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Abstract In the presence of externalities across coalitions, Dutta et al. (J Econ The-
ory 145:2380–2411, 2010) characterize their value by extending Hart and Mas-Colell
reduced game consistency. In the present paper, we provide a characterization result
for the core for games with externalities by extending one form of consistency stud-
ied by Moulin (J Econ Theory 36:120–148, 1985), which is often referred to as the
complement-reduced game property. Moreover, we analyze another consistency for-
mulated by Davis and Maschler (Naval Res Logist Quart 12:223–259, 1965), called
the max-reduced game property and a final consistency called the projection-reduced
gameproperty. In environmentswith externalities,we discuss some asymmetric results
among these different forms of reduced games.

Keywords Consistency · Core · Games with externalities · Reduced game

1 Introduction

Cooperative game theory is one of the most basic frameworks to analyze coalition
formation and to study how we allocate the surplus obtained from the coalition. Many
of the traditional models of cooperative game theory consider the worth of a coalition
as the surplus obtained by the members of the coalition with no help from the other
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players. This simplification provides a wide variety of sophisticated ideas and insights
on allocations such as the Shapley value and the core. Recent works, however, attempt
to understand environments in which there is mutual influence among coalitions. In
these works, suchmutual influence is commonly called externalities among coalitions.
By using the concept of externalities, we can divide the general field of cooperative
games into two classes: games with externalities and games without externalities.
Games without externalities, or traditional models, are often referred to as coalition
function form games, whereas games with externalities are called partition function
form games.

In the presence of externalities, the allocation of surplus becomes more compli-
cated. Myerson (1977), Bolger (1989), Macho-Stadler et al. (2007) and Albizuri et al.
(2005) propose the allocation rules by generalizing the Shapley value to games with
externalities. Moreover, Dutta et al. (2010) characterize their value by extending Hart
and Mas-Colell consistency to games with externalities.

In contrast to the remarkable progress made in studies on values, there are relatively
few works on the core for environments with externalities. One possible reason for
this is that a number of types of cores can be defined in the presence of externalities:
the definition of the core depends on the “anticipation” of deviating players because of
externalities. For example, if some agents who are about to deviate from their original
affiliation anticipate the worst reaction from the remaining agents (minimizing the
surplus of the deviating agents), the deviating agents may have less incentive to carry
out the deviation. The idea of this stability appears in Bloch (1996) and is called the
pessimistic core in Kóczy (2007), which is closely associated with the concept known
as the α-core introduced by Hart and Kurz (1983). Analogous to the pessimistic core,
in the presence of externalities, the definition of each core depends on the anticipa-
tion for the reaction of the remaining players. Bloch and van den Nouweland (2014)
formulate such anticipations for reactions as expectation functions and give axiomatic
characterizations to them. However, the axiomatic characterizations for the cores have
been left open.

In this paper, we provide characterization results for the cores of games with exter-
nalities by using some forms of reduced game consistencies. We show that if an
expectation function satisfies a certain condition, then we can axiomatize the core
based on the expectation function with some axioms. Instead of Hart and Mas-Colell
consistency employed by Dutta et al. (2010), we use the other forms of reduced game
consistencies: Complement, Max and Projection consistencies. The objective of this
paper is to describe what relationships exist between the cores and the consisten-
cies in the presence of externalities. Our result is summarized in Proposition 2 and
Table 1.

The remainder of the paper is organized as follows. The next section is devoted
to the basic definitions and notations. In Sect. 3, we describe the axioms and offer
the axiomatization result. We discuss the differences among some forms of reduced
games in Sect. 4. Section 5 concludes this paper with some further remarks.
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Consistency and the core in games with externalities 135

2 Preliminaries

2.1 Games with externalities

Let N be a set of all players. We consider a finite player set N � N . A coalition
S is a subset of N . We denote by |S| the number of players in S. For any S ⊆ N ,
a partition of S is defined by {T1, . . . , Th} where 1 ≤ h ≤ |S|, Ti ∩ Tj = ∅ for
i, j = 1, . . . , h (i �= j), Ti �= ∅ for i = 1, . . . , h and

⋃h
i=1 Ti = S. We will typically

use P or Q to denote a partition. Assume that the partition of the empty set ∅ is {∅}.
For any S ⊆ N , let Π(S) be the set of all partitions of S. We define an embedded
coalition of N by (S,P) satisfying P ∈ Π(N\S). The set of all embedded coalitions
of N is given by

EC(N ) = {(S,P) | ∅ �= S ⊆ N and P ∈ Π(N\S)}.

A partition function form game is a pair (N , v), where a partition function v is a
function that assigns a real number to each embedded coalition, namely, v : EC(N ) →
R. Let ΓA be the set of all partition function form games: ΓA = {(N , v) | ∅ �= N ⊆
N , |N | < ∞, v : EC(N ) → R}. For any game, we restrict payoff vectors to the

following set: F(N , v) =
{
x ∈ RN

∣
∣
∣
∑

j∈N x j ≤ v(N , {∅})
}
. For a set of games

Γ ⊆ ΓA, a solution on Γ is a function σ that associates a subset σ(N , v) of F(N , v)

with every game (N , v) ∈ Γ .
We denote by xS a restriction of x ∈ RN on coalition S, i.e., xS = (x j ) j∈S ∈ RS .

To keep our notation simple, for any coalition S and player i , we typically use S ∪ i
or S\i to denote S ∪ {i} or S\{i}.

2.2 The reduced game

In games without externalities, several forms of reduced games are proposed, in many
of which remaining players are not influenced by orders of leaving players. However,
in the presence of externalities, we may need to consider the possibility that not only
an order of leaving players but a partition of leaving players also influences remaining
players.

We first focus our attention on the reduced game known as the complement-reduced
game. One of the crucial benefits of the complement-reduced game is, as we will
elaborate in Lemma 1 and in Sect. 5, that it depends neither on the order of leaving
players nor on the partition of leaving players even in the presence of externalities. The
complement-reduced game might be thought of as the simplest form of reduced game
in the aspect of externalities. Sections 2 and 3 are dedicated to the complement-reduced
game. The other types of reduced games are discussed in Sect. 4.

Now, consider Γ ⊆ ΓA and (N , v) ∈ Γ . Let S ⊆ N (S �= ∅) and x ∈ RN .

Definition 1 The complement-reduced game with respect to S and x is the game
(S, vS,x ) defined as follows: for any T ⊆ S (T �= ∅) and any Q ∈ Π(S\T ),
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136 T. Abe

vS,x (T,Q) = v(T ∪ (N\S),Q) −
∑

j∈N\S
x j .

The complement-reduced game describes that a coalition T always obtains the help of
all leaving players N\S by paying (x j ) j∈N\S for them.The complement-reduced game
was initially introduced by Moulin (1985) for games without externalities. Definition
1 is the simple extension of the original definition to games with externalities.

In the presence of externalities, the order of leaving players is a crucial point of
the reduced game. As we mentioned above, the dependence on the order means that
different orders result in different worths of each remaining coalition. Below, we show
that the complement-reduced game depends neither on the order of leaving players nor
on the partition of leaving players. For notational simplicity, let v−i := vN\i,x , i.e.,
v−i means the complement-reduced game after removing i from the original game.
Similarly, we use the following notation:

(v−i1)−i2 := (vN\i1,x )(N\i1)\i2,xN\i1 .

Lemma 1 For any x ∈ RN and any i1, i2 ∈ N (i1 �= i2),

(v−i1)−i2 = (v−i2)−i1

= vN\{i1,i2},x .

Proof For any T ⊆ N\i1 and any Q ∈ Π(N\(T ∪ i1)), we have

v−i1(T,Q) = v(T ∪ i1,Q) − xi1 .

For any T ′ ⊆ N\{i1, i2} and Q′ ∈ Π(N\(T ∪ {i1, i2})),

(v−i1)−i2(T ′,Q′) = v−i1(T ′ ∪ i2,Q′) − xi2
= v(T ′ ∪ {i1, i2},Q′) − xi1 − xi2 . (1)

Similarly, we remove them in the order of i2, i1 and obtain the same game as (1).
Next, assume that players i1 and i2 simultaneously leave the game. For any T ′ ⊆

N\{i1, i2} and any Q′ ∈ Π(N\(T ∪ {i1, i2})), we have

vN\{i1,i2},x (T ′,Q′) = v(T ′ ∪ {i1, i2},Q′) − xi1 − xi2 ,

which is the same as (1). �

Lemma 1 shows that the following two properties hold even in the presence of exter-
nalities: (i) the complement-reduced game is independent of the order of leaving
players; (ii) the game obtained by removing players one by one is equivalent to the
game obtained by removing players simultaneously. The independence of the order of
leaving players has some relation to the two different path independences argued by
Dutta et al. (2010) and Bloch and van den Nouweland (2014). This will be elaborated
in Sect. 5.1.
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Consistency and the core in games with externalities 137

Definition 1 shows that we can ignore this influence in the complement-reduced
game, as all leaving players N\S help the remaining players T and form a coalition
T ∪ (N\S). This property is unique to the complement-reduced game and not true for
the other types of reduced games. This difference will be expanded upon in Sect. 4.

It is straightforward to extend Lemma 1. Consider T = {i1, . . . , it } � N . For any
permutations π, π ′ of T = {i1, . . . , it }, by repeating Lemma 1, we have

vπ = vπ ′ = vN\T,x ,

where, for any permutation π ′′, vπ ′′ = (. . . ((v−π ′′
1 )−π ′′

2 ) . . .)−π ′′
t . Player π ′′

k means
the k-th player leaving the game. Hence, we obtain useful notation as follows:

v−T := vπ = vπ ′ = vN\T,x .

2.3 Expectation functions

To define the core of games with externalities, we introduce the notion of expectation
function formulated by Bloch and van den Nouweland (2014). As noted in Sect. 1,
there are various definitions of a core in the presence of externalities. This diversity
can be represented by different expectation functions.

Definition 2 An expectation function is a mapping ψ associating a partition P such
that P ∈ Π(N\S), with player set N , partition function v and nonempty coalition
S ⊆ N , formally,

ψ(N , v, S) ∈ {P ′|P ′ ∈ Π(N\S)}.

An expectation function is related to restriction operators introduced by Dutta et al.
(2010). A restriction operator describes which player moves to which coalition. This
will be elaborated in Sect. 5.1.

We introduce four basic expectation functions. An expectation function is:

– the optimistic expectation if

ψ(N , v, S) ∈ arg max
P ′∈Π(N\S)

v(S,P ′).

– the pessimistic expectation if

ψ(N , v, S) ∈ arg min
P ′∈Π(N\S)

v(S,P ′).

– the singleton-expectation if

ψ(N , v, S) = {{is+1}, . . . , {in}}.

– the merge-expectation if

ψ(N , v, S) = {N\S}.
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138 T. Abe

For the optimistic (pessimistic) expectation function, any expectation function ψ sat-
isfying the condition is optimistic (pessimistic). While each of these four expectation
functions simply assigns a partition of N\S to every coalition S, there are alternative
behavioral expectation functions. We delegate this topic to Sect. 5.4 and now focus on
the following condition of expectation functions.

Bloch and van den Nouweland (2014) introduce subset consistency for expectation
functions. We change the original definition slightly to suit our framework as follows.

Definition 3 Let Γ be a set of games and (N , v) ∈ Γ . An expectation function ψ

satisfies subset consistency if for any S ⊆ N and any T ⊆ S,

ψ(N , v, S) = ψ(N , v, T )|(N\S),

where ψ(N , v, T )|(N\S) is a partition of N\S, the elements of which are the same as
ψ(N , v, T ).1

Subset consistency describes that for a given N , all players within S ⊆ N share the
expectation on the behavior of outside players N\S. However, as we illustrate in the
following example, subset consistency does not satisfy consistency across player sets
in the following sense.

Example 1 Let N = {1, 2, 3, 4}. For any N ′ ⊆ N and any S ⊆ N ′

ψ(N ′, v, S) =
{ {N ′\S}, if N ′ = N ,

{{is+1}, . . . , {in′ }}, if N ′ � N .
(2)

Namely, if a player (sub)set N ′ is equal to N , then (2) expects a single coalition of
N ′\S. If not, then it expects a partition of N ′\S into singletons. This expectation
function satisfies subset consistency because with respect to each N ′ ⊆ N , ψ is the
merge- or the singleton-expectations within N ′. On the other hand, it is not consistent
across player sets (between N and, for example, N\4) as follows:

ψ(N\4, v−4, {1}) = {{2}, {3}} �= {2, 3} = {2, 3, 4}|N\4 = ψ(N , v, {1})|N\4,

for any v and x .

Now, our question is: what condition guarantees the consistency across the player
sets? To answer this question, we introduce a new property for expectation functions.
As we will mention later, this condition is a sufficient condition for the ψ-core to
satisfy the complement-reduced game property.

Definition 4 Let Γ be a set of games and (N , v) ∈ Γ . An expectation function ψ is
complement-consistent (CC) if for any S ⊆ N (|S| ≥ 2), any h ∈ S, and any x ∈ RN ,

ψ(N , v, S) = ψ(N\h, vN\h,x , S\h).

1 Formally, for any partitionP and coalition S ⊆ N , letP|S be given byP|S = {S∩C | C ∈ P, S∩C �=
∅} ∈ Π(S).
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Consistency and the core in games with externalities 139

Complement-consistency (CC) requires that coalition S’s expectation is equal to coali-
tion S\h’ s expectation. Note that not only ψ(N , v, S) but also ψ(N\h, vN\h,x , S\h)

is a partition of N\S.
In Definition 4, we define CC by removing one player. We next consider a slight

variant of CC.We call it strong complement-consistency, ĈC , and define it as follows:
an expectation function ψ is ĈC if for any S ⊆ N and T � S (T �= ∅),

ψ(N , v, S) = ψ(N\T, v−T , S\T ).

Namely, if ψ is ĈC , then we have

v(S, ψ(N , v, S)) = v(S, ψ(N\T, v−T , S\T )). (3)

The following proposition shows that CC is equivalent to ĈC .

Lemma 2

CC ⇐⇒ ĈC

Proof It is clear that ĈC ⇒ CC holds. We show that CC ⇒ ĈC . Let S ⊆ N and
T � S with T �= ∅. Define T = {h1, . . . , ht }. By CC, we have

ψ(N , v, S) = ψ(N\h1, v−h1 , S\h1)
= ψ(N\{h1, h2}, (v−h1)−h2 , S\{h1, h2})
...

= ψ(N\T, (. . . (v−h1) . . .)−ht , S\T )

= ψ(N\T, v−T , S\T ),

where the last equality holds by Lemma 1. �


The four expectation functions listed above (the optimistic, pessimistic, merge- and
singleton-expectation functions) are all CC. For the proof, see Proposition 3 andCorol-
lary 2 in theAppendix. The relationship between consistency concepts and expectation
functions is summarized in Fig. 1.

Fig. 1 The relationship
between consistency concepts
and expectation functions
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140 T. Abe

2.4 The core based on an expectation function

In this subsection, we introduce the core based on an expectation function. Define

X (N , v) =
{
x ∈ RN

∣
∣
∣
∑

j∈N x j = v(N , {∅})
}
. Then, the core based on an expecta-

tion function is given as the following definition.

Definition 5 Let Γ be a set of games and (N , v) ∈ Γ . Given an expectation function
ψ , the ψ-core of game (N , v) is defined as follows:

Cψ(N , v)=
⎧
⎨

⎩
x ∈ X (N , v)

∣
∣
∣
∣
∣
∣
for any nonempty S ⊆ N ,

∑

j∈S
x j ≥v(S, ψ(N , v, S))

⎫
⎬

⎭
.

If ψ is the optimistic, pessimistic, singleton- or merge-expectation function, then the
ψ-core means the optimistic core Copt , the pessimistic core C pes , the m-core Cm , or
the s-core Cs , respectively.2 For any expectation function ψ , let ΓCψ denote the class
of games in which the nonemptyψ-core exists.3 Definition 5 is a generalization of the
core of usual TU-gameswithout externalities: we implicitly assume that each deviating
coalition forms a single coalition without breaking up and restrict our attention to the
allocations x feasible in the grand coalition N . We will discuss these assumptions in
Sects. 5.2 and 5.3.

3 An axiomatic approach

We introduce the axioms for our characterization results.

Axiom 1 (comp-RGP) Let Γ be a set of games, (N , v) ∈ Γ and S ⊆ N. A solution
σ on Γ satisfies the complement-reduced game property (comp-RGP) if for every
x ∈ σ(N , v), we have (S, vS,x ) ∈ Γ and xS ∈ σ(S, vS,x ).

Axiom 1 is a condition requiring solution σ to be consistent with itself: if x ∈
σ(N , v), namely, x solves the game (N , v), then xS should solve (S, vS,x ) for any
S ⊆ N . Namely, any restriction xS of x does not contradict the agreement among all
players that x is a solution of (N , v). Moreover, Axiom 1 is independent of expectation
function ψ . In other words, the choice of an expectation function does not influence
the concept of consistency described in Axiom1.

Axiom 2 (NEonΓ )LetΓ be a set of games. A solutionσ onΓ satisfies non-emptiness
on Γ (NE on Γ ) if for every (N , v) ∈ Γ , we have σ(N , v) �= ∅.

Axiom 2 states that solution σ should be non-empty for any game in a given class
Γ . This axiom may depend on ψ if Γ is specified by ψ .

2 The terminology of the m-core and the s-core is introduced by Hafalir (2007).
3 Abe and Funaki (2016) generalize the Bondareva-Shapley condition and define the class ΓCψ . The
balancedness of each type of core is also studied.
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Consistency and the core in games with externalities 141

Axiom 3 (ψ-IR) Let ψ be an expectation function. A solution σ on Γ satisfies ψ-
individual rationality (ψ-IR) if for every (N , v) ∈ Γ , any x ∈ σ(N , v), and every
player i ∈ N, we have xi ≥ v({i}, ψ(N , v, {i})).

In the presence of externalities, each player i’s solo worth varies depending on the
coalition structure of N\i . The axiom ψ-IR requires that solution σ should assign to
each player at least his individual worth under the expectationψ and the corresponding
coalition structure ψ(N , v, {i}). Axiom 3 directly depends on ψ .

For anyψ , theψ-core satisfiesψ-IR because the expectation functionψ is common
to both ψ-core and ψ-IR. It is also clear that ψ-core is nonempty on Γ if Γ = ΓCψ .
For comp-RGP, we have the following result.

Proposition 1 If an expectation function ψ is CC, the ψ-core satisfies comp-RGP on
ΓCψ .

Proof Let Cψ(N , v) be the ψ-core of (N , v) and x ∈ Cψ(N , v). For every nonempty
S ⊆ N , it suffices to show that xS ∈ Cψ(S, vS,x ). By Definition 1, for any T ⊆ S
(T �= ∅), we have

∑

j∈T
x j − vS,x (T, ψ(S, vS,x , T ))

=
∑

j∈T
x j −

⎡

⎣v(T ∪ (N\S), ψ(S, vS,x , T )) −
∑

j∈N\S
x j

⎤

⎦

=
∑

j∈T∪(N\S)

x j − v(T ∪ (N\S), ψ(S, vS,x , T ))

≥ v(T ∪ (N\S), ψ(N , v, T ∪ (N\S))) − v(T ∪ (N\S), ψ(S, vS,x , T )) (4)

= v(T ∪ (N\S), ψ(S, vS,x , T )) − v(T ∪ (N\S), ψ(S, vS,x , T ))

= 0, (5)

where (4) holds because of x ∈ Cψ(N , v), and (5) because of (3). �

Now, we offer the axiomatization below. We first show that a well-known result

holds even in games with externalities (Lemma 3). This result will be used in the proof
of the axiomatization (Proposition 2).

Lemma 3 Let ψ be an expectation function and σ be a solution on a set of games Γ .
If σ satisfies comp-RGP and ψ-IR, then σ satisfies efficiency: for any x ∈ σ(N , v)

∑

j∈N
x j = v(N , {∅}).

Proof This is a simple extension of Peleg (1986) and Tadenuma (1992). Let (N , v) ∈
Γ and x ∈ σ(N , v). Assume that σ is not efficient. Then, there exists x ∈ σ(N , v)

such that
∑

j∈N x j < v(N , {∅}). Let i be a player in N . By comp-RGP, we have
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142 T. Abe

xi ∈ σ
({i}, v{i},x). For any ψ , by ψ-IR, we have xi ≥ v{i},x ({i}, {∅}) = v(N , {∅}) −∑

j∈N\i x j . Hence,
∑

j∈N x j ≥ v(N , {∅}), and the desired contradiction has been
obtained. �

Proposition 2 Let ψ be an expectation function. If ψ is CC, then ψ-core Cψ is the
unique function on ΓCψ that satisfies comp-RGP, NE on ΓCψ , and ψ-IR.

Proof We prove uniqueness next. Let σ be a solution satisfying the three conditions.
The proof consists of two parts: σ ⊆ Cψ and Cψ ⊆ σ .

Part 1:
First, we show that σ(N , v) ⊆ Cψ(N , v) for any (N , v) ∈ ΓCψ . From Lemma 3,

it follows that σ satisfies efficiency.

Induction base
For |N | = 1, σ(N , v) ⊆ Cψ(N , v) because of efficiency. For |N | = 2, let N =

{i, j}. By efficiency, xi + x j = v(N , {∅}) for any x ∈ σ(N , v). By ψ-IR, xi ≥
v({i}, {{ j}}) and x j ≥ v({ j}, {{i}}). Hence, σ(N , v) ⊆ Cψ(N , v).
Induction proof

Weassume thatσ(N , v′) ⊆ Cψ(N , v′) for any (N , v′) ∈ Γ ψ with |N | ≤ k (k ≥ 2).
We show that for any (M, v) ∈ Γ ψ with |M | = k+1, we have σ(M, v) ⊆ Cψ(M, v).

Let x ∈ σ(M, v) and h ∈ M . By comp-RGP, we have xM\h ∈ σ(M\h, vM\h,x ).
By the assumption of induction, σ(M\h, vM\h,x ) ⊆ Cψ(M\h, vM\h,x ). Hence, for
any nonempty S ⊆ M\h,

∑

j∈S
x j ≥ vM\h,x (S, ψ(M\h, vM\h,P,x , S))

= v(S ∪ h, ψ(M\h, vM\h,P,x , S)) − xh
= v(S ∪ h, ψ(M, v, S ∪ h)) − xh, (6)

where (6) holds because ψ is CC. Thus, we obtain

∑

j∈S∪h
x j ≥ v(S ∪ h, ψ(M, v, S ∪ h))

for any nonempty S ⊆ M\h. In addition, byψ-IR, we have xi ≥ v({i}, ψ(M, v, {i})).
Hence, σ(M, v) ⊆ Cψ(M, v). By induction, it follows that σ(N , v) ⊆ Cψ(N , v) for
all (N , v) in Γ ψ .

Part 2:
Next, we show that Cψ(N , v) ⊆ σ(N , v) for all (N , v) ∈ ΓCψ . To prove this,

we construct a game (M, u) by using a game (N , v) ∈ ΓCψ and a payoff vector
x ∈ Cψ(N , v). Fix (N , v) ∈ ΓCψ and x ∈ Cψ(N , v). We define M := N ∪ h, where
h ∈ N and h /∈ N . Define u as follows:

u({h},P ′) = 0 for all P ′ ∈ Π(M\h),

u(S ∪ h,P ′′) = v(S,P ′′) for all P ′′ ∈ Π(M\(S ∪ h)),

u(S,P ′′′) = ∑
j∈S x j , for all P ′′′ ∈ Π(M\S).

(7)
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Consistency and the core in games with externalities 143

Now, consider y = (x, 0) ∈ RM . We will prove the following claims.

Claim 1 y ∈ Cψ(M, u).

Proof By the definition of y and u, we have

∑

j∈M
y j =

∑

j∈N
x j = v(N , {∅}) = u(M, {∅}).

First, we show that v = uM\h,y . For any S ⊆ N = M\h and any P ′′ ∈ Π(N\S),
we have

uM\h,y(S,P ′′) = u(S ∪ h,P ′′) − yh
= u(S ∪ h,P ′′)
= v(S,P ′′),

where the last equality holds because of the second line of (7).
Now, for any S ⊆ N = M\h, we have

∑

j∈S∪h
y j =

∑

j∈S
x j ≥ v(S, ψ(N , v, S))

= u(S ∪ h, ψ(M, u, S ∪ h)).

The last equality holds because ψ is CC and v is a complement-reduced game of u.
In addition, by the third line of (7), for any S ⊆ N = M\h and any P ′′′ ∈ Π(M\S),
we have

∑

j∈S
y j =

∑

j∈S
x j = u(S,P ′′′).

This completes the proof of Claim 1. �

Claim 2 {y} = Cψ(M, u).

Proof If there exists z ∈ Cψ(M, u) such that z �= y, we must have
∑

j∈M z j =
u(M, {∅}) = v(N , {∅}) = ∑

j∈N x j = u(N , {{h}}) ≤ ∑
j∈N z j , and zh ≥

u(h,P ′) = 0 for any P ′ ∈ Π(M\h). Hence, zh = 0.
For any i ∈ N and any P ′′′ ∈ Π(M\i), we have zi ≥ u(i,P ′′′) = xi = yi and,

also,
∑

j∈N z j = ∑
j∈M z j = u(M, {∅}) = ∑

j∈M y j = ∑
j∈N y j . Thus, we obtain

zi = yi for all i ∈ N , i.e., z = y. This completes the proof of Claim 2. �

Now, consider x ∈ Cψ(N , v) and (M, u) again. By the first half of this proof,

σ(M, u) ⊆ Cψ(M, u). As mentioned above, Cψ(M, u) = {y}. By connecting them,
σ(M, u) ⊆ Cψ(M, u) = {y}. By NE on Γ ψ , we obtain σ(M, u) = Cψ(M, u) = {y}.
Furthermore, by comp-RGP and v = uM\h,y , we have x = yN ∈ σ(N , uM\h,y) =
σ(N , v). Thus, Cψ(N , v) ⊆ σ(N , v). �
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Proposition 2 states that we can generalize the axiomatization of the core of games
without externalities by using expectation function ψ . In Proposition 2, ψ is needed
to be CC. More specifically, CC is a sufficient condition for the ψ-core to satisfy
comp-RGP. To enhance the intuition behind this requirement, we offer the following
example.

Example 2 Let N = {1, 2, 3, 4}. We consider the expectation function ψ given by (2)
in Example 1, which satisfies subset consistency but not CC. Consider the following
game: for mutually different players i, j, k, h ∈ N ,

v({i, j, k, h},∅) = 12,

v({i, j, k}, {{h}}) = 9,

v({i, j}, {{k, h}}) = 6,

v({i, j}, {{k}, {h}}) = 7,

v({i}, any partition of N\i) = 0.

Theψ-core of this game isCψ = {(3, 3, 3, 3)}, which is equal to the core based on the
merge-expectation. We reduce this game to {1, 2, 3} with x = (3, 3, 3, 3), and obtain

v−4({i, j, k},∅) = 9,

v−4({i, j}, {{k}}) = 6,

v−4({i}, {{ j, k}}) = 3,

v−4({i}, {{ j}, {k}}) = 4,

formutually different players i, j, k ∈ N\4. Theψ-core of this reduced game is empty.
This is because theψ-core is equal to the core based on the singleton-expectation in the
player set N\4 (� N ). In contrast, if ψ is CC, then we have a consistent expectation
function and the corresponding core: if ψ is the merge-expectation within N , then
it should be the merge-expectation within N\4, and, similarly, if it is the singleton-
expectationwithin N , then the singleton-expectationwithin N\4 aswell. This property
enables the ψ-core to satisfy comp-RGP.

Note that if we “remove” externalities, this axiomatization coincides with Tade-
numa’s approach. To see this, consider an expectation function ψ to be a function
transforming a game with externalities v into a game without externalities w, by set-
ting

w(S) := v(S, ψ(N , v, S)). (8)

Proposition 2 shows that if ψ is CC, then this transformation ψ keeps the core’s
axiomatic characterization unchanged. As we have mentioned, the four expectation
functions are all CC. Therefore, we have the following corollary.

Corollary 1 The four types of cores, i.e., Copt , C pes , Cs and Cm, can be axiomatized
with axioms 1-3 on each class: ΓCopt , ΓC pes , ΓCs and ΓCm , respectively.
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An example of expectation function that satisfies neither CC nor subset consistency
is

ψ(N , v, S) =
{ {N\S} if |S| ≥ 2,

{{is+1}, . . . , {in}} if |S| = 1.

This expectation function can be seen as the combination of themerge-expectation and
the singleton-expectation. Expectation functions consisting of different expectation
rules are typically not CC.

4 The other reduced games

In view of Proposition 2, one might consider that the analogous proof can be adapted
for the other types of reduced games. In this section, we show that this conjecture is not
necessarily true. To see this, we will extend the max-reduced game and the projection-
reduced game, which were formulated by Davis and Maschler (1965) and Funaki
and Yamato (2001), respectively. This extension includes two technical difficulties.
First, we need a partition as the additional specifier to define the reduced game. We
use vS,P,x to denote the reduced game instead of the previous notation vS,x . Second,
the generalization of the max-reduced game yields two possible extensions: max-
I and max-II. The difference between the two is the domain of maximization. For
any coalition S ⊆ N , the former ignores the partition structure of N\S and chooses
C ⊆ N\S, whereas the latter chooses C in the partition of N\S.

Formally, we consider a set of games Γ ⊆ ΓA and a game (N , v) ∈ Γ . Let S ⊆ N
(S �= ∅), P ∈ Π(N\S), and x ∈ RN .

Definition 6 The max-reduced game (I) with respect to S,P and x is the game
(S, v

S,P,x
m1 ) defined as follows: for any T ⊆ S (T �= ∅) and any Q ∈ Π(S\T ),

v
S,P,x
m1 (T,Q) =

⎧
⎪⎪⎨

⎪⎪⎩

max
C⊆N\S

⎡

⎣v(T ∪ C,Q ∪ (P|(N\S)\C )) −
∑

j∈C
x j

⎤

⎦ , if T � S

v(N , {∅}) − ∑
j∈N\S x j , if T = S

.

The max-reduced game (II), (S, v
S,P,x
m2 ), is also defined by replacing the domain of

the maximization C ⊆ N\S with C ⊆ P , formally,

v
S,P,x
m2 (T,Q) =

⎧
⎪⎪⎨

⎪⎪⎩

max
∅⊆C⊆P

⎡

⎣v(T ∪ C̄,Q ∪ (P\C)) −
∑

j∈C̄
x j

⎤

⎦ , if T � S

v(N , {∅}) − ∑
j∈N\S x j , if T = S

,

where C̄ = ⋃
Ci∈C Ci .

Definition 7 The projection-reduced game with respect to S,P and x is the game
(S, v

S,P,x
p ) defined as follows: for any T ⊆ S (T �= ∅) and any Q ∈ Π(S\T ),
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Table 1 The relationship between the cores and RGPs

RGP

Max(I) Max(II) Projection Complement

Optimistic core Yes Yes Yes Yes

Pessimistic core – – – Yes

s-Core – – – Yes

m-Core – – – Yes

Table 2 The relationship between expectation functions and consistency

Consistency

Max(I) Max(II) Projection Complement

Optimistic expectation – – – Yes

Pessimistic expectation – – – Yes

Singleton-expectation Yes Yes Yes Yes

Merge-expectation Yes Yes Yes Yes

vS,P,x
p (T,Q) =

{
v(T,Q ∪ P), if T � S
v(N , {∅}) − ∑

j∈N\S x j , if T = S .

If players leave the game one by one, the max-reduced games (both I and II) and the
projection-reduced game are all independent of the order of the leaving players as well
as the complement-reduced game. However, if two or more players simultaneously
leave the game as a single group, the max-reduced games (I, II) and the projection-
reduced game may depend on the partition of the leaving players.4 This contrasts
with the fact that the complement-reduced game is independent of the partition of the
leaving players.

The gap between “one-by-one leaving” and “at-once leaving” yields two RGPs.
We call them “one-by-one RGP” and “at-once RGP.” It is clear that the one-by-one
RGP is weaker than the at-once RGP. We restrict our attention to the weaker RGP,
i.e., one-by-one RGP, and denote it, simply, RGP hereafter.

Now, we return to the main question of this section: can we adapt the technique
of Proposition 2 to the proof of the axiomatizations for the max- and the projection-
reduced game? Tables 1 and 2 describe its difficulty. Table 1 describes the relationship
between the cores and RGPs, and Table 2 shows the relationship between the four
expectation functions and consistencies. There is no ambiguity in defining these consis-
tencies in Table 2. We define them by replacing vN\h,x in Definition 4 with v

N\h,{h},x
m1 ,

v
N\h,{h},x
m2 or v

N\h,{h},x
p , namely, we use the weaker definition based on one-by-one

4 Formally, as in Lemma 1, we have (v
−i1
m1 )

−i2
m1 = (v

−i2
m1 )

−i1
m1 . However, there possibly exist partitions P

and P ′ such that vN\{i1,i2},P,x
m1 �= v

N\{i1,i2},P ′,x
m1 , where (m1) can be replaced with (m2) or (p).
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leaving.We now consider, for example, the max(I)-reduced game. The max(I)-version
of Proposition 2 should be as follows:

If ψ is max(I)-consistent, then ψ-core Cψ is the unique function on ΓCψ that
satisfies max(I)-RGP and some axioms.

As Table 2 shows, the singleton-expectation and the merge-expectation satisfy the
max(I)-consistency.However, asTable 1 shows, the s-core and them-core donot satisfy
max(I)-RGP. Namely, for each expectation function ψ , either the ψ-core violates the
max(I)-RGP or ψ violates the max(I)-consistency, except for the complement-RGP
and the complement-consistency (CC). This is the difficulty of the straightforward
generalization of the axiomatization using reduced game consistency. In other words,
the completion of Proposition 2 is ascribed to the coincidence of the complement
reduced game illustrated in Tables 1 and 2. Note that all propositions and examples of
Tables 1 and 2 are found in the Appendix.

5 Concluding remarks

5.1 Similarities and differences with path independence

We compare the independence of the reduced game on the order of leaving players,
as is described by Lemma 1, with similar notions studied by Dutta et al. (2010) and
Bloch and van den Nouweland (2014).

Bloch and van den Nouweland (2014) define path independence for expectation
functions. Since their definition is more general than ours, we slightly expand our
definition as follows: ψ(N , v, S,N ), where N is a partition of the player set. This
extension allows us to consider an expectation depending on the current partition
N from which a coalition S deviates. Now, an expectation function satisfies path
independence if for any nonempty disjoint coalitions S, T ⊆ N and anyN ∈ Π(N ),

ψ(N , v, S ∪ T, {S} ∪ ψ(N , v, S,N )) = ψ(N , v, S ∪ T, {T } ∪ ψ(N , v, T,N )).

Namely, if path independence does not hold, the expectation of a coalition depends
on the order in which each member’s expectation is aggregated. Bloch and van den
Nouweland (2014) show that almost all reasonable expectation functions (including
the four functions we listed) obey path independence.

Dutta et al. (2010) define restriction operators. A restriction operator r specifies
a subgame (not a reduced game) v−i,r : EC(N\i) → R with respect to a player i .
To be more precise, an operator r Ni,S,Q determines which coalition S in Q ∪ ∅ to be

merged with player i , namely, v−i,r (S,Q) = r Ni,S,Q( v(S, {(S1 ∪ i), S2, . . . , Sq}), . . .,
v(S, {S1, S2, . . . , (Sq ∪ i)}), v(S, {S1, S2, . . . , Sq , {i}}) ). They define path indepen-
dence as follows: a restriction operator r satisfies path independence if for any (N , v)

and any i, j ∈ N ,

(v−i,r )− j,r = (v− j,r )−i,r .
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Inwords, the subgame obtained by the order i, j should be the same as that by the order
j, i . It is important to note that their path independence is (similar, but) not exactly
the same as ours: their independence guarantees the same worth of each coalition
between two subgames with different paths, whereas ours guarantees that between
two reduced games for any x ∈ RN . In other words, the path considered by Dutta
et al. (2010) focuses on which player moves to which coalition, whereas our path
describes which game is specified by player i and agreement x . In this sense, Dutta
et al. (2010)’s path independence may be closer to that of expectation functions. In
fact, an operator r relates a game with externalities to a game without externalities
by defining wr

v(S) = v(S,Pr ) for any S � N and wr
v(N ) = v(N ,∅), where Pr is a

partition of N\S specified by r and the |N | − |S| times leavings.

5.2 Deviations with multiple coalitions

In this paper, we assume that deviating coalitions form a single coalition S. As Kóczy
(2007) and Bloch and van den Nouweland (2014) noted, this assumption is not nec-
essarily general as forming multiple coalitions may be beneficial. In the general
framework of multiple coalitions, the assumption of a single coalition can be thought
of as an improvement with respect to the total payoff of the deviating coalitions:
some players deviate by forming some coalitions if the total payoff of the coalitions
is greater than their current payoff. However, we note that this approach ignores the
case when the total payoff increases, whereas the payoff for some coalitions decreases.
Moreover, when we consider deviations with multiple coalitions, the non-emptiness
of the cores generally varies: an allocation x which prevents players from deviating
with a single coalition may allow them to deviate with multiple coalitions. Therefore,
in the framework of multiple coalitions, the class of games with the nonempty core
shrinks.

5.3 The coalition structure core

The concepts of the cores we used in this paper are extensions of the classical core in
games without externalities. In contrast, Greenberg (1994) defines the coalition struc-
ture core for games in partition function form, which is a set of outcomes consisting
of a payoff vector x and a partition P from which no coalition deviates. The core
concept described by Kóczy and Lauwers (2004) and the recursive core studied by
Kóczy (2007) is based on the coalition structure core. Our extension can be seen as
the coalition structure core with restricting partitions to the grand coalition {N }.

5.4 Alternative expectation functions

Throughout this paper, we used expectation functions associated with partitions,
namely,ψ(N , v, S) ∈ Π(N\S). However, the probabilistic approach, as is sometimes
seen in the papers studying the generalization of the Shapley value, is also possible,
in which ψ(N , v, S) is a probability distribution over Π(N\S). Each definition and
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result in this paper can be straightforwardly adjusted to the probabilistic framework. It
is notable that any convex combination of the four expectation functions listed earlier,
for instance, 50% for the best partition arg maxP ′∈Π(N\S) v(S,P ′) and 50% for the
worst partition arg minP ′∈Π(N\S) v(S,P ′), is still CC.

The expectation functions discussed in this paper are some of the simplest expecta-
tion rules. There are expectation functions reflecting other behavioral expectations. For
example, Kóczy (2007) proposes the recursive optimism and pessimism and defines
the cores based on the expectations. It may be possible to apply our approach to the
elaborate expectations. This interesting topic is left for future work.

Appendix

To distinguish each form of reduced game, in this appendix, we use symbols v
S,P,x
m1 ,

v
S,P,x
m2 , vS,P,x

p and v
S,x
c to denote max(I), max(II), projection and complement-type of

reduced game, respectively. Tables 3 and 4 correspond to Tables 1 and 2, respectively.
The number assigned to each cell represents the proposition or example describing
the cell, e.g., for the proposition showing that the optimistic core satisfies Max-I RGP,
see Proposition 5.

Proposition 3 If ψ is optimistic or pessimistic, then ψ is CC.

Table 3 The relationship between expectation cores and RGP (corresponding to Table 1)

RGP

Max(I) Max(II) Projection Complement

Optimistic core Yes Prop.5 Yes Prop.5 Yes Prop.5 Yes Prop.1

Pessimistic core – Ex.4 – Ex.4 – Ex.6 Yes Prop.1
s-Core – Ex.5 – Ex.5 – Ex.6 Yes Prop.1
m-Core – Ex.4 – Ex.4 – Ex.7 Yes Prop.1

Table 4 The relationship between expectation functions and consistency (corresponding to Table 2)

Consistency

Max(I) Max(II) Projection Complement

Optimistic expectation – Ex.3 – Ex.3 – Ex.3 Yes Prop.3
Pessimistic expectation – Ex.3 – Ex.3 – Ex.3 Yes Prop.3
Singleton-expectation Yes Cor.2 Yes Cor.2 Yes Cor.2 Yes Cor.2
Merge-expectation Yes Cor.2 Yes Cor.2 Yes Cor.2 Yes Cor.2
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Proof We denote by ψopt the optimistic expectation function. Let (N , v) be a game,
and S ⊆ N (|S| ≥ 2). We define P∗ as follows:

P∗ := ψopt (N , v, S) = arg max
P ′∈Π(N\S)

v(S,P ′). (9)

For any h ∈ S and x ∈ RN , we have

v
N\h,x
c (S\h,P∗) = v(S,P∗) − xh

= max
P ′∈Π(N\S)

[v(S,P ′) − xh]

= max
P ′∈Π(N\S)

[vN\h,x
c (S\h,P ′)],

where the first equality holds by the definition of complement reduced games, the
second by (9) and the last by the definition of complement reduced games. Hence, we
obtain

P∗ = arg max
P ′∈Π(N\S)

v
N\h,x
c (S\h,P ′) = ψopt (N\h, v

N\h,x
c , S\h),

and, then, ψopt (N , v, S) = ψopt (N\h, v
N\h,x
c , S\h), which implies ψopt is CC.

By replacing max with min, we complete the proof of the pessimistic expectation
function ψ pes as well. �

Proposition 4 If ψ satisfies the following condition: for any games (N , v), (M, w),
and nonempty coalitions S ⊆ N, T ⊆ M,

N\S = M\T �⇒ ψ(N , v, S) = ψ(M, w, T ), (10)

then ψ satisfies all four types of consistencies: Max-I, Max-II, Projection and Com-
plement.

Proof We prove CC (or, complement consistency). The other types of consistencies
are obtained in the same way. Fix a game (N , v). For any x ∈ RN and h ∈ N , we can
specify the complement reduced game (N\h, v

N\h,x
c ). For any S such that h ∈ S ⊆ N ,

we have

N\S = (N\h)\(S\h).

Using (10), we obtain ψ(N , v, S) = ψ(N\h, v
N\h,x
c , S\h, ) �


Lemma 4 If ψ is the singleton-expectation, then ψ satisfies (10).

Proof We denote by ψ s the singleton-expectation function. For any nonempty T and
S with T ∈ S ⊆ N , and any w : EC(N\T ) → R, we have ψ s(N , v, S) = {{i}|i ∈
N\S} = ψ s(N\T, w, S\T ). �
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Lemma 5 If ψ is the merge-expectation, then ψ satisfies (10).

Proof This is similar to Lemma 4. Letψm denote the merge-expectation function. We
have ψm(N , v, S) = {N\S} = ψm(N\T, w, S\T ). �

Corollary 2 If ψ is the singleton-expectation or the merge-expectation, then ψ sat-
isfies all four types of consistencies.

Proof See Lemmas 4, 5 and Proposition 4. �

Example 3 Consider the following 4-player game: N = {i1, i2, i3, i4};

v(N , {∅}) = 12;
v({i, j, k}, {{h}}) = 5 and v({h}, {{i, j, k}}) = 0, f or {i, j, k, h} = N ;
v({i, j}, {{k, h}}) = 4, f or {i, j, k, h} = N ;
v({i, j}, {{k}, {h}}) = 3 and v({k}, {{i, j}, {h}}) = 1, f or {i, j, k, h} = N ;
v({i}, {{ j}, {k}, {h}}) = 2, f or {i, j, k, h} = N .

Let x = (3, 3, 3, 3), S = {i1, i2} and player h = 1. For the optimistic expectation
function, we have

arg max
P ′∈Π(N\S)

v(S,P ′) = {{i3, i4}},

becausemaxP ′∈Π(N\S) v(S,P ′)=max{v(S, {{i3, i4}}), v(S, {{i3}, {i4}})}=max{4, 3}.
However, in the Max-I reduced game, we have

arg max
P ′∈Π(N\S)

v−h
m1 (S\h,P ′) = {{i3}, {i4}},

because

max
P ′∈Π(N\S)

v−h
m1 (S\h,P ′) = max

{
v(S, {{i3, i4}}) − xh, v(S\h, {{i1}, {i3, i4}}),
v(S, {{i3}, {i4}}) − xh, v(S\h, {{i1}, {i3}, {i4}})

}

= max{4 − 3, 1, 3 − 3, 2}
= 2, (11)

which is the worth of the bottom-right element in (11). Hence, ψopt (N , v, S) =
{{i3, i4}} �= {{i3}, {i4}} = ψopt (N\h, v−h

m1 , S\h). For the optimistic expectation
function, this example is still valid for Max-II and Projection consistencies as well.
For the pessimistic expectation function, we can generate the example by swapping
v({i, j}, {{i, j}, {k, h}}) for v({i, j}, {{i, j}, {k}, {h}}).
Lemma 6 Let (N , v) ∈ Γ . Let S ⊆ N, P ∈ Π(N\S) and x ∈ RN . We denote each
type of reduced game by v

S,P,x
m1 , vS,P,x

m2 , vS,P,x
p and v

S,x
c , respectively. Then, for any

T ⊆ S (T �= ∅) and Q ∈ Π(S\T ), we have

v
S,P,x
m1 (T,Q) ≥ v

S,P,x
m2 (T,Q),
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v
S,P,x
m2 (T,Q) ≥ vS,P,x

p (T,Q),

v
S,P,x
m2 (T,Q) ≥ vS,x

c (T,Q).

Proof The first inequality follows from the domain of maximization: in view of the
definitions, for any P ∈ Π(N\S),

{C |C ∈ P} (or, Max-II) ⊆ {C |C ⊆ N\S} (or, Max-I) .

The second (third) inequality holds because we can take ∅ (N\S) as maximizer C . �

Proposition 5 The optimistic-core satisfies all types of RGP on ΓCopt : maxI-RGP,
maxII-RGP, projection-RGP and comp-RGP.

Proof Let Copt (N , v) be the optimistic core of (N , v) and x ∈ Copt (N , v). We show
that the optimistic-core satisfies maxI-RGP. For any S ⊆ N , T � S (T �= ∅) and
P ∈ Π(N\S), we have

∑

j∈T
x j − max

Q∈Π(S\T )
v
S,P,x
m1 (T,Q)

=
∑

j∈T
x j − max

Q∈Π(S\T )
max

C⊆N\S

⎡

⎣v(T ∪ C,Q ∪ (P|(N\S)\C )) −
∑

j∈C
x j

⎤

⎦

=
∑

j∈T
x j −

⎡

⎣v(T ∪ C∗,Q∗ ∪ (P|(N\S)\C∗)) −
∑

j∈C∗
x j

⎤

⎦ (12)

=
∑

j∈T∪C∗
x j − v(T ∪ C∗,Q∗ ∪ (P|(N\S)\C∗))

≥ max
P ′∈Π(N\(T∪C∗))

v(T ∪ C∗,P ′) − v(T ∪ C∗,Q∗ ∪ (P|(N\S)\C∗))

≥ 0, (13)

where C∗,Q∗ in (12) are maximizers of the target formula, and (13) holds because
x ∈ Copt (N , v). Similarly, for T = S, we have

∑

j∈S
x j − vS,P,x (S, {∅}) =

∑

j∈S
x j −

⎛

⎝v(N , {∅}) −
∑

j∈N\S
x j

⎞

⎠

=
∑

j∈N
x j − v(N , {∅})

= 0.

By Lemma 6, we can replace v
S,P,x
m1 with v

S,P,x
m2 , v

S,P,x
p and v

S,P,x
c , respectively.

Then, we obtain the desired proposition. �
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Example 4 Consider the following 4-player game: N = {1, 2, 3, 4},

v(S,P) =
⎧
⎨

⎩

12 if (S,P) = (N , {∅}),
6 if (S,P) = ({i, j}, {{k}, {h}}),
0 otherwise.

Let x = (x1, x2, x3, x4) = (1, 3, 4, 4). Then, x ∈ C pes(N , v) = Cm(N , v). Now, for
S = {1, 2} and P = {{3}, {4}}, we have the following Max-I reduced game:

v
S,P,x
m1 ({1, 2}, {∅}) = 12 − (4 + 4) = 4,

v
S,P,x
m1 ({1}, {{2}}) = 6 − 4 = 2,

v
S,P,x
m1 ({2}, {{1}}) = 6 − 4 = 2.

The restriction of x , xS = (1, 3), is out of the pessimistic core (and the m-core) of the
reduced game: xS = (1, 3) /∈ {(2, 2)} = C pes(S, v

S,P,x
m1 ) = Cm(S, v

S,P,x
m1 ). We have

the Max-II reduced game as well as Max-I.

Example 5 Consider the following 5-player game: N = {1, 2, 3, 4, 5},

v(S,P) =
⎧
⎨

⎩

15 if (S,P) = (N , {∅}),
7 if (S,P) = ({i, j}, {{k}, {h, l}}),
0 otherwise.

Let x = (x1, x2, x3, x4, x5) = (2, 2, 4, 4, 3). Then, x ∈ Cs(N , v). For S = {3, 4}
(who obtain 4 in x) and P = {{1}, {2, 5}}, we have the following Max-I reduced
game:

v
S,P,x
m1 ({3, 4}, {∅}) = 15 − (2 + 2 + 3) = 8,

v
S,P,x
m1 ({3}, {{4}}) = 7 − 2 = 5,

v
S,P,x
m1 ({4}, {{3}}) = 7 − 2 = 5.

Hence, the s-core is empty. We have the same result in Max-II as well as Max-I.

Example 6 Consider the following 4-player game: N = {1, 2, 3, 4},

v(S,P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

12 if (S,P) = (N , {∅}),
4 if (S,P) = ({i}, {{ j, k, h}}),
4 if (S,P) = ({i}, {{ j, k}, {h}}),
3 if (S,P) = ({i}, {{ j}, {k}, {h}}),
0 otherwise.

Let x = (x1, x2, x3, x4) = (3, 3, 3, 3). Then, x ∈ C pes(N , v) = Cs(N , v). For
S = {1, 2} and P = {{3, 4}}, we have the following projection reduced game:

vS,P,x
p ({1, 2}, {∅}) = 12 − (3 + 3) = 6,
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vS,P,x
p ({1}, {{2}}) = 4,

vS,P,x
p ({2}, {{1}}) = 4.

Hence, the pessimistic core and the s-core are empty in the reduced game.

Example 7 Consider the following 4-player game: N = {1, 2, 3, 4},

v(S,P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

12 if (S,P) = (N , {∅}),
3 if (S,P) = ({i}, {{ j, k, h}}),
4 if (S,P) = ({i}, {{ j, k}, {h}}),
4 if (S,P) = ({i}, {{ j}, {k}, {h}}),
0 otherwise.

Let x = (x1, x2, x3, x4) = (3, 3, 3, 3). Then, x ∈ Cm(N , v). For S = {1, 2} and
P = {{3, 4}}, we have the following projection reduced game:

vS,P,x
p ({1, 2}, {∅}) = 12 − (3 + 3) = 6,

vS,P,x
p ({1}, {{2}}) = 4,

vS,P,x
p ({2}, {{1}}) = 4.

Hence, the m-core of the reduced game becomes empty.

References

Abe T, Funaki Y (2016) The non-emptiness of the core of a partition function form game. Int J Game Theory
(forthcoming)

Albizuri MJ, Arin J, Rubio J (2005) An axiom system for a value for games in partition function form. Int
Game Theory Rev 7:63–72

Bloch F (1996) Sequential formation of coalitions in games with externalities and fixed payoff division.
Games Econ Behav 14:90–123

Bloch F, van den Nouweland A (2014) Expectation formation rules and the core of partition function games.
Games Econ Behav 88:339–353

Bolger E (1989) A set of axioms for a value for partition function games. Int J Game Theory 18:37–44
Davis M, Maschler M (1965) The kernel of a cooperative game. Naval Res Logist Quart 12:223–259
Dutta B, Ehlers L, Kar A (2010) Externalities, potential, value and consistency. J Econ Theory 145:2380–

2411
Funaki Y, Yamato T (2001) The core and consistency properties: a general characterization. Int Game

Theory Rev 3:175–187
Greenberg J (1994) Coalition structures. Handbook of game theory with economic applications, Chapter

37. Elsevier, Amsterdam
Hafalir IE (2007) Efficiency in coalition games with externalities. Games Econ Behav 61:242–258
Hart S, Kurz M (1983) Endogenous formation of coalitions. Econometrica 51:1047–1064
Kóczy L (2007) A recursive core for partition function form games. Theory Decis 63:41–51
Kóczy L, Lauwers L (2004) The coalition structure core is accessible. Games Econ Behav 48:86–93
Macho-Stadler I, Pérez-Castrillo D, Wettstein D (2007) Sharing the surplus: an extension of the Shapley

value for environments with externalities. J Econ Theory 135:339–356
Moulin H (1985) The separability axiom and equal-sharing methods. J Econ Theory 36:120–148
Myerson R (1977) Values of games in partition function form. Int J Game Theory 6:23–31
Peleg B (1986) On the reduced game property and its converse. Int J Game Theory 15:187–200
Tadenuma K (1992) Reduced games, consistency, and the core. Int J Game Theory 20:325–334

123


	Consistency and the core in games with externalities
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Games with externalities
	2.2 The reduced game
	2.3 Expectation functions
	2.4 The core based on an expectation function

	3 An axiomatic approach
	4 The other reduced games
	5 Concluding remarks
	5.1 Similarities and differences with path independence
	5.2 Deviations with multiple coalitions
	5.3 The coalition structure core
	5.4 Alternative expectation functions

	Appendix
	References




