′ = s − 1 implies that g(pt ; s − 1) = N . It follows
from Eq. (12) that

g(pt ; s)
= min({g(pt ; s − 1) + 1, g(p0; s) + 1} ∪ {g(pm; s) + 1 | 1 ≤ m < t})
= min{N + 1, N , N + 1} = N .

(14)

By letting t = xN in Eq. (14), we have g(p; s) = N , as required. 	


4.2 Game values of MLNim(s)(N, n) where n = N + 1

This subsection is to determining the game values g(p; s) of MLNim(s)(N , n) where
n = N + 1 ≥ 3. Theorem 9 shows that g(p; s) = g(p; s̄) for all integers s ≥ 0
and N ≥ 2, where s̄ = s mod n. Theorem 8 determines the game values g(p; s̄) by
distinguishing two cases s̄ ∈ {0, 1, 2, . . . , n − 2} and s̄ = n − 1, respectively.

Theorem 8 Consider any position (p; s) = (x1, x2, . . . , xN ; s) with n = N + 1. For
any N ≥ 2, we have

(A) if s ∈ {0, 1, . . . , n − 2} then

g(p; s) = g(p; 0) + s = s − 1 + δ =
{
s − 1, if xn−1 = 1,
s, if xn−1 > 1.

(15)

(B) if s = n − 1 then

g(p; s) =
⎧⎨
⎩
s − 1, if xn−1 = 1,
s, if xn−1 = 2,
s + 1(= 0), if xn−1 > 2.

(16)
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Proof Claim (A)Wewill show that g(pt ; s) = s−1+δ by induction on 0 ≤ s ≤ n−2:
Theorem 2 gives that g(pt ; 0) = N = n − 1 if t = 1, or 0 if t > 1. In other

words, we have g(pt ; s) = s − 1 + δ for s = 0. Assume that g(pt ; s′) = s′ − 1 + δ

holds for 0 ≤ s′ < s ≤ n − 2. We take some fixed 1 ≤ s ≤ n − 2 and show that
g(pt ; s) = s − 1 + δ:

• The induction hypothesis on s′ = s − 1 implies that g(pt ; s − 1) = s − 2 + δ for
any t ≥ 1.

• Theorem 7 means that g(p0; s) = N − 1 = n− 2 as (p0; s) has N ′ = N − 1 piles
and n = N + 1 = N ′ + 2 > N ′ + 1.

(A.1) If t = 1, (p1; s) only has two options (p1; s−1) and (p0; s). Hence g(p1; s) =
min{g(p1; s−1)+1, g(p0; s)+1} = min{s−1, n−1} = s−1 = s−1+ δ

as δ = 0.
(A.2) If t > 1, we show that g(pt ; s) = s−1+δ = s by induction on t ≥ 2: In fact,

g(p2; s − 1) = s − 2+ δ = s − 1. By (A.1) we have g(p1; s) = s − 1. Hence
g(p2; s) = min{g(p2; s − 1) + 1, g(p0; s) + 1, g(p1; s) + 1} = min{s, n −
1, s} = s.
Assume that g(pm; s) = s for all 2 ≤ m < t . Note that g(pt ; s − 1) =
s − 2 + δ = s − 1. It follows from Eq. (12) that g(pt ; s) = min({g(pt ; s −
1) + 1, g(p0; s) + 1, g(p1; s) + 1} ∪ {g(pm; s) + 1 | 2 ≤ m < t}) =
min{s, n − 1, s, s + 1} = s, as required.

Claim (B) We consider s = n − 1 and show that g(pt ; s) = s − 1 if t = 1, or s if
t = 2, or s + 1(= 0) if t > 2:

(B.1) If t = 1, (p1; s) only has two options (p1; s − 1) and (p0; s). The claim (A)
gives that g(p1; s − 1) = s′ − 1 = s − 2 where s′ = s − 1 = n − 2. Hence
g(p1; s) = min{g(p1; s−1)+1, g(p0; s)+1} = min{s−1, n−1} = s−1.

(B.2) If t = 2 then g(p2; s) = min{g(p2; s − 1) + 1, g(p0; s) + 1, g(p1; s) + 1} =
min{s, n − 1, s} = s = n − 1 as the claim (A) gives g(p2; s − 1) = s − 1.

(B.3) If t > 2, (pt ; s) = (x1, x2, . . . , xN−1, t; s) has (p2; s) as an option. By
(B.2) we have g(p2; s) = s = n − 1. Observation 1 gives g(pt ; s) = 0, as
required. 	


Theorem 9 Consider MLNim(s)(N , n) and p = (x1, x2, . . . , xN ). If n = N + 1 ≥ 3
then for any s ≥ 0 and N ≥ 2, we have

g(p; s) = g(p; s̄), (17)

where s̄ = s mod n denotes the remainder of s divided by n. In other words, the game
value of a position (p; s) with s passes is equal to that of (p; s̄) with s̄ passes.
Proof Note that (p0; s) has N ′ = N − 1 piles. Theorem 7 shows that for any s ≥ 0,
we have g(p0; s) = N ′ = N − 1 = n − 2 as n = N + 1 = N ′ + 2 > N ′ + 1.

Let s = qn + s̄ where q ≥ 0 and 0 ≤ s̄ ≤ n − 1. It suffices to show that

g(p; qn + s̄) = g(p; s̄). (18)

We proceed by showing the following three facts by induction on q ≥ 0:
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Fact A: g(p; qn + s̄) = g(p; s̄) if s̄ ∈ {0, 1, 2, . . . , n − 2}.
Fact B: g(p; qn + s̄) = g(p; s̄) if s̄ = n − 1.
Fact C: g(p; (q + 1)n) = g(p; 0).
(i) Base case: q = 0. Facts A and B are obvious. In order to prove Fact C, it

suffices to show that g(p; n) = n − 1 if xN = 1, or 0 if xN > 1, as Theorem
2 shows that g(p; 0) = n − 1 if xN = 1, or 0 if xN > 1.

(i.1) If xN = 1 then g(p1; n) = min{g(p1; n − 1) + 1, g(p0; n) + 1} = min{n −
1, n − 1} = n − 1 as Fact B and Theorem 8(B) show that g(p1; n − 1) =
g(p1; s) = s − 1 = n − 2.

(i.2) If xN > 1, the position (p; n) has (p1; n) = (x1, x2, . . . , xN−1, 1; n) as
an option. By (i.1) we have g(p1; n) = n − 1. Observation 1 implies that
g(p; n) = 0.

(ii) Induction step: q ≥ 1. Assume that Facts A, B and C hold for 0 ≤ q ′ ≤ q−1.
We take some fixed q ≥ 1 and show that Facts A, B and C hold for q:

(ii.1) Proof of Fact A. We proceed by induction on s̄ ≥ 0. By letting q ′ = q − 1
in Fact C, we have g(p; qn) = g(p; 0) i.e. g(p; qn + s̄) = g(p; s̄) holds for
s̄ = 0. Assume that g(p; qn + s′) = g(p; s′) holds for 0 ≤ s′ < s̄ ≤ n − 2.
We take some fixed s̄ ≥ 1 and show that g(p; qn + s̄) = g(p; s̄):

(ii.1.1) If xN = 1 then g(p1; qn+s̄) = min{g(p1; qn+s̄−1)+1, g(p0; qn+s̄)+1} =
min{s̄ − 1, n − 1} = s̄ − 1 as the induction hypothesis on s′ = s̄ − 1 implies
that g(p1; qn + s̄ − 1) = s̄ − 2.

(ii.1.2) We show that g(pt ; qn + s̄) = s̄ by induction on t ≥ 2: If t = 2 then

g(p2; qn + s̄)
= min{g(p2; qn + s̄ − 1) + 1, g(p0; qn + s̄) + 1, g(p1; qn + s̄) + 1}
= min{s̄, n − 1, s̄} = s̄,

as the induction hypothesis on s′ = s̄ − 1 implies that g(p2; qn + s̄ − 1) =
g(p2; qn + s′) = g(p2; s′) = s′ = s̄ − 1.

Assume that g(pm; qn + s̄) = s̄ for all 2 ≤ m < t . We take some fixed t ≥ 3
and show g(pt ; qn + s̄) = s̄. The induction hypothesis on s′ = s̄ − 1 implies that
g(pt ; qn + s̄ − 1) = g(pt ; qn + s′) = g(pt ; s′) = s′ = s̄ − 1. It follows from Eq.
(12) that

(pt ; qn + s̄)
= min({g(pt ; qn + s̄ − 1) + 1, g(p0; qn + s̄) + 1, g(p1; qn + s̄) + 1}

∪ {g(pm; qn + s̄) + 1 | 2 ≤ m < t})
= min{s̄, n − 1, s̄, s̄ + 1} = s̄.

(ii.2) Proof of Fact B. Theorem 8(B) shows that g(p; n − 1) = n − 2 if xN = 1, or
n−1 if xN = 2, or 0 if xN > 2. It suffices to show that g(p; qn+n−1) = n−2
if xN = 1, or n − 1 if xN = 2, or 0 if xN > 2:

(ii.2.1) If xN = 1 then g(p1; qn + n − 1) = min{g(p1; qn + n − 2) + 1, g(p0; qn +
n − 1) + 1} = min{n − 2, n − 1} = n − 2 as Fact A and Theorem 8(A) show
that g(p1; qn + s′) = g(p1; s′) = s′ − 1 = n − 3 where s′ = n − 2.
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(ii.2.2) If xN = 2 then g(p2; qn + n − 1) = min{g(p2; qn + n − 2) + 1, g(p0; qn +
n − 1) + 1, g(p1; qn + n − 1) + 1} = min{n − 1, n − 1, n − 1} = n − 1 as
Fact A and Theorem 8(A) show that g(p2; qn+ s′) = g(p2; s′) = s′ = n− 2
where s′ = n − 2; Fact B and Theorem 8(B) show that g(p1; qn + s′) =
g(p1; s′) = s′ − 1 = n − 2 where s′ = n − 1.

(ii.2.3) If xN > 2, the position (p; qn + n − 1) has (p2; qn + n − 1) as an option.
By (ii.2.2) we have g(p2; qn + n − 1) = n − 1. Observation 1 implies that
g(p; qn + n − 1) = 0.

(ii.3) Proof of Fact C. Theorem 2 shows us that g(p; 0) = n − 1 if xN = 1, or 0
if xN > 1. It suffices to show that g(p; qn + n) = n − 1 if xN = 1, or 0 if
xN > 1.

(ii.3.1) If xN = 1 then g(p1; qn + n) = min{g(p1; qn + n − 1) + 1, g(p0; qn +
n) + 1} = min{n − 1, n − 1} = n − 1 as Fact B and Theorem 8(B) show that
g(p1; qn + n − 1) = g((p1; s′) = s′ − 1 = n − 2 where s′ = n − 1.

(ii.3.2) If xN > 1, the position (p; qn + n) has (p1; qn + n) as an option. By (ii.3.1)
we have g(p1; qn + n) = n − 1. Observation 1 gives g(p; qn + n) = 0, as
required. 	


4.3 Game values of MLNim(s)(n + d, n) where n ≥ s + d + 3

In this subsection we consider MLNim(s)(N , n) where s + d + 3 ≤ n ≤ N . Let
d = N −n and rewrite MLNim(s)(N , n) as MLNim(s)(n+d, n) where n ≥ s+d +3
and d ≥ 0. Theorem 10 gives the game values of MLNim(s)(n + d, n) for all integers
d ≥ 0 and n ≥ s + d + 3. It turns out that the game values of MLNim(s)(n + d, n)
only have two values, s + d and s + d + 1, which depend only on whether xn−1 = 1.

Theorem 10 Consider MLNim(s)(n + d, n) and (p; s) = (x1, x2, . . . , xn+d ; s). If
n ≥ s + d + 3 then for all integers s ≥ 0 and d ≥ 0,

g(p; s) = d + s + δ =
{
s + d, if xn−1 = 1,
s + d + 1, if xn−1 > 1.

(19)

In particular, g(p; s) = g(p; 0) + s. In other words, if n ≥ s + d + 3 then the game
value of a position (p; s) is equal to the sum of the game value of the position (p; 0)
and the number s of passes.

Proof We proceed by induction on s ≥ 0. Theorem 3 shows that g(p; 0) = d + δ i.e.
Theorem 10 holds for s = 0. Assume that Theorem 10 holds for all 0 ≤ s′ ≤ s − 1.
We take some fixed s ≥ 1 and show that for any t ≥ 1, we have g(pt ; s) = d + s + δ

by induction on d ≥ 0:
(i) Base case: d = 0. Now (pt ; s) = (x1, x2, . . . , xn−1, t; s) has the following

options:

• (pt ; s−1) with s′ = s−1 passes. The induction hypothesis on s′ = s−1 implies
g(pt ; s − 1) = s′ + δ = s − 1 + δ.

• (p0; s) = (x1, x2, . . . , xn−1; s) with N ′ = n − 1 piles. Theorem 8(A) gives
g(p0; s) = s − 1 + δ as n = N ′ + 1 and s ≤ n − 3.

123



Multi-player Last Nim with Passes 689

• (pm; s) = (x1, x2, . . . , , xn−1,m; s), 1 ≤ m < t , with N = n piles.

We see that g(pt ; s − 1) = g(p0; s) = s − 1 + δ. It follows from Eq. (12) that

g(pt ; s)
= min({g(pt ; s − 1) + 1, g(p0; s) + 1} ∪ {g(pm; s) + 1 | 1 ≤ m < t})
= min({s + δ} ∪ {g(pm; s) + 1 | 1 ≤ m < t}).

(20)

We claim that g(pt ; s) = s + δ by induction on t ≥ 1: For t = 1, Eq. (20) gives
g(p1; s) = min{s + δ} = s + δ. Assume that g(pm; s) = s + δ for all 1 ≤ m < t . It
follows from Eq. (20) that g(pt ; s) = min{s + δ, s + δ + 1} = s + δ.

(ii) Induction step: d ≥ 1. Assume that Theorem 10 holds for 0 ≤ d ′ ≤ d − 1. We
show that Theorem 10 holds for d. Now (pt ; s) = (x1, x2, . . . , xn+d−1, t; s) has
the following options:
• (pt ; s − 1) with N = n + d piles and s′ = s − 1 passes. The induction
hypothesis on s′ = s − 1 implies g(pt ; s − 1) = d + s′ + δ = d + s − 1+ δ.

• (p0; s) = (x1, x2, . . . , xn+d−1; s) with N ′ = n + d ′ piles where d ′ = d − 1,
and s passes. The induction hypothesis on d ′ = d − 1 means that g(p0; s) =
d ′ + s + δ = d + s − 1 + δ.

• (pm; s) = (x1, x2, . . . , , xn+d−1,m; s), 1 ≤ m < t , with N = n + d piles and
s passes.

We see that g(pt ; s − 1) = g(p0; s) = d + s − 1 + δ. Equation (12) means that
g(pt ; s) = min({d+ s+δ}∪{g(pm; s)+1 | 1 ≤ m < t}). Similar to (i), by induction
on t ≥ 1 we have g(pt ; s) = d + s + δ, as required.

Theorem 3 gives g(p; 0) = d + δ, so g(p; s) = d + s + δ = g(p; 0) + s. 	


4.4 Game values of MLNim(s)(n + d, n) where n = s + d + 2

In this subsection we consider MLNim(s)(n + d, n) where n = s + d + 2. Theorem
11 gives the game values of MLNim(s)(n + d, n) for n = s + d + 2 ≥ 3. It turns out
that the game values of MLNim(s)(n + d, n) have three values, s + d, s + d + 1 and
s + d + 2, which depend on xn−1 and xn+d .

Theorem 11 Consider MLNim(s)(n + d, n) and p = (x1, x2, . . . , xn+d). If n = s +
d + 2 then for any s ≥ 0 and d ≥ 1,

g(p; s) =
⎧⎨
⎩
d + s(= n − 2), if xn−1 = 1,
d + s + 1(= n − 1), if xn−1 > 1 and xn+d = 1,
d + s + 2(= 0), if xn−1 > 1 and xn+d > 1.

(21)

In particular, g(p; s) = g(p; 0) + s. In other words, if n = s + d + 2 then the game
value of a position (p; s) is equal to the sum of the game value of the position (p; 0)
and the number s of passes.

Proof Theorem 4 implies that Theorem 11 holds for s = 0. For a fixed s ≥ 1, (pt ; s)
has the following options:
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• (pt ; s − 1) = (x1, x2, . . . , xn+d−1, t; s − 1) with s′ = s − 1 passes and n =
s + d + 2 = s′ + d + 3. Theorem 10 implies that g(pt ; s − 1) = g(pt ; s′) =
s′ + d + δ = d + s − 1+ δ. In other words, g(pt ; s − 1) = d + s − 1 if xn−1 = 1,
or d + s if xn−1 > 1.

• (p0; s) = (x1, x2, . . . , xn+d−1; s)with N ′ = n+d ′ pileswhered ′ = d−1 ≥ 0 and
n = s+d+2 = s+d ′+3. Theorem 10 gives g(p0; s) = s+d ′+δ = d+s−1+δ.
In other words, g(p0; s) = s + d − 1 if xn−1 = 1, or d + s if xn−1 > 1.

• (pm; s) = (x1, x2, . . . , , xn+d−1,m; s), 1 ≤ m < t , with n = s + d + 2.
(i) We consider xn−1 = 1 and show that g(pt ; s) = d + s by induction on t ≥ 1:

If t = 1, (p1; s) only has two options (p1; s − 1) and (p0; s). Hence g(p1; s) =
min{g(p1; s − 1) + 1, g(p0; s) + 1} = min{d + s, d + s} = d + s. Assume that
g(pm; s) = d + s for all 1 ≤ m < t . It follows from Eq. (12) that g(pt ; s) =
min({g(pt ; s − 1) + 1, g(p0; s) + 1} ∪ {g(pm; s) + 1 | 1 ≤ m < t}) = min{d +
s, d + s, d + s + 1} = d + s = n − 2.

(ii) We consider xn−1 > 1 and xn+d = 1. Let t = xn+d = 1. Now (p; s) = (p1; s)
only has two options (p1; s − 1) and (p0; s). Hence g(p; s) = min{g(p1; s − 1)+
1, g(p0; s) + 1} = min{d + s + 1, d + s + 1} = d + s + 1 = n − 1.

(iii) We consider xn−1 > 1 and xn+d > 1. Let t = xn+d . Now (p; s) = (pt ; s) has
(p1; s) as an option. By (ii) we have g(p1; s) = d + s + 1 = n − 1. Observation 1
implies that g(p; s) = 0, as required. 	


4.5 Game values of MLNim(s)(n + d, n) where n = s + d + 1

In this subsection we consider MLNim(s)(n + d, n) where n = s + d + 1. Theorem
12 gives the game values of MLNim(s)(n + d, n) for n = s + d + 1 ≥ 3. The game
values of MLNim(s)(n + d, n) divide into two parts: d = 0 or d ≥ 1. This fact yields
that g(p; s) = g(p; 0) + s does not hold for the case n = s + d + 1.

Theorem 12 Consider MLNim(s)(n + d, n) and (p; s) = (x1, x2, . . . , xn+d ; s). If
n = s + d + 1 ≥ 3 then

(A) for d = 0 i.e. s = n − 1 ≥ 2, we have

g(p; s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s(= n − 1), if xn−1 = 1 and xn = 1,
s + 1(= 0), if (xn−1 = 1 and xn > 1)

or (xn−1 > 2 and xn = 1)
or (xn−1 = 2),

s + 2(= 1), if xn−1 > 2 and xn > 1.

(22)

(B) for d ≥ 1 i.e. s = n − d − 1 ∈ {1, 2, . . . , n − 2}, we have

g(p; s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d + s(= n − 1), if xn−1 = 1 and xn+d = 1,
d + s + 1(= 0), if (xn−1 = 1 and xn+d > 1)

or (xn−1 > 1 and xn+d−1 = 1)
or (xn−1 > 1 and xn+d−1 > 1 and xn+d = 1),

d + s + 2(= 1), if xn−1 > 1 and xn+d−1 > 1 and xn+d > 1.
(23)
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Proof (A) We consider d = 0 and (p; s) = (x1, x2, . . . , xn−1, xn; s).
(A.1) If xn−1 = 1 and xn = 1, the position (p; s) = (p1; s) only has two options

(p1; s − 1) and (p0; s). Theorem 11 gives g(p1; s − 1) = s′ + d = s − 1 as
n = s+d+1 = s′+d+2 (where s′ = s−1 ≥ 1). Theorem8gives g(p0; s) = s−1
as n = N ′+1 and s = n−1.Hence g(p; s) = min{g(p1; s−1)+1, g(p0; s)+1} =
min{s, s} = s = n − 1.

(A.2) If xn−1 = 1 and xn > 1, the position (p; s) has (p1; s) as an option. By (A.1)
we have g(p1; s) = n − 1. Observation 1 implies that g(p; s) = 0.

(A.3) If xn−1 > 2 and xn = 1, (p; s) has (p; s − 1) as an option. Theorem 11 gives
g(p; s − 1) = s + d = s = n − 1. Observation 1 implies that g(p; s) = 0.

(A.4) If xn−1 = 2, (p; s) has (p0; s) as an option. Theorem 8 gives g(p0; s) = s =
n − 1 as n = N ′ + 1 and s = n − 1. Observation 1 implies that g(p; s) = 0.

(A.5) We consider xn−1 > 2 and xn > 1. Let pt = (x1, x2, . . . , xn−1, t) where
t = xn > 1. Theorem 11 gives g(pt ; s − 1) = s − 1, and Theorem 8 gives
g(p0; s) = s + 1 = 0 as n = N ′ + 1 and s = n − 1, and (A.3) gives g(p1; s) = 0.
We will show that g(pt ; s) = 1 by induction on t = xn ≥ 2: If t = 2, (p2; s) only
has three options (p2; s−1), (p0; s) and (p1; s). Hence g(p2; s) = min{g(p2; s−
1)+ 1, g(p0; s)+ 1, g(p1; s)+ 1} = min{s, 1, 1} = 1. Assume that g(pm; s) = 1
for any 2 ≤ m < t . It follows from Eq. (12) that g(pt ; s) = min({g(pt ; s − 1) +
1, g(p0; s)+1, g(p1; s)+1}∪{g(pm; s)+1 | 2 ≤ m < t}) = min{s, 1, 1, 2} = 1.

(B) If d ≥ 1 then s = n − d − 1 ∈ {1, 2, . . . , n − 2} and n = s + d + 1 ≥ 3. Let
(p; s) = (x1, x2, . . . , xn+d−1, xn+d ; s).

(B.1) xn−1 = 1and xn+d = 1.Nowp = p1. Theorem11gives g(p1; s−1) = d+s′ =
d + s − 1 as n = s + d + 1 = s′ + d + 2 (where s′ = s − 1 ≥ 0). Theorem 11
means that g(p0; s) = d ′ + s = d+ s−1 as n = s+d+1 = s+d ′ +2 (where
d ′ = d−1 ≥ 0). The position (p; s) only has two options (p1; s−1) and (p0; s).
Hence g(p; s) = min{g(p1; s − 1) + 1, g(p0; s) + 1} = min{d + s, d + s} =
d + s.

(B.2) xn−1 = 1 and xn+d > 1. The position (p; s) has (p1; s) as an option. By (B.1)
we have g(p1; s) = d + s = n − 1. Observation 1 implies that g(p; s) = 0.

(B.3) xn−1 > 1 and xn+d−1 = 1. Now (p; s) has (p0; s) as an option. Theorem 11
gives g(p0; s) = d ′ + s + 1 = d + s = n − 1 as n = s + d + 1 = s + d ′ + 2
(where d ′ = d − 1 ≥ 0). Observation 1 implies that g(p; s) = 0.

(B.4) xn−1 > 1 and xn+d−1 > 1 and xn+d = 1. Now p = p1 and (p1; s) has
(p1; s−1) as an option. Theorem 11 gives g(p1; s−1) = d+s′ +1 = d+s =
n− 1 as n = s + d + 1 = s′ + d + 2 (where s′ = s − 1). Observation 1 implies
that g(p; s) = 0.

(B.5) xn−1 > 1 and xn+d−1 > 1 and xn+d > 1. Let pt = (x1, . . . , xn+d−1, t)
where t = xn+d > 1. Theorem 11 gives g(pt ; s − 1) = d + s + 1(= 0) as
n = s + d + 1 = s′ + d + 2 (where s′ = s − 1 ≥ 0). Theorem 11 gives
g(p0; s) = 0 as n = s + d + 1 = s + d ′ + 2 (where d ′ = d − 1 ≥ 0).
By (B.4) we have g(p1; s) = 0. We show that g(pt ; s) = 1 by induction on
t = xn+d ≥ 2:
If t = 2, (p2; s) only has three options (p2; s − 1), (p0; s) and (p1; s). Hence
g(p2; s) = min{g(p2; s−1)+1, g(p0; s)+1, g(p1; s)+1} = min{1, 1, 1} = 1.
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Assume that g(pm; s) = 1 for any 2 ≤ m < t . It follows from Eq. (12) that
g(pt ; s) = min({g(pt ; s −1)+1, g(p0; s)+1, g(p1; s)+1}∪ {g(pm; s)+1 |
2 ≤ m < t}) = min{1, 1, 1, 2} = 1. 	


5 Conclusions

We have investigated the games MLNim(s)(N , n) for all integers N ≥ 1 and n ≥ 3
and s ≥ 0. Let (p; s) = (x1, x2, . . . , xN ; s) with xi ≥ 1 for all i ∈ {1, 2, . . . , N }
be any position of MLNim(s)(N , n). The aim of the present paper is to determine the
game values g(p; s) for all integers N ≥ 1 and n ≥ 3 and s ≥ 0. Here is a summary
of our findings:

(i) n > N + 1. The game values g(p; s) are completely determined for any s ≥ 0
and N ≥ 1. Theorems 1 and 7 show that the game value g(p; s) = g(p; 0) = N
i.e. the game value of a position (p; s) is equal to the number of the piles of p. In
other words, the game value g(p; s) do not depend on the parameters xi and the
total number s of passes.

(ii) n = N + 1 ≥ 3. Theorem 9 gives g(p; s) = g(p; s̄) for all integers s ≥ 0 and
N ≥ 2, where s̄ = s mod n. Theorem 8 determines g(p; s̄) by distinguishing
s̄ ∈ {0, 1, . . . , n − 2} or s̄ = n − 1.

(iii) 3 ≤ n ≤ N . Let d = N − n ≥ 0 and (p; s) = (x1, x2, . . . , xn+d ; s) be any
position of MLNim(s)(n + d, n). If n ≥ s + d + 3, Theorem 10 shows that
g(p; s) = g(p; 0) + s ∈ {s + d, s + d + 1} for all integers d ≥ 0 and s ≥ 0. If
n = s+d+2 ≥ 3,Theorem11 shows that g(p; s) = g(p; 0)+s ∈ {n−2, n−1, 0}
for all integers d ≥ 1 and s ≥ 0. The case n = s + d + 1 is more complicated:
Theorem 12 determines g(p; s) ∈ {n − 1, 0, 1}, but we have to distinguish two
subcases d = 0 or d ≥ 1. We see that g(p; s) = g(p; 0) + s does not hold for
the case n = s + d + 1.

6 Future work

Unfortunately, we cannot give the game values g(p; 0) for the case 3 ≤ n ≤ d
by explicit formulas. Theorem 6 gives the game values g(p; 0) where n = d = 3.
Remark 3 in Sect. 3.3 explains partly why determining the game values g(p; 0) for
the case 3 ≤ n ≤ d is more difficult. Can we give more results on the game values
g(p; s) of MLNim(s)(n + d, n) for the case 3 ≤ n ≤ d?

All results given by the present paper is based on the assumption that the standard
alliancematrix is adopted. If another alliancematrix is adopted, what can be said about
the game values of MLNim(s)(N , n) for the cases n > N + 1, n = N + 1 or n ≤ N?

This paper is devoted to Last Nim. In deed, there are many impartial combina-
torial games: End-Nim, Wythoff’s game, (s, t)-Wythoff’s game, Wythoff-like games,
Subtraction games, Small Nim, etc. Since multi-player games are not well understood
or analyzed currently, can we extend some 2-person games to the corresponding N -
person games (N > 2)?
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