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Abstract We study two impartial games introduced by Anderson and Harary and
further developed by Barnes. Both games are played by two players who alternately
select previously unselected elements of a finite group. The first player who builds a
generating set from the jointly selected elements wins the first game. The first player
who cannot select an element without building a generating set loses the second game.
After the development of some general results, we determine the nim-numbers of these
games for abelian and dihedral groups. We also present some conjectures based on
computer calculations. Our main computational and theoretical tool is the structure
diagram of a game, which is a type of identification digraph of the game digraph that
is compatible with the nim-numbers of the positions. Structure diagrams also provide
simple yet intuitive visualizations of these games that capture the complexity of the
positions.
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1 Introduction

Anderson and Harary (1987) introduced two impartial games in which two players
alternately select previously unselected elements of a finite group until the group is
generated by the chosen elements. The first player who builds a generating set from the
jointly selected elementswins the achievement game denoted byGEN. The first player
who cannot select an element without building a generating set loses the avoidance
game denoted by DNG.

In the original description of the avoidance game given in Anderson and Harary
(1987), the game endswhen a generating set is built. This suggestsmisère-play conven-
tion.Wewant to studyboth the achievement and the avoidancegameunder normal-play
convention. So, our version of the avoidance game does not allow the creation of a
generating set, and the game ends when there are no available moves. Our version
of the avoidance game has the same outcome as the original, and so the difference is
immaterial since Anderson and Harary do not consider game sums.

The outcome of both games was determined for finite abelian groups in Anderson
andHarary (1987).Barnes (1988) provides criteria for determining theoutcomeof each
game for an arbitrary finite group. Barnes applies his criteria to determine the outcome
of some of the more familiar finite groups, including abelian, dihedral, symmetric, and
alternating groups, although his analysis is incomplete for alternating groups in the
avoidance game.

Brandenburg studies related games in Brandenburg (2017). In one of the variations,
two players alternate moves, where a move consists of picking some non-identity
element from a finitely generated abelian group. The game then continues with a
group that results by taking the quotient by the subgroup generated by the chosen
element. The player with the last possible move wins.

The fundamental problem in the theory of impartial combinatorial games is the
determination of the nim-number of the game. This allows for the calculation of the
nim-numbers of game sums and the determination of the outcome of the games. The
major aim of this paper is the development of some theoretical tools that allow the
calculation of the nim-numbers of the achievement and avoidance games for a variety
of familiar groups.

The paper is organized as follows. In Sect. 2, we review the basic terminology of
impartial games and establish our notation. We further our general study of avoidance
and achievement games in Sects. 3 and 4, respectively. In particular, we introduce the
structure diagram of a game, which is an identification digraph of the game digraph
that is compatible with the nim-numbers of the positions. Structure diagrams also
provide simple but intuitive visualizations of these games that capture the complexity
of the positions. By making further identifications, we obtain the simplified structure
diagram of a game, which will be our main computational and theoretical tool in
the remainder of the paper. The main result of Sect. 3 states that the nim-number of
the avoidance game is 0, 1, or 3 for an arbitrary finite group (see Corollary 3.21).
Analogously, in Sect. 4, we show that if the order of a group is odd, then the nim-
number of the corresponding achievement game is 1 or 2 (see Corollary 4.8). We
conjecture that if the group is of even order, then the nim-number of the achievement
game is in {0, 1, 2, 3, 4} (see Conjecture 4.9). Sect. 5 describes the algorithms we
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Impartial games for generating groups 511

implemented via a computer program to generate our initial conjectures and verify
our results. Sects. 6, 7, and 8 contain a complete analysis of the nim-numbers for
cyclic, dihedral, and abelian groups, respectively. In Sect. 9, we study the symmetric
and alternating groups. In particular, we provide a description of the nim-numbers
for the avoidance game for the symmetric groups. In addition, we provide a partial
characterization for the achievement game for the symmetric groups, as well as both
games for the alternating groups.We conclude with several open questions in Sect. 10.

The authors thank Bret Benesh and the anonymous referee for suggestions that
greatly improved the paper.

2 Preliminaries

We briefly recall the basic terminology of impartial games to introduce our notation.
A comprehensive treatment of impartial games can be found in Albert et al. (2007),
Aaron (2013). For our purposes, an impartial game is a finite set X of positions together
with a starting position and a collection {Opt(P) ⊆ X | P ∈ X} of possible options.
Two players take turns choosing one of the available options in Opt(P) of the current
position P . The player who encounters an empty option set cannot move and therefore
loses. All gamesmust come to an end in finitely many turns, so we do not allow infinite
lines of play. There are two possible outcomes for an impartial game. The game is an
N-position if the next player (i.e., the player that is about to move) wins and it is a
P-position if the previous player (i.e., the player that just moved) wins.

The minimum excludant mex(A) of a set A of ordinals is the smallest ordinal not
contained in the set. Thenim-number nim(P)of a position P is theminimumexcludant
of the set of nim-numbers of the options of P . That is,

nim(P) := mex(nOpt(P)),

where nOpt(P) := {nim(Q) | Q ∈ Opt(P)}. Note that the minimum excludant of
the empty set is 0, and so the terminal positions of a game have nim-number 0. The
nim-number of a game is the nim-number of its starting position. The nim-number of
a game determines the outcome of a game since a position P is a P-position if and
only if nim(P) = 0.

The sum of the games P and R is the game P + R whose set of options is

Opt(P + R) := {Q + R | Q ∈ Opt(P)} ∪ {P + S | S ∈ Opt(R)} .

This means that in each turn a player makes a valid move either in game P or in game
Q. The nim-number of the sum of two games can be determined as the nim-sum

nim(P + R) = nim(P) ⊕ nim(R),

which requires binary addition without carry.
We write P = R if the outcome of P + T and R+ T is the same for every game T .

The one pile NIM game with n stones is denoted by the nimber ∗n. The set of options
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512 D. C. Ernst, N. Sieben

of ∗n is Opt(∗n) = {∗0, . . . , ∗(n − 1)}. The following fundamental result shows the
significance of the nimbers.

Theorem 2.1 (Sprague–Grundy) If P is an impartial game, then P = ∗ nim(P).

We now recall a few well-known group-theoretic results and definitions that will be
useful in the remainder of the paper. The subgroup of a group G generated by the
subset S is the intersection of all subgroups of G containing S. Note that the empty
set generates the trivial subgroup.

A maximal proper subgroup of a group G is called a maximal subgroup of G. It is
clear that every proper subgroup of a finite group is contained in a maximal subgroup.
Note that the finite requirement is necessary. For example, the group (Q,+) has no
maximal subgroups. Maximal subgroups play an important role for us because of the
following easy fact.

Proposition 2.2 A subset S of a finite group is a generating set if and only if S is not
contained in any maximal subgroup.

Next, we provide a more precise overview of the achievement and avoidance games.
Let G be a finite group. We define the avoidance game DNG(G) as follows. The first
player chooses x1 ∈ G such that 〈x1〉 	= G and at the kth turn, the concerned player
selects xk ∈ G\{x1, . . . , xk−1}, such that 〈x1, . . . , xk〉 	= G. That is, a position in
DNG(G) is a set of jointly selected elements that must be a non-generating subset of
G. The player who cannot select an element without building a generating set loses
the game.

In the achievement game GEN(G), the first player chooses any x1 ∈ G and at the
kth turn, the concerned player selects xk ∈ G\{x1, . . . , xk−1}. That is, a position in
GEN(G) is a set of jointly selected elements. A player wins on the nth turn as soon
as 〈x1, . . . , xn〉 = G.

In this paper, we use Zn := {0, 1, . . . , n − 1} to denote the cyclic group of order n
under addition modulo n, so that Zn ∼= Z/nZ.

Example 2.3 The trivial group Z1 has no maximal subgroups. We cannot play
DNG(Z1) since every subset of the group, including the empty set, is a generating set.
The only position ofGEN(Z1) is the empty set, and so the second player wins before
the first player can make a move. This implies that GEN(Z1) = ∗0.
Example 2.4 Consider the avoidance game on the cyclic group Z4. No player can
choose either 1 or 3 since these elements individually generate the group. If the first
player chooses 0, then the only option for the second player is 2. After this move, the
first player has no available options. We arrive at the same conclusion if the first player
chooses 2 on the opening move. Regardless, the second player winsDNG(Z4), which
implies that DNG(Z4) = ∗0. The game digraph for DNG(Z4) is given in Fig. 1a. In
the digraph, the vertices are the positions of the game, every position is connected to
its options by arrows, and every position is labeled by the nimber of the corresponding
position.

For the achievement game, it is easy to see that the first player can win on the
opening move by choosing 1 or 3. However, if the first player happens to choose 0 or
2 on the opening move, then the second player may choose 1, 3, or the opposite choice

123
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(a) (b) (c)

Fig. 1 Game digraphs of DNG(Z4) and GEN(Z4), and representative game digraph for GEN(Z4). Nim-
bers corresponding to each position of the game are included. The second digraph can be created from the
first by adding the dotted arrows that represent options that create terminal positions

that the first player made on the opening move. The second player wins the game if
they choose either 1 or 3. However, if the second player makes the opposite choice
between 0 and 2 that the first player made, then the first player wins by choosing either
1 or 3. The game digraph forGEN(Z4) is given in Fig. 1b. By looking at the top node
of the digraph, we see that GEN(Z4) = ∗1.

We call two subsets P and Q of a group G automorphism equivalent if there is an
automorphism φ of G such that φ(P) = Q. It is clear that an automorphism φ of G
induces an automorphism of the game digraph, and so nim(P) = nim(Q) if P and Q
are automorphism equivalent. For simplicity, we can eliminate some of the positions of
a gamedigraphwithout changing the nim-numbers of the remaining positions. For each
position P , the set Opt(P) of options is partitioned into automorphism equivalence
classes. We delete all but one representative from each of these classes. The resulting
digraph will be referred to as a representative game digraph.

Example 2.5 Consider the achievement game on the cyclic group Z4. It is clear that
the subsets {3}, {0, 3}, {2, 3}, and {0, 2, 3} are automorphism equivalent to {1}, {0, 1},
{1, 2}, and {0, 1, 3}, respectively. As a result, one possible representative game digraph
for GEN(Z4) is provided in Fig. 1c.

We define pty(n) := n mod 2. The parity of a subset of a group is defined to be the
parity of the size of the subset. Observe that an option of a position in both DNG and
GEN has the opposite parity.

3 Avoidance games

In this section we study the avoidance gameDNG(G) on a finite groupG. In Anderson
and Harary (1987), Anderson and Harary proved the following criterion for determin-
ing the outcome of DNG(G) for a finite abelian group.

Proposition 3.1 Let G be a finite abelian group. The first player winsDNG(G) if and
only if G is nontrivial of odd order or G ∼= Z2k with k odd. The second player wins
otherwise.
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Barnes (1988) reproved this result using the following criterion for determining the
outcome of DNG(G) for an arbitrary finite group G. Recall that an involution in a
group is an element of order 2.

Proposition 3.2 Let G be a nontrivial finite group. Then the first playerwinsDNG(G)

if and only if there exists α ∈ G such that α has odd order and 〈α, β〉 = G for every
involution β ∈ G.

Note that the last condition of the previous proposition vacuously holds if the order of
G is odd. Since the first player wins precisely when DNG(G) 	= ∗0, we immediately
have the following corollary of Proposition 3.1.

Corollary 3.3 Let G be a nontrivial finite abelian group. Then DNG(G) 	= ∗0 if and
only if G has odd order or G ∼= Z2k with k odd.

The next proposition follows immediately from Proposition 2.2.

Proposition 3.4 The positions of DNG(G) are the subsets of the maximal subgroups
of G and the terminal positions of DNG(G) are the maximal subgroups of G.

It turns out that positions that are contained in the same collection of maximal sub-
groups are closely related. This motivates the next two definitions.

Definition 3.5 Let M be the set of maximal subgroups of G. The set of intersection
subgroups is defined to be the set

I := {∩N | ∅ 	= N ⊆ M}

containing all the possible intersections of some maximal subgroups.

Note that the elements of I are in fact subgroups of G. If G is nontrivial, then the
smallest intersection subgroup is the Frattini subgroup �(G). Not every subgroup of
G is an intersection subgroup. For example, �(G) may not be trivial. The set I of
intersection subgroups is partially ordered by inclusion. We use interval notation to
denote certain subsets of I. For example, if I ∈ I, then (−∞, I ) := {J ∈ I | J ⊂ I }.

Definition 3.6 For each I ∈ I let

XI := P(I )\ ∪ {P(J ) | J ∈ (−∞, I )}

be the collection of those subsets of I that are not contained in any other intersection
subgroup smaller than I . We let X := {XI | I ∈ I} and call an element of X a
structure class.

The largest element of XI is I . The starting position ∅ is in X�(G). We say that XI is
terminal if I is terminal. The parity of a structure class is defined to be pty(XI ) :=
pty(I ).

Example 3.7 The subset P = {0} generates the trivial subgroup of G = Z4. If I =
�(G) = {0, 2} is the Frattini subgroup of G, then P ∈ XI since P ⊆ I and (−∞, I )
is empty. This shows that P ∈ XI does not imply that P generates I .
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Proposition 3.8 If I and J are different elements of I, then X I ∩ X J = ∅.
Proof Assume P ∈ XI ∩ X J and let K := I ∩ J ∈ I. Since I 	= J , we must
have K 	= I or K 	= J . Without loss of generality, assume that K 	= I . Then
P ⊆ K ∈ (−∞, I ), which contradicts P ∈ XI . ��
Corollary 3.9 The setX of structure classes is a partition of the set of game positions
of DNG(G).

As we shall see, the structure classes play a pivotal role in the remainder of this paper.
Proposition 3.10 and Corollary 3.11 imply that the collection of structure classes is
compatible with the option relationship between game positions. This will allow us
to define the structure digraph of DNG(G) (see Definition 3.12), which will cap-
ture the option relationship among structure classes. Then in Proposition 3.15, we
show that two elements of a structure class have the same nim-number if and only
if they have the same parity. In other words, each structure class is associated with
two nim-numbers. By appending this data to the corresponding structure digraph, we
can visualize the nim-number relationship among structure classes using a structure
diagram. By defining an appropriate equivalence relation on the collection of structure
classes (see Definition 3.17), we will be able to make identifications that allow us to
greatly simplify the task of computing the nim-number of DNG(G) for a wide class
of groups.

Proposition 3.10 Assume X I , X J ∈ X and P ∈ XI 	= X J . Then Opt(P) ∩ X J 	= ∅
if and only if Opt(I ) ∩ X J 	= ∅.
Proof First, assume that Opt(P) ∩ X J 	= ∅. Then there exists a g ∈ G\P such that
P ∪ {g} ∈ X J . That is, P ∪ {g} ⊆ J but P ∪ {g} is not contained in any K ∈
(−∞, J ). This implies that I ⊂ J , otherwise we would have P ⊆ I ∩ J ∈ (−∞, I ),
contradicting P ∈ XI . There is no K satisfying I ∪ {g} ⊆ K ∈ (−∞, J ) since we
would then have P∪{g} ⊆ I ∪{g} ⊆ K ∈ (−∞, J ), which contradicts P∪{g} ∈ X J .
Thus, I ∪ {g} ∈ X J , which shows that Opt(I ) ∩ X J 	= ∅.

Now, assume that Opt(I ) ∩ X J 	= ∅. Then I ∪ {g} ∈ X J for some g ∈ J\I , that
is, I ∪ {g} ⊆ J but I ∪ {g} is not contained in any K ∈ (−∞, J ). Then clearly
P ∪{g} ⊆ J . There is no K satisfying P ∪{g} ⊆ K ∈ (−∞, J ), otherwise we would
have P ⊆ K ∩ I ∈ (−∞, I ) contradicting P ∈ XI . Hence P ∪ {g} ∈ X J , and so
Opt(P) ∩ X J 	= ∅, as desired. ��
Corollary 3.11 Assume X I , X J ∈ X and P, Q ∈ XI 	= X J . ThenOpt(P)∩ X J 	= ∅
if and only if Opt(Q) ∩ X J 	= ∅.
This motivates the following definition.

Definition 3.12 We say that X J is an option of XI and we write X J ∈ Opt(XI ) if
Opt(I )∩ X J 	= ∅. The structure digraph of DNG(G) has vertex set {XI | I ∈ I} and
edge set {(XI , X J ) | X J ∈ Opt(XI )}.
If I 	= P ∈ XI , then P ∪ {g} ∈ Opt(P) ∩ XI for all g ∈ I\P 	= ∅. So, I is the only
element of XI without an option in XI . Note that there are no loops in the structure
digraph and X�(G) is the only source vertex.
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Fig. 2 Unfolded structure diagrams for Proposition 3.15. We define a := nim(Q), b := nim(T ) and
c := nim(S). Shading types represent parities

Example 3.13 The set of maximal subgroups of G = Z6 is M = {{0, 2, 4}, {0, 3}}.
The intersection subgroups are in I = {{0}, {0, 2, 4}, {0, 3}}. Note that �(G) = {0}.
The elements of X are

X{0,2,4} = {{2}, {4}, {0, 2}, {0, 4}, {2, 4}, {0, 2, 4}}
X{0} = {∅, {0}}, X{0,3} = {{3}, {0, 3}}.

The structure digraph is visualized by

X{0,2,4} ←− X{0} −→ X{0,3}.

The following lemma will be useful in the proof of Proposition 3.15.

Lemma 3.14 Let A and B be subsets of {0, 1, 2, . . .} such that mex(A) ∈ B. Then
mex(A ∪ {mex(B)}) = mex(A).

Proof Since mex(A) ∈ B, mex(B) 	= mex(A). This implies that mex(A ∪
{mex(B)}) = mex(A). ��

Proposition 3.15 If P, Q ∈ XI ∈ X and pty(P) = pty(Q), then nim(P) = nim(Q).

Proof We proceed by structural induction. Our inductive hypothesis states that if
pty(M) = pty(N ) and either M, N ∈ XI with |M |, |N | > min{|P|, |Q|} or M, N ∈
X J ∈ Opt(XI ) for some J ∈ I, then nim(M) = nim(N ). Without loss of generality,
assume that |P| ≤ |Q|.

We will consider two cases indicated by the diagrams in Fig. 2: Q 	= I and Q = I .
Each figure is referred to as an “unfolded structure diagram” and is meant to help
visualize the structure of the proof. In the figures, each triangle represents a structure
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class and each horizontal band represents the collection of subsets from the given
structure class that have the same size. An arrow from one set to another in the figure
indicates that the second set is an option of the first set. In the first case (Q 	= I ), we
will show that nOpt(P) = nOpt(Q). The second case (Q = I ) is more complicated as
we will only have nOpt(Q) ⊆ nOpt(P). In this case, we will make use of Lemma 3.14
to conclude that we still have mex(nOpt(P)) = mex(nOpt(I )).

First, assume that Q 	= I . Every option of P is either an element of XI or of
some X J ∈ Opt(XI ). If T ∈ Opt(P) ∩ XI , then we can choose ˜T ∈ Opt(Q) ∩ XI .
By induction, nim(T ) = nim(˜T ) since pty(T ) = pty(T̃ ). On the other hand, if
S ∈ Opt(P) ∩ X J for some X J ∈ Opt(XI ), then by Corollary 3.11, there exists
S̃ ∈ Opt(Q) ∩ X J . Since pty(S) = pty(S̃), we must have nim(S) = nim(S̃) by
induction. We have shown that nOpt(P) ⊆ nOpt(Q). A similar argument shows that
nOpt(Q) ⊆ nOpt(P).

Now, assume that Q = I . If P = Q = I , then the desired result follows trivially,
so assume that P 	= Q = I . Note that this implies that |P| < |Q|. In this case, we
might not have nOpt(Q) = nOpt(P) because Opt(I ) ∩ XI = ∅. Instead we fix a
T ′ ∈ XI such that I ∈ Opt(T ′). Such a T ′ exists since I 	= ∅. We are going to show
that nOpt(P) = nOpt(I ) ∪ {nim(T ′)}.

First, we verify nOpt(P) ⊆ nOpt(I ) ∪ {nim(T ′)}. Every option of P is either an
element of XI or of some X J ∈ Opt(XI ). In the latter case, if S ∈ Opt(P) ∩ X J

for some X J ∈ Opt(XI ), then there exists S̃ ∈ Opt(Q) ∩ X J by Corollary 3.11.
Since pty(S) = pty(S̃), we must have nim(S) = nim(S̃) ∈ nOpt(I ) by induction.
In the former case, if T ∈ Opt(P) ∩ XI , then nim(T ) = nim(T ′) by induction and
nim(T ) ∈ {nim(T ′)}.

Now, we verify nOpt(P) ⊇ nOpt(I ) ∪ {nim(T ′)}. Suppose ˜S ∈ Opt(I ). Then
˜S ∈ X J for some X J ∈ Opt(XI ) since the only options of I must exist outside XI .
Then by Corollary 3.11, there exists S ∈ Opt(P) ∩ X J . Since pty(˜S) = pty(S), we
must have nim(˜S) = nim(S) by induction. This implies that nOpt(I ) ⊆ nOpt(P).
Since P 	= I , there exits T ∈ Opt(P) ∩ XI . By induction, nim(T ′) = nim(T ) and so
{nim(T ′)} ⊆ nOpt(P) by induction.

Finally

nim(P) = mex(nOpt(P)) = mex(nOpt(I ) ∪ {nim(T ′)})
= mex(nOpt(I ) ∪ {mex(nOpt(T ′))})
= mex(nOpt(I )) = nim(Q)

by Lemma 3.14 since mex(nOpt(I )) = nim(I ) ∈ nOpt(T ′). ��
The upshot of Proposition 3.15 is that each structure class is associated with two nim-
numbers. In light of this, we can append this information to a structure digraph to
form a (folded) structure diagram, which is visualized as follows. A structure class
XI is represented by a triangle pointing down if I is odd and by a triangle pointing
up if I is even. The triangles are divided into a smaller triangle and a trapezoid. The
smaller triangle represents the odd positions of XI and the trapezoid represents the
even positions of XI . The numbers are the nim-numbers of these positions. There is
a directed edge from XI to X J provided X J ∈ Opt(XI ).
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(a) (b) (c)

Fig. 3 Representative game digraph, unfolded structure diagram, and structure diagram for DNG(Z9)

For a nontrivial groupG,�(G) and�(G)\{e} are positions in X�(G). Hence X�(G)

contains both even and odd positions. Corollary 3.11 now implies that every structure
class contains both even and odd positions. The nim-number of the game can be easily
read from the structure diagram. It is the number in the trapezoid part of the triangle
representing the source vertex of the structure digraph.

Example 3.16 Figure 3 shows a representative game digraph and the corresponding
unfolded and folded structure diagrams for DNG(Z9). Since Z9 only has a single
maximal subgroup, there is a unique structure class. The small triangle in the structure
diagram represents the collection of odd positions with nim-number 0. This collection
includes the representative positions {0, 3, 6}, {3}, and {0}. The trapezoid represents
the collection of even positions with nim-number 1. This collection includes positions
{3, 6}, {0, 3}, and ∅. Every position in a collection is connected to another position on
the next level. The chain shown in the figure ends on an odd level with the terminal
position I = {0, 3, 6}. This is why the large triangle representing XI points down and
the small triangle representing the odd positions is on the bottom.

The structure diagram can be used to find the nim-numbers. Since the only terminal
position is in the smaller triangle, these positions have nim-number 0. The positions
in the trapezoid are only connected to the positions in the smaller triangle so they have
nim-number mex{0} = 1. The non-terminal positions in the smaller triangle are only
connected to positions in the trapezoid so they have nim-number mex{1} = 0. We
conclude that DNG(Z9) = ∗1.
We want to recognize similar structure classes.

Definition 3.17 The type of the structure class XI is the triple

type(XI ) := (pty(I ), nim(P), nim(Q))

where P, Q ∈ XI with pty(P) = 0 and pty(Q) = 1. The option type of XI is the set

otype(XI ) := {type(XK ) | XK ∈ Opt(XI )},
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XI a
b

a

b

type(XI) (0, a, b) (1, a, b)

Fig. 4 Visualization of structure classes and their corresponding types

and the full option type of XI is the set

Otype(XI ) := otype(XI ) ∪ {type(XI )}.

We say XI and X J are type equivalent if type(XI ) = type(X J ) and Otype(XI ) =
Otype(X J ).

Once the structure digraph is known, the types of the structure classes can be com-
puted recursively from the bottom up using the formulas type(XI ) = (pty(I ), a, b),
where

A = {ã | (ε, ã, b̃) ∈ otype(XI )}, B = {b̃ | (ε, ã, b̃) ∈ otype(XI )},
a := mex(B), b := mex(A ∪ {a}) if pty(I ) = 0

b := mex(A), a := mex(B ∪ {b}) if pty(I ) = 1.

Figure 4 shows the type-dependent visualization of structure classes that occur as
nodes of a structure diagram. Note that if XI is terminal, then type(XI )must be either
(0, 0, 1) or (1, 1, 0) depending on the parity of XI . A structure digraph can be quite
complicated, but we can simplify it by identifying some vertices.

Definition 3.18 The simplified structure digraph of DNG(G) is built from the struc-
ture digraph of DNG(G) by the identification of type equivalent structure classes
followed by the removal of any resulting loops. The simplified structure diagram is
built from the structure diagram using the same identification process.

Example 3.19 Figure 5 illustrates the main steps of finding the simplified structure
diagram of DNG(G) with G = Z6 × Z3. Subfigure (a) shows the Hasse diagram
of the poset of intersection subgroups. For this group every proper subgroup is an
intersection subgroup. Each intersection subgroup corresponds to a structure class
shown in Subfigure (b).

The arrows comingout of a structure class XI are determinedbyfinding the structure
classes containing I∪{g} for g ∈ G\I according to Definition 3.12. Next, we compute
type(XI ) and otype(XI ) for all XI . These values are also shown in Subfigure (b). For
example, X�(G) is the structure class at the top of the diagram with type(X�(G)) =
(1, 0, 1) and otype(X�(G)) = {(0, 0, 1), (1, 3, 2)}.

Subfigure (c) depicts Otype(XI ) for all XI , which are computed as the union of
type(XI ) and otype(XI ). Note that each structure class XI with type(XI ) = (0, 0, 1)
have the same Otype(XI ) even though they do not have the same otype(XI ).

The final step is the identification of the structure classes according to type and
Otype. This results in the simplified structure diagramofSubfigure (d).Wehave shaded
the triangles in the simplified structure diagram to signify that we have identified type
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(a) (b)

(c) (d)

Fig. 5 The process for obtaining the simplified structure diagram for DNG(Z6 × Z3). The double headed
arrow X�(G) � XZ2 indicates that X�(G) is also connected to the options of XZ2

equivalent structure classes. In addition, if more than one structure class has been
identified, the boundary of the corresponding triangle is bold.

Proposition 3.20 The type of a structure class X I of DNG(G) is in

T = {t1 := (0, 0, 1), t2 := (1, 0, 1), t3 := (1, 1, 0), t4 := (1, 3, 2)}.

Proof Recall that the type of a terminal structure class is either t1 or t3.We show that if
otype(XI ) ⊆ T , then type(XI ) ∈ T , as well. This implies the statement by structural
induction.

If X J is an option of XI , then I is a subgroup of J , and so pty(X J ) = 1 implies
pty(XI ) = 1. Hence if (1, a, b) ∈ otype(XI ) for some a and b, then type(XI ) must
be of the form (1, c, d). The following table shows the possibilities for otype(XI ) and
type(XI ):
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We show the calculation for the case otype(XI ) = {t4} which is the fourth case in
the first column of the table. Since a structure class with type t4 = (1, 3, 2) is odd, XI

must be odd, and so type(XI ) = (1, c, d) as shown below:

We know that a position and any of its option have the opposite parity. So, d =
mex{3} = 0, and hence c = mex{d, 2} = mex{0, 2} = 1. Thus, type(XI ) =
(1, 1, 0) = t3.

Now we show the calculation for the case otype(XI ) = {t1, t4} which is the second
case in the second table. Again since t4 ∈ otype(XI ), type(XI ) is of the form (1, c, d).
Then d = mex{0, 3} = 1, and hence c = mex{d, 1, 2} = mex{1, 2} = 0. Thus,
type(XI ) = (1, 0, 1) = t2.

The rest of the calculations in the table are done similarly. ��
The next three results strengthen Corollary 3.3.

Corollary 3.21 The nim-number of DNG(G) is 0, 1, or 3.

Proof The nim-number of DNG(G) is the second digit of type(X�(G)). ��
Proposition 3.22 If G is nontrivial with odd order, then the simplified structure dia-
gram of DNG(G) is

and hence DNG(G) = ∗1.
Proof It is clear that every structure class is odd. Structural induction on the struc-
ture classes shows that type(XI ) = (1, 1, 0) and Otype(XI ) = {(1, 1, 0)} for all
XI ∈ X . ��
Proposition 3.23 If G has an even Frattini subgroup, then the simplified structure
diagram of DNG(G) is

and hence DNG(G) = ∗0.
Proof Every structure class is even since every intersection subgroup contains the
Frattini subgroup. Structural induction on the structure classes shows that type(XI ) =
(0, 0, 1) and Otype(XI ) = {(0, 0, 1)} for all XI ∈ X . ��

4 Achievement games

In this section we study the achievement game GEN(G) on the finite group G. For
achievement games, we must include an additional structure class XG containing
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terminal positions. A subset S ⊆ G belongs to XG whenever S generates G while
S\{s} does not for some s ∈ S. Note that this is a slightly abusive notation because,
for example, XG does not always contain G. For nontrivial groups, the positions of
GEN(G) are the positions of DNG(G) together with the elements of XG . If G is the
trivial group, then �(G) = G is not a game position ofGEN(G) = ∗0 and XG = {∅}
is the only structure class. The following is immediate.

Proposition 4.1 The set Y := X ∪ {XG} is a partition of the set of game positions of
GEN(G).

We show that the partition Y is compatible with the option relationship between
positions. The next result is analogous to Proposition 3.10.

Proposition 4.2 Assume X I , X J ∈ Y and P ∈ XI 	= X J . Then Opt(P) ∩ X J 	= ∅
if and only if Opt(I ) ∩ X J 	= ∅.
Proof It suffices to consider the case when J = G since the proofs of the other cases
are the same as that of Proposition 3.10. We show that Opt(P) ∩ XG 	= ∅ for P ∈ XI

if and only if Opt(I ) ∩ XG 	= ∅. Note that Opt(P) ∩ XG 	= ∅ when there exists a
g ∈ G\I such that P ∪ {g} generates G.

First, assume that Opt(I ) ∩ XG = ∅. Then 〈P ∪ {g}〉 ⊆ 〈I ∪ {g}〉 	= G for all
g ∈ G\I and so Opt(P) ∩ XG = ∅.

Now, assume that Opt(I ) ∩ XG 	= ∅. Then I ∪ {g} ∈ XG for some g ∈ G\I ,
so that 〈I ∪ {g}〉 = G. For a contradiction, assume that Opt(P) ∩ XG = ∅. Then
H := 〈P ∪ {g}〉 is a proper subgroup of G, and so H is contained is some maximal
subgroupM . This implies that I is not a subset ofM since g ∈ M and I∪{g} generates
G. Hence P ⊆ M ∩ I ∈ (−∞, I ), which contradicts P ∈ XI . ��
Corollary 4.3 Assume X I , X J ∈ Y and P, Q ∈ XI 	= X J . Then Opt(P) ∩ X J 	= ∅
if and only if Opt(Q) ∩ X J 	= ∅.
As with DNG(G), it is convenient to append the nim-number data for each structure
class to the structure digraph forGEN(G), which we visualize in a structure diagram.
The following proposition guarantees that we may define the simplified structure
diagram of GEN(G) analogously to that of DNG(G).

Proposition 4.4 If P, Q ∈ XI ∈ Y and pty(P) = pty(Q), then nim(P) = nim(Q).

Proof The proof is analogous to that of Proposition 3.15 using Corollary 4.3. ��
Given a structure class XI , we define type(XI ), otype(XI ), and Otype(XI )

as before. Note that by definition the type of the terminal structure class XG is
type(XG) = (pty(G), 0, 0). As in the avoidance games, we define XI and X J to be
type equivalent if type(XI ) = type(X J ) andOtype(XI ) = Otype(X J ). The simplified
structure digraph ofGEN(G) is the identification digraph of the structure digraph with
respect to type equivalence. The simplified structure diagram is visualized as expected,
but the structure class XG will be denoted by 0, regardless of the parity of XG .

Example 4.5 Figure 6 shows a simplified structure diagram forGEN(Z6 ×Z3) = ∗0.
Note that in the simplified structure diagram of DNG(Z6 × Z3), shown in Fig. 5d, all
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0
2

0
2

1
2

4
3

2
1

0
Fig. 6 Simplified structure diagram for GEN(Z6 × Z3)

the classes with type (0, 0, 1) were identified. This is not the case in the simplified
structure digraph of GEN(Z6 × Z3) since some of these classes are connected to
terminal positions while others are not. The use of the dotted arrows is to emphasize
that these arrows are not present in DNG(Z6 × Z3).

Definition 4.6 We call a structure class XI semi-terminal if the terminal class XG is
an option of XI . We call XI non-terminal if XI is neither terminal nor semi-terminal.

Note that if I is a maximal subgroup, then XI is semi-terminal. However, XI may
be semi-terminal even if I is not a maximal subgroup. For example, X〈(0,1)〉 is semi-
terminal in GEN(Z6 × Z3) but 〈(0, 1)〉 ∼= Z3 is not a maximal subgroup of Z6 × Z3,
as shown in Figs. 5a and 6. Also note that a semi-terminal structure class cannot have
a non-terminal option since if X J is an option of XI , then I ≤ J .

Proposition 4.7 If G is a nontrivial group with |G| odd, then the type of a structure
class X I of GEN(G) is in

T = {t0 := (1, 0, 0), t1 := (1, 1, 0), t2 := (1, 2, 0), t3 := (1, 2, 1)}.

Proof First, it is clear that type(XI ) = t0 if and only if XI is terminal. Now, we use
structural induction to argue that type(XI ) = t3 if XI is semi-terminal and type(XI ) ∈
{t1, t2} if XI is non-terminal.

If XI is semi-terminal, then every option of XI is either terminal or semi-terminal,
and so otype(XI ) = {t0} or otype(XI ) = {t0, t3} by induction. In both cases the type
of XI must be t3.

If XI is non-terminal, then no option of XI has type t0 and so otype(XI ) ⊆
{t1, t2, t3}. In each case, type(XI ) ∈ {t1, t2}. The following table shows the possi-
bilities for otype(XI ) and type(XI ): ��

Corollary 4.8 If G is nontrivial with |G| odd, then the nim-number of GEN(G) is 1
or 2.

The computer experiments Ernst and Sieben (2013) of the next section hint at the
following.

123



524 D. C. Ernst, N. Sieben

Conjecture 4.9 If |G| is even, then the nim-number of GEN(G) is in {0, 1, 2, 3, 4}.
The techniques used to prove Proposition 4.7 do not seem to be sufficient to settle
this conjecture. A proof probably requires a more careful analysis of the forbidden
configurations in a structure diagram.

5 Algorithms

We developed a software package that computes the simplified structure digraph of
DNG(G) and GEN(G). We used GAP The GAP Group (2013) to get the maximal
subgroups and the rest of the computation is implemented in C++. The software is
efficient enough to allow us to compute the nim-numbers for the smallest 100, 000
groups which includes all groups up to size 511. The result is available on our com-
panion web page Ernst and Sieben (2013). The algorithms used are shown in Figs. 7
and 8. Both are based on the results of this section.

If I and J are intersection subgroups, it is useful to define K := {K ∈ I | I ⊆
K and J � K }.

Fig. 7 Algorithm to compute the simplified structure digraph of DNG(G)

Fig. 8 Algorithm to compute the simplified structure digraph of GEN(G)
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Lemma 5.1 If I, J ∈ I with I ≤ J , then [I, J ) = {J ∩ K | K ∈ K}.
Proof Let L ∈ [I, J ). Then L = ⋂N with someN ⊆ M such that I ⊆ L ⊂ J , and
so L ∈ K. This implies that [I, J ) ⊆ K. Now, suppose K ∈ K. Then K ∩ J ∈ [I, J ),
and hence {K ∩ J | K ∈ K} ⊆ [I, J ). Therefore, [I, J ) = {J ∩ K | K ∈ K}. ��
The following result is used by the algorithms in Figs. 7 and 8.

Proposition 5.2 Let I, J ∈ I. We have X J ∈ Opt(XI ) if and only if I ⊆ J and
J\ ⋃K 	= ∅.
Proof Assume I ≤ J . First, assume that X J ∈ Opt(XI ). Then there exists g ∈ G\I
such that I ∪ {g} ∈ X J . This means there exists g ∈ J\I such that I ∪ {g} ⊆ J but
I ∪ {g} � L for any L ∈ (−∞, J ). Let K ∈ K, so that I ⊆ K and J � K . Then by
Lemma 5.1, J ∩ K ∈ [I, J ) ⊆ (−∞, J ). Then it must be the case that I ∪ {g} � K
for all K ∈ K, which implies that g /∈ K for all K ∈ K. Hence g /∈ ⋃K. But since
g ∈ J , J\ ⋃K 	= ∅.

Now, assume that there exist g ∈ J\ ⋃K. Then I∪{g} ⊆ J since I ≤ J .Moreover,
since g ∈ J\ ⋃K, g /∈ K for all K ∈ K. But then g /∈ J ∩ K for all K ∈ K. Thus,
X J ∈ Opt(XI ), as desired. ��

6 Cyclic groups

In this section we study the avoidance game DNG(G) and the achievement game
GEN(G) for a cyclic group G. First, we recall some general results about maximal
subgroups.

According to (Dlab 1960, Theorem 2) and (Suzuki (1982), Exercise 7 on page 144),
we can decompose the Frattini subgroup of a direct product.

Proposition 6.1 If G and H are finite groups, then �(G × H) = �(G) × �(H).

The following result can be found in (Dlab 1960, Corollary 2) and (Dixon 1967,
Problem 8.1) and is a consequence of Proposition 6.1.

Proposition 6.2 If n has prime factorization n = pn11 · · · pnkk , then the Frattini sub-
group of Zn is generated by p1 · · · pk and so it is isomorphic to the cyclic group of
order pn1−1

1 · · · pnk−1
k .

The next result follows from (Dummit and Foote 2004, Exercise 6.1.4) and (Rose
1994, Problem 140(v)).

Proposition 6.3 A subgroup of a finite abelian group is maximal if and only if it has
prime index.

Now we are ready to prove our first result about nim-numbers for finite cyclic groups.

Proposition 6.4 If k ≥ 1, then the simplified structure diagram of DNG(Z4k) is the
one shown in Fig. 9a, and hence DNG(Z4k) = ∗0.
Proof The result follows from Proposition 3.23 since �(Z4k) is even by Proposi-
tion 6.2. ��
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Simplified structure diagrams for cyclic groups assuming k ≥ 1

Proposition 6.5 If k ≥ 1, then the simplified structure diagram of DNG(Z4k+2) is
the one shown in Fig. 9c, and hence DNG(Z4k+2) = ∗3.
Proof Define the following collection of sets that form a partition of X :

S1 := {XI ∈ X | I = 〈2〉};
S2 := {XI ∈ X | XI is even};
S3 := {XI ∈ X | XI is odd but I 	= 〈2〉}.

Weuse structural induction on the structure classes to show that these sets are nonempty
and are the type equivalence classes of the structure classes, and that

type(XI ) =

⎧

⎪

⎨

⎪

⎩

(1, 1, 0), XI ∈ S1

(0, 0, 1), XI ∈ S2

(1, 3, 2), XI ∈ S3.

First, note that 〈2〉 has order 2k + 1, and hence index 2. By Proposition 6.3, 〈2〉 is
a maximal subgroup, which implies that X〈2〉 ∈ S1 is a terminal structure class. Since
〈2〉 is odd, type(X〈2〉) = (1, 1, 0). Hence Otype(X〈2〉) = {(1, 1, 0)}.

Next, let q be an odd prime divisor of 4k + 2. Then 〈q〉 has index q, and so 〈q〉
is a maximal subgroup by Proposition 6.3. Moreover, 〈q〉 has even order. It follows
that X〈q〉 ∈ S2, and hence S2 	= ∅. Let XI ∈ S2. If XI is terminal, then type(XI ) =
(0, 0, 1) and otype(XI ) = ∅. If XI is not terminal, then any option of XI must be even
since XI is even. In this case, otype(XI ) = {(0, 0, 1)} by induction. In both cases,
type(XI ) = (0, 0, 1), and so Otype(XI ) = {(0, 0, 1)}.

For the final case, suppose 4k + 2 has prime factorization 2pn11 · · · pnrr , where the
pi ’s are distinct odd primes. By Proposition 6.2, �(Z4k+2) is generated by 2p1 · · · pr
and is isomorphic to the cyclic group of odd order pn1−1

1 · · · pnr−1
r 	= 2k + 1. This

implies that �(Z4k+2) 	= 〈2〉. Hence �(Z4k+2) ∈ S3, and so S3 	= ∅. Let XI ∈ S3 so
that I is an odd intersection subgroup different from 〈2〉. Since the Frattini subgroup
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(a) (b)

Fig. 10 A representative game digraph and the simplified structure diagram for DNG(Z6)

is a subgroup of I , I = 〈2a〉 for some a 	= 1 that divides p1 · · · pr . This implies that
〈I ∪{2}〉 = 〈2〉, and so X〈2〉 ∈ S1 is an option of XI . Now, let p be a prime divisor of a,
which is odd.Then 〈I∪{p}〉 = 〈p〉has index p, andhence is an evenmaximal subgroup
by Proposition 6.3. This implies that X〈p〉 ∈ S2 is an option of XI . Thus, otype(XI ) is
either {(1, 1, 0), (0, 0, 1)} or {(1, 1, 0), (0, 0, 1), (1, 3, 2)} by induction. In both cases,
type(XI ) = (1, 3, 2). Therefore, Otype(XI ) = {(1, 1, 0), (0, 0, 1), (1, 3, 2)}.

It follows that the simplified structure diagram of DNG(Z4k+2) is the one shown
in Fig. 9(c), and so DNG(Z4k+2) = ∗3. ��
Example 6.6 Figure 10 shows a representative game digraph and the simplified struc-
ture diagram for DNG(Z6).

An easy calculation in the Z2 case together with Propositions 6.4, 6.5, and 3.22
immediately yield the following result.

Corollary 6.7 The nim-number of DNG(Z2) is 1. If n ≥ 3, then

DNG(Zn) =

⎧

⎪

⎨

⎪

⎩

∗1, n ≡2 1

∗0, n ≡4 0

∗3, n ≡4 2

.

Proposition 6.8 The nim-number of GEN(Zn) with n ≥ 2 is one larger than the
nim-number of DNG(Zn).

Proof The game digraph of GEN(Zn) is an extension of the game digraph of
DNG(Zn). In this extension every old vertex in the game digraph of DNG(Zn) gets
a new option that is a generating set since Zn is cyclic. These generating sets are
terminal positions with nim-number 0. Figure 1a, b show this extension for Z4. After
the extension, the nim-number of every old vertex is increased by one. Figure 9 shows
how the structure diagrams change during the extension. ��
Corollary 6.9 The nim-number of GEN(Z2) is 2. If n ≥ 3, then

GEN(Zn) =

⎧

⎪

⎨

⎪

⎩

∗2, n ≡2 1

∗1, n ≡4 0

∗4, n ≡4 2

.
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(a) (b)

(d) (e) (f)

(c)

Fig. 11 Simplified structure diagrams for the dihedral groups assuming k ≥ 1

7 Dihedral groups

In this section we study the avoidance game DNG(G) and the achievement game
GEN(G) for a dihedral group G. The following result is folklore.

Proposition 7.1 The subgroups of the dihedral groupDn = 〈r, f |rn = f 2 = e, r f =
f rn−1〉 are either dihedral or cyclic. Themaximal subgroups ofDn are the cyclic group
〈r〉 and the dihedral groups of the form 〈r p, r i f 〉 ∼= Dn/p with prime divisors p of n.

The following result can be found in (Dixon 1967, Problem 8.1).

Proposition 7.2 If n has prime factorization n = pn11 · · · pnkk , then the Frattini sub-

group of Dn is a cyclic group of order pn1−1
1 · · · pnk−1

k .

Proposition 7.3 If k ≥ 1, then the simplified structure diagrams of DNG(D4k)

and DNG(D4k+2) are the ones shown in Fig. 11a, c, respectively, and hence
DNG(D2k+2) = ∗0.
Proof The Frattini subgroup of D4k is even by Proposition 7.2. Thus, the simplified
structure diagram of DNG(D4k) is the one depicted in Fig. 11a by Proposition 3.23.

The terminal structure classes of DNG(D4k+2) are even since the maximal sub-
groups are even by Proposition 7.1. On the other hand, the Frattini subgroup is odd by
Proposition 7.2. Structural induction on the structure classes shows that type(XI ) =
(0, 0, 1) and Otype(XI ) = {(0, 0, 1)} if XI is even, while type(XI ) = (1, 0, 1)
and Otype(XI ) = {(1, 0, 1)} if XI is odd. Every position that is not terminal has a
terminal option since by Proposition 7.1 we can add an appropriate rotation to the
position that creates a terminal position. Therefore, the simplified structure diagram
of DNG(D4k+2) is the one depicted in Fig. 11c. ��
Proposition 7.4 If k ≥ 1, then the simplified structure diagram of DNG(D2k+1) is
the one shown in Fig. 11b, and hence DNG(D2k+1) = ∗3.
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Proof This argument is essentially the same as the one forDNG(Z4k+2) (see the proof
of Proposition 6.5), where we replace 2 with r . The only maximal subgroup with odd
order is 〈r〉. Every other maximal subgroup has even order. ��
Corollary 7.5 For n ≥ 3, we have

DNG(Dn) =
{

∗3, n ≡2 1

∗0, n ≡2 0
.

The outcome of GEN(D4k) can be determined using (Barnes 1988, Section 3.3). We
provide information about the structure diagram of the game.

Proposition 7.6 If k ≥ 1, then the simplified structure diagram of GEN(D4k) is the
one shown in Fig. 11d, and hence GEN(D4k) = ∗0.
Proof Define the following collection of sets that form a partition of Y:

S1 := {XI ∈ Y | XI is terminal};
S2 := {XI ∈ Y | XI is semi-terminal};
S3 := {XI ∈ Y | XI is non-terminal}.

Weuse structural induction on the structure classes to show that these sets are nonempty
and are the type equivalence classes of the structure classes, and that

type(XI ) =

⎧

⎪

⎨

⎪

⎩

(0, 0, 0), XI ∈ S1

(0, 1, 2), XI ∈ S2

(0, 0, 2), XI ∈ S3

.

First, observe that the Frattini subgroup has even order by Proposition 7.2. This
implies that every structure class is even, as well.

It is clear that S1 = {XG} 	= ∅ and type(XG) = (0, 0, 0).
Consider the even maximal subgroup R = 〈r〉 of D4k . Then XR ∈ S2 since

〈R ∪ { f }〉 = D4k , and so S2 	= ∅. If XI ∈ S2, then XI is semi-terminal, and so
otype(XI ) is either {(0, 0, 0)} or {(0, 0, 0), (0, 1, 2)} by induction. In either case,
type(XI ) = (0, 1, 2), and so Otype(XI ) = {(0, 0, 0), (0, 1, 2)}.

For the final case, observe that S3 	= ∅ since the empty position is non-terminal and
belongs to X�(D4k ). If XI ∈ S3, then every option of XI must be semi-terminal or non-
terminal, and so otype(XI ) is either {(0, 0, 2)} or {(0, 0, 2), (0, 1, 2)} by induction. In
either case, type(XI ) = (0, 0, 2), and hence Otype(XI ) = {(0, 0, 2), (0, 1, 2)}.

It follows that the simplified structure diagram of GEN(D4k) is the one shown in
Fig. 11d, and so GEN(D4k) = ∗0. ��
Proposition 7.7 If k ≥ 1, then the simplified structure diagram of GEN(D2k+1) is
the one shown in Fig. 11e, and hence GEN(D2k+1) = ∗3.

123



530 D. C. Ernst, N. Sieben

Proof Let G := D2k+1. Define the following collection of sets that form a partition
of Y:

S1 := {XI ∈ Y | XI is terminal};
S2 := {XI ∈ Y | XI is odd and semi-terminal};
S3 := {XI ∈ Y | XI is even and semi-terminal};
S4 := {XI ∈ Y | XI is non-terminal}.

Weuse structural induction on the structure classes to show that these sets are nonempty
and are the type equivalence classes of the structure classes, and that

type(XI ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(0, 0, 0), XI ∈ S1

(1, 2, 1), XI ∈ S2

(0, 1, 2), XI ∈ S3

(1, 3, 0), XI ∈ S4

.

It is clear that S1 = {XG} 	= ∅ and type(XG) = (0, 0, 0).
Next, consider the maximal subgroup R = 〈r〉 of G. The only odd maximal sub-

group is R by Proposition 7.1, and so S2 = {XR}. Any T ∈ Opt(R) generates
G since R is a maximal subgroup. So R has no option in a semi-terminal struc-
ture class, and hence otype(XR) = {(0, 0, 0)}. Thus, type(XR) = (1, 2, 1), and so
Otype(XR) = {(0, 0, 0), (1, 2, 1)}.

For the third case, consider the even subgroup F = 〈 f 〉. Then F is a position
of an even semi-terminal structure class since 〈F ∪ {r}〉 = G, and so S3 	= ∅.
Suppose XI ∈ S3. Since XI is semi-terminal, otype(XI ) is either {(0, 0, 0)} or
{(0, 0, 0), (0, 1, 2)} by induction. In either case, type(XI ) = (0, 1, 2), and so
Otype(XI ) = {(0, 0, 0), (0, 1, 2)}.

For the final case, note that�(G) is a proper subgroup of 〈r〉 by Proposition 7.2. If g
is a rotation inG, then�(G)∪{g} generates a subgroup of 〈r〉. If g is a reflection inG,
then �(G) ∪ {g} generates a subgroup H of G. It is easy to see that H is isomorphic
to a dihedral group whose order is twice the order of �(G). Thus H 	= G which
means X�(G) ∈ S4, and so S4 	= ∅. Let XI ∈ S4. Since XI is non-terminal, I does
not contain r or any reflections. Then XI must be odd by Cauchy’s Theorem because
there are no even order rotations in G. Hence 〈I ∪ {r}〉 = 〈r〉 is an option of XI in S2
and 〈I ∪ { f }〉 is an option of XI in S3. So otype(XI ) is either {(1, 2, 1), (0, 1, 2)} or
{(1, 2, 1), (0, 1, 2), (1, 3, 0)} by induction. In either case, type(XI ) = (1, 3, 0), and
hence Otype(XI ) = {(1, 2, 1), (0, 1, 2), (1, 3, 0)}.

It follows that the simplified structure diagram of GEN(G) is the one shown in
Fig. 11e, and so GEN(G) = ∗3. ��
Example 7.8 Figure 12 shows a representative game digraph for GEN(D3) and
Fig. 11e shows the simplified structure diagram for GEN(D3).

Proposition 7.9 If k ≥ 1, then the simplified structure diagram of GEN(D4k+2) is
the one shown in Fig. 11f, and hence GEN(D4k+2) = ∗1.
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Fig. 12 Representative game digraph of GEN(D3). We use permutation notation after the identification
of D3 with S3

Proof Let G := D4k+2. Define the following collection of sets that form a partition
of Y:

S1 := {XI ∈ Y | XI is terminal};
S2 := {XI ∈ Y | XI is semi-terminal};
S3 := {XI ∈ Y | XI is even and non-terminal};
S4 := {XI ∈ Y | XI is odd and non-terminal without any even non-terminal option};
S5 := {XI ∈ Y | XI is odd and non-terminal with an even non-terminal option}.

Weuse structural induction on the structure classes to show that these sets are nonempty
and are the type equivalence classes of the structure classes and that

type(XI ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(0, 0, 0), XI ∈ S1

(0, 1, 2), XI ∈ S2

(0, 0, 2), XI ∈ S3

(1, 1, 0), XI ∈ S4

(1, 1, 2), XI ∈ S5

.

As usual, we have S1 = {XG} 	= ∅ and type(XG) = (0, 0, 0).
Next, consider the even maximal subgroup R := 〈r〉. Then XR ∈ S2 since 〈R ∪

{ f }〉 = G, and so S2 	= ∅. Suppose XI ∈ S2. Then I = R or I contains a reflection,
and so XI must be even. Since XI is semi-terminal, otype(XI ) is one of {(0, 0, 0)}
and {(0, 0, 0), (0, 1, 2)} by induction. In either case, type(XI ) = (0, 1, 2), and so
Otype(XI ) = {(0, 0, 0), (0, 1, 2)}.

For the third case, consider the even subgroup Q = 〈r2k+1〉 = {e, r2k+1}. Then
Q ∈ S3 since for all h ∈ G, 〈Q ∪ {h}〉 	= G, and so S3 	= ∅. Let XI ∈ S3. Then
every option of XI is even. Moreover, it must be the case that 〈I ∪ {x}〉 is an option
in a structure class belonging to S2 exactly when x is a reflection or x is a rotation
such that 〈I ∪ {x}〉 is the full rotation subgroup. Otherwise, 〈I ∪ {x}〉 is an option
in a structure class belonging to S3. This shows that otype(XI ) is either {(0, 1, 2)}
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or {(0, 1, 2), (0, 0, 2)} by induction. In either case, type(XI ) = (0, 0, 2), and hence
Otype(XI ) = {(0, 1, 2), (0, 0, 2)}.

To show that S4 	= ∅, consider the odd subgroup P = 〈r2〉 and let x be any even
order element of G. Then either x is a reflection or equal to rm , where m is odd.
In either case, 〈P ∪ {x}〉 is maximal, and hence 〈P ∪ {x}〉 must be an element of
a semi-terminal structure class in S2. Hence P ∈ S4. Now, let XI ∈ S4, so that
XI is an odd non-terminal structure class without any even non-terminal options.
We see that 〈I ∪ {r}〉 contains the maximal subgroup 〈r〉, which has even order. So
XI has an option in S2. Next, we show that XI has no option in S5. For a con-
tradiction, suppose XI has an option X J in S5. By the definition of S5, X J has an
option XH in S3. Let t be an element of order 2 in H and let I ∪ {t} ∈ XK . Then
K is even and K ≤ H ≤ G. So XK is an option of XI in S3, which is a con-
tradiction. This shows that otype(XI ) is either {(0, 1, 2)} or {(0, 1, 2), (1, 1, 0)} by
induction. In either case, otype(XI ) = {(1, 1, 0)}, and hence Otype(XI ) = {(0, 1, 2),
(1, 1, 0)}.

For the final case, consider the non-terminal structure class X�(G), which con-
tains the empty position ∅ and is odd by Proposition 7.2. We see that 〈∅ ∪ {r2k+1}〉 =
{e, r2k+1} is an option in a structure class belonging toS3. This shows that X�(G) ∈ S5,
and so S5 	= ∅. Suppose XI ∈ S5. Since I is of odd order, it must be a sub-
group of 〈r2〉. However, since 〈r2〉 is an element of a structure class belonging
to S4, I must be a proper subgroup of 〈r2〉. We see that 〈I ∪ {r}〉 = 〈r〉 and
〈I ∪ {r2}〉 = 〈r2〉, which are elements of structure classes belonging to S2 and
S4, respectively. As a consequence, otype(XI ) is either {(0, 0, 2), (1, 1, 0), (0, 1, 2)}
or {(0, 0, 2), (1, 1, 0), (0, 1, 2), (1, 1, 2)} by induction. In either case, type(XI ) =
(1, 1, 2), and hence Otype(XI ) = {(0, 0, 2), (1, 1, 0), (0, 1, 2), (1, 1, 2)}.

It follows that the simplified structure diagram of GEN(G) is the one shown in
Fig. 11f, which implies that GEN(G) = ∗1. ��
Corollary 7.10 For n ≥ 3, we have

GEN(Dn) =

⎧

⎪

⎨

⎪

⎩

∗3, n ≡2 1

∗0, n ≡4 0

∗1, n ≡4 2

.

The simplified structure diagrams for GEN(Dn) are shown in Fig. 11.

8 Abelian groups

In this section, we study the avoidance game DNG(G) and the achievement game
GEN(G) for a finite abelian group G. The following result is from (Suzuki 1982,
Corollary on page 141).

Proposition 8.1 If G and H are finite groups of relatively prime orders, then any
subgroup of G × H is of the form K × L for some subgroups K ≤ G and L ≤ H.

The next result completely characterizes the nim-numbers for DNG(G) for finite
abelian groups G.
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Proposition 8.2 If G is a finite abelian group, then

DNG(G) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∗1, G is nontrivial of odd order

∗1, G ∼= Z2

∗3, G ∼= Z2 × Z2k+1 with k ≥ 1

∗0, else

.

Proof The case when G is nontrivial of odd order is proved in Proposition 3.22.
Corollary 6.7 covers both the G ∼= Z2 and G ∼= Z2 × Z2k+1 cases. In every other
case, DNG(G) = ∗0 since the second player has a winning strategy as was shown
in (Anderson and Harary 1987, Section 3) and in (Barnes 1988, Section 2.1) (see
Proposition 3.1). ��

The remainder of this section tacklesGEN(G) for finite abelian groupsG. Our analysis
involving groupswith non-zero nim-numbers handles three cases, which are addressed
in Propositions 8.11, 8.14, and 8.15.

Recall that every finite abelian group G has an invariant factor decomposition
G ∼= Zα1 × · · · × Zαk where the positive non-unit elementary divisors α1, . . . , αk are
uniquely determined by G and satisfy αi | αi+1 for i ∈ {1, . . . , k − 1}. Our proof of
Proposition 8.11 requires the following notion and the lemmas that follow.

Definition 8.3 We define the spread spr(G) of the finite abelian group G to be the
number of elementary divisors in the invariant factor decomposition of G.

Note that the trivial group has spread spr(Z1) = 0. If G = Zp
r1
1

× · · · × Zp
rk
k

is

an abelian group with primes p1, . . . , pk , then spr(G) = max{ni | i ∈ {1, . . . , k}}
where ni := |{ j | pi = p j }|. In this case, G is isomorphic to the direct product of
spr(G)-many cyclic groups, but it is not isomorphic to the direct product of fewer
cyclic groups. It follows that the spread of G is the minimum size of a generating set
of G.

Example 8.4 Let G = Z3 × Z9 × Z5 × Z49 × Z7. Then spr(G) = 2. If g =
(1, 1, 0, 1, 0), then G/〈g〉 ∼= Z3 × Z5 × Z7, and so spr(G/〈g〉) = 1 = spr(G) − 1. If
h = (0, 3, 1, 1, 0), then G/〈h〉 ∼= Z3 × Z3 × Z7, and so spr(G/〈h〉) = 2 = spr(G).
If k = (1, 3, 1, 0, 1), then G/〈k〉 ∼= Z9 × Z49, and so spr(G/〈k〉) = 1 = spr(G) − 1.

The following is an easy consequence of the definitions.

Lemma 8.5 Let G = Zp
r1
1

×· · ·×Zp
rk
k
be an abelian group with primes p1, . . . , pk.

If g = (g1, . . . , gk) with

gi :=
{

1, i = min{ j | pi = p j }
0, else

,

then spr(G/〈g〉) = spr(G) − 1.
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Definition 8.6 If A is anm×n integer matrix, then we define Grp(A) to be the abelian
group with generators g1, . . . , gn satisfying the relations

A

⎡

⎢

⎣

g1
...

gn

⎤

⎥

⎦
=

⎡

⎢

⎣

0
...

0

⎤

⎥

⎦
.

It is well-known that Grp(A) ∼= Grp(Snf(A)) where Snf(A) is the Smith Normal
Form of A. The diagonal entriesα1, . . . , αk of Snf(A) can be calculated asα1 = d1(A)

and αi = di (A)/di−1(A) for i ∈ {2, . . . , k}, where di (A) is the greatest common
divisor of all i × i minors of A (Jacobson 1985, Theorem 3.9). Elementary integer
row and column operations can be used on A to get Snf(A). The non-unit diagonal
elements of Snf(A) are the invariant factors of Grp(A) and so spr(Grp(A)) is the
number of non-unit elements of {α1, . . . , αk}.
The truncated Smith Normal Form tSnf(A) of A is created from Snf(A) by removing
every zero row and every column containing a single nonzero entry equal to 1. We
clearly have Grp(A) ∼= Grp(tSnf(A)). It is also clear that spr(Grp(A)) is equal to the
size of tSnf(A).

Example 8.7 Let G = Z3 × Z15 ∼= Grp
([

3 0
0 15

])

. Then spr(G) = 2. Now, let

g = (1, 2) ∈ G and A =
[

3 0
0 15
1 2

]

. Then Snf(A) =
[

1 0
0 3
0 0

]

and tSnf(A) = [ 3 ], and

so G/〈g〉 ∼= Grp(A) ∼= Grp(Snf(A)) ∼= Z3. Hence spr(G/〈g〉) = 1 = spr(G) − 1.

Definition 8.8 Let Zr1 × · · · × Zrk be the invariant factor decomposition of G and
ei := (0, . . . , 0, 1, 0, . . . , 0) for i ∈ {1, . . . , k}, where 1 occurs in the i th component.
For g ∈ G we let ĝ := [

ĝ1 · · · ĝk
] ∈ Z1×k such that ĝi is the smallest nonnegative

integer satisfying

g =
∑

ĝi ei .

Lemma 8.9 If g is an element of the abelian group G, then spr(G/〈g〉) ≥ spr(G)−1.

Proof Let Zr1 × · · · × Zrk be the invariant factor decomposition of G. Note that
1 	= r1 | r2 | · · · | rk . Then G ∼= Grp(A) with A = diag(r1, . . . , rk) and G/〈g〉 ∼=
Grp(B) ∼= Grp(Snf(B)) where

B =
[

A
ĝ

]

=

⎡

⎢

⎢

⎢

⎣

r1 0
. . .

0 rk
ĝ1 · · · ĝk

⎤

⎥

⎥

⎥

⎦

.

Let α1, . . . , αk be the diagonal elements of Snf(B). If spr(G/〈g〉) ≤ spr(G) − 2 =
k − 2, then d1(B) = α1 = α2 = 1. This is impossible since it is easy to see that every
2× 2 minor of B is divisible by r1 and so α2 = d2(B)/d1(B) = d2(B) is divisible by
r1. ��
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(a) (b) (c) (d)

Fig. 13 Simplified structure diagrams forGEN(G)withG = Z
p
r1
1

×· · ·×Z
p
rk
k

and odd primes p1, . . . , pk

Proposition 8.10 If H is a subgroup and g is an element of the finite abelian group
G, then

spr(G/〈H ∪ {g}〉) ≥ spr(G/H) − 1.

Proof Let Zr1 × · · · × Zrk be the invariant factor decomposition of G and H =
{h1, . . . , hm}. Then G ∼= Grp(A) with A = diag(r1, . . . , rk) and G/H ∼= Grp(B) ∼=
Grp(tSnf(B)) with

B =
[

A

Ĥ

]

and Ĥ =

⎡

⎢

⎢

⎣

̂h1
...

̂hm

⎤

⎥

⎥

⎦

.

Note that ̂hi = [

̂hi 1 · · · ̂hi m
]

. Applying elementary integer row and column opera-
tions gives

G/〈H ∪ {g}〉 ∼= Grp

[

B
ĝ

]

∼= Grp

⎡

⎣

I 0
0 tSnf(B)

0 g̃

⎤

⎦ ∼= Grp

[

tSnf(B)

g̃

]

for some g̃. So,G/〈H ∪{g}〉 is isomorphic to a quotient ofG/H by a cyclic subgroup.
The result now follows as in the proof of Lemma 8.9. ��

Proposition 8.11 If G = Zp
r1
1

× · · · × Zp
rk
k

is an abelian group with odd primes

p1, . . . , pk, then the simplified structure diagram of GEN(G) is one of the diagrams
shown in Fig. 13, and hence

GEN(G) =

⎧

⎪

⎨

⎪

⎩

∗0, spr(G) = 0

∗2, 1 ≤ spr(G) ≤ 2

∗1, 3 ≤ spr(G)

.

Proof The Frattini subgroup is �(G) ∼= Z
p
r1−1
1

× · · · × Z
p
rk−1
k

by Propositions 6.1

and 6.2, and soG/�(G) ∼= Zp1 ×· · ·×Zpk . One can show that this implies that every
proper subgroup of G containing �(G) is an intersection subgroup. We use structural
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(a) (b) (c) (d) (e)

Fig. 14 Simplified structure diagrams for GEN(Zn
2)

induction on the structure classes to show that the simplified structure diagram is only
dependent on spr(G) as shown in Fig. 13, and

type(XI ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

t0 := (1, 0, 0), spr(G/I ) = 0

t1 := (1, 2, 1), spr(G/I ) = 1

t2 := (1, 2, 0), spr(G/I ) = 2

t3 := (1, 1, 0), spr(G) ≥ spr(G/I ) ≥ 3

.

The statement is clearly true when spr(G/I ) = 0, that is, I = G. Assume spr(G/I ) =
i ≥ 1. Then XI has an option XK such that spr(G/K ) = i − 1 by Lemma 8.5
and the proof of Proposition 8.10. Now, suppose g ∈ G\I . By Proposition 8.10,
spr(G/〈I ∪ {g}〉) ≥ spr(G/I ) − 1, which implies that if X J is an option of XI , then
spr(G/J ) ∈ {spr(G/I ), spr(G/I ) − 1}.

First, assume j := spr(G/I ) ∈ {1, 2, 3}. Then otype(XI ) = {t j−1} or otype(XI ) =
{t j−1, t j } by induction. In either case, type(XI ) = t j , and so Otype(XI ) = {t j−1, t j }.
Now, assume spr(G/I ) ≥ 4. Then otype(XI ) = {t3} by induction. Hence type(XI ) =
t3, and so Otype(XI ) = {t3}. ��
Example 8.12 It is easy to check that the simplified structure diagram of GEN(Zn

2),
shown in Fig. 14, follows a pattern somewhat similar to that ofGEN(Zp

r1
1

×· · ·×Zp
rk
k

),

shown in Fig. 13. Note that the only odd order subgroup is the Frattini subgroup, which
is the trivial subgroup.

The following result ofBarnes (1988) is an easy consequence of theThird Isomorphism
Theorem.

Lemma 8.13 If I is a proper intersection subgroup of the abelian group G, then X I

is semi-terminal in GEN(G) if and only if G/I is cyclic.

Proposition 8.14 If G = Z2×Z2×Zm ×Zk such that m and k are odd and relatively
prime, then the simplified structure diagram ofGEN(G) is the one shown in Fig. 15(a),
and hence GEN(G) = ∗1.
Proof Define the following collection of sets that form a partition of Y:

S1 := {XI ∈ Y | XI is terminal};
S2 := {XI ∈ Y | XI is semi-terminal};
S3 := {XI ∈ Y | XI is non-terminal}.
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Fig. 15 Simplified structure
diagram for
GEN(Z2 × Z2 × Zm × Zk )

with odd m and k

(a) (b)

Weuse structural induction on the structure classes to show that these sets are nonempty
and are the type equivalence classes of the structure classes, and that

type(XI ) =

⎧

⎪

⎨

⎪

⎩

(0, 0, 0), XI ∈ S1

(0, 1, 2), XI ∈ S2

(1, 1, 0), XI ∈ S3

.

First, note that since the orders of Z2 ×Z2 and Zm ×Zk are relatively prime, every
subgroup is of the form I = H × K for some H ≤ Z2 × Z2 and K ≤ Zm × Zk by
Proposition 8.1.

We show that if I is an intersection subgroup, then XI is even if and only if XI

is semi-terminal. Suppose that XI is even. Then H is nontrivial, which implies that
(Z2 × Z2)/H is isomorphic to 〈0〉 or Z2. Since m and k are relatively prime, Zm × Zk

is cyclic, and hence (Zm × Zk)/K is cyclic, as well. This implies that

G/I = G/(H × K ) ∼= (Z2 × Z2)/H × (Zm × Zk)/K

is cyclic since the orders of (Z2 × Z2)/H and (Zm × Zk)/K are relatively prime and
each group is cyclic. Hence XI is semi-terminal by Lemma 8.13. On the other hand,
if XI is semi-terminal, reversing the above argument presents no difficulties, so XI is
even.

It is clear that S1 = {XG} 	= ∅ and type(XG) = (0, 0, 0).
The maximal subgroup R = 〈0〉 × Z2 × Zm × Zk is even. Hence XR ∈ S2, and

so S2 	= ∅. Let XI ∈ S2. Then by the above, XI is even. Hence otype(XI ) is either
{(0, 0, 0)} or {(0, 0, 0), (0, 1, 2)} by induction. In either case, type(XI ) = (0, 1, 2),
and so Otype(XI ) = {(0, 0, 0), (0, 1, 2)}.

For the final case, observe that X�(G) ∈ S3 since �(G) is odd by Propositions 6.1
and 6.2, and soS3 	= ∅. Let XI ∈ S3. Then XI must be odd.Moreover, I∪{(1, 0, 0, 0)}
is an option of I that lies in a semi-terminal structure class. Hence otype(XI ) is either
{(0, 1, 2)} or {(0, 1, 2), (1, 1, 0)} by induction. In either case, type(XI ) = (1, 1, 0),
and hence Otype(XI ) = {(0, 1, 2), (1, 1, 0)}.

It follows that the simplified structure diagram of GEN(G) is the one shown in
Fig. 15a, and so GEN(G) = ∗1. ��
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Proposition 8.15 If G = Z2 × Z2 × Zm × Zk such that m and k are odd and not
relatively prime, then the simplified structure diagram of GEN(G) is the one shown
in Fig. 15b, and hence GEN(G) = ∗1.
Proof Define the following collection of sets that form a partition of Y:

S1 := {XI ∈ Y | XI is terminal};
S2 := {XI ∈ Y | XI is semi-terminal};
S3 := {XI ∈ Y | XI is even and non-terminal};
S4 := {XI ∈ Y | XI is odd and non-terminal without any even non-terminal option};
S5 := {XI ∈ Y | XI is odd and non-terminal with an even non-terminal option}.

Weuse structural induction on the structure classes to show that these sets are nonempty
and are the type equivalence classes of the structure classes and that

type(XI ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(0, 0, 0), XI ∈ S1

(0, 1, 2), XI ∈ S2

(0, 0, 2), XI ∈ S3

(1, 1, 0), XI ∈ S4

(1, 1, 2), XI ∈ S5

.

It is clear that S1 = {XG} 	= ∅ and type(XG) = (0, 0, 0).
Next, consider the evenmaximal subgroup R = 〈0〉×Z2×Zm×Zk . Then XR ∈ S2

since 〈R ∪ {(1, 0, 0, 0)}〉 = G, and so S2 	= ∅. Let XI ∈ S2. Note that the orders of
Z2 × Z2 and Zm × Zk are relatively prime, so I = H × K for some H ≤ Z2 × Z2
and K ≤ Zm × Zk by Proposition 8.1. Since XI is semi-terminal, the quotient

G/I = G/(H × K ) ∼= (Z2 × Z2)/H × (Zm × Zk)/K

is cyclic by Lemma 8.13. This happens only if

H ∈ {〈0〉 × Z2, Z2 × 〈0〉, 〈(1, 1)〉, Z2 × Z2},

which shows that XI must be even. Hence otype(XI ) is either {(0, 0, 0)} or
{(0, 0, 0), (0, 1, 2)} by induction since XI is semi-terminal. In either case, type(XI ) =
(0, 1, 2), and hence Otype(XI ) = {(0, 0, 0), (0, 1, 2)}.

For the third case, consider the even subgroups R1 = Z2 × 〈0〉 × 〈0〉 × 〈0〉,
R2 = 〈0〉 × Z2 × 〈0〉 × 〈0〉, and R3 = 〈(1, 1)〉 × 〈0〉 × 〈0〉. Let XIi be the structure
class containing Ri . Since m and k are not relatively prime, we can choose m′ and k′
such that m/m′ = k/k′ is a prime. Then Ii is contained in the sets

M := Z2 × Z2 × 〈m/m′〉 × Zk ∼= Z2 × Z2 × Zm′ × Zk

N := Z2 × Z2 × Zm × 〈k/k′〉 ∼= Z2 × Z2 × Zm × Zk′ .
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By Proposition 6.3, M and N are maximal subgroups. Since M ∩ N ∼= Z2 × Z2 ×
Zm′ × Zk′ , G/M ∩ N ∼= Z2

m/m′ is not cyclic. Hence each G/Ii is not cyclic. So each
XIi is even and non-terminal by Lemma 8.13. Thus each Ri is an element of an even
non-terminal structure class, which shows that S3 	= ∅. Let XI ∈ S3. We show that
XI has an option in S2. Since I is even, at least one of R1, R2, or R3 is a subgroup
of I . Let h3 = (0, 0, 1, 0). Since gcd(2, k) = 1, each G/〈Ri ∪ {h3}〉 ∼= Z2 × Zm is
cyclic. This implies that G/〈I ∪ {h3}〉 is cyclic, and hence I ∪ {h3} is an element of
an even semi-terminal structure class. It is clear that every option of XI is in S2 ∪ S3.
Therefore, otype(XI ) is either {(0, 1, 2)} or {(0, 1, 2), (0, 0, 2)} by induction. In either
case, type(XI ) = (0, 0, 2), and so Otype(XI ) = {(0, 1, 2), (0, 0, 2)}.

For the fourth case, consider the odd subgroup Q := 〈0〉×〈0〉×Zm ×〈0〉. Then Q
is contained in an odd structure class X J since Q is a subset of the maximal subgroups
〈0〉×Z2×Zm×Zk andZ2×〈0〉×Zm×Zk .We show that X J ∈ S4. For a contradiction,
assume that Q ∪ {h} is in a structure class inside S3 for some h. Then 〈Q ∪ {h}〉 ∼=
Z2 ×Zm ×U , whereU ≤ Zk . This implies that G/〈Q ∪{h}〉 ∼= Z2 × (Zk/U ), which
is cyclic since k is odd. Then Q ∪ {h} is in a structure class in S2 by Lemma 8.13.
This is a contradiction, and so S4 	= ∅. Now consider XI ∈ S4. If h4 is any element
of G with even order, then I ∪ {h4} is contained in an even semi-terminal structure
class by the definition of S4. So XI has an option in S2. Next, we show that XI

has no option in S5. For a contradiction, suppose XI has an option X J in S5. By the
definition of S5, X J has an option XH in S3. Let t be an element of order 2 in H and let
I ∪{t} ∈ XK . Then K is even and K ≤ H ≤ G. So XK is an option of XI inS3, which
is a contradiction. Hence any option of XI is in S2 or S4. Thus, otype(XI ) is either
{(0, 1, 2)} or {(0, 1, 2), (1, 1, 0)} by induction. In either case, type(XI ) = (1, 1, 0)
and so Otype(XI ) = {(0, 1, 2), (1, 1, 0)}.

To show that S5 	= ∅, consider the empty position ∅, which is an element of the odd
structure class X�(G). Since G is not cyclic, X�(G) must be a non-terminal structure
class. Let g3 := (1, 0, 0, 0). The empty position has the option {g3} that belongs to a
structure class in S3 by Lemma 8.13, since

G/〈{g3}〉 = G/(Z2 × 〈0〉 × 〈0〉 × 〈0〉) ∼= Z2 × Zm × Zk

is not cyclic as gcd(m, k) 	= 1. Hence X�(G) ∈ S5. Next, let XI ∈ S5. Let g2 =
(1, 0, 1, 0) and g4 = (0, 0, 1, 0). Then I ∪ {g2} belongs to an even semi-terminal
structure class by Lemma 8.13 since G/〈I ∪ {g2}〉 is cyclic. This implies that XI has
an option in S2. Lastly, we will show that I ∪ {g4} is an option of I in a structure
class in S4. We see that Q is a subgroup of 〈I ∪ {g4}〉. We know from the fourth
case that 〈g4〉 = Q ∈ X J ∈ S4. Hence the odd structure class containing I ∪ {g4}
belongs to S4. As a consequence, otype(XI ) is either {(0, 0, 2), (1, 1, 0), (0, 1, 2)}
or {(0, 0, 2), (1, 1, 0), (0, 1, 2), (1, 1, 2)} by induction. In either case, type(XI ) =
(1, 1, 2), and hence Otype(XI ) = {(0, 0, 2), (1, 1, 0), (0, 1, 2), (1, 1, 2)}.

It follows that the simplified structure diagram of GEN(G) is the one shown in
Fig. 15b, which implies that GEN(G) = ∗1. ��
It is interesting to notice that the simplified structure diagram from the previous the-
orem is the same as that of GEN(D4k+2) shown in Fig. 11f.
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Fig. 16 Nimbers for DNG(Sn) and DNG(An)

Corollary 8.16 If G is a finite abelian group, then

GEN(G) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∗2, |G| is odd and 1 ≤ spr(G) ≤ 2

∗1, |G| is odd and spr(G) ≥ 3

∗2, G ∼= Z2

∗1, G ∼= Z4k with k ≥ 1

∗4, G ∼= Z4k+2 with k ≥ 1

∗1, G ∼= Z2 × Z2 × Zm × Zk for m, k odd

∗0, else

.

Proof By (Barnes 1988, Section 3.2), the first player wins GEN(G) exactly when G
is cyclic, odd, or isomorphic to Z2 × Z2 × Zm × Zk with odd m and k. We already
proved the result in these cases. In every other case the second player wins, so in these
cases GEN(G) = ∗0. ��

9 Symmetric and alternating groups

According to (Barnes 1988, Section 2.3), the second player winsDNG(Sn) for n ≥ 4.
HenceDNG(Sn) = ∗0 forn ≥ 4.Wealready studied the remaining cases. In particular,
we know that DNG(S2) = DNG(Z2) = ∗1 and DNG(S3) = DNG(D3) = ∗3. These
results are summarized in Fig. 16.

The DNG(An) games remain a bit of a mystery. There is an incomplete analysis of
DNG(An) in (Barnes 1988, Section 2.4) that involves some fairly deep group-theoretic
results. By Proposition 3.22, we knowDNG(A3) = DNG(Z3) = ∗1. Some additional
computer calculated values are listed in Fig. 16.

By (Barnes 1988, Section 3.4), the first player wins GEN(Sn) for n ≥ 5 and
GEN(An) for all n ≥ 4. On the other hand,GEN(S2) = GEN(Z2) = ∗2,GEN(S3) =
GEN(D3) = ∗3, GEN(A3) = GEN(Z3) = ∗2, and computer calculations show that
GEN(S4) = ∗0.

Conjecture 9.1 For n ≥ 5, we have GEN(Sn) = ∗1 = GEN(An).

Wehave verified the conjecture for n ∈ {5, 6, 7, 8} using our software. The conjectured
simplified structure diagrams are shown in Fig. 17.

10 Further questions

We conclude with a few open problems that may not be out of reach.
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(a) (b) (c)

Fig. 17 Known and conjectured values and simplified structure diagrams for GEN(Sn) and GEN(An)

1. Is it possible to have a directed cycle in the simplified structure digraph? This
never happens for the groups we have considered, but are there groups for which
this is possible?

2. Does Conjecture 9.1 aboutGEN(Sn) andGEN(An) hold? Structural induction on
the structure classes could work to show that the simplified structure diagram of
Fig. 17 is correct.

3. What are the remaining nim-numbers forDNG(An)? The partial results of (Barnes
1988, Theorem2) are quite complicated. Settling this question likely requires some
sophisticated group theory arguments.

4. What are the nim-numbers of other families of groups? In particular, what are the
nim-numbers of generalized dihedral groups of the form A�Z2 where A is a finite
abelian group?

5. Are there any general results regarding quotient groups and direct products of
groups? A positive answer would be very helpful in the study of more complicated
groups.

6. Does Conjecture 4.9 about the spectrum of GEN(G) hold? Is the set {nim
(GEN(G)) | G is a finite group} at least bounded?

7. Can the structure diagram approach be generalized to study DNG and GEN on
other algebraic structures with generators (e.g., semigroups, inverse semigroups)
and compute their corresponding nim-numbers?

8. The Sprague-Grundy theory is generalized to infinite loopy games in Fraenkel
and Perl (1975); Smith (1966). A recent description of the theory can be found
in (Aaron 2013, IV.4). Can our techniques be generalized to find the loopy nim-
numbers of some families of infinite groups?
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