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Abstract We provide a model that merges two basic models of strategic network for-
mation and incorporates them as extreme cases: Jackson and Wolinsky’s connections
model based on bilateral formation of links, andBala andGoyal’s two-wayflowmodel,
where links can be unilaterally formed. In our model a link can be created unilaterally,
but when it is only supported by one of the two players the flow through it suffers
some friction or decay, but more than when it is supported by both players. When the
friction in singly-supported links is maximal (i.e. there is no flow) we have Jackson
and Wolinsky’s connections model, while when flow in singly-supported links is as
good as in doubly-supported links we have Bala and Goyal’s two-way flow model.

We thank Francis Bloch, Matthew Jackson, M. Ángel Meléndez-Jiménez, Noemí Navarro, Sudipta
Sarangi and two anonymous referees for their comments. We also thank comments from participants at
the Information Transmission in Networks Workshop (Harvard, May 2015), the Conference in honor of
A. Neyman and S. Hart (Jerusalem, June 2015), the Stony Brook International Conference on Game
Theory (July 2015), and at the seminars in the University of Málaga and the University of the Basque
Country. This research is supported by the Spanish Ministerio de Economía y Competitividad under
projects ECO2015-66027-P and ECO2015-67519-P (MINECO/FEDER). Both authors also benefit from
the Basque Government Departamento de Educación, Política Lingüística y Cultura funding for Grupos
Consolidados IT869-13 and IT568-13.

B Federico Valenciano
federico.valenciano@ehu.es
http://www.bridgebilbao.es

Norma Olaizola
norma.olaizola@ehu.es
http://www.bridgebilbao.es

1 BRiDGE group, Departamento de Fundamentos del Análisis Económico I, University of the
Basque Country, Avenida Lehendakari Aguirre 83, 48015 Bilbao, Spain

2 BRiDGE group, Departamento de Economìa Aplicada IV, University of the Basque Country,
Avenida Lehendakari Aguirre 83, 48015 Bilbao, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00182-017-0592-8&domain=pdf
http://orcid.org/0000-0001-8750-9122


1034 N. Olaizola, F. Valenciano

In this setting, a joint generalization of the results relative to efficiency and stability
in both seminal papers is achieved, and the robustness in both models is tested with
positive results.

Keywords Network formation · Unilateral link-formation · Bilateral link-formation ·
Efficiency · Stability

JEL Classification A14 · C72 · D85

1 Introduction

The importance of the role played by the network structures underlying social and
economic phenomena is now widely recognized.1 From a theoretical point of view,
perhaps the most challenging issue is the formation of network structures. There are
twomainmodels of strategic network formation in economic literature: that of Jackson
and Wolinsky (1996), where a link between two “players” (individuals, firms, towns,
etc.) needs the support of both and forms only if both agree, and that of Bala and
Goyal (2000a), where players can form links unilaterally. Jackson and Wolinsky’s
model has two variants: the connections model and the coauthors model. Bala and
Goyal’s model also has two versions: the one-way flow model, in which flow through
a link runs toward a player only if he/she supports it, and the two-way flow model, in
which flow runs in both directions through all links.

These seminal models have had a great impact on the literature, and are at the
root of several extensions resulting from introducing different variations into one
model or the other. This paper addresses a different goal: the unification of the two
models by eliminating the dichotomy of unilateral versus bilateral formation of links.
This is achieved by a model that bridges the gap between the two basic models of
strategic network formation. More precisely, we provide a model which has Jackson
and Wolinsky’s connections model and Bala and Goyal’s two-way flow model as
extreme cases.2 In the model introduced here a link can be created unilaterally and
flow occurs in both directions with some degree of decay, the same in both directions.
However, when a link is only supported by one of the two players (such a link is
referred to as a “weak” link) the flow through it suffers a greater decay than when it
is supported by both players (a “strong” link). That is, strong links work better than

1 Goyal (2007), Jackson (2008) and Vega-Redondo (2007) are excellent monographs on social and
economic networks.
2 In a previous paper (Olaizola and Valenciano 2015) we provide a transitional model that integrates a
variation without decay of Jackson and Wolinsky’s connections model and Bala and Goyal’s two-way flow
model, also without decay, as extreme cases.
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A unifying model of strategic network formation 1035

weak links, which may be a reasonable assumption in some contexts.3,4 When the
decay in weak links is maximal (i.e. there is no flow) we have Jackson andWolinsky’s
connections model, where only strong links work, whereas when flow in weak links
is as good as in strong links we have Bala and Goyal’s two-way flow model, where
strong links are inefficient and unstable. In contrast to these two extreme cases, it
seems reasonable to consider intermediate situations where both types of link work,
but strong doubly-supported links work better than weak singly-supported ones. This
joint generalization of both seminal models, besides providing a richer setting, allows
for a study of the transition from one to the other, thus providing a “neighborhood” of
each model which offers a point of view for testing the robustness of the results for
each of the extreme cases.

We first provide a characterization of efficient architectures which smoothly extends
the results relative to efficiency in the seminal papers (Prop. 1 in Jackson andWolinsky
1996, and Prop. 5.5 in Bala and Goyal 2000a). As it turns out, in spite of the richer
variety of feasible structures in this model, possibly combining weak and strong links
(which complicates considerably the proofs), only the efficient structures in either
model, i.e. the complete network of strong links, the complete network of weak links,
the all-encompassing star of strong links or that of weak links, and the empty network,
are efficient in this more general setting. No mixed structure is efficient for any value
of the parameters.

As both a strictly noncooperative point of view and one allowing for pairwise
agreements make sense in this joint generalization, we study the model in the crossfire
of both approaches. Thus we study Nash, strict Nash and pairwise Nash stability.
The notion of pairwise stability needs to be adapted for this more general model,
where an individual’s potential actions include creating weak links or even making
a preexisting weak link strong by making it double. The strongest natural adaptation
of this notion consistent with this situation consists of refining Nash stability by also
requiring stability w.r.t. pairwise coordination to form links.5 A study of stability from
the two points of view of the efficient structures yields an incomplete characterization,
which includes as particular cases the results obtained separately in eithermodel (Prop.
2 in Jackson and Wolinsky 1996, and Prop. 5.3 in Bala and Goyal 2000a).

Thus, in both respects, i.e. efficiency and stability, transition from one model to the
other turns out to be perfectly smooth, so that both models are robust and compatible
from the point of view provided by this more general model.

3 If links were interpreted as not fully reliable attempts to initiate communication, as in Bala and Goyal
(2000b), the lower friction through a strong link could then be interpreted as a higher probability that at
least one of the communication attempts will be successful, so communication through weak links might
be more likely to fail than that through strong links. Haller and Sarangi (2005) consider a situation where
doubly-supported links are more reliable than singly-supported ones. Unlike these models, here we assume
deterministic levels of decay, as in the seminal papers of Jackson and Wolinsky and Bala and Goyal.
4 Note that despite the similarity with the notions of weak/strong ties in Granovetter (1973), in the cur-
rent model the distinction stems from the single/double investment, the motivation of which is gathering
information and minimizing cost. Consequently, a strong link is not associated with the overlap of the
neighborhoods of the two players forming it, which would usually mean costly redundancies.
5 A weaker alternative is also suggested.
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1036 N. Olaizola, F. Valenciano

The rest of the paper is organized as follows. Section 2 introduces notation and
terminology. Section 3 presents a model that bridges the gap between the two seminal
models. Section 4 addresses the question of efficiency for the intermediate model.
In Sect. 5 Nash stable, Nash strictly stable and pairwise Nash stable structures are
studied, and Sect. 6 summarizes the main conclusions and points out some lines of
further research.

2 Preliminaries

A directed N -graph is a pair (N , �), where N = {1, 2, . . . , n} is a finite set with
n ≥ 3 whose elements are called nodes, and � is a subset of N × N , whose elements
are called links. A graph � can be specified by a map g : N × N → {0, 1}:

g(i, j) :=
{
1, if (i, j) ∈ �

0, if (i, j) /∈ �.

Then, we denote gi j := g(i, j), and if gi j = 1 link (i, j) is referred to as “link i j in
g”, and we write i j ∈ g. If M ⊆ N , g |M×M specifies a subgraph which, abusing the
notation, is denoted by g |M . The empty graph is denoted by ge (i.e. gei j = 0, for all
i, j). When both gi j , g ji ∈ g, we say that i and j are connected by a strong link, while
if only one of them is in g we say that they are connected by a weak link. If gi j = 1
in a graph g, g − i j denotes the graph that results from replacing gi j = 1 by gi j = 0
in g; and if gi j = 0, g + i j denotes the graph that results from replacing gi j = 0 by
gi j = 1. Similarly, if gi j = g ji = 1, g − i j = (g − i j) − j i , and if gi j = g ji = 0,
g + i j = (g + i j) + j i . An isolated node in a graph g is a node that is not involved
in any link, that is, a node i s.t. for all j �= i , gi j = g ji = 0. A node is peripheral in
a graph g if it is involved in a single link (weak or strong).

Given a graph g, a path of length k from j to i in g is a sequence of k + 1 distinct
nodes where j is the first, i the last one, and every two consecutive nodes are connected
by a link. The distance between two nodes i, j , denoted by d(i, j; g), is the length of
the shortest path connecting them. When there is no path connecting two nodes the
distance between them is said to be ∞. A graph g is acyclic or contains no cycles
if there are no two nodes connected by a link which are also connected by a path of
length 2 or more. Given a graph g, and K ⊆ N , the subgraph g |K is said to be
a weak (strong) component of g if for any two nodes i, j ∈ K there is a path (of
strong links) from j to i in g, and no subset of N strictly containing K meets this
condition. When a component in either sense consists of a single node we say that it
is a trivial component. The size of a component is the number of nodes from which it
is formed. Based on these definitions we have two different notions of connectedness.
We say that a graph g is weakly (strongly) connected if g is the unique weak (strong)
component of g. Note that strong connectedness implies weak connectedness. A weak
(strong) component g |K of a graph g is minimal if for all i, j ∈ K s.t. gi j = 1, the
number of weak (strong) components of g is smaller than the number of weak (strong)
components of g− i j . When g is clear from the context, we refer to a component g |K
as component K .
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A unifying model of strategic network formation 1037

A graph is minimally weakly (strongly) connected if it is weakly (strongly) con-
nected and minimal. In both cases, a minimally connected graph is a tree (of weak
links in one case, of strong links in the other), but, in principle, any node in such
trees can be seen as the root, i.e. a reference node from which there is a unique path
connecting it with any other. Note that a weakly connected graph with no cycles is
a tree in general formed by weak and strong links, and in general neither minimally
weakly nor strongly connected.

The graph architectures explained hereafter play a role in what follows. A line is
a graph consisting of a sequence of distinct nodes connected by links where no other
links exist. A star (all-encompassing star) is a graph where one node is involved in
links with some (all) other players, and no other links exist. A mixed star is a star
formed by weak links and strong links. A wheel consists of a sequence of nodes
connected by links in which the first and the last in that sequence are also linked, and
no other links exist. A complete (weak-complete, strong-complete) graph is one where
any two nodes are involved in a link (weak link, strong link).

3 The model

We consider situations where individuals may initiate or support links with other
individuals under certain assumptions, thus creating a network formalized as a graph.
We assume that at each node i ∈ N there is an agent identified by label i and referred
to as player6 i . Each player i may invest in links with other players.7 A map gi :
N\{i} → {0, 1} describes the links in which player i invests. We write gi j := gi ( j),
and gi j = 1 (gi j = 0) means that i invests (does not invest) in a link with j . Thus,
vector gi = (gi j ) j∈N\{i} ∈ {0, 1}N\{i} specifies the links in which i invests and is
referred to as a strategy of player i . Gi := {0, 1}N\{i} denotes the set of i’s strategies
and GN = G1 ×G2 ×· · ·×Gn the set of strategy profiles. A strategy profile g ∈ GN

univocally determines a graph of links invested in. Given a strategy profile g ∈ GN

and i ∈ N , g−i denotes the N\{i} strategy profile that results by eliminating gi in g,
i.e. all links in which player i invests,8 and (g−i , g′

i ) , where g′
i ∈ Gi , denotes the

strategy profile that results from replacing gi by g′
i in g.

Let g be a strategy profile representing the links invested in by each player. The
following is generally assumed:

1. Investment by player i in a link with any other player entails a cost c > 0.
2. The player at node j has a particular type of information or other good 9 of value

v for any other player (w.l.o.g. we assume v = 1).

6 In order to avoid biased language, we often refer to players by the more neutral term “nodes”.
7 This is similar to Myerson’s (1977) model, where all players simultaneously announce the set of players
with whom they wish form links. But while in Myerson’s model links are formed if and only if they were
proposed by both, we consider a different scenario here.
8 Note that if j i ∈ g, then j i ∈ g−i .
9 Although other interpretations are possible, in general, we give preference to the interpretation in terms
of information.
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3. The payoff of a player i is given by a function

�i (g) = Ii (g
∗) − ci (g), (1)

where Ii (g∗) is the information received by i through the actual network g∗ under
strategy profile g, and ci (g) = cnd(i; g) the cost incurred by i , where nd(i; g) denotes
the number of nodes in which i invests.

Under different assumptions, different models specify g 
→ g∗ and Ii differently.
In all cases a game in strategic form is specified: (GN , {�i }i∈N ). In Jackson and
Wolinsky (1996) only doubly supported links actually form, while in Bala and Goyal
(2000a) links are created unilaterally.10 In both models the information flow through
a link suffers some degree of decay, with δ (0 < δ < 1) being the fraction of the value
of information at one node that reaches another node through a link.11 Thus, for the
right instantiation of g∗, in both cases we have:

Ii (g
∗) =

∑
j∈N (i;g)

δd(i, j;g∗). (2)

where N (i; g) denotes the set of nodes connected with i by a path.
In both Jackson and Wolinsky’s (1996) connections model and Bala and Goyal’s

(2000a) two-way flow model with decay, the flow is assumed to be homogeneous (i.e.
the same through all actual links). In order to bridge the gap between these twomodels,
making a transition from one to the other possible, we introduce a very simple form
of endogenous heterogeneity12 relative to the level of decay. We consider a model
where information flows through all links with some degree of decay, the same in both
directions, but friction is smaller through strong links.

More precisely, let δ (0 ≤ δ ≤ 1) be the fraction of the value of information at one
node that reaches another node through a strong link, and let α (0 ≤ α ≤ δ ≤ 1) be
the fraction of the value of information at one node that reaches another node through
a weak link. For a graph g representing a strategy profile and a pair of nodes i �= j ,
let Pi j (g) denote the set of paths in g from i to j . For p ∈ Pi j (g), let �(p) denote
the length of p and ω(p) the number of weak links in p. Then i values information
originating from j that arrives via p by

Ii j (p) = δ�(p)−ω(p)αω(p).

If information is routed via the best possible route from j to i , then i’s valuation of
information originating from j is

Ii j (g) = max
p∈Pi j (g)

Ii j (p)

10 i.e. in Jackson and Wolinsky (1996) g∗
i j = min{gi j , g ji }, while in Bala and Goyal (2000a) g∗

i j =
max{gi j , g ji }.
11 Bala and Goyal (2000a) also consider the case of no decay, i.e. δ = 1.
12 See Bloch and Dutta (2009) for a model with endogenous heterogeneity where players may invest their
endowments across links.
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A unifying model of strategic network formation 1039

and i’s overall benefit from g (ignoring costs) is

Ii (g) =
∑

j∈N (i;g)
Ii j (g).

Thus (1) becomes (note that in this model the actual network and the strategy profile
are the same, i.e. g∗ = g)13:

�i (g) = Ii (g) − ci (g) =
∑

j∈N (i;g)
max

p∈Pi j (g)
δ�(p)−ω(p)αω(p) − cnd(i, g) (3)

Observe that:
• 0 = α < δ < 1 yields Jackson and Wolinsky’s original connections model:

information flows only through links in which both players invest.
• 0 < α = δ < 1 yields Bala and Goyal’s two-way flow model with decay:

information flows in both directions with the same decay through weak and strong
links.

Thus, the intermediate situations, i.e. 0 ≤ α ≤ δ < 1 yield a bridge-model between
Jackson and Wolinsky’s original connections model (α = 0) and Bala and Goyal’s
two-way flow connections model with decay (α = δ).

We first address the question of efficiency and then that of stability.

4 Efficiency

A network is said to be efficient for a particular configuration of values of the param-
eters if it maximizes the aggregate payoff, referred to as the value of the network.
When the value of network g, denoted by v (g), is greater than or equal to that of
network g′ we say that g dominates g′. Both Jackson and Wolinsky (1996) and Bala
and Goyal (2000a) provide a characterization of efficient networks in their settings.
The statements are adapted to the terminology used here.

JacksonandWolinsky (1996,Prop. 1): In JacksonandWolinsky’s connectionsmodel,
the only efficient networks are:
(i) The strong-complete graph if c < δ − δ2 (Region I in Fig. 1).
(ii) All-encompassing stars of strong links if δ−δ2 < c < δ+(n − 2) δ2/2 (Region

II in Fig. 1).
(iii) The empty network if δ + (n − 2) δ2/2 < c (Region III in Fig. 1).

Figure 1 shows the regions where these architectures are efficient. The cost, c, is
represented on the vertical axis, and the fraction of the unit of information at one node
that reaches another one through a link, δ, on the horizontal axis. In order to keep the

13 Alternatively, the model can be formalized by defining g∗ as the weighted network such that g∗
i j = δ

whenever gi j = gi j = 1; g∗
i j = α whenever gi j + gi j = 1, and g∗

i j = 0 whenever gi j = gi j = 0. As
g provides all necessary information for the calculation of individual payoffs, we have preferred to keep
formalization the simplest.
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Fig. 1 Efficiency: α = 0 (Jackson and Wolinsky), n = 20
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Fig. 2 Efficiency: α = δ (Bala and Goyal), n = 20

different regions of values of the parameters bounded, only the part of the picture for
c ≤ 1 is represented in the figures, although no upper bound is imposed on c.

Bala and Goyal (2000a, Prop. 5.5): In Bala and Goyal’s two-way flow model with
decay, the only efficient networks are:
(i) The weak-complete graph if c < 2

(
δ − δ2

)
(Region I’ in Fig. 2).

(ii) All-encompassing stars of weak links if 2
(
δ − δ2

)
< c < 2δ + (n − 2) δ2

(Region II’ in Fig. 2).
(iii) The empty network if 2δ + (n − 2) δ2 < c (Region III’ in Fig. 2).

As we presently show, the only efficient architectures in our setting are, depending
on the values of the parameters (α, δ, c andn ): the strong-complete, theweak-complete,
the star of strong links, the star of weak links and the empty network. But in order
to have a complete characterization, the region where each of them is efficient must
be determined. This is established in Proposition 1, where only the region where the

123



A unifying model of strategic network formation 1041

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0c

δ

III
III I

I'

II

III
III
III
III
III
III
III
III
III

II'

I

α

II

Fig. 3 Efficiency: α = 0.2, n = 20

strong-complete network is efficient, and part of the region where the weak-complete
network is efficient are directly established (the proof is in the Appendix). The rest
is the result of several lemmas presented and proved in the Appendix, which in a
patchwork-like way cover the whole region where the parameters vary. In spite of the
complexity of this piecewise study, the strategy of the proof is easy to understand. The
basic idea is, as in the seminal papers, to compare the value of an arbitrary component
with that of certain “dominant” structures. Nevertheless, the possibility of weak and
strong links makes this comparison more complicated. In different regions of values
of the parameters, it is proved that a component of a network is dominated by a star
with the same number of nodes (Lemmas 1, 2, 3 and 4). Then it is shown that a mixed
star is dominated by a star with the same number of links (either all strong or all weak)
(Lemma 5). To conclude the proof, a region containing the boundary between the
regions where the star of strong links and the weak-complete graph are (later proved
to be) efficient remains to be studied. This requires the use of different dominant
structures, namely, two interesting sorts of “hybrid” structure (Fig. 12) between a
star of strong links and a weak-complete network (Lemma 6). Finally, such hybrid
structures are proved to be dominated in that region either by aweak-complete network
or by a star of strong links with the same number of nodes (Lemma 7).

The following result, pulling together the partial results established in these lemmas,
characterizes efficient architectures for the transitional model. The main conclusion
is that the same structures which are efficient in the two seminal models (and only
them) continue to be efficient in this richer model. The ‘competition’ of five different
structures causes a relative complexity of the boundaries of the regions of values of
the parameters where each of them ‘beats’ the others. In particular, a four-piece curve
separates the regions where the efficient structures consist of strong links and that
where they consist of weak links.

Proposition 1 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1, then the
unique efficient profile is:
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Fig. 5 Efficiency: α = 0.2, n = 10

(i) The strong-complete graph if c < min{δ − δ2, 2 (δ − α)} (Region I in Figs. 3, 4,
5).

(ii) The weak-complete graph if

2 (δ − α) < c < 2
(
α − α2

)

and c (n − 4) < 2nα − 4δ − 2 (n − 2) δ2 (Region I’ in Figs. 3, 4 and 5).
(iii) All-encompassing stars of strong links if

δ − δ2 < c < min{2 (δ − α) + (n − 2)
(
δ2 − α2

)
, δ + (n − 2) δ2/2}.

and c (n − 4) > 2nα − 4δ − 2 (n − 2) δ2 (Region II in Figs. 3, 4 and 5).
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(iv) All-encompassing stars of weak links if

max{2 (δ − α) + (n − 2)
(
δ2 − α2

)
, 2

(
α − α2

)
} < c < 2α + (n − 2) α2

(Region II’ in Figs. 3, 4 and 5).
(v) The empty network if

c > max{2α + (n − 2) α2, δ + (n − 2) δ2/2}

(Region III in Fig. 5).

Comments (i) Figures 3, 4 and 5 summarize Proposition 1. The images correspond
to the cases α = 0.2 and α = 0.6,with n = 20 and n = 10. Note that, as 0 ≤ α ≤
δ < 1, only the part where 0.2 ≤ δ < 1 in Figs. 3 and 5 (0.6 ≤ δ < 1 in Fig. 4) is
meaningful. The strong-complete network is the only efficient graph in Region
I: below the straight line c = 2 (δ − α) and the parabola c = δ − δ2. The only
efficient networks in Region I’ are weak-complete: above the line c = 2 (δ − α),
and below the horizontal line c = 2

(
α − α2

)
and the curve c (n − 4) = 2nα −

4δ−2 (n − 2) δ2 (a parabola). All-encompassing stars of strong links are the only
efficient graphs inRegion II: above the last parabola and c = δ−δ2, and below two
parabolas: c = 2 (δ − α)+ (n − 2)

(
δ2 − α2

)
and c = δ + (n − 2) δ2/2 (the part

of the boundary corresponding to the latter is only visible in Fig. 5 since only the
part of the pictures for c ≤ 1 is represented in the figures). All-encompassing stars
ofweak links are the only efficient graphs in Region II’: above the horizontal line
c = 2

(
α − α2

)
and the parabola c = 2 (δ − α) + (n − 2)

(
δ2 − α2

)
, and below

the horizontal line c = 2α + (n − 2) α2 (the part of the boundary corresponding
to the latter is only visible in Fig. 5). Finally, in Region III the only efficient graph
is the empty network: above c = 2α+(n − 2) α2 and c = δ+(n − 2) δ2/2 (only
visible in Fig. 5).

(ii) All inequalities in Proposition 1 are strict to preserve uniqueness, but on the
boundaries separating any two regions both structures are efficient.

(iii) Observe that as α decreases towards 0 the image of these regions approaches
the “map” in Fig. 1, corresponding to Prop. 1 in Jackson and Wolinsky (1996),
namely Regions I and II in Figs. 3, 4 and 5 expand towards Regions I and II
in Fig. 1, while regions where “weak” structures are efficient shrink and finally
collapse when α = 0. In fact, Proposition 1 applied to case α = 0 yields Prop.
1 in Jackson and Wolinsky (1996). That is, setting α = 0 in (i), (i i i) and (v)

in Proposition 1, yields (i), (i i) and (i i i) in Prop. 1 in Jackson and Wolinsky,
respectively.

(iv) As α “moves rightward”, ranging from 0 to 1, the vertical line δ = α is Bala
and Goyal’s two-way flow model, with δ = α being the fraction of a unit of
information at one node that reaches another one through a link. Thus, as this
line sweeps the rectangle, the boundary points separatingRegions I’, II’ and III on
the vertical line δ = α, follow the curves c = 2

(
α − α2

)
, and c = 2α+(n−2)α2,

which depict Fig. 2 exactly. In fact, Proposition 1 applied to case α = δ yields
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Prop. 5.5 of Bala and Goyal (2000a). That is, setting α = δ in (i i), (iv) and (v)

in Proposition 1, yields (i), (i i) and (i i i) in Prop. 5.5, respectively.

5 Stability

From a conceptual point of view, the first interesting issue raised by this “intermedi-
ate” model is how to adapt the different notions of stability used in each of the two
benchmark models to this “mixed” situation. In Bala and Goyal’s purely noncoop-
erative model Nash and strict Nash equilibrium are the natural stability notions. In
Jackson and Wolinsky’s model, stability analysis is based on the notion of “pairwise”
stability. In this transitional model a noncooperative approach based onNash and strict
Nash equilibriummakes sense, but adapting the pairwise stability notion (Jackson and
Wolinsky 1996) is more delicate. The concept introduced by Jackson and Wolinsky,
in a context where only strong links make sense and actually form, consists of two
requirements: (i) no player gains by severing a link (“link deletion proofness”); and
(ii) no two players who are not linked have an incentive to create a strong link (“link
addition proofness”). Part (i) is the stability requirement for the only noncooperative
dimension of Jackson andWolinsky’smodel, but in the current transitional model indi-
vidual players have other options, given that weak links can be created unilaterally,
and so can strong links by making double an existing weak link. A possibility here is
to require stability w.r.t. both pairwise coordinated link-formation and all unilateral
changes of strategy. This amounts to pairwise Nash stability, which refines Nash sta-
bility notion.14 Aweaker notion of stability can be obtained by limiting the admissible
unilateral moves.15 Nevertheless, all the stability results established here hold for the
stronger notion of pairwise Nash stability due to the great degree of symmetry of all
the efficient structures whose stability is studied.

Thus we consider the following three forms of stability.

Definition 1 A strategy profile g is:

(i) A Nash equilibrium if �i (g−i , g′
i ) ≤ �i (g), for all i and all g′

i ∈ Gi .

(ii) A strict Nash equilibrium if �i (g−i , g′
i ) < �i (g), for all i and all g′

i ∈ Gi

(g′
i �= gi ).

(iii) Pairwise Nash stable if it is Nash stable and for all i, j (i �= j), if gi j = g ji = 0
and �i (g + i j) > �i (g), then � j (g + i j) < � j (g).

We now study the stability of the efficient structures established in Proposition 1.
Pairwise stable architectures are not characterized in Jackson and Wolinsky (1996),
and nor are Nash stable networks in Bala and Goyal (2000a). The following results
relative to pairwise stability in Jackson andWolinsky’s connectionsmodel and to Nash
and strict Nash architectures in Bala and Goyal’s two-way flow model with decay are

14 This refinement is first discussed in Jackson and Wolinsky (1996).
15 For instance, by limiting the admissible unilateral moves to severing or investing in a link, and combining
the two by changing the investment from one link into a new one. This limitationmakes the study of stability
generally much simpler than in the sense of pairwise Nash, where all feasible unilateral changes of strategy
must be considered, which poses serious computational problems in general.
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Fig. 6 Pairwise stability: α = 0 (Jackson and Wolinsky)

proved in those seminal papers. Their statements are adapted to the terminology used
here. In Jackson and Wolinsky’s model all links are strong, while in Bala and Goyal’s
all links are weak, but who supports them may affect the stability of an architecture
(the same occurs in our model). A center-sponsored (periphery-sponsored, mixed-
sponsored) star is a star of weak links where the center supports all links (no link,
some but not all links).

Jackson and Wolinsky (1996, Prop. 2): In Jackson and Wolinsky’s connections
model:

(i) A pairwise stable network has at most one nontrivial strong component.
(ii) If 0 < c < δ−δ2, then the unique pairwise stable network is the strong-complete

graph (Region I in Fig. 6).
(iii) If δ − δ2 < c < δ, then an all-encompassing star of strong links is pairwise

stable (Region II in Fig. 6), but not necessarily the unique pairwise stable graph
(e.g. if n = 4 and δ − δ3 < c < δ a line of strong links is also stable, and if
c < δ − δ3, then a wheel of strong links is also pairwise stable).

(iv) If δ < c, then in a nonempty pairwise stable network no player is peripheral
(Region III in Fig. 6).

Bala and Goyal (2000a, Prop. 5.3): In Bala and Goyal’s two-way flow model with
decay:
(i) A strict Nash network is either weakly connected or empty.
(ii) If 0 < c < δ − δ2 , then the unique strict Nash network is the weak-complete

graph (Region I’ in Fig. 7).
(iii) If δ − δ2 < c < δ, then all-encompassing stars of weak links are strict Nash

(Region II’ in Fig. 7).
(iv) If δ < c < δ+(n−2)δ2, then all-encompassing periphery-sponsored stars, and

only them among all-encompassing stars, are strict Nash (Region III’ in Fig. 7).
(v) If δ < c, then the empty network is strict Nash (Region IV’ in Fig. 7).

In contrast with the seminal models, in which each requires a different notion of
stability, in the transitional model both a strictly noncooperative approach and one
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Fig. 7 Strict Nash stability: α = δ (Bala and Goyal), n = 20

allowing for pairwise agreements make sense, so the question of stability is addressed
from both points of view. As pairwise Nash stability refines Nash stability, we deal
with the latter first. The following two propositions establish the transition between
the preceding results. Proposition 2 deals with Nash stability and Proposition 3 with
pairwise Nash stability.

The following proposition addresses Nash stability, establishing the range of values
of the parameters for which each of the efficient structures characterized in Proposi-
tion 1 is a Nash network for the transitional model.

Proposition 2 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1, we have:

(i) A Nash network is either weakly connected or all its components are strongly
connected.

(ii) If 0 < c ≤ min{δ − δ2, δ − α} then the strong-complete network is Nash stable
(strict Nash if the inequalities hold strictly) (Region I in Figs. 8, 9).

(iii) If δ − α ≤ c ≤ α − α2 and δ ≤ 2α/ (1 + α) then weak-complete networks are
Nash (strict Nash if the inequalities hold strictly) (Region I’ in Figs. 8, 9).

(iv) If α − δ2 ≤ c ≤ δ − α, then all-encompassing stars of strong links are Nash
stable (strict Nash if the inequalities hold strictly) (Region II in Figs. 8, 9).

(v) If c ≥ δ − α, and α − α2 ≤ c ≤ α + (n − 2)α2, then all-encompassing
periphery-sponsored stars are Nash stable (strict Nash if the inequalities hold
strictly) (Regions II’ and III’ in Figs. 8, 9).

(vi) If max{(δ − α)(1 + (n − 2)α), α − α2} ≤ c ≤ α, then all-encompassing
stars of weak links (periphery-sponsored, center-sponsored or mixed-sponsored)
are Nash stable (strict Nash if the inequalities hold strictly) (Region II’ in
Figs. 8, 9).

(vii) If c > δ − α, then in a Nash stable network a peripheral player cannot be
connected by a strong link. If c > α, then in a Nash stable network a peripheral
player cannot be sponsored by a weak link. If c ≥ α, then the empty network is
Nash stable (strict Nash if the inequality holds strictly).
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Fig. 8 Nash stability: α = 0.2, n = 20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0c

δ

I
IIII

III I, II
I' IIIII

III
IIII
III
III
III
III
III
I

III'
II'

α

I

II
I

I

Fig. 9 Nash stability: α = 0.6, n = 20

Comments (i) Figures 8 and 9 summarize Proposition 2 for n = 20, andα = 0.2 and
α = 0.6, respectively. The strong-complete network is Nash stable in Region I:
below the line c = δ−α and the parabola c = δ−δ2. This regionoverlapswith the
region where all-encompassing stars of strong links are Nash, namely Region II:
below the line c = δ−α and above the parabola c = α−δ2. The weak-complete
networks are Nash in Region I’: above the line c = δ−α, and below c = α−α2,
and to the left of the vertical line δ = 2α/ (1 + α). Periphery-sponsored stars
are Nash in Regions II’ and III’: above lines c = δ − α and c = α − α2, and
below the horizontal line c = α + (n − 2)α2 (only visible in Fig. 8). Finally,
other stars of weak links, i.e. center-sponsored and mixed-sponsored stars, are
Nash in a relatively small subset of this region, namely in Region II’: between
the horizontal lines c = α and c = α −α2 and above c = (δ −α)(1+ (n−2)α).

(ii) As α “moves rightward”, ranging from 0 to 1, the vertical line δ = α is Bala
and Goyal’s two-way flow model with δ = α being the fraction of the unit of
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information at one node that reaches another one through a link. Thus, as this
line sweeps the rectangle, the boundary points of Regions I’, II’ and III’ on the
vertical line δ = α, follow the curves c = α, c = α−α2, and c = α+ (n−2)α2,
which depict Fig. 7 exactly. In fact, Proposition 2 applied to case α = δ yields
Proposition 5.3 of Bala and Goyal (2000a). That is, setting α = δ in (i), (iii), (v)
and (vi) in Proposition 2, yields (i), (ii), (iii) and (iv) in Prop. 5.3, respectively.

(iii) Above the line c = δ −α2 all Nash structures considered are formed exclusively
by weak links, while below this line they consist of strong links only.

(iv) The architectures studied in Proposition 2 are not the only ones which are Nash
stable as the following example shows.

Example If n = 4, in addition to the structures whose Nash stability is established in
Proposition 2, the following structures are also Nash stable: A wheel of strong links
is Nash stable if α − δ2 ≤ c ≤ δ − α; a line of strong links if α − δ3 ≤ c ≤ δ − α; a
wheel of weak links if δ − α2 < c < α − α3 and δ < α (2 + α) /

(
1 + α + α2

)
(this

last condition only applies if it is possible for a node to switch its support from one
weak link to double another existing weak one); a line of weak links whose peripheral
nodes are sponsored if max{α−α3, δ+δα+δα2 −α−α2 −α3} ≤ c ≤ α. Moreover,
for n = 4 this provides a complete characterization of Nash stable structures, which
at the same time shows the non-existence of Nash stable structures for certain values
of the parameters.

The following proposition summarizes a similar study for pairwise Nash stability.

Proposition 3 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1, we have:

(i) A pairwise Nash stable network has at most one non-trivial weak component
(which is strong if α = 0), and has at most one non-trivial strong component.

(ii) If 0 < c < min{δ − δ2, δ − α}, then the strong-complete graph is the unique
pairwise Nash stable network (Region I in Figs. 10, 11).

(iii) If δ − α < c < α − α2 and δ < 2α/ (1 + α), then weak-complete graphs are
the unique pairwise Nash stable networks (Region I’ in Figs. 10, 11).

(iv) If δ − δ2 < c < δ − α, then all-encompassing stars of strong links are pairwise
Nash stable (Region II in Figs. 10, 11).

(v) If δ − α2 < c < α + (n − 2)α2, then all-encompassing periphery-sponsored
stars of weak links are pairwise Nash stable (Regions II’ and III’ in Figs. 10,
11).

(vi) If max{(δ − α)(1 + (n − 2)α), δ − α2} < c < α, then all-encompassing stars
of weak links (periphery-sponsored, center-sponsored or mixed-sponsored) are
pairwise Nash stable (Region II’ in Figs. 10, 11).

(vii) If c > δ −α, then in a pairwise Nash stable network a peripheral player cannot
be connected by a strong link. If c > α, then in a pairwise Nash stable network
a peripheral player cannot be sponsored by a weak link. If c > δ, then the empty
network is pairwise Nash stable.

Comments (i) Figures 10 and 11 summarize Proposition 3 for n = 20, and α = 0.2
and α = 0.6, respectively, depicting the regions where the different architectures
are pairwise Nash stable. The strong-complete network is the only pairwise Nash
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Fig. 10 Pairwise Nash stability: α = 0.2, n = 20

stable architecture inRegion I (the same regionwhere they areNash stable): below
the line c = δ −α and the parabola c = δ − δ2. The weak-complete networks are
the only pairwise Nash stable architectures in Region I’: above the line c = δ−α,
below c = α − α2, and to the left of the vertical line δ = 2α/ (1 + α). All-
encompassing stars of strong links are pairwise Nash stable in Region II: below
the line c = δ − α and above the parabola c = δ − δ2. Periphery-sponsored stars
are pairwise Nash stable in Regions II’ and III’: above the line δ = δ − α2 and
below the horizontal line c = α + (n − 2)α2 (note that this last constraint is
only visible in Fig. 10 because for α = 0.6 this upper bound is greater than 1).
Other stars of weak links, i.e. center-sponsored and mixed-sponsored stars, are
pairwise Nash stable in a relatively small subset of this region, namely in Region
II’: below c = α, above the lines c = δ − α2 and c = (δ − α)(1 + (n − 2)α).

(ii) Observe that as α decreases towards 0 the image of these regions approaches
the “map” of Fig. 6, corresponding to Prop. 2 of Jackson and Wolinsky (1996),
namely Regions I and II in Figs. 10 and 11 expand approaching Regions I and II
in Fig. 6, while regions where “weak” structures are pairwise Nash stable shrink
and finally collapse when α = 0. In fact, Proposition 3 applied to case α = 0
yields Prop. 2 of Jackson and Wolinsky. That is, by setting α = 0 in (i), (ii), (iv)
and (vii) in Proposition 3, yields (i), (ii), (iii) and (iv) in Prop. 2 of Jackson and
Wolinsky (1996), respectively.

(iii) A comparisonwith the results for Nash stability (Proposition 2) shows the follow-
ing. The region where the strong-complete network is stable in either sense is the
same, and the same goes for weak-complete networks (Regions I and I’ in Figs. 8,
9, 10 and 11). The reason is clear: in complete structures pairwise coordination
does not actually provide new options in this model. However these regions are
different for stars of strong links and stars of weak links (periphery-sponsored or
not). In both cases the region where such structures are pairwise Nash stable is
a subset of the region where they are Nash stable, due to the possibility of pair-
wise coordination to form new strong links, which destabilizes some Nash stable
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Fig. 11 Pairwise Nash stability: α = 0.6, n = 20

networks. But note that if attention is constrained to Bala and Goyal’s setting,
i.e. to the line where α = δ, weak-complete networks, stars of weak links and
periphery-sponsored stars of weak links are stable in either sense in the same
regions.

(iv) The architectures studied in Proposition 3 are not the only oneswhich are pairwise
Nash stable as the following example shows.

Example If n = 4 the following structures are pairwise Nash stable: Any wheel of
strong links if δ − δ2 < c < δ − α ; a line of strong links if δ − δ3 < c < δ − α; any
wheel ofweak links if δ−α2 < c < α−α3 and δ < α (2 + α) /

(
1 + α + α2

)
(this last

conditiononly applies if it is possible for a node to switch its support fromoneweak link
to making double another existing weak link); a line of weak links whose peripheral
nodes are sponsored if δ + δα − α2 − α3 < c < α and δ < α (2 + α) / (1 + α). For
n = 4 this is a complete characterization of pairwise Nash stable structures, which
also shows the non-existence of pairwise Nash stable structures for certain values of
the parameters.

(iv) Note that, as with Nash stability, above the line c = δ − α2 all pairwise Nash
stable structures considered are formed exclusively by weak links, while below line
c = δ − α they consist of strong links. Therefore, as soon as α > 0 a gap opens
between lines c = δ − α and c = δ − α2. The following corollary, whose proof is in
the Appendix, emerges relative to this gap:

Corollary 1 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1, δ − α < c <

δ − α2, and α < c, a non-empty pairwise Nash stable network necessarily contains
cycles.

6 Concluding remarks

This paper introduces a model which bridges the gap between the two basic models
of strategic network formation and incorporates them as extreme cases: Jackson and
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Wolinsky’s (1996) bilateral connectionsmodel andBala andGoyal’s (2000a) unilateral
connections two-way flowmodel. This richer hybridmodel provides a common setting
andmakes it possible to transition from one to the other. The point of view provided by
this continuum of models, bridging the gap between the two seminal models, shows
the perfect compatibility and robustness of both in the sense that the transition from
one to the other is smooth in all respects.

The efficient architectures are fully-characterized for all possible values of the
parameters and the results relative to efficiency in both seminal papers extended. One
noteworthy result is that only the structures which are efficient in the seminal models
emerge as efficient in this transitional model.

The strictly noncooperative approach and the approach based on pairwise stability
bothmake sense and are applied in this setting. Jackson andWolinsky’s (1996) pairwise
stability results for their connections model and the noncooperative stability results
of Bala and Goyal (2000a) for their two-way flow model are extended to this more
general model. However, as is the case for the seminal models, no characterization
of stable structures has been obtained. Moreover, the question of existence of stable
structures containing both strong and weak links remains open.

For none of the five efficient structures do the region where each one is efficient
and the region where it is Nash or pairwise Nash stable coincide. Those with strong
links (strong-complete and all-encompassing stars of strong links) are pairwise Nash
stable only within a subset of the regionwhere they are efficient. For instance, compare
region II in Figs. 10 and 11, where all-encompassing stars of strong links are pairwise
Nash stable, with the wider region II in Figs. 3 and 4, where they are efficient.16 As
to efficient structures formed by weak links, the regions where they are efficient and
those where they are Nash or pairwise Nash stable are different. In the case of non
periphery-sponsored stars of weak links, the intersection of these regions is empty for
certain values of the parameters.

The model introduced here can be extended in several directions. The assumption
that the cost of a strong link exactly doubles that of a weak link is made in order to
achieve the transition between the two seminal models by making coordination for
the formation of strong links unnecessary. A more general model would assume the
existence of links of different strengths, i.e. “conductivity”, and different costs. Other
variations worth exploring would be studying the impact of “liberalizing” the cost
sharing of strong links or limiting the number of links of different types that a node
can support. In general, any extension of the benchmark models in the literature can
also be tested in this mixed model. Also a similar transitional model between Jackson
and Wolinsky’s (1996) connections model and Bala and Goyal’s (2000a) one-way
flow model with decay, or between Bala and Goyal’s one-way flow and two-way flow
models with decay remains to be explored.17

Finally, still within the model studied here, it would be interesting to settle the
question of the existence of stable structures containing both weak and strong links.
A shorter proof of Proposition 1 would also be desirable.

16 Note this is not so for Nash stability of these structures.
17 A intermediate model between Bala and Goyal’s (2000a) models without decay is addressed in Olaizola
and Valenciano (2014).
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7 Appendix

Lemma 1 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1 and c >

max{δ − δ2, 2
(
α − δ2

)}, then the maximal value of a weak component containing m
nodes and m − 1 or more strong links is only reached by a star with m − 1 strong
links.

Proof Let K be a weak component containing m nodes and ks ≥ m − 1 strong links
and kw ≥ 0 weak links. Without loss of generality, it can be assumed that no link is
superfluous. Then,

v(K ) = ks (2δ − 2c) + kw (2α − c) + p(α, δ),

where p(α, δ) is a polynomial on α and δ with integer positive coefficients (summing
up to max{m (m − 1) − 2 (ks + kw) , 0}, i.e. twice the number of pairs of nodes non-
directly connected) multiplying monomials of the form αqδr with q + r ≥ 2. As
α ≤ δ, themaximal value of this polynomial is obtainedwhen p(α, δ) = (m (m − 1)−
2 (ks + kw))δ2, that is

v(K ) ≤ ks (2δ − 2c) + kw (2α − c) + (m (m − 1) − 2 (ks + kw)) δ2,

while the value of a star of m − 1 strong links with m nodes is

v(Sm−1,0) = (m − 1) (2δ − 2c) + (m − 1) (m − 2) δ2.

Thus, the difference is

v(Sm−1,0) − v(K ) ≥ (m − 1 − ks)
(
2δ − 2c − 2δ2

)
+ kw

(
2δ2 − 2α + c

)
≥ 0,

given thatm −1− ks ≤ 0, 2δ −2c−2δ2 < 0 and 2δ2 −2α + c > 0. Moreover, it is 0
only for ks = m − 1 and kw = 0. Finally, a component with ks = m − 1 and kw = 0
is necessarily minimally strongly connected, and the maximal value of a minimally
strongly connected component is only reached by stars of strong links. �

In what follows a mixed star consisting of ks strong links and kw weak links is
denoted by Sks ,kw .

Lemma 2 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1 and c > 2α, then
a weak component containing m nodes and fewer than m−1 strong links is dominated
by a mixed star with the same number of strong links.

Proof Let K be a weak component containing m nodes and ks < m − 1 strong links
and kw ≥ m − 1 − ks > 0 weak links. Without loss of generality, it can be assumed
that no link is superfluous. Thus, reasoning as in the preceding lemma, we have:

v(K ) ≤ ks (2δ − 2c) + kw (2α − c) + ks (ks − 1) δ2

+ks (m − 1 − ks) 2αδ + (m − 1 − ks) (m − 2 − ks) α2,
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while the value of a star with ks strong links and m − 1 − ks weak links is

v
(
Sks ,m−1−ks

) = ks (2δ − 2c) + (m − 1 − ks) (2α − c)

+ks (ks − 1) δ2 + ks (m − 1 − ks) 2αδ + (m − 1 − ks) (m − 2 − ks) α2.

Thus, the difference is

v
(
Sks ,m−1−ks

) − v(K ) = (c − 2α) (ks + kw − (m − 1)) ≥ 0,

given that ks + kw ≥ m−1 and c > 2α. And it is 0 only for ks + kw = m−1. Finally,
the maximal value of a component with m − 1 links is only reached by stars. �

The next lemma establishes the same result for 2
(
α − α2

)
< c < 2α.

Lemma 3 If the payoff function is given by (3)with 0 ≤ α ≤ δ < 1 and 2
(
α − α2

)
<

c < 2α, then a weak component containing m nodes and fewer than m − 1 strong
links is dominated by a mixed star with the same number of strong links.

Proof Let K be a weak component containing m nodes, ks < m − 1 strong links and
kw ≥ m−1−ks > 0 weak links. Without loss of generality, it can be assumed that no
link is superfluous. The maximal value of the component here requires a more detailed
discussion than in the case c > 2α addressed in the preceding lemma. Thus we have

v(K ) ≤ ks (2δ − 2c) + kw (2α − c) + Aδ2 + Bαδ + Cα2,

where
A = min{ks(ks − 1),m(m − 1) − 2ks − 2kw}.

Two cases must be considered depending on which of these numbers is smaller:
1st case: A = m(m − 1) − 2ks − 2kw. In this case B = C = 0, and we have

v(K ) ≤ ks (2δ − 2c) + kw (2α − c) + (m(m − 1) − 2ks − 2kw)δ2,

while the value of a star with ks strong links and m − 1 − ks weak links is

v
(
Sks ,m−1−ks

) = ks (2δ − 2c) + (m − 1 − ks) (2α − c)

+ks (ks − 1) δ2 + ks (m − 1 − ks) 2αδ

+ (m − 1 − ks) (m − 2 − ks) α2.

Thus, the difference is

v
(
Sks ,m−1−ks

)
−v(K ) ≥ (m − 1 − ks − kw) (2α − c)

+(ks(ks − 1) − m(m − 1) + 2ks + 2kw)δ2

+ks (m − 1 − ks) 2αδ + (m − 1 − ks) (m − 2 − ks) α2

= a (2α − c) + bδ2 + dαδ + eα2,
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where a, b, d and e denote the coefficients in the last expression. Note that a ≤ 0,
while b, d and e are ≥ 0. As 2α − c < 2α2, by replacing 2α − c by 2α2 in the last
expression and taking into account that α ≤ δ we have

v
(
Sks ,m−1−ks

) − v(K ) ≥ a2α2 + bδ2 + dαδ + eα2

≥ a2α2 + bα2 + dα2 + eα2 = (2a + b + d + e)α2

Therefore, if 2a + b+ d + e ≥ 0 the proof is concluded in the 1st case, and summing
up these coefficients we have 2a + b + d + e = 0.

2nd case: A = ks(ks − 1). In this case ks(ks − 1)/2 is the maximal number of
non-directly linked pairs that can receive δ2 from each other. Now

B = min{2ks(m − 1 − ks),m(m − 1) − 2ks − 2kw − ks(ks − 1)}.

Thus, we again have two cases:
Case 2.1: B = m(m − 1) − 2ks − 2kw − ks(ks − 1). In this case C = 0, and

v(K ) ≤ ks (2δ − 2c) + kw (2α − c) + ks(ks − 1)δ2

+(m(m − 1) − 2ks − 2kw − ks(ks − 1))αδ.

Thus, subtracting this value from that of a star with ks strong links and m − 1 − ks
weak links the difference is

v
(
Sks ,m−1−ks

) − v(K ) ≥ (m − 1 − ks − kw) (2α − c)

+(2ks(m − 1 − ks) − (m(m − 1) − 2ks − 2kw − ks(ks − 1))αδ

+ (m − 1 − ks) (m − 2 − ks) α2 = a (2α − c) + bαδ + dα2,

and proceeding just as in the first case we similarly conclude that v
(
Sks ,m−1−ks

) −
v(K ) ≥ 0.

Case 2.2: B = 2ks(m − 1 − ks). In this case

C = m(m − 1) − 2ks − 2kw − ks(ks − 1) − 2ks(m − 1 − ks), and

v
(
Sks ,m−1−ks

) − v(K ) ≥ (m − 1 − ks − kw) (2α − c)

+(ks + kw − (m − 1))2α2 = a (2α − c) + bα2,

and proceeding again as before we conclude that v
(
Sks ,m−1−ks

) − v(K ) ≥ 0. �
Lemma 4 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1, and
c < 2 (δ − α), then: (i) in a non-empty efficient network all links are strong; (i i)
if in addition c > δ − δ2, then a weak component is dominated by a star of strong
links.

Proof (i) Let g be a nonempty efficient network, and assume i j ∈ g and j i /∈ g,
then the contribution of i’s ( j’s) unit of value to j’s (i’s) payoff is α, otherwise i j
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would be superfluous, but then, as c < 2 (δ − α), by making i j double the sum of the
payoffs of i and j would increase, and no other player’s payoff would decrease, which
contradicts g’s efficiency.

(ii) Let K be a weak component with no superfluous links. By (i), all its links must
be strong. But then by Lemma 1 it is dominated by a star of strong links (note that
c > 2

(
α − δ2

)
follows easily from c < 2 (δ − α) and c > δ − δ2, and Lemma 1 can

be applied). �
Lemmas 1, 2, 3 and 4 establish that, for different configurations of values of the

parameters, any component is dominated by a star, possibly mixed. The following
lemma shows that mixed stars are always dominated by stars containing only one type
of link.

Lemma 5 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1, a star containing
both strong and weak links is strictly dominated either by a star with the same number
of links all of which are strong or by a star with the same number of links all of which
are weak.

Proof Let Sks ,kw be a star connecting m nodes with ks > 0 strong links and kw =
m − 1 − ks > 0 weak links. Its value is given by

v
(
Sks ,kw

) = ks (2δ − 2c)+kw (2α − c)+ks (ks − 1) δ2+2kskwαδ+kw (kw − 1) α2.

By making double a weak link, Sks+1,kw−1 results, and

v
(
Sks+1,kw−1

) = (ks + 1) (2δ − 2c) + (kw − 1) (2α − c)

+ (ks + 1) ksδ
2 + 2 (ks + 1) (kw − 1) αδ + (kw − 1) (kw − 2) α2.

Thus, as kw = m − 1 − ks , v
(
Sks+1,kw−1

) − v
(
Sks ,kw

) =

(2δ − 2c) − (2α − c) + 2 (m − 2) α (δ − α) + 2ks (δ − α)2 . (4)

Note that if this number is > 0, the greater ks is the greater this number will be,
and consequently the value of a star of strong links connectingm nodes is greater than
that of Sks ,kw .

By making a double link weak, Sks−1,kw+1 results, and

v
(
Sks−1,kw+1

) = (ks − 1) (2δ − 2c) + (kw + 1) (2α − c)

+ (ks − 1) (ks − 2) δ2 + 2 (ks − 1) (kw + 1) αδ + (kw + 1) kwα2.

Thus, as kw = m − 1 − ks , v
(
Sks−1,kw+1

) − v
(
Sks ,kw

) =

− (2δ − 2c) + (2α − c) + 2
(
δ2 − mαδ + (m − 1) α2

)
− 2ks (δ − α)2 . (5)

If this number is> 0, the smaller ks is the greater this number will be and consequently
the value of a star of weak links is greater than that of Sks ,kw .
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(a) (b)

Fig. 12 “Hybrid” structures

It only remains to show that the value necessarily increases by either making a
weak link double or making a strong one weak, that is, either (4) or (5) is greater
than 0. Write X = (2δ − 2c) − (2α − c), Y = 2 (m − 2) α (δ − α) + 2ks (δ − α)2

and Y ′ = 2
(
δ2 − mαδ + (m − 1) α2

)−2ks (δ − α)2. Thus we prove that necessarily
either

v
(
Sks+1,kw−1

)−v
(
Sks ,kw

)= X+Y >0 or V
(
Sks−1,kw+1

)−v
(
Sks ,kw

) = −X+Y ′ >0.

Assume X + Y ≤ 0, i.e. X ≤ −Y , then we prove that −X + Y ′ > 0, i.e. X < Y ′.
For this it suffices to show that −Y < Y ′, i.e. Y + Y ′ > 0. In fact we have Y + Y ′ =
2 (δ − α)2 > 0. �

Above c = δ − δ2 and c = 2
(
α − δ2

)
the preceding lemmas show the domination

of stars, either of weak links or of strong links, for all the configurations of values of
the parameters except the region considered in the next two lemmas, where two sorts
of “hybrid” structure, somewhere between stars of strong links and weak-complete
(see Fig. 12),18 serve as a term of comparison.

Lemma 6 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1 and

max{2 (δ − α) , 2
(
α − δ2

)
} < c < 2

(
α − α2

)
,

then a weak component containing m nodes and fewer than m − 1 strong links is
dominated by a network consisting of a star with the same number of strong links
and: (i) if c > 2 (α − αδ), with the rest of the nodes along with the center of the
star forming a complete subnetwork of weak links; (i i) if c < 2 (α − αδ), any other
pairs, except those of peripheral nodes of the star, are connected by weak links; (i i i)
in particular, in both cases, if the component contains no strong links it is dominated
by the weak-complete graph.

Proof (i) Let K be a weak component, containing m nodes, ks < m − 1 strong links
and kw ≥ m − 1 − ks > 0 weak links. Without loss of generality, it can be
assumed that no link is superfluous. Thus we have

v(K ) ≤ ks (2δ − 2c) + kw (2α − c) + Aδ2 + Bαδ,

18 A strong link between two nodes is represented by a thick line connecting them, while a weak link is
represented by a thin line between them that only touches the node that supports it.
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where
A = min{ks(ks − 1),m(m − 1) − 2ks − 2kw}.

Let g∗
ks
be a m-node network consisting of a star with ks strong links and the rest

of the nodes along with the center of the star forming a complete subnetwork of
weak links (see Fig. 12a). Then

v(g∗
ks ) = ks (2δ − 2c) + k′

w (2α − c) + A′δ2 + B ′αδ, (6)

where

k′
w = (m−ks)(m−ks−1)/2, A′ = ks(ks−1) and B ′ = 2ks(m−ks−1). (7)

Now, depending on the value of A, we have two cases:
1st case: A = m(m − 1) − 2ks − 2kw. In this case B = 0 and A ≤ A′. Then we
have

v(g∗
ks ) − v(K ) ≥ (k′

w − kw) (2α − c) + (A′ − A)δ2 + B ′αδ.

As k′
w + A′/2+ B ′/2 = kw + A/2 and A ≤ A′, k′

w ≤ kw. And as 2α − c < 2αδ

and k′
w − kw + B ′/2 = A/2 − A′/2, and 2αδ < 2δ2 we have:

v(g∗
ks ) − v(K ) ≥ (A′ − A)δ2 + (k′

w − kw + B ′/2)2αδ

≥ (k′
w − kw + B ′/2 + A′/2 − A/2)2αδ = 0.

2nd case: A = ks(ks − 1). Then

B = min{2ks(m − 1 − ks),m(m − 1) − 2ks − 2kw − ks(ks − 1)}.

In both cases B ′ ≥ B ≥ 0, and kw ≥ k′
w ≥ 0, with k′

w + B ′/2 = kw + B/2. And
as c < 2 (α − αδ), we have

v(g∗
ks ) − v(K ) ≥ (k′

w − kw) (2α − c) + (B ′ − B)2αδ

≥ (k′
w − kw)(2α − c − 2αδ) ≥ 0.

(i i) Let K be a weak component as in (i). Let g∗∗
ks

be am-node network consisting of
a star with ks strong links and any other pairs of nodes, except those of peripheral
nodes of the star, connected by weak links (see Fig. 12b). Thus

v(g∗∗
ks ) = ks (2δ − 2c) + k′

w (2α − c) + A′δ2, (8)

where

A′ = ks(ks − 1) and k′
w = m(m − 1)/2 − ks − ks(ks − 1)/2. (9)

Two cases must be considered depending on the value of A:
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1058 N. Olaizola, F. Valenciano

1st case: A = m(m − 1) − 2ks − 2kw. In this case B = 0 and A ≤ A′. Thus we
have

v(K ) ≤ ks (2δ − 2c) + kw (2α − c) + Aδ2,

and consequently

v(g∗∗
ks ) − v(K ) ≥ (k′

w − kw) (2α − c) + (A′ − A)δ2.

As k′
w + A′/2 = kw + A/2, that is, k′

w − kw = A/2 − A′/2 ≤ 0, and we have

v(g∗∗
ks ) − v(K ) ≥ (k′

w − kw)(2α − c − 2δ2) ≥ 0.

2nd case: A = ks(ks − 1). Thus

B = min{2ks(m − 1 − ks),m(m − 1) − 2ks − 2kw − ks(ks − 1)}.

In this case B ≥ 0, and as kw+B/2 = k′
w and c < 2 (α − αδ), i.e. 2αδ < 2α−c,

we have:

v(K ) ≤ ks (2δ − 2c) + kw (2α − c) + ks(ks − 1)δ2 + Bαδ

≤ ks (2δ − 2c) + (kw + B/2) (2α − c) + ks(ks − 1)δ2.

Thus
v(g∗∗

ks ) − v(K ) ≥ (k′
w − (kw + B/2))(2α − c) = 0.

(i i i) Just note that in both cases, (i) and (i i), the component is assumed to have fewer
than m − 1 strong links, which includes the case of no strong links. But note
that the structure proved to dominate the component, i.e. g∗

0 or g∗∗
0 , is then a

weak-complete network. �
Lemma 7 If the payoff function is given by (3) with 0 ≤ α ≤ δ < 1 and

max{2 (δ − α) , 2
(
α − δ2

)
} < c < 2

(
α − α2

)
,

then a weak component of a network is dominated either by a weak-complete subnet-
work or by a star of strong links with the same number of nodes.

Proof In view of the preceding lemma, in this region a component with no strong
links is dominated by a weak-complete network with the same number of nodes. If a
component withm nodes contains at leastm−1 strong links, Lemma 1 establishes that
it is dominated by a star with m − 1 strong links. If it contains some strong links, but
fewer thanm−1, Lemma 6 shows that it is dominated by one of two types of structure
with the same number ks of strong links, either g∗

ks
or g∗∗

ks
. We now prove that such

structures are dominated either by a weak-complete subnetwork or by star of strong
links with the same number of nodes. Consider first the case when c > 2 (α − αδ).
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In this case, the dominant structure is g∗
ks
. Thus v(g∗

ks
) is given by (6), with (7). Thus,

comparing this value with that of v(g∗
ks+1) and v(g∗

ks−1), we have

v(g∗
ks+1) − v(g∗

ks ) = X + (2α − c) − 4αδ,

v(g∗
ks−1) − v(g∗

ks ) = −X + 2δ2,

where X = 2δ − 2c− (m − ks) (2α − c)+ ks2δ2 + (m − 2ks)2αδ. We prove that one
of these differences is necessarily positive. Assume −X + 2δ2 ≤ 0, that is, X ≥ 2δ2.
Thus

v(g∗
ks+1) − v(g∗

ks ) ≥ 2δ2 + 2α − c − 4αδ,

which is > 0 if c < 2δ2 + 2α − 4αδ. To see that this is so, note that α < δ, thus
(α − δ)2 > 0, i.e. α2 + δ2 − 2αδ > 0. Then, as c < 2α − 2α2

c < 2α − 2α2 < 2α − 2(2αδ − δ2) < 2δ2 + 2α − 4αδ.

Therefore one of the two differences must be positive. In other words g∗
ks
is dominated

either by g∗
ks−1 or by g∗

ks+1. This entails that g
∗
ks
is dominated by one of the extreme

cases: g∗
0 or g∗

m , i.e. a m -node weak-complete network or star of strong links. �
Proof of Proposition 1: (i) As c < δ, an efficient network is non-empty, and, as

c < 2 (δ − α), by Lemma 4(i), in a non-empty efficient network all links are
strong. Let g then be a network where all links are strong and assume nodes i
and j are not connected. As c < δ − δ2, i.e. δ2 < δ − c, both i and j improve
their payoffs if the strong link i j forms, and the other players’ payoffs do not
decrease. Therefore, the unique efficient network is the strong-complete one.

(ii) Consider first the subregion where c < 2
(
α − δ2

)
. Let g be a network where

two nodes, i and j , are not directly connected. Thus i ( j) receives at most δ2

from j’s (i’s) unit of value. As 2δ2 < 2α − c, the sum of the payoffs of i and
j increases if a weak link between them forms, and the other players’ payoffs
do not decrease. Thus, if c < 2

(
α − δ2

)
an efficient network must be complete.

Note that α must be greater than δ2. Now as 2 (δ − α) < c, if a strong link i j
in a complete network is replaced by a weak link, then the sum of the payoffs of
i and j increases, and the other players’ payoffs do not decrease. Therefore, if
2 (δ − α) < c < 2

(
α − δ2

)
then the unique efficient profile is theweak-complete

graph. The rest of the region remains to be examined, i.e. where c ≥ 2
(
α − δ2

)
.

But this is a subset of the range of values of the parameters considered in Lem-
mas 6 and 7, where any component is dominated either by a weak-complete
subnetwork or by a star of strong links with the same number of nodes. As
c < 2

(
α − α2

)
< 2α, an efficient networkmust be connected, therefore any net-

work is dominated either by a weak-complete network or by an all-encompassing
star of strong links. Finally, it can be checked immediately that the former dom-
inates the latter if and only if c (n − 4) ≤ 2nα − 4δ − 2 (n − 2) δ2, strictly
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if the inequality is strict, while both structures are equally efficient in case of
equality.

(iii) ByLemma1, any componentwith at leastm−1 strong links is dominated by a star
of strong links. It remains to be checked that this is also the case if it has fewer than
m−1 strong links.As seen inLemma4, in this region,when c < 2 (δ − α), aweak
component is dominated by a star of strong links, therefore the statement is proven
in this case. Now consider the case c ≥ 2 (δ − α). If c > 2α, Lemma 2 ensures
that any component is dominated by a mixed star with the same number of strong
links, and by Lemma 3 the same holds if 2

(
α − α2

)
< c < 2α. By Lemma 5

mixed stars are dominated either by stars of weak links or by stars of strong
links, so this conclusion applies to the subset of the region under consideration
where c > 2

(
α − α2

)
. The subset where 2 (δ − α) ≤ c < 2

(
α − α2

)
remains

to be discussed, where Lemmas 6 and 7 apply and ensure that any component is
dominated either by aweak-complete subnetwork or by a star of strong links with
the same number of nodes. If c < 2α, an efficient network must be connected,
therefore in this region any network is dominated either by a weak-complete
network or by an all-encompassing star of strong links. But the latter is dominated
by the former if and only if c (n − 4) ≤ 2nα − 4δ − 2 (n − 2) δ2, strictly if the
inequality is strict, while both structures are equally efficient in case of equality.
Now if c ≥ 2α, Lemmas 2 and 5, ensure that any component of an efficient
network must be a star of either weak links or strong links. As the value of
a component of an efficient network must be non-negative, it is immediate to
check that the value of a star with m1 + m2 nodes is greater than the sum of
the values of two stars with m1 and m2 nodes each. In short, it is proved that
throughout the region a component is dominated by a star of strong or of weak
links. It then follows immediately that the former dominates the latter if and only
if c ≤ 2 (δ − α)+(n − 2)

(
δ2 − α2

)
, strictly if the inequality is strict, while both

structures are equally efficient in case of equality. Thus, in the whole region the
only non-empty efficient network is the all-encompassing star of strong links.
Finally, the all-encompassing star of strong links yields a non-negative value if
and only if c < δ + (n − 2) δ2/2.

(iv) By the same argument used in (i i i), Lemmas 1–5 ensure that in this region
any network is dominated by an all-encompassing star of weak links or by one
of strong links. As stated before, the former dominates the latter if and only if
c ≥ 2 (δ − α) + (n − 2)

(
δ2 − α2

)
, strictly if the inequality is strict, while both

structures are equally efficient in case of equality. Thus, in the whole region the
only efficient non-empty network is the all-encompassing star of weak links.
Finally, the all-encompassing star of weak links yields non-negative value if and
only if c < 2α + (n − 2) α2.

(v) This follows from the discussion in (i i i) and (iv). �

Proof of Proposition 2: (i) Let g be a Nash network. Assume g has more than one
non-trivial weak component. If any of them is not strongly connected it contains
at least one weak link, say i j , i.e. i j ∈ g and j i /∈ g, but then any node in a
different weak component will benefit by creating a weak link with j , which
contradicts that g is a Nash network.
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(ii) Let g be the strong-complete network. A player i has no incentive to withdraw
support for a double link i j (or a set of them), if and only if δ − c is greater
than or equal to α and to δ2. In other words, if δ − c ≥ max{α, δ2}, which is
equivalent to c ≤ min{δ−δ2, δ−α}. Now assume these conditions hold strictly,
then the network described is strict Nash.

(iii) Let g be a weak-complete network. For a weak link i j ∈ g, player i has no
incentive to withdraw support for it if and only if α−c ≥ α2. On the other hand,
j has no incentive to double this link if and only if α ≥ δ − c. Thus we have two
necessary conditions for pairwise Nash stability: δ − α ≤ c ≤ α − α2. Finally,
i has no incentive to switch its support from i j to another, say ik, thus making
double the existingweak link ki , if and only if 2α ≥ δ+αδ, i.e. δ ≤ 2α/ (1 + α) .

Now assume all these conditions hold strictly. Then, as c < α − α2 < α, either
of the two players in any pair not connected by a link would benefit by creating
a weak link. Thus g must be complete, and as c > δ −α no strong link can exist.
Therefore g is weak-complete. Thus, if all these conditions hold (strictly) g is a
Nash (strict Nash) network.

(iv) Let g be an all-encompassing star of strong links. The center has no incentive to
withdraw support for a link (or a set of them) if δ − c ≥ α. No peripheral node is
interested in forming a weak link with another (or a set of them) if c ≥ α − δ2.
If these conditions hold strictly, then g is strict Nash.

(v) Let g be an all-encompassing periphery-sponsored star. No peripheral node has
an incentive to sever its link if α+(n−2)α2−c ≥ 0 . If c ≥ δ−α, the center has
no incentive to double a link (or a set of them). If c ≥ α −α2 no peripheral node
has an incentive to form a weak link with another (or a set of them). Therefore,
if all three conditions hold (strictly) g is a Nash (strict Nash) network. In (vi) we
show that for other stars to be Nash c ≤ α is required.

(vi) Let g be an all-encompassing star. If it is center-sponsored or a mixed-sponsored
star, the center has no incentive to sever a link (or a set of them) if c ≤ α

(which does not apply if the star is periphery-sponsored) and no peripheral
node whose link is supported by the center has an incentive to double it if
α + (n − 2)α2 ≥ δ + (n − 2)δα − c, i.e. if c ≥ (δ − α)(1+ (n − 2)α). Finally,
no peripheral node is interested in forming a weak link with another (or a set of
them) if c ≥ α − α2. If these conditions hold strictly, then g is strict Nash.

(vii) This is straightforward. �

Proof of Proposition 3: (i) Let g be a pairwise Nash stable network. Assume g has
more than one non-trivial weak component. Let i j ∈ g and kl ∈ g be two links
in different weak components. If both are strong, i.e. i j ∈ g and kl ∈ g, it easily
follows that both j and k benefit by creating a strong link jk. If α > 0 and one
of them, say i j , is weak, i.e. j i /∈ g, then k will benefit by creating a weak link
with j . In both cases there is a contradiction with pairwise stability.

(ii) By Proposition 2(ii), the strong-complete network is strict Nash under these
conditions. Now assume this condition holds strictly: any two players not con-
nected by a link must then benefit by forming a strong link, and any player
benefits by making a weak link supported by another player double, so only the
strong-complete network is pairwise Nash stable.
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(iii) By Proposition 2(iii), under these conditions a weak-complete network is a Nash
network.Nowassume all these conditions hold strictly. Then, as c < α−α2 < α,

either of the two players in any pair not connected by a link would benefit by
creating a weak link. Thus g must be complete, and as c > δ − α no strong link
can exist. Therefore g is weak-complete. Finally, δ < 2α/ (1 + α) guarantees
that weak-complete networks alone are pairwise Nash stable. Note that, as it
occurs with the strong-complete, pairwise coordination does not provide actual
new options.

(iv) By Proposition 2(iv), under these conditions an all-encompassing star of strong
links is a Nash network. In such a star no two peripheral nodes are interested
in forming a strong link if c ≥ δ − δ2, which is stronger than c ≥ α − δ2

and consequently pairwise Nash stability strictly refines Nash stability for these
structures.

(v) By Proposition 2(v), under these conditions an all-encompassing periphery-
sponsored star is a Nash network. And no pair of peripheral nodes are interested
in forming a strong link if α + (n−2)α2 − c ≥ δ +α + (n−3)α2 −2c ≥ 0, that
is, if c ≥ δ − α2. Therefore, g is pairwise Nash stable if and only if δ − α2 ≤
c ≤ α + (n − 2)α2.

(vi) By Proposition 2(vi), under these conditions an all-encompassing star of weak
links is a Nash network. Note that δ − α2 ≤ c ≤ α implies δ − α2 ≤ c ≤ α +
(n−2)α2, therefore, as proven in (v), an all-encompassing periphery-sponsored
star is pairwise Nash stable. Now let g be an all-encompassing center-sponsored
or mixed-sponsored star of weak links. Then, no pair of peripheral nodes are
interested in forming a strong link (in this respect the situation is entirely similar
to (v)) if c ≥ δ − α2.

(vii) This is straightforward. �
Proof of Corollary 1: Assume g is a pairwise Nash stable network. By Proposi-
tion 2(i), g is weakly connected. If δ − α < c, no peripheral player can be connected
by a strong link, nor sponsored by a weak link if α < c. Therefore a peripheral node
can only be connected by a weak link supported by itself. But only one such peripheral
node can exist, because if there were more, as c < δ − α2, it would then be profitable
for any pair of them to form a strong link. Consequently, under these conditions g
cannot be a weakly connected graph with no cycles. �
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