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Abstract Although the combinatorial game Entrepreneurial Chess (or Echess) was
invented around 2005, this is our first publication devoted to it. A singleEchess position
begins with a Black king vs. aWhite king and aWhite rook on a quarter-infinite board,
spanning the first quadrant of the xy-plane. In addition to the normal chess moves,
Black is given the additional option of “cashing out”, which removes the board and
converts the position into the integer x+y, where [x, y] are the coordinates of his king’s
position when he decides to cash out. Sums of Echess positions, played on different
boards, span an unusually wide range of topics in combinatorial game theory. We find
many interesting examples.

Keywords Combinatorial games · Chess

Mathematics Subject Classification 91A46

1 Introduction

Following its beginnings in the context of recreational mathematics, combinatorial
game theory has matured into an active area of research. Along with its natural appeal,
the subject has applications to complexity theory, logic, graph theory and biology
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380 E. Berlekamp, R. M. Low

Table 1 A game where Black
uses the DOGMATIC strategy,
with initial position in Fig. 1a

White Black

1. Re2 Kd4

2. Kb2 Kd5

3. Kc3 Kd6

4. Kd4 Kd7

5. Re11 Kd8

6. Ke5 Kd9

7. Kf6 Kd10

8. Ri11 Ke10

9. Kg7 Kf10

10. Kh8 Kg10

11. Ki9

Using standard chess notation,
the rows are indexed by a, b, c,
etc. and the columns are indexed
by 1, 2, 3, etc

(Fraenkel 1996). For these reasons, combinatorial games have caught the attention
of many people and the large body of research literature on the subject continues to
increase. The interested reader is directed to Albert and Nowakowski (2009), Albert
et al. (2007), Berlekamp et al. (2001), Conway (1976), Guy and Nowakowski (2002),
Nowakowski (2015), Nowakowski (1996) and to Fraenkel’s excellent bibliography
Fraenkel (1996).

In Guy and Nowakowski (2002), the following problem was posed:

A King and Rook versus King problem Played on a quarter-infinite board, with
initial position WKa1, WRb2 and BKc3. Can White win? If so, in how few
moves? It may be better to ask, “what is the smallest board (if any) that White
can win on if Black is given a win if he walks off the North or East edges of the
board?” Is the answer 9× 11? In an earlier edition of this paper I attributed this
problem to Simon Norton, but it was proposed as a kriegsspiel problem, with
unspecified position of the WK, and with W to win with probability 1, by Lloyd
Shapley around 1960.

With this starting position,White canwin if the rook (protected directly or indirectly
by the White king) limits and then narrows the moves of the Black king. In Low et al.
(2006), Pearson and Berlekamp (2005) it was shown thatWhite has a winning strategy
which can be implemented within a 9 × 11 region (assuming White moves first). For
example, if Black utilizes the DOGMATIC strategy described in Sect. 8, we would
have the game described in Table 1. White wins after his eleventh move.

Let us consider a board of fixed size where White can move anywhere on or off
this board, but Black (and White) cannot move off the bottom or left sides. If Black
escapes off the top or right side of the board, he is given a win. Pearson and Berlekamp
(2005) created a program to calculate the maximum number of (total) moves it takes
Black to escape or White to checkmate Black. We see that from Fig. 2, the smallest
board such that Black will be checkmated (nomatter whomoves first) is of size 11×8.
If White moves first, it takes a total of 77 moves to checkmate Black. If Black moves
first, it takes a total of 86 moves to checkmate Black. Also, one can see that there is a
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Fig. 1 Initial configuration in
the “King and Rook vs. King on
a quarter-infinite board”
problem and thermograph

NUMBER OF MOVES BEFORE OUTCOME OCCURS
first number: Black moves first; second number: White moves first

bold number: total number of moves before Black escapes

non-bold number: total number of moves before White checkmates Black
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13 3,22 23,24 25,26 27,77 86,77 86,77 86,77 86,77 86,77 86,77

12 3,20 21,22 23,24 25,77 86,77 86,77 86,77 86,77 86,77 86,77

11 3,18 19,20 21,22 23,77 86,77 86,77 86,77 86,77 86,77 86,77

10 3,16 17,18 19,20 21,77 23,77 25,77 27,77 86,77 86,77 86,77

9 3,14 15,16 17,18 19,20 21,22 23,24 25,77 86,77 86,77 86,77

8 3,12 13,14 15,16 17,18 19,20 21,22 23,77 86,77 86,77 86,77

7 3,10 11,12 13,14 15,16 17,18 19,20 21,77 23,77 25,77 27,77

6 3,8 9,10 11,12 13,14 15,16 17,18 19,20 21,22 23,24 25,27

5 3,6 7,8 9,10 11,12 13,14 15,16 17,18 19,20 21,22 23,24

4 3,4 3,6 3,8 3,10 3,12 3,14 3,16 3,18 3,20 3,22

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13

Black wins if it passes column

Fig. 2 Number of moves before outcome occurs

segment of board sizes such that it matters who goes first. Finally, observe that Black
can eventually escape any board that is too narrow.

Entrepreneurial Chess (or Echess), invented by Pearson and Berlekamp (2005),
modifies this game so that Black (who would otherwise always lose) can “cash out”
by getting a payment of x + y if the Black king is at position [x, y]. Cashing out is a
move which terminates the game. The present paper gives the first virtually complete
analysis of this game. By using results found later in this paper, one can calculate
the following: the initial position shown in Fig. 1a has mean 17 with Left sente, and
temperature 2.

2 General background

Combinatorial Game Theorists can now find correct analyses and winning strategies
for many positions in many games. The theory is most successful in positions which
are closely approximated as sums ofmore localized positions, each of which is a game.
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382 E. Berlekamp, R. M. Low

Appropriate analysis of each local game yields some sort of mathematical object or
data structure, which is simple enough to be added to other such objects, and yet
sophisticated enough to facilitate a correct analysis of their sum. In the (now) classical
case, this object is called the game’s canonical form or equivalently, the canonical
value. Themost important homomorphism fromsuchobjects to the real numbers yields
the mean value. The key measure of dispersion around this mean value is called its
Temperature, a real numberwhich provides a quantitativemeasure of the importance of
the next move. These terms and a few others we will use in this paper are now standard
in Combinatorial Game Theory, as seen in Albert and Nowakowski (2009), Guy and
Nowakowski (2002), Nowakowski (2015), Nowakowski (1996). Precisemathematical
definitionsmay be found in introductory texts such as Albert et al. (2007) or in treatises
such as Berlekamp et al. (2001), Siegel (2013).

Most games whose sums have been completely analyzed have rather low temper-
atures, such as 2 or 3. A game whose temperature is −1 is an integer. A game with
subzero temperature is a well-understood dyadic number. A game whose temperature
is 0 is an infinitesimal. Games with positive temperatures often have canonical forms
which are precise but which can be too complicated to be of much use (e.g., Snatzke
2002). When viewed as game-move trees in extensive form, canonical forms can have
large breadth as well as large depth.

Yet, complete analysis of many positions in such “hot” games can be facilitated
by studies of their means. There is a natural sense in which means can be regarded
as scores. Moves which ensure optimal scores are called orthodox. Every position
in an orthodox form, like the thermograph, requires only one Left follower and
one Right follower. Since its breadth is only two, an orthodox form can be vastly
simpler than the canonical form. However, victory in many combinatorial games
is defined not only by getting the best orthodox score, but also by getting the last
move. This typically depends on the analysis of infinitesimal canonical values, which
are lost in the orthodox simplification. Although infinitesimals can also have large
breadth, there is a homomorphism from them to other games called atomic weights
which are typically significantly simpler than the infinitesimals from which they were
mapped.

SimonNorton’s “thermal disassociation” theorem (page 168,WWBerlekamp et al.
2001) essentially proposes a series of increasingly accurate (but increasingly compli-
cated) approximations to an arbitrary canonical form. The first approximation is the
mean. The second approximation also includes the appropriate infinitesimal heated by
the Temperature.We call this the primary infinitesimal. Somemoves optimize both the
mean and the atomic weight of this infinitesimal. We call such moves ultra-orthodox.

3 Summary of results

We show that cooling any Echess Value by one degree (called chilling) turns out
to be reversible by an operation called warming. To distinguish between them, we
use “lower-case” for the values and temperatures of the chilled game, but “upper-
case” values and temperatures for the warmed games. In general, temperature =
Temperature − 1.
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Fig. 3 Contours of the mean
value with Black king at [0, 0];
rook at [−2, 1]

After at most a very short opening (lasting at most two or three moves), White’s
rook will occupy a position whose either x or y coordinate exceeds the Black king’s
by one. Then begins the middle game, which may last for many moves. We obtain
the ultra-orthodox value of each middle game position. If the rook is either behind the
Black king, or sufficiently far ahead of him, most of these values near the two kings
are only weakly dependent on the precise location of the rook. Their mean values are
shown in the contour map of Fig. 3. These values are naturally partitioned into six
big regions of the plane, depending on the direction from the White king to the Black
king. The values we obtain are ultra-orthodox in every region. In three of the six main
regions, they are also canonical. Except in a few very narrow subregions, the original
Temperatures are at most 2.

Virtually all Echess games terminate with a canonical Value that is the sum of an
integer and a loopy infinitesimal ε, called OVER. The only exception is the unique
Value of the position after the rook has been captured. This Value, which is bigger than
any finite number, has been discussed by Siegel (pages 31–33, Siegel 2013). We have
nothing further to say about it here. Many of the Echess positions discussed in this
paper have properties previously encountered only in Berlekamp and Wolfe (1994)
analysis of Go.

4 Some typical terminal positions in Echess

Throughout this paper, we assume Left plays BLack and Right plays White. As is
common in combinatorial game theory, we assume that whatever position we might
be discussing is likely to be played disjunctively as part of a larger overall game
(Berlekamp 2002). At any turn, either player may decide to play “elsewhere”, in
some other summand. Hence, within the particular game under discussion, several
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384 E. Berlekamp, R. M. Low

Fig. 4 Two “terminal” positions
in Echess

Fig. 5 More positions of value ε. We define e′, d′ and f ′ by reflecting both the White king and rook across
the diagonal through the Black king

Fig. 6 Some positions of value
{1ε|ε} in Echess

consecutive moves might be made by the same player while his opponent responds
“elsewhere”.

Figures 4, 5, 6, 7, 8, 9 show positions relatively near the end of the game. In these
positions, the square with the thick border is taken as [0, 0]. Each of x and y ranges
from some finite negative value to+∞. The locations of the Black king and theWhite
rook are shown explicitly. The White king is presumed to be located at a square with
a lowercase letter, and that letter is then also used to denote the position.

In Fig. 4, the Black king can no longer advance andWhite can punish any retreating
move that Black might consider. So, all of Black’s retreating moves are dominated by
his option to cash-out to a value of 0. White, on the other hand, can move to and fro
between positions a and b. This gives the formal values:

a = 0|b
b = 0|a

Since a is a follower of b and b is a follower of a, both a and b are loopy.
To define inequalities among games of this sort, the outcome (with alternating

optimal play by both sides) is allowed to be any of three values, ordered from Left’s
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Fig. 7 Game tree of Fig. 6a

Fig. 8 Some positions which chill to a MINY in Echess

Fig. 9 A “near-terminal”
position which chills to 1

2

perspective as LEFTWIN > DRAW > RIGHTWIN. Let Loutcome(G) be whichever
of these three possible values occurs if Left plays first from G, and let Routcome(G)

be whichever of these three values occurs if Right plays first from G. Then, we say
that

G ≥ H ⇐⇒ ∀ games X, Outcomes (G + X) ≥ Outcomes (H + X),

for both Loutcome and Routcome. For loop-free games, this reduces to the traditional
definitions. However, it also provides many equalities among loopy games. In partic-
ular, it is not hard to see that both a and b can be viewed as instances of the same
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386 E. Berlekamp, R. M. Low

simpler abstract value, called OVER. We denote this value with the symbol ε. OVER
is a positive infinitesimal and it satisfies several more equations, including

OVER = ε = 0|ε = ε|ε = ε + ε.

The formal negative of OVER is −ε = −ε|0, and this game is called UNDER. Note
that OVER and UNDER do not add up to zero, because their sum is a draw. If α is any
conventional loop-free infinitesimal with finite birthday, then it is absorbed by ε in the
sense that ε +α = ε. Similarly, UNDER also absorbs all loop-free infinitesimals with
finite birthdays.

Figure 5 shows eight positions, all having value ε. In each case, Black can do no
better than to cash-out to value 0. White can do no better than to move to another
position in this figure. After a sequence of several such moves, he can reach the
rudimentary case of Fig. 4.

Figure 6 shows six positions of value 1ε|ε. As usual in combinatorial game theory,
implicit plus signs are omitted, so that 1ε means 1+ ε. In each case, Black can move
to [1, 0]. When translated by 1, this is identical to one of the positions shown in Fig. 5.
White can move from each of the positions shown in Fig. 6 to a position of value ε.
From Fig. 6a or b, White can move his king to [2,−1]. From Fig. 6e or f, White can
move his king to [2, 0]. From Fig. 6c or d, White can move his rook to [1, 1].

Figure 7 shows the game tree of position Fig. 6a. Edges going downward to the left
indicate Black moves. The node reached by such a move is denoted by the resultant
position of the Black king. Edges going downward to the right indicate White moves.
The moves are denoted by K, E, or S, representing a king move, a rook moving east,
or a rook moving south, respectively. In each case, the astute reader will quickly see
the appropriate destination of the moving king. At each of the leaves of the tree shown
in Fig. 7, we show a circle containing the value of the corresponding position. Most of
these are direct translations of positions shown in prior figures. A notable exception
occurs after E from [2,−2]. Its value is 1ε, because from this position, either player
going second can ensure a value at least this good.

The two positions named BIG are not terminal nor are they identical, but they are
both clearly very favorable to Black. It will turn out that the details of their complicated
values are not too important, because an orthodoxWhite will not allow Black to reach
these positions.

5 Freezing and chilling

As explained in Chapter 6 of Berlekamp et al. (2001), cooling is a way to map a con-
ventional loop-free game onto another loop-free game which is often more tractable.
Freezing is cooling by an amount sufficiently large to map the game onto a number,
which is called itsmean. Cooling by 1 is called chilling. When ε is chilled, it becomes
0. When {1|0} is chilled, it becomes {0|1} = 1/2. Thus, the positions in Fig. 5 chill to
0, and the positions in Fig. 6 chill to 1/2. If BIG is any sufficiently large game, then
when {BIG|0||−1} is chilled, it becomes an infinitesimal, {BIG′|0||0}. This value is a
member of a class known asMinies. Minies are negative, but very small. Their atomic
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weights, as per Chapter 8 of Berlekamp et al. (2001), are zero. Minies may assume
many different values corresponding to different values of the parameter BIG. The
larger the BIG, the smaller the magnitude of miny. However, all minies are very small,
and their values are very close to each other. For many purposes, all minies behave so
much alike that it is convenient to use a single symbolm, to denote any member of this
class of games. There are rare occasions when distinctions are needed. However in
this paper, we eschew them. Games of this class will be discussed further in Sect. 12.

The S follower of [2,−2] in Fig. 7 chills to 1m. Figure 8 shows some positions
which chill to a MINY.

IfWhite plays first from any of these positions, he can immediately reach a position
of value −1ε. If Black plays first, his move creates a threat which, after White’s
response, leaves a position of value ε. From Fig. 8a–c, Black’s first move is to [0, 0].
In Fig. 8a, the size of this threat (to capture the rook) is truly infinite. In Fig. 8b and
c, the size of the threat (to continue to [1, 0], escaping local containment) is more
modest.

Figure 9 illustrates a position which chills to 1/2. Note that Black’s move to [0, 0]
and White’s king move to [3, 1] reverse each other.

6 Warming inverts chilling

Infinitesimals vanishwhen cooled by any positive amount. Thus, all infinitesimals chill
to zero, as domanyother games such as { 12 |− 1

2 }. So, chilling is amany-to-onemapping
which, in general, we could not hope to invert. However, certain classes of games have
the property that all of their stopping positions are infinitesimally close to integers.
Such values are said to be integer-ish. For such games, chilling can be reversed, at
least up to the “ish”. For some special classes of games, it is even possible to go
further and also recover the “ish”. The first such game for which this was discovered
was Blockbusting (Berlekamp 1988), a game closely related to Domineering. The
second such game (Berlekamp and Wolfe 1994) was Go, an Asian board game which
for several thousand years has been considered by many to be the most demanding
intellectual game ever played.

In both Blockbusting and normal Go, only two infinitesimal values occur, namely 0
and *. Since all stopping positions are integers, chilling is only a two-to-one mapping.
In each game, there is a special parity rule (different for Blockbusting than for Go)
which facilitates the resolution of this one-bit ambiguity. In Entrepreneurial Chess,
things are simpler. There is only one infinitesimal Value, namely ε, which is added
to every finite stopping position in which all three pieces are still on the board. So,
it is unusually easy and straightforward to define a warming operator which inverts
chilling. This operator consists of two steps: (1) overheat the value from1 to 1, yielding
an intermediate result we call the Valu. (2)Add ε, yielding Valu+ε = Valuε = Value.
In Entrepreneurial Chess, warming and chilling are homomorphisms. Since chilling
gives simpler values without any loss of information, it is our preferred point of view.
As we mentioned before, all of the positions in Figs. 4 and 5 chill to 0. Positions in
Figs. 6, 7 and 9 chill to 1/2, and positions in Fig. 8 chill to a MINY.
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7 What can we know about a typical position?

When an Echess position is played alone, we would like to know its Left-stop and its
Right-stop. These are the cash-out values that result from optimal alternating play if
Black starts, or if White starts, respectively. But when many positions (on different
boards) in several games are played as a single sum, the overall stop can be quite
difficult to compute. However, as in statistics, there is a single numerical parameter,
called the mean, which usually provides a (relatively easy to compute) good estimate
of the outcome. In general, means need not be integers, but they are bounded by the
inequalities

Left-stop ≥ Mean ≥ Right-stop.

Since the mean of a sum is the sum of the means, the means of individual positions
are very important.

The minimal data structure of a combinatorial game G, which is sufficient to deter-
mine the outcome of G + X for any other game X , is called the canonical form, or
equivalently, canonical VALUE of G. We have already encountered several important
values, namely 0, 1/2, and several different minies. If we know the value of a position,
the mean can be determined by freezing. However, the Value of a position is often
much more difficult to determine than its mean.

8 Black’s dogma

For all of the Echess positions that we have examined, a relatively simple strategy for
Black proves as good as any. We call this Black strategy, which entails only one-move
lookahead, DOGMATIC. Here it is:

1. If possible, capture the rook.
2. If not possible, go northeast.
3. If not possible, go north.
4. If not possible, go east.
5. If not possible, go southeast or northwest.
6. If not possible, cash-out.

Constraining Black to this strategy simplifies the analysis. By optimizingWhite’s play
against this strategy, we obtain DOGMATIC results. After obtaining them, it is often
straightforward to show that Black could have done no better; that is, the dogmatic
results are optimum. Thus, we simplify the discussion by omitting the word “dog-
matic”. To check our claims, the reader is encouraged to use the dogmatic restrictions
first.

In the course of this paper, we will also develop a dogma for White. In general, our
dogmatic moves are independent of whatever the summands may be in play, so that
each local dogmatic game tree has breadth two, with only one local option for each
player. In a sum of several games, a dogmatic player decides which summand to play
in based on global parameters that may include recent history, but after that decision is
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made, he has no choice about what move to make there. Since there may be canonical
moves which are inconsistent with whatever dogma is specified, dogmatic strategies
may fail to win in some environments. However, they are much simpler. In this paper,
we assert (without proof) that our dogmatic strategies are ultra-orthodox.

9 A global view

In general, the temperature of a position is the amount by which the position needs to
be cooled in order to freeze it to a number. Following the terminology of the game of
Go, a move which raises the temperature is said to have sente; a move which lowers
the temperature is said to be gote. In WW (Berlekamp et al. 2001), pages 159–161,
these were replaced by the terms excitable and equitable. We now advocate the more
precise terms unstable and stable, which are defined in reference to some specified
ancestral position, which is often but not always the previous position. A position is
then said to be unstable if any of its intermediate ancestors have lower temperature,
or stable otherwise. Stable positions can then be further partitioned into strictly stable
positions and quasi-stable positions. The latter must have temperature equal to that of
some relevant ancestor; the former do not. This nomenclature evades the difficulties
that even the best Go players face when attempting to force marginal cases into a strict
dichotomy between sente and gote. Nevertheless, because “sente” and “gote” are in
such widespread use, we may use those terms when their meanings are indisputable.
It turns out that many entrepreneurial chess positions are either gote or Black sente.
For this reason, the mean value is usually much more closely related to the Left-stop
than to the Right-stop. Hence, we found that an investigation of dogmatic Left-stops
was a fruitful place to begin.

Suppose the Black king is at [0, 0], the White rook at [k, 1], and the White king at
[x, y], where |x | + |y| � |k| � 0. Then, when zoomed out to a significant distance,
the values and White strategies can be partitioned into six major regionsA, B, C,D,
E, F as shown in Fig. 10.

On the global map, these regions correspond respectively to the east, the south-
southeast, the southwest, the west-northwest, the north, and the northeast. Each of

Fig. 10 Very high-level
overview of how the plane is
partitioned into regions
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Table 2 Overview of play when the White king starts from a region’s deep interior

Region r Targ. end Param. Direct. Start. Val. End. Val.

A 0 or W Figure 5d or e x −1 x (2, −1 or 0, 2)

B 0 or W Figure 5d y +1 y (2, −1,−1)

C EW + S Figure 5d′ x + y +2 x + y (−1, 2, 1)

D EW + S Figure 5d′ x +1 x (−1, 2, −1)

E EW + S Figure 5d′ or e′ y −1 y (−1 or 0, 2, 2)

F EW+N Figure 5c or b or b′ x + y −2 x + y (1, 1, 2)

these regions is best exemplified by considering one of its “typical” points, located
reasonably far from the boundaries of the region, and far away from the Black king
and White rook. If [x, y] are the coordinates of such a point, then |x | + |y| is large. If
Black plays first and the players alternate turns, then the eventual cash-out value of the
position will be its Left-stopL. Dogmatic play by Black will increase at least one of
his coordinates at every turn, and correct play byWhite will ensure that no Blackmove
increases both of her coordinates. So, Black will get exactlyL moves, and White will
get eitherL orL−1moves, depending on who gets the last move. In Go terminology,
this depends on whether Black ends in sente (in which case, White getsL moves) or
gote (in which case, White gets onlyL− 1 moves). In most cases (but not all), Black
keeps sente and both White and Black getL moves. Nearly all of White’s moves are
king moves, but (in some cases) a few of them, r , must be rook moves.

To determineL for a “typical point” (located away from the boundaries of a region),
we use Table 2. We assume that the Black king starts at [0, 0] and the White rook
starts at [k, 1], where |k| > 1. The second column of Table 2 indicates the number and
direction(s) of rook moves that White will need to make. In particular, for regionsA
and B, White will either have to make one rook move to the west (denoted by W) or
not have to make a rook move (denoted by 0). For regions C,D, E, andF, White will
need to make two rook moves (either east or west, and then eventually south or north).
The third column of Table 2 refers to Fig. 5, which depicts the final target ending
position (up to translation) just before Black cashes-out. The fourth column indicates
the critical parameter(s) which the White king changes on each of his moves. Some of
his moves may also include a non-critical orthogonal component which does not affect
the value. In the fifth column of Table 2, the entries correspond to the change in the
key parameter(s) value each time the White king moves. The sixth column indicates
the starting value of the key parameter(s). Finally, the entries in the seventh column
are triples (xi , yi , pi ), where [xi , yi ] is the final position (modulo translation) of the
White king and pi is the value (modulo translation) of the key parameter(s). We use
Table 2 to obtain an equation involving x, y, r , and L. We then solve for L in each
of these cases (see Table 3).

Consider, for example, the optimum play from the following position in Region C
(see Table 4). The starting locations are shown in the second column. The White rook
may begin either in the far East or the farWest. After Black’s secondmove to [2, 0], the
White rook moves to [6, 1]. When attacked two moves later, he flees to the far North
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Table 3 Left-stop as derived
from Table 2, if L is an integer

Region Solution of equation forL

A (x + r − 2)/2

B −y − 1 + r

C −x − y + 1 + 2r

D −x − 1 + 2r

E (y + r − 2)/2

F (x + y + 2r − 4)/3

Table 4 A well-played game

Start 1 2 3 4 5 6 7 8 9

BK [0, 0] [1, 0] [2, 0] [3, 0] [4, 0] [5, 0] [5, 1] [5, 2] [5, 3] [5, 4]
WK [−3,−1] [−2, 0] [−1, 1] [0, 2] [1, 3] [2, 4] [3, 5] [4, 6]
WR [±10, 1] [6, 1] [6,±10]

or far South. When the White king eventually moves to [4, 6], he attains the terminal
position which is a translation of Fig. 5d′ (by which we denote a reflection of Fig. 5d).
Relative to the final position of the Black king, the final position of the White king is
[−1, 2]. Black and White each made L moves, but two of White’s moves were rook
moves. All White king moves were NE, so, relative to the starting position, White’s
terminal king position is [−3,−1]+ (L−2)[1, 1], and Black’s terminal king position
is [−3,−1] + (L− 2)[1, 1] − [−1, 2] = [L− 4,L− 5]. Black tookL moves to get
here, soL = L − 4+L − 5 and thusL = 9. More generally, if the White king had
started at [x, y] in Region C, he would have ended at [x +L− 2, y +L− 2] and the
Black king would have ended at [x +L−1, y+L−4], whenceL = x + y+2L−5
and L = 5 − x − y.

Similar calculations obtain other formulas for the values of L in the remaining
regions. The solutions of these equations are shown in Table 3. Of course, these
equations cannot give the precise value of L unless the value is an integer.

When k < 0, within the deep interiors of Regions A and F, when the formula
forL yields an integer, this integer turns out to be the chilled value of the game. The
reader may verify this fact by computing Right-stops and observing that they are equal
to the Left-stops.

When k < 0, inRegionsB,C, andD, themean turns out to be the same integer as the
Left-stop. However in the other regions, the mean is often a non-integer. Fortunately,
within these regions (excluding certain boundaries), the temperature is no greater than
1. In regions A and F, the chilled value can be determined by a recursion which we
will present in later sections.

10 Overview of the remainder of this paper

We remind the reader that, in the view of Combinatorial Game theorists, any Echess
position whose value we seek may be only one component in a gallimaufry, which
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Fig. 11 Regions and their boundaries, Black king at [0, 0]; rook at [−2, 1]

is the (disjunctive) sum of several games, such as in Berlekamp (2002). So from any
Echess position, one player might make several consecutive moves while his opponent
plays “elsewhere” in some other summand. In the local Echess position, successive
moves need not alternate between two players. Thus, stops are insufficient. So we
seek ultra-orthodox values, which in some cases will turn out to be canonical as well.
For brevity, we sometimes simply call the moves and lines of play which lead to such
values “good”. The different lines of play to which we refer do not occur because of
different canonical options from any position, but rather to the possibility that either
playermightmake the next move from each stable position. From an unstable position,
there is no such choice, as an orthodox player will always respond immediately and
directly to any destabilizing move.

More generally, since we are interested only in “good” lines of play, that word
may sometimes become implicit. A zoomed-in look at Fig. 10 reveals Figs. 11 or 12,
which show the partitioning of regions into subregions. We distinguish among these
subregions with suffices which may specify the origin, number, and/or direction(s) of
the rook’s move(s) in good lines of play in which the White king begins within the
given region. For example,A− denotes regionA in Fig. 11where the rook beganwith
a negative x coordinate; whileA+ denotes regionA in Fig. 12 where the rook began
with a positive andmoderately large x coordinate (e.g., k = 9). Since regions in Fig. 11
are typically simplified or degenerate versions of Fig. 12, in many cases we can omit
the suffix of + or − because it is irrelevant, or clearly implied. However, especially

123



Entrepreneurial Chess 393

Fig. 12 Regions and their boundaries, Black king at [0, 0]; rook at [9, 1]

in Fig. 12, other suffixes are sometimes needed. A0 denotes a region wherein, in all
(good) lines of play, the rook never moves; A1 denotes a region wherein in all lines
of play, the rook moves exactly once. Capitalized directions, N , S, E,W , indicate a
rook move which occurs in all good lines; lower case directions, namely n, s, e, w,
indicate that such a rook move will occur in some lines but not others. Thus, in EWN ,
the rook will always move West and then North; in EwN , there are some (but not all)
lines of play in which he can avoid the move West.

As k increases above 9, many of the regions in Fig. 12 grow, but no new regions
appear. So, we will first examine the general case of large k before commenting on
how some regions in Fig. 12 disappear or merge with each other when k descends
from 9 to 2. As k approaches infinity, we will see that of those regions which remain
within finite distance of the Black king, only A maintains any significant difference
between Figs. 11 and 12.

In both Figs. 11 and 12, a white dot denotes a position whose value is an integer.
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Some narrow regions lie in between major regions and are denoted by descriptions
of the relevant contest, as in the row just below B0 and just above B1 near the bottom
of Fig. 12. We denote this region as B1|B0, meaning that in this contested region,
Black’s move will translate to a position in B1; White’s move, to a position in B0.
Continuing around the map in the counterclockwise direction, we find other contested
border regions: the jagged vertical C|B, the horizontal C2|C1, the two-point vertical
DwS|EW , and the north-northwestern region DwS|EWN . Except for the single-point
regionF2|F0, other boundaries are uncontested. Some, such as the horizontal 4-point
region EWN and EW are actually administered jointly, since although the two sides
differ on White’s strategy, they both attain the identical optimal result. Other joint
borders run diagonally NE to SW within B0, and C2.

We will present figures that tabulate values in each irregular region where multiple
boundaries come together. In each case, the patterns that arise there persist as one
moves away from that irregularity. The value of any point in a narrow border region
may be expressed directly asG = GL |GR . SinceG has higher temperature than either
GL or GR , this expression is already orthodox. When G is frozen, the infinitesimal it
gives off is ∗, so the simple expression for G is also ultra-orthodox. In order to save
space, we will omit tabulating the values in such border regions.

In the following sections, we evaluate each region in detail. We’ll begin with the
easiest regions, A and B. Then, since White can move from C to D, and from D|E
to E, we’ll investigate C, D and E in bottom-up order: E, then D, then C. We’ll then
conclude with F. In each region, if Black king is at [0, 0] and White rook at [k, 1],
we’ll study k < 0, then k = +∞, and finally allow k to decrease to smaller and
smaller positive integers.

11 RegionA

In Figs. 11 and 12, the simplest row in A0 is y = −1, wherein the White king
consistently moves due W while the Black king moves E until they meet in a terminal
position seen in Figs. 4 and 5. Since y is fixed, the Values depend only on x . Starting
from V (2) = ε, we have the recursion

V (x) = {V (x − 1) + 1|V (x − 1)},

which chills to

v(x) = {v(x − 1)|1 + v(x − 1)} = v(x − 1) + {0|1} = v(x − 1) + 1

2
.

More generally, if the White king starts anywhere within A0, the White rook need
never move, and the value is independent of y because the White king can move NW
or SW (which might be needed in order to reach the row y = −1 or y = 0 in time to
halt any further advance of the Black king).

In Fig. 12, if the White king starts on row y = 2 in Region AW , he should not
move SW because doing so would block the influence of the White rook and allow
the Black king to escape northward. So on this row, the White king moves W until
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he is close enough to the Black king to bring in the White rook to a position which
is either kickable and protected or confrontational (i.e., a knight’s move ahead of the
White king). This region is called A1 since it requires one rook move westward. As
in earlier sections, we denote the number of rook moves by the letter r . In both AW

and A1, r = 1 and

v[x, y] = x + 2 + r

2
.

In Fig. 12, there is also a column between A0 and A1. We call this region A1|A0
because Left’s move translates to a position inA1, but Right’s move reaches a position
inA0. Closer analysis reveals each of the chilled values of points in this region to be
an integer + 3/4, which is consistent with the notion that the number of rook moves
could be taken as r = 1/2. This simple interpretation is unique to Region A; it does
not work along other boundaries. However, it does work in Fig. 12, where the Region
A1 (now located just north of A0) contains only two points/row. White’s best move
from this region is king SW. White’s single rook move will be made only after the
translated position has eventually left Region A1.

12 Region B

In Fig. 11, the simplest point in Region B is [2,−2], from which the best White king
move is to [2,−1] (whose value is 0). However if Black moves first, he reaches a
position which translates to

1 + V [1,−2] = 2 + [0,−2]|1 + V [2,−1];

so V [1,−2] chills to the hot value BIG |0, where BIG = 1 + v[0,−2]. Although the
value of this position is complicated, it is easily seen to be bad news forWhite because
the Black king will be able to make several moves before White can stop his advance.

Values such as BIG|0||0 are explored in WW Berlekamp et al. (2001), where they
are called minies. They occur so frequently in Echess that we’ll now give them a
special notation:

m0 = BIG|0||0.

Thism0 is a negative game.White can win it if it is played alone. The more interesting
question is its effect on the total when added to a sumof other games. The answer is that
m0 is very, very small. It is infinitesimal, in the sense that the sum of any (large) finite
number of them remains greater than−1. InWWBerlekamp et al. (2001), there was an
attempt to quantify the canonical values of these games precisely in terms of the values
of BIG. In Mathematical Go, the quest for this precision was de-prioritized because
(in Go, like Echess) the canonical value of the BIG game is often quite complex.
What is important is only that BIG exceed small positive numbers such as 2− j ; being
any larger than that makes at most only a tiny difference. Thus, the interest shifts to
focusing on the ancestors of the miny (i.e., earlier games in which the miny occurs as
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a position). One common sequence of such games (which we also encounter in this
paper) satisfies the recursion:

mn+1 = mn|0.

The placement of n as a superscript (rather than a subscript) is reminiscent of the
notation in Mathematical Go, where (for example) BIG|0||0|||0||||0 = m0|0||0 is
naturally abbreviated as m0|02. The atomic weight of mn is −n. The integer n may
be viewed as the number of consecutive Black king moves which White can ignore at
a cost of no (chilled) points per move, after which the need for White to respond to
Black becomes more urgent.

All ofB−may be regarded asB0. However,B+ contains a large southern subregion
B1, wherein the White king is too far away to prevent the Black king from kicking the
rook. The rook may then flee to the west, after which the position translates to B0. In
B1|B0 (the row between B0 and B1), the chilled values are hot because the question
of whether r = 0 or 1 depends on who plays first. The global maps of Figs. 11 and 12
contain several other subregions (like B1|B0) which are hot but narrow. The fact that
they are hot means that an orthodox player will exit any such region immediately after
his opponent enters it. Hence, the values within these regions do not propagate. The
conventional form,G = GL |GR , is itself already ultra-orthodox or even canonical. So
except for the case ofA1|A0 (where the value of the non-integer term is recognizable
in its more familiar form 3/4), we will leave the relevant boxes in some forthcoming
figures blank. Throughout bothB0 andB1, the ultra-orthodox value v[x, y] is the sum
of an integer r − y − 1 and an infinitesimal mn , for some integer n. Although the
infinitesimal term in the canonical value v[x, y] may differ from mn , this difference
necessarily has atomic weight 0.

One way to verify the boundary between A and B in Fig. 11 is as follows: First,
verify our claimed values along the boundaries v[x,−1] and v[2, y] for the relevant
positive x and negative y. Then notice that at all other points, White can do well by
moving his king NW. Although other White moves may have higher atomic weight,
they can all be viewed as reversible, so king NW is among White’s moves which are
orthodox. That observation yields the following recursion for all other values with
x > 2 and y < −1:

v[x, y] = {v[x − 1, y]|v[x − 1, y + 1] + 1}.

The solution to this recursion yields the boundary betweenA andB, shown in Figs. 11
and 12.

In Region B, vR[2,−3] includes both of the options v[2,−2] = 1m0 and
v[3,−2] = 1m1. In most environments with other summands, the latter option is
preferable because it has the better atomic weight. However in some environments,
the former option is the only winning move. So, both options must be included in the
canonical form. Hence, even though v[2,−3] = m, the more precise value m0 is not
canonical. This is true for most of the infinitesimals occurring in Regions B and D:
We can specify their atomic weights simply, but their canonical values might be more
complicated.
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Fig. 13 Values nearA1|A0 and B1|B0

In Fig. 12, the eastern end of the horizontal rowB1|B0 terminates near the southern
end of A1|A0.

The ultra-orthodox values in this vicinity are tabulated in Fig. 13, where the origins
of x, y and v have been translated to make the figure independent of k, for all k ≥ 3.
The origin of x and y is the darkened square. The origin of v is denoted by a circle.
In Fig. 13, this circle is adjacent to and diagonally SW of the rook. What appears to
be the strange irregularity at [−1, 0] is due to the efforts of the White king to prevent
Black from kicking the rook. West of the irregularity, White can reach y = −1 just
in time to block the kick. East of the irregularity, White can arrive at y = 0 to protect
the kicked rook. However if White starts at the irregular point, he arrives too late to
do either. So, this point lies in B1 rather than B0 or B1|B0.

The western end of the single row region B1|B0 meets the column C|B, as shown
in Fig. 14. With respect to the origins of this figure, the bottom row of B0 is now
y = −3, and each of its values is −3m0.

In this figure, there are two subregions of B0. The shared boundary between them
lies on the diagonal x − y = 5. Northwest of this boundary, the eventual threat of
Black’s king is to catch up with White’s, exiting Region B0 into C|B. The atomic
weight depends only on x . Southeast of this boundary, Black’s eventual threat is to
kick the rook, exiting Region B0 to B1|B0. Here, the atomic weight depends only on
y.

We defer discussion of the left side of Fig. 14 until Sect. 15, which is about Region
C.

13 Region E

In Regions E and D, unless the two kings are reasonably close (i.e., 0 ≤ y ≤ 4 and
0 ≤ x ≤ 6), White’s orthodox opening move is to bring the rook to confront the Black
king, which then kicks the rook, who then flees. This triplet of moves: White, Black,
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Fig. 14 Values near B1|B0 and C2|C1

White, is most conveniently viewed as a single White move. If instead Black plays
first, there will eventually be a confrontation between his king and the rook, soon after
which there will be a kick and a flight as before.

Fleeing northward gives an orthodox advantage only if White’s king started very
near the EF boundary. Thus by temporarily excluding such points from the region
under consideration, we can assume that the rook flees S. The resulting position is
then a diagonal reflection of Region A− or B−.

Thus, we can view the game as consisting of two separate sequences of play. The
opening sequence ends with the pair of moves consisting of the kick and the flight.
The moves which follow it constitute the endgame. It happens that most or all of the
opening is at least as hot, and often hotter, than the endgame. So with some minor
adjustments when 1 ≤ k ≤ 3, we will view the original value of v[x, y] as the sum of
two components.
Region E2 (ALIAS EWN in E+ or EEN in E−)

In the endgame, most of Region E− reflects diagonally into Region A. The row
y in E reflects into the corresponding column ofA, yielding an endgame component
of value (y − 2)/2. To this must be added the opening component. In the opening
sequence, White (if he wishes) may ignore some initial moves while Black gains
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one point per move. Eventually, Black’s next move becomes a threat to translate the
position from Region E to the hotter Region D. So an orthodox White player must
answer this threat. Evidently, the chilled value of this opening is of the form 2m, by
which we mean 2mn = 2 + mn for some integer n, whose value depends on the
horizontal distance from the DE boundary.

The presumption that the kicked rook fled southward allowed us to reflect into
RegionA−, avoiding the potential complications of RegionA+. However, now that
we have found endgame values on each row in E2, we can consider the possibility that
the kicked rook might flee northward. This move is essential if the White king starts
adjacent to the EF boundary. If y is even, the rook’s desired destination is directly in
the path of his SW-bound king, where he can be protected just in time. If y is odd, the
rook’s desired destination is one square S of the king’s projected SW path. This latter
location also works for White king locations whose latitude is at least as eastward
as the rook. For locations westward of the rook, any location sufficiently far north is
good enough. For example, he might as well move to the same row as the location of
his king. If White follows these guidelines, we can assume that from every position
in E2, the rook always flees north. Then for all positive k, E+ can be renamed EWN .
Region E1

Region E1 appears when y is small enough that White can avoid the vertical rook
move. Instead, he brings the king down to y = 2 and then terminates the position with
his single horizontal rook move.

The southern boundary of E2 lies on the row y = 4; x = 1, 2, 3, and 4. These points
also lie in E1, a region within which White can move the king S (or SE or SW) until
it reaches y = 2 (one or two squares ahead of the Black king), and which White can
play his single rook move to reach the integral stop. Although E2 does not include the
points y = 4; x = 5, 6, E1 does. In E1, the mean value of row y is y − 1, for y = 2, 3,
and 4.

When k is negative, among the values shown in Fig. 15 are Region E1 and its
vicinity. When 14 ≤ k ≤ ∞, all values in this figure in Regions B, E, and F remain
unchanged.

In Fig. 12, the points with y = 1 and 0 < x < k are hot. However, in Fig. 11, for
x ≥ 4, the points [x, 1] are in A, but [2, 1] and [3, 1] form their own small region
E|A. From these points, Black may begin by moving his king SE. However (from
either of these two positions), White can reverse Black’s SE move by playing his rook
one square S, yielding the value at [1, 2] or [2, 2] respectively. Although there are
other plausible variations of play, the canonical values are as just claimed.
Region EwN

Let’s look again at Fig. 12, when k > 3, in Region Ewhen x ≈ k/2 and y is positive
and large. In this region, there are canonical lines of play in which the westward rook
move is avoided. If the horizontal distance from the White king to theD|E boundary
is sufficiently large (e.g., more than k), then the value of the initial component is not
2+m. Instead, it is 2 plus a negative number of small magnitude, λ = −2−(k−2). Since
such numbers are very common in Echess, to compress them, we define j = k − 2
and λ j = −2− j .

Figure 16 illustrates some of the values in the opening sequences in EwN . In this
figure, the locations of both White pieces are fixed, but the Black king can occupy any
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Fig. 15 Values with Black king at [0, 0] and rook at [−4, 1]

of the annotated squares. All such squares have the same endgame value, y/2+ 1, but
the values of the openings differ, as shown in the figure. We might use an accounting
system which decomposes the mean value of Black’s current position into its cash
term, which is the number of moves he has advanced from the origin, and an accrual
term of value 2 + λ. If the origin is translated to the Black king’s current position,
from which the rook is then at [k′, 1], the accrual term is the translated value of the
opening. Its right follower is 1, the value attained if the rook moves into confrontation.
The value λ satisfies the recursion:

λn+1 = λn|0.

With appropriate initial conditionswe shall soondiscuss, the solution isλn = −2−n .
In Fig. 16, when the translated value of the opening is 2 + λ, the temperature is λ;
the Temperature is 1+λ. Each Black move decreases the temperature, yielding a new
stable position. When k′ = 3, the temperature is −1/2, identical to the temperature
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Fig. 16 Some values of the opening sequence in EwN

Fig. 17 Some values in D+

of the endgame. So if White decides to move when k′ = 3 or 2, White can move his
king instead of his rook. From k′ = 3, Black’s king move andWhite’s king move have
incentive equal to−1/2. They can be viewed as reversals of each other, in either order.
From k′ = 2, Black’s kick and White’s flight are again an orthodox reversal, whether
or not they were preceded or followed by another White king move at t = −1/2.

14 RegionD

Figure 17 is similar to Fig. 16 except that now we are in Region D, and the figure
shows the full orthodox Valu, not only its opening component. We now start with the
Black king at [0, 0], theWhite king at [−1, 2], and the rook at [k, 1]. If instead K starts
at [x, y] in Region D, then the values in Fig. 16 should be incremented by 1 − x . As
before, if k > 3, White’s best first move is to confront Black’s king, get kicked and
flee away vertically, leaving a position whose value is of the form 1 − x + m. But
because each eastward Black move now increments −x as well as gaining the usual
point by translation, the mean value of the initial position is now 3 − x + Λ, where
the mean value of Λ (like λ) is −2−i , where i = k − 3. However, whereas the game
λ is a number of temperature −2−i , the game Λ is hotter, of temperature 1 − 2−i .
Thermographs of translations of Λ2, Λ1, and Λ0 are among those shown in Fig. 18.
In accordance with the formula, the mean of Λ0 is −1, and its temperature is 0. Its
chilled value is a negative infinitesimal of atomic weight −1, likem1. Formally, when
k = 2 and i = −1, we have Λ−1 = −2. This happens to give the correct mean value,
but the wrong temperature. Λ−1 is actually −2 + m0.
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Fig. 18 Some thermographs

When, as in Fig. 18, the y-coordinate of the Black king exceeds 2, the values are
increased by an infinitesimal whose atomic weight is the same as my−2.
Region D|E2

Unlike the boundary between A and B, or between EWN and EwN , there are
transitional points within the contested regionD|E2 . All such points have odd values
of y. The thermograph of one such point is depicted as “G” in Fig. 18. Although its
Right follower is presented in the figure as Black king at [0, 0] and rook at [2, 1], we
know that the kick is reversed by the flight, so that this GR is equivalent to Black
king at [1, 0] and rook at [2,−2], a position whose value is more easily seen to be a
half-integer.

As one progresses upwards along any column of D, one encounters one such
transitional point, below which the temperature is 1 + λ j . At the transition point,
t = 1

2 . Above the transition point, the values are integers plus infinitesimals having
temperature 0. Below the transitional point, the mean value is 2−x+Λ j . Immediately
above the transition point, the mean value is the integer 2 − x = 1 + y/2, which
increments by 1/2 thereafter until it crosses the boundary from EWN into EwN .
Quenching

To reduce an original (warm) position depicted as Λ j to the number −2− j , it is
necessary to cool it by 2. Just as cooling by 1 is called chilling, cooling by 2 is called
quenching. In Echess, we have discovered one special case under which quenching
can be reversed. When k goes to infinity, Λ obviously approaches 0 and the chilled
temperature approaches 1. As the surreal numbers which appear elsewhere in combi-
natorial game theory distinguish among different values of infinity, some readers may
find it interesting to specify the infinite value of k in greater detail. Themost interesting
value is k = ON, defined as ON = {ON|}. ON is so big that it satisfies ON−1 = ON.
When k = j = ON (in Region D), the value V [x, y] quenches to the game

UNDER = UNDER|0,

where UNDER = −OVER and OVER is denoted by ε (which we have used in an
earlier section of this paper). Whenever White decides to stop paying two points per
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Black move, he moves his rook into confrontation. In this particular case, restoration
by heating works; we can say that when k = ON or k < −1 in Region D, we have
v[x, y] = −x + 2 + my−2 + ∫ 1

1 ε.

15 Region C

The partition of C into several subregions is shown in Fig. 12. Figure 14 shows some
values in region C when k is a large positive number. The Black king is located at
[0, k − 4]; the White rook and the baseline of values are both at [k, k − 3].
Region C1

Since the value of a terminal position is the sum of its x and y coordinates, all of the
values shown would have been unchanged if we had instead placed the circle a single
king’s move NW of the rook, which will be the terminal position if the White king
starts at [−2, 0]. If Black goes first, his king will get k + 1 moves (k − 1 East and then
2 North), ending at [k − 1, k − 2]; White will also get k + 1 moves (1 with his fleeing
rook and k moves as his king treks from [−2, 0] to [k − 2, k]). On the other hand, if
White goes first, he can do no better. Unless he makes an early rook move, his king
will be blocked by the Black king, and White’s king can then only move in a direction
that lacks any eastward component. Nor does an early rook move prove any better. As
White’s rook is already optimally positioned, it has nowhere better to go. So, the value
at [−2, 0] is precisely an integer, namely 0. Similar arguments also reveal zero values
at [−1, 0] and [0, 0]. From all three positions, if Black starts, White’s first move of
K to [−1, 1] is as good as any. If the White king starts at [0, 0] and White plays first,
he might try the confrontational R to [2, k − 3], then kicked northward. However, this
terminates with Black cashing out for the same value as the circled position on which
the rook started, namely 0. Although this Black strategy avoids the blocked king, it
costs him a third rook move.

SinceC is generally the hottest of the six primary regions, we regard the appearance
of these three integer values at [0, 0], [−1, 0] and [−2, 0] as a surprise. White’s moves
(east and west among these positions) are all canonical, although he could also play
another move which Black could reverse.

If the White king is initially positioned anywhere along the row with y = 0, his
rook is already optimally positioned. Outside of C′, the next lower row, C2|C1 with
y = −1, is hot. If Black moves first, he can kick the White rook before White’s king
is able to reach Region D. Then, White’s rook does best to flee eastward, and will
need to make a vertical second move later. However, if White moves first, to the row
y = 0, he will then be able to reach RegionD just in time before his rook is kicked, to
which it responds vertically with its single move. If y < −1, then White’s rook will
need to make at least two moves in all orthodox lines of play.
Orthodox play in CwS

If x ≤ −2, in CwS , the mean is

μ = λy−1 − x − y,

where λn = −2−n . We apply this formula even when y = 0 and λ = −2, thus
obtaining the correct mean of 0 at [−2, 0]. We find it useful to view the orthodox
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Fig. 19 Some values in column x = −1 of C′

Value as the sum of two terms. The integer −(x + y) is the primary term and the
secondary term is the game Λ. Its mean is the same as the number λy−1 = −2−(y−1),
but its temperature is one degree higher than λ’s. The formula also holds on the the
bottom row of RegionD, where its mean value coincides with the mean values found
there. From the perspective of orthodox Values, that row is shared between C andD.
However, D’s claim to that row prevails because White’s best move is not king NE
nor rook eastward, but rook to confrontation.

In CwS , if White moves his king NE, he changes from [x, y] to [x − 1, y − 1],
increasing the temperature. If instead, Black advances his king, he moves the origin
one unit NE. Since rook and the circle around it are unchanged, this has the same
effect as changing [x, y] to [x −1, y−1]. So, each White king move that stays within
the region can be reversed by Black. On the other hand, White might instead choose
to move his rook. This leaves the horizontal component of the origin and of the king’s
[x, y] position unchanged. So the rook move effects only the column in Fig. 14. Since
the circle representing the origin of values stays with the rook, the primary term of
the Value is unchanged. So, the rook’s best move is to C1, where y = 0, and the
secondary part of the value changes from Λy−2 to −2. White’s rook move improves
the mean by 2 + Λy−1. If Black had moved first, changing [x, y] to [x − 1, y − 1],
he would have changed the formal fractional part of the mean from Λy−1 to Λy−2, a
difference of Λy−1. So evidently, from [x, y] in CwS , either player can improve the
mean by 2Λy−1. This is equal to the Temperature and to both orthodox incentives.
The position is stable, because although White might destabilize it, Black’s orthodox
reply will reverse its mean back to its prior value. Black’s moves from CwS are all
stabilizing. In Go terminology, these Black moves are gote. However, once we exit
CwS , either to D or to C1, the situation changes.

In C1, y = 0, the secondary term is −2, and the infinitesimal term is m0. In CwS ,
if y = 1, the secondary term is −1, and the infinitesimal term is m1.
Region C′

Region C′ is the subregion of C with x ≥ −1 and y ≥ −4. It requires special
treatment because in some situations, the White king’s northeastern trek runs into
Black’s. As seen in Fig. 14, all values in this region have nonpositive temperatures.
The assiduous reader is invited to verify that these results are consistent with Figs. 19
and 20, which exhibit two sequences of values as a function of the location of the rook.
Region C2

South of C1 = CS lies the Region C2, wherein White cannot prevent Black from
eventually kicking the rook twice.As shown inFigs. 12 and14, this region is partitioned
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Fig. 20 Some values in column x = 0 of C′

into two parts by the dotted diagonal line running through the rook. In CES , the first
time the rook is kicked, he can flee East; in CNW , he can flee North. The option to
flee north is important on files such as x = 0 or −1, because it avoids the White king
running into the Black king.

Once kicked, the rook will flee East to a position in C1, or North to a diagonal
reflection of such a position.

The means in C2 are all equal to the Left-stops. They are all integers. The Temper-
ature is 2. Black gains two points from each move preceding the kick. White could
typically also gain two points by playing his king NE. The question is how many
such two-point moves either player can let the other take. This is related to the atomic
weight of the quenched Value of the position, where quenching means cooling by 2.

From positions in C2 for which |x | > 1, if White wants to exit the region, he can
do so immediately by playing his rook the appropriate number of squares horizontally
to reach C1.

But if Black seeks to exit the Region, he can do so only by playing j = k − 2
preliminary moves before he can kick the rook. So the atomic weight of the quenched
game is − j . In Fig. 14, we denote the secondary terms of the values by M j , which
is m j heated by one. If k = ON, j = ON. Regions CwS and C1 vanish and all of C,
exceptC′, becomesC2, wherein the secondary term of every value is MON. This same
result also holds if k < 0.

16 RegionF

We find it instructive to examine the play from two of the westernmost points in F

in detail, with the Black king starting at [0, 0]. For the convenience of chess players,
we annex another row at the bottom of the chessboard, and denote its squares by
a0, b0, c0, . . . so that the digits in chess notation correspond to the value of y, while
{a, b, c, . . . } = {1, 2, 3, . . . }, correspondingly.

In each of these four skirmishes (Fig. 21), theWhite rook may be viewed as starting
at h1 = [7, 1].

If K starts at g6, then no matter who goes first, the second player can ensure that
the stopping position is 4 (or better for him). Hence, that value is 4. Similarly, if the
king starts at e5, then either player going second can ensure that the value is 3 1/2 (or
better for him). After three full moves by each player, the warmed temperature is 1/2
and the next player (who went first originally) may spend his next move taking his half
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Fig. 21 Four short games

point, to which the second player need not respond. Or in some cases, the first player
may have moved to his desired integer earlier, and the second player might cease to
respond then, rather than continuing to reverse the temperature back to 1/2.

Similar results occur further NNE-ward. For even y, the westernmost point inF is
at x = (y+6)/2; for odd y, it is at x = (y+3)/2. In both cases, the value immediately
to the W in E is only slightly less. In Fig. 11, where k < 0, it is only infinitesimally
less. In Fig. 12, which has the same EF boundary as in Fig. 11, the “slightly less”
becomes −2−(k−2) = λ j .
A recursion for values in F−

The defining property ofF is that White’s best king move is SW. This property can
also be imposed on the subset of Region A for which y > 2. We are thereby able to
find a simple recursion for all values in F, because

v[x, y] = {vL [x, y] − 1|vR[x, y] + 1}

becomes v[x, y] = {v[x − 1, y]|v[x − 1, y − 1] + 1}. The initial conditions are
given by known values at points just over the boundary in A or E. Crossing over the
southwestern boundary enters E1 at y = 4, where v = 3m.

The solution of this recursion is simplified by an important theorem (in WW),
which states that if there is any number in the interval between GL and GR , then
the value of G = GL |GR is the simplest such number. Among integers, the simplest
is the one of least magnitude. Among non-integers, the simplest number is the one
whose denominator is the smallest power of two. Thus, for example, {31

2 |37
8 } =

{31
2 |315

16 } = {31
2 |4m} = {31

2 |4} = 33
4 . Similarly, {31

2 |41
2 } = {4m|41

2 } = 4. But
since there is no number between the infinitesimals m1 and m2, the simplest number
theorem does not apply, and we find that {m2|m1} = {m2|0} = m3. We need not
invoke that here, because there are no infinitesimals in Region F. For x ≤ 10 and
y ≤ 10, the solution to this recursion is shown in Fig. 15. Within Region F of
Fig. 11, we often have v[x, y] = 1 + v[x − 2, y − 1], from which we can state
that v[x, y] = n + v[x − 2n, y − n], for all n sufficiently small (where the latter’s
coordinates still lie within F).
Subregions of F−

In Fig. 11, the values in the deep interior of F are given by (x + y)/3, rounded
up to the nearest quarter integer. In our earlier discussion of stops, we justified this
value when it is an integerL. We call this regionF2 because at every point within it,
all canonical lines of play entail two rook moves. To its west, for even y, F abuts E,
but for odd y, it is separated from E by a subregion ofF, which we will callF′. This
region contains values which need to be measured in eighths, and even a unique spot
at [8, 5] which requires 32nds. By excludingF′ fromF2, we can say that the value of
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the westernmost point of every row of F2 is an integer, as depicted by a white dot in
Fig. 11. To its south,F2 is separated fromA by another subregion ofF. We call this
subregion FEn , because all of its points have canonical positions which eventually
translate into E1, thus eliminating the need for a vertical king move in that canonical
line of play. Each row of FEn contains two points, whose values are integers plus λ3
and λ4, respectively.
Region F+

As before, we assume Black king at [0, 0] and White rook at [k, 1], but we now
consider positive k (rather than negative k). We will start with k = ∞ and proceed
downward until k = 2. Before studying this region, we will enlarge it!
Renaming top of A1+ as FE

Many types of infinity appear in ONAG andWW, the largest of which is so big that
subtracting one from it leaves it unchanged. It is called ON = {ON|}. If k = ON, then
the values are everywhere identical to those with k = −2, except for the large subset of
RegionA+with y > 0. TheRegionA1−, formerly located only along the top ofA−,
where v = (y + 2)/2, now extends all the way down to just above the hot row y = 1.
Within this larger A1+, if x ≥ 6, from all rows with y ≥ 4, king SW is an orthodox
move. For y ≥ 6, we now propose to to rename the region consisting of the top three
rows ofA1 asFE . To this end, we assume that the players alternatemoves, withWhite
playing to integers and Black reversing back to half-integers. Then from each of the
top three rows in any fixed column ofA, the southwestward-trekking White king will
be at y = 2, 3, or 4 when Black’s move reduces the horizontal distance between them
from 7 to 6. White then brings in the rook to one move shy of a confrontation. Black’s
next two moves confront and kick, but White’s king continues his SW trek to arrive
just in time to protect the rook, ending with y = 2, 1, or 0 accordingly as he began on
the top, next-to-top, or third row from the top of A1.

Notice thatF’s top 3-row land-grab cannot be extended to the fourth row, because
that would require a king move in a direction E rather than SE. Observe also that
White could have played his rook move earlier, although its destination needs to be in
exactly the same place.
Surveying the northeast, far and near, when k is large but finite

As shown in Fig. 12, when k is large and finite, the region that was formerlyF2 is
now split into two parts: a western subregionFWN where the rook’s horizontal move
must be westward, and an eastern regionFEN , where the rook’s horizontal movemust
be eastward. For values of y significantly bigger than k, somewhere between FWN

and FEN lies a new region, FN , where no horizontal rook move is needed. We will
now examine this more precisely in Figs. 22 and 23. Appropriate translations relocate
the origin in both of these figures to make its values independent of k. With respect to
this origin, the rook is located at [−k,−k]; the Black king at [−2k,−k − 1], and the
v-origin at [−k − 1,−k − 1]. If the Black king treks eastward while the White king
treks SW from [0, 0], White will arrive just in time to protect his unmoved rook.

In Fig. 22,we show the dotted diagonal line running northeast from the rook through
[0, 0]. The portion of Region F on or south of this diagonal in Fig. 22 is identical
to what it was when k = ON. Its southernmost portion is the Region FE , which
was stolen fromA1. AboveFE is the subregionFEn , wherein every game has some
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Fig. 22 Values in F1 and the far Northeast

canonical lines of play which require a vertical rook move and others which don’t.
Above that is the subregion F2, which we now write as FEN .

The purpose of our creation of FE from the top three rows of A1 will now be
revealed. When the rook is kicked, the values on the entire map are symmetric with
respect to reflection through the diagonal containing the rook and the Black king. So,
we can reflect FwN into FEn , and FE into FN , thereby explaining all of Fig. 22
except for [0, 1], [1, 1], and [1, 0].
A relationship along the diagonals

White’s best move in Fig. 22 is . always king SW. Black’s best move is to advance
his king. This reduces k, yielding this relationship along each diagonal:

v[x, y] = {−1 + v′[x + 1, y + 1]|1 + v[x − 1, y − 1]},

where v′ has a decremented value of k. For large enough k (k > 10 is amply sufficient),
v is independent of k, so v′ = v. (Although we are logically dependent on how this
diagonal relationship evolves when k is sufficiently decremented that v′ differs from
v, we defer examination of that until later in this section.) When k = ON, for large x
and y and solution to the diagonal relationship, working southwest from any integer
i is observed to be i = (i + 1)λ0, iλ1, (i − 1)λ2, (i − 2)λ3, . . . until the diagonal
encounters another integer. This requires that the value be consistent with the next
encountered integer, which happens when the magnitude of the difference between
any pair of adjacent values along the diagonal is less than 1.

This observation generates solutions to the missing values at [0, 1] and [1, 0]. In
particular, since we know from our discussion of stops that v[6, 5] = 5 = 6λ0, we find
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Fig. 23 Values in F0 and Fw

v[5, 4] = 5λ1; v[4, 3] = 4λ2; v[3, 2] = 3λ3; v[2, 1] = 2λ4; v[1, 0] = 1λ5 = 31/32.
Similarly, from v[3, 1] = 2 = 3λ0, we find v[2, 0] = 2λ1 = 1 1/2, and v[1,−1] =
1λ2 = 3/4. These values all reflect across the diagonal to the row y = 1.

The southwestern-most integer point on the shared diagonal with x = y is v[4, 4] =
4 = 5λ0, from which we verify that v[3, 3] = 4λ1, and v[2, 2] = 3λ2. If our prior line
of argument were continued, it would lead to the assertion that v[1, 1] = 1 7/8?? But
unlike all the prior results that we obtained by working down the diagonal, this fails
to check out because v[0, 0] is so extraordinarily favorable to White. In fact, v[1, 1]
is the unique point in the region F2|F0. Its value is

v[1, 1] = {−1 + v[2, 2]|1 + v[0, 0]} = 13/4|1.

Its temperature is +3/8. Unlike all other values in F, it is hot.
We conclude our discussion of Fig. 22 by observing that the western boundary of

FN is shared with the western portion of FEN . From the points on that boundary,
White has two different strategies, which both yield the same value.
Region Fw in the near southwest

Figure 23 shows the details of the region Fw, where x ranges from −1 down to
−4. The five points just above this region lie inF0 because from any of these points,
no rook move is required. White’s king descends SW until he reaches y = 3 when
k = 2 (in the region which is then E0), from which he can defend the kicked rook by
a single move whose direction has a southern component.

As in Fig. 22, values propagate southwest fromF0, until the diagonals collide with
RegionA1, which dominates because its strategy givesWhite better values there. The
points on the western boundary, namely [−4, 0], [−5,−1], [−6,−2], [−7,−3], and
[−8,−4], are shared with the adjacent region FWN .

Just as FN splits apart FWN and FEN , so Fw and F0 split apart FWn and FEn .

17 The descent of k

Let us return to Fig. 12, with the origin at the Black king, and view the northern half-
plane as seen locally from there. We consider a sequence of many different starting
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Fig. 24 Nearby values with
Black king at [0, 0], rook at
[5, 1]

positions, with the rook coming in closer and closer from the far East. If k is odd, the
southernmost point of EwN is [k − 5, k − 3]. If k is even, they are [k − 5, k − 2] and
[k−4, k−2]. These are the points at which EwN encroaches into EWN from the north
northeast. From the east northeast, encroachment into FwN and FWN comes from
Fw, whose lowest unique point is at [2k − 7, k − 2]. So we may distinguish between
“low” rows, in which in E andF are unchanged by such encroachment(s), and “high”
rows, which are. In particular, the top row of Fig. 15, with y = 10, is “low” if k ≥ 14,
but “high” if k ≤ 13. So if k ≥ 14 and x ≥ −3, the values shown on this row remain
valid, even if the tabulation were extended rightward until just before x = 21. That
point lies in Region A, where it becomes effected by the difference between A0 for
negative k and A1 for positive k.

However, when k = 13, EwN encroaches into E2 at [6, 10], changing 6m10 to 6λ11.
We view the descents of EwN andFw as the beachheads of bigger invasions, which

continue regularly as k decreases down through 9. At k = 8, the southwestern-most
point ofFw comes into view, invadingF′ and changing v[8, 5] from 4λ5 to 4λ4. This
spearhead point of Fw, at [2k − 8, k − 3], continues to lead the invasion through
F′ into EW at k = 7 and k = 6. But as seen in Fig. 24, at k = 5, it encounters
a newly important diagonal line running northwestward from the rook. If the White
king starts south of that line, he cannot reach the rook by trekking southwestward,
southward, or southeastward. However, from points on or above that line, he can.
So south of that line, EW prevails. On and above that line, as seen in Fig. 25, when
k ≤ 4, parts of EW and EWN are converted into new regions, E0 and Ew, which are
uncompetitive for k ≥ 5. However, Fw does remain competitive on and above the
diagonal running northwestward from the rook. In particular, when k = 3, it correctly
yields v[2, 2] = 3/4.

Meanwhile, in Region E, decreasing k yields transitions from m to λ. We have
noted in Fig. 15 that the non-integer part of v[6, 10] dropped from m10 to λ11 as
k decremented from 14 to 13, corresponding to the change from E2 to EwN . More
generally, in Fig. 12, for x ≤ 0, every column of EWN = E2 contains 2k − 7 points,
and for y ≥ k − 3, every row of E2 contains k − 3 points if y is even or k − 4 points if
y is odd. The non-integer terms in the values on every high row of E2 range from m0

to at most mk−2. This maximum value of k in E2 can also be viewed from our prior
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Fig. 25 Nearby values with
Black king at [0, 0], rook at
[4, 1]

discussion of Fig. 16. A term of value mk−1 would reduce to m0 after k − 1 moves,
which cannot occur if the rook is then already being kicked.

So if theWhite king’s starting position is fixed at [x, y] in Region E, there is a sense
in which a closer rook is advantageous to White. That is because if he is able to wait
long enough, he may be able to avoid the horizontal rook move.

However, we shall now see that if theWhite king’s starting position is fixed at [x, y]
in themore distant RegionsFEN orFeN , the closer rookmay bemore advantageous to
Black. This is because the kicked rook’s preferred destination depends on the location
of his king. So in some positions, White can do better if he can defer the kick until
later.

More specifically, a term of canonical value λn will become an integer after n
successive Left moves. This is feasible if k ≥ n + 2. But if k ≤ n + 1, then the
kick will occur too soon, so the term’s value will be converted from λ j to m j , where
j = k − 2.
Other regions are also effected by the descent of k. As exemplified in Fig. 12, if

y ≥ k + 3, the width ofFWN depends only on the parity of y. If the point shared with
FN is excluded, the width of a high row with even y is �3(k − 4)/2, and the width
of a high row with an odd y is �3(k − 5)/2. So as k descends through 5 to 4, FWN

gets squeezed out of existence as FN begins its acquisition of F′.
When k < 4, traditional regional borders become blurred.
When k = 3, the border Region D|E2 merges into E2. In this particular case, CwS

vanishes and C1 directly abutsD. Finally, as seen in Fig. 26, when k = 2, the row C1
vanishes and diagonal symmetry between y and x − 1 prevails at all points more than
two king moves away from the origin.

When k = 2, the even rows of FN merge with E (!). Yet the influence of the odd
rows of the former F′ are still evident in Fig. 26, and their diagonal reflections help
explain the otherwise puzzling incursions of infinitesimals into the top of Region A,
whose interior numerical stronghold is strong enough to prevail in its reflection in E.

Evidently, if we had been clairvoyant, at the top of Region A1 in Fig. 22, instead
of stating the values as 11

2 , 2
1
2 , 3

1
2 and 41

2 , we might instead have given them as 2λ1,
3λ1, 4λ1 and 5λ1. That naming would foretell the conversion of λ1 tom0, when k = 2.

The transitions from λ to m in Region F as k declines from 7 to 2 merits further
discussion. In Fig. 26, Black’s next move will kick the rook.
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Fig. 26 Global Values with k = 2. Values with Black king at [0, 0] and rook at [2, 1]. If the temperature
of the position is less than or equal to 1, its chilled value is shown. If the temperature is greater than 1, then
its mean, followed by its temperature in parentheses, is shown

Before the kick, both half-integers and minies can have vR = integer. The dis-
tinction between them is that half-integers require that after the kick and flight,
v = half-integer. If y � x ∈ F, the rook does best to flee eastward to create a
new position in EasternFN , where half-integers have 3k = 2x + 3− y, and integers
have 3k = 2x + 2 − y, or 3k = 2x + 4− y. The half-integer formula can be restated
as 3(k + y − 1)/2 = x + y. So to be able to reach a good half-integer value post-kick,
the pre-kick value of x + y must be congruent to 1, modulo 3. This is satisfied by the
locations of the half-integer values inF2 for large k. But, mod 3, the locations ofF2
where x + y is congruent to 2 are only quarter-integers for large k. But in k = 2, on
the next Black move they get kicked, and thenWhite can do no better than return them
to integers. So evidently, locations in F2 whose chilled values had formal fractional
terms of λ2 when k ≥ 3, now all increase to the miny m0 when k = 2.

This same phenomena occurs earlier. When k ≤ n, the fraction λn increases to
a negative infinitesimal of a form we call m. The question of how long White can
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play elsewhere until the value becomes an integer now reverts to the question of how
long White can play elsewhere until his indefensible rook gets kicked. Assuming
k > 1, the answer is evidently j = k − 2. Thus, for example, when k changes from
6 to 5, λ5 becomes m3. This is consistent with the diagonal relationship described
earlier.

If we had computed values by induction, incrementing k upwards from k = 1, we
would find apparent chaos for small k before the asymptotic pattern emerges when
k reaches the large single digits. By describing the results working backwards from
infinity, we believe we have been able to provide a much better understanding of what
would otherwise have appeared unduly complex.

18 Greater accuracy

We say a game is barely frozen when it is cooled by its Temperature. The game’s
primary infinitesimal is the difference between its barely frozen result and itsmean.The
shape at the top of the thermograph reveals only the sign of this primary infinitesimal,
which can be either positive, negative, or fuzzy. Themost common fuzzy infinitesimal,
by far, is ∗, called STAR. The most common positive infinitesimals are tinies; the
most common negative infinitesimals are minies. All of these very common primary
infinitesimals have zero atomic weight. But in this paper, we encounter many primary
infinitesimals which are negative and have negative atomic weights. These includemn

and Mn . The former can be viewed as the latter, cooled by one.
Nearly all of the values we’ve presented are ultra-orthodox approximations to the

canonical. They all have the correct means, and their primary infinitesimals have the
correct atomic weights. Since every Λ and λ with positive subscript has STAR as its
primary infinitesimal, for them the distinction between orthodox and ultra-orthodox
is trivially satisfied. When k ≥ 7, in Region A and in all of F excepting the lone
point atF2|F0, the temperatures are negative. Such games are dyadic rationals. Their
orthodox forms are unique, and identical to the canonical forms. This also holds for
Region EwN . In the remainder of Region E, the temperatures are zero, but the values
we have found there for the primary infinitesimals also turn out to be canonical. In
Region B, the values we have found are ultra-orthodox, but not necessarily canonical.
Here, there may be canonical options of less desirable atomic weights, which are
excluded from the simpler and more tractable orthodox forms, mn .

In RegionD, the temperature is 1+ λi , where i = k − 3. If White confronts, after
the rook kick and flight, the temperature drops to zero, and the atomic weight is 2− y.
Hence, in RegionD, we can obtain a better-than-ultra-orthodox approximation to the
canonical value by adding m2−y as another term.

When k > 3, temperatures in D are positive, and D abuts CwS . But when k =
3, Region CsW vanishes. Region D then abuts Region C1. In both C1 and D, the
temperature is 0. The ultra-orthodox value is the sum of an integer, 2 − x and an
infinitesimal, my−1. FromWhite’s perspective, this has atomic weight one better than
my−2, which occurs more commonly in descendants of positions in Region D. The
reason is that, unlike Region D when k is larger, Black’s move which decreases the
translated k from 3 to 2 now costs only one point, while leaving the temperature
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Fig. 27 An Echess position with temperature 5 58

unchanged. So there is a sense in which the temperature of Λi could be viewed as
t = 1− 2−i (1+m1), which is infinitesimally cooler than its real-valued temperature.

19 The hottest finite temperature

We conjecture that the hottest finite temperature in Echess is 55
8 . Figure 27 shows an

example of such a position and its thermograph. We challenge the interested reader to
compose a hotter example.
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