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Abstract Fibonacci nim is a popular impartial combinatorial game, usually played
with a single pile of stones: two players alternate in removing no more than twice the
previous player’s removal. The game is appealing due to its surprising connections
with the Fibonacci numbers and the Zeckendorf representation. In this article, we
investigate some properties of a variant played with multiple piles of stones, and solve
the 2-pile case. A player chooses one of the piles and plays as in Fibonacci nim, but
here the move-size restriction is a global parameter, valid for any pile.

Keywords Combinatorial game · Complementary value · Complementary equation ·
Fibonacci sequence · Fibonacci word · Impartial game · Power-of-two nim · Sturmian
word · Zeckendorf representation

1 Introduction

The classical game of Fibonacci nim, as studied by Whinihan in (1963), is played
as follows: There is one pile of stones, with n stones in the pile initially, and there are
two players who take turns making moves. A move consists of removing some of the
stones in the pile, subject to the following constraints: the first player must remove at
least 1 stone, but may not remove the entire pile. On subsequent turns, if the previous
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player removed m stones, then the next player must remove at least one stone and
at most 2m stones. The loser is the player who is unable to make a move (usually
because there are no stones remaining, although there is also a special case in which
the initial pile has one stone).

In his original paper on the game, Whinihan described the outcome of the game
under optimal play:

Theorem 1 (Whinihan 1963) The first player has a winning strategy if and only if n
is not a Fibonacci number.

Furthermore, Whinihan gave a full winning strategy. This strategy relies on a cel-
ebrated theorem of Zeckendorf. However, it is also possible to give an alternative
description of the winning strategy, in terms of partial sums of the so-called Fibonacci
word. We introduce this word in Sect. 4 and deduce the winning strategy in terms of
the Fibonacci word in Sect. 5.

It is natural to consider the game of Fibonacci nim played with more than one
pile. In this game, one may remove stones from only one pile on any given move.
However, there are two natural possibilities for the bound on the number of stones that
may be removed:

• Local move dynamic Each pile has a separate counter, so that if the last move (by
either player) in a pile was to remove m stones, then the next move in that pile
must be to remove at most 2m stones.

• Global move dynamic There is only one counter for the entire game, so that if the
previous move was to remove m stones in any pile, then the next move must be to
remove at most 2m stones in any pile (either the same pile, or a different pile).

In either case, it is natural to remove the restriction that the first player may not remove
an entire pile; this artificial rule is necessary to make the one-pile game nontrivial, but
it serves no further purpose in either multi-pile game.

The localmove dynamic game ismore natural from the perspective of combinatorial
game theory, as the game is the disjunctive sum of the individual piles. As a result,
the game can be studied by means of the Sprague-Grundy theory (see Grundy 1939;
Sprague 1935); the authors have previously analyzed this version in Larsson and
Rubinstein-Salzedo (2016).

The global move dynamic game is probably the more natural one from the perspec-
tive of game play, and it must be analyzed differently, as the powerful tools based on
Grundy values and disjunctive sums are not applicable. In Sect. 6 we give the outcome
class for all two-pile positions, first in terms of Zeckendorf representation, and then
in terms of a generalized version of the Fibonacci word. (See also Larsson (2009)
for another move dynamic game on two piles with a similar solution). In Sect. 7 we
study some properties of positions with several piles. Finally, in Sect. 8, we describe
a simpler variant of the global move dynamic game, in which we can describe the full
winning strategy.

We use the notation (n1, . . . , nk; r) to denote the global Fibonacci nim posi-
tion with piles of size n1, . . . , nk , where the maximum number of stones that can be
removed on the first turn is r . Wewrite (n1, . . . , nk;∞) for the global Fibonacci nim
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Global Fibonacci nim 597

position with piles of size n1, . . . , nk , where any number of stones can be removed on
the first turn, provided that they are all from the same pile.

Throughout the paper, we write Fn for the nth Fibonacci number, indexed so that
F0 = 0 and F1 = 1. We will frequently need to refer to the index of a certain
Fibonacci number, i.e. if n is a Fibonacci number, the value of k such that Fk = n.
This is ambiguous in the case of 1, since F1 = F2 = 1. When we refer to the index of
1, we always mean 2, rather than 1.

2 N and P positions

Definition 2 We say that a game G is an N position (resp. P position) and write
G ∈ N (resp. G ∈ P) if the player to move (resp. player not to move) has a winning
strategy under optimal play.

Given an impartial game (i.e. one in which both players have the same moves
available to them, as opposed to e.g. chess, where one player moves the white pieces
and one player moves the black pieces), there is a simple recursive characterization of
the N and P positions.

Proposition 3 G ∈ N if and only if there exists a move to a game G ′ such that
G ′ ∈ P .

See Albert et al. (2007, Theorem 2.13).
Consequently,G ∈ P if and only if, for every move to a gameG ′, we haveG ′ ∈ N .

3 Zeckendorf representation

A celebrated theorem of Lekkerkerker and Zeckendorf is the following:

Theorem 4 (Lekkerkerker 1952; Zeckendorf 1972) Every positive integer n can be
expressed uniquely as a sum of pairwise nonconsecutive Fibonacci numbers with index
at least 2.

Definition 5 The Zeckendorf representation of n is the unique sequence z1(n), z2(n),

. . . , zk(n) of Fibonacci numbers, with index greater than 1, such that z1(n) + · · · +
zk(n) = n, and for all 1 � i < k, zi (n) < zi+1(n), and zi (n) and zi+1(n) are not
consecutive elements of the Fibonacci sequence.WewriteZ(n) = {z1(n), . . . , zk(n)}.

For notational convenience, if |Z(n)| < k, then we set zk(n) = ∞, and we say that
zk(n) > m for all integers m. Extending this convention to 0, we also set zk(0) = ∞
for all k.

4 The Fibonacci word

The Fibonacci word Wx,y = f0 f1 f2 . . . is a string of digits from some two-letter
alphabet {x, y}. It is an archetype of a so-called Sturmian word; see Lothaire (2012)
for much more on Sturmian words. There are many equivalent ways of generating it.
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598 U. Larsson, S. Rubinstein-Salzedo

Proposition 6 The following constructions give rise to the same sequence f0 f1 f2 . . .:

(1) Let S0 = x and S1 = xy. For n � 2, let Sn = Sn−1Sn−2 be the concatenation of
strings. Then, for every n, Sn is an initial string of Sn+1. The Fibonacci word S∞
is the limiting string of the sequence {S0, S1, S2, . . .}.

(2) The Fibonacci word is the string f0 f1 f2 . . ., where fn = x if 1 /∈ Z(n) and
fn = y if 1 ∈ Z(n).

(3) For an alphabet A, let A∗ denote the set of words on A. Then the Fibonacci word
is the unique non-trivial word u on the alphabet (x, y) where the parallel update
τ(x) = yz, τ (y) = y, τ : {x, y} → {y, z}∗ for all letters in u, gives back the
same word, but now on the alphabet (y, z).

See (Jean 1986, p. 20) or Knuth (1987) for more details on the Fibonacci word,
including a proof of Proposition 6, as well as other descriptions and interesting prop-
erties. The beginning of the Fibonacci word is

xyxxyxyxxyxxyxyxxyxyxxyxxyxyxxyxxy.

In the following, we make use of partial sums of the Fibonacci word, after substi-
tuting certain integers for x and y, in particular when x = Fi+1 and y = Fi for some
i . For instance, if we substitute x = 8 and y = 5, and among the first m + 1 letters
(i.e. those indexed from 0 to m), there are i x’s and j = m + 1− i y’s, then the partial
sum is 8i + 5 j . We write W 8,5

i , when we refer to the i th value fi ∈ {8, 5} of W 8,5.
We use the following lemmas on the sets of partial sums of Fibonacci words, which

are easy consequences of part (3) of Proposition 6.

Lemma 7 Suppose that b � a. Then the set of partial sums of wa := WFa+1,Fa is a
subset of the set of partial sums of W Fb+1,Fb . That is, let

PS(wa) =
{
k : k =

m∑
i=0

WFa+1,Fa
i for some m

}
.

Then PS(wa) ⊆ PS(wb).

Proof It suffices to check this when b = a − 1. Then τ(y) = y gives Fa → Fa and
τ(x) = yz gives Fa+1 → FaFa−1. This implies that each partial sum in the word wa

is a partial sum in wb. �	
In view of Lemma 7, it will be convenient to interpret the morphism as τ = τα ,

where x = Fα+1, y = Fα and z = Fα−1, with transformation

(1) Fα+1 → FαFα−1
(2) Fα → Fα

for some α > 1. One application is the following.

Lemma 8 Suppose that n ∈ PS(wa) \ PS(wa+1). Then n − Fa+1 ∈ PS(wa+2).
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Global Fibonacci nim 599

Proof Define m by n = ∑m
i=0 W

Fa+1,Fa
i , and consider the alphabet (y, z) =

(Fa+1, Fa), and the word wa = yzyyzyzy . . . We note that n ∈ PS(wa) \ PS(wa+1)

if and only if fm = y and fm+1 = z. This implies that n − Fa+1 ∈ PS(wa+1).
Consider the morphism τ as defined in Proposition 6 (3). We replace each instance of
yz in wa by x = Fa+2 (and leave the other y’s unchanged), thus obtaining the word
wa+1 = xyxxyxyxy . . . We repeat the argument in going to wa+2, and observe that
the partial sum of all letters to the left of any x in wa+1 will remain a partial sum in
the word wa+2. �	

Observe that PS(w1) = N (since F1 = F2 = 1), so that every nonnegative integer
is in some PS(wa). Furthermore,

⋂
a�1 PS(wa) = {0}, since the smallest nonzero

element of PS(wa) is Fa+1.

Remark 9 We do not use this result in the paper, but it is possible to show that
PS(wa) = {n : z1(n) � Fa+1}. This result would simplify some of the later proofs,
but we prefer to highlight the connectionwith the hybrid and sturm positions in Sect. 6.

5 P positions in one-pile FIBONACCI NIM

The winning strategy for one-pile Fibonacci nim was described by Whinihan. Con-
sider the position (n; r). If z1(n) � r , then (n; r) is an N position, and removing
z1(n) stones is a winning move. If z1(n) > r , then (n; r) is a P position, and there are
no winning moves.

It is also possible to characterize the N and P positions in terms of the Fibonacci
word. This approach will be useful for our analysis of the multi-pile game.

Theorem 10 Fix a take-away size r . There is a unique Fibonacci number Ft so that
Ft � r < Ft+1. The position (n; r) ∈ P if and only if n ∈ PS(wt ) (n is a partial sum
of W Ft+1,Ft ), i.e. if and only if there is some m so that

n =
m∑
i=0

WFt+1,Ft
i (1)

Proof Suppose first that (n; r) is of the given form. We must demonstrate that there is
no move to a position of the same form. Suppose that the new position is (n − s; 2s),
with s � r < Ft+1, and let b = b(s) be a function of s such that

Fb � 2s < Fb+1. (2)

Then Fb � 2s < 2Ft+1 < Ft+3, gives b � t + 2. With this notation, by splitting the
problem into three cases, we prove that n − s /∈ PS(wb).

Case b � t : since s < Fb, then (1) together with Lemma 7 gives the claim.
Case b = t + 1: Given n ∈ PS(wt ) and (2), we prove that n − s /∈ PS(wt+1).

Suppose, for a contradiction, that n − s ∈ PS(wt+1). Then, by τ(x) = yz and
τ(y) = y, interpreted as τ(Ft+2) = Ft+1Ft and τ(Ft+1) = Ft+1, by s < Ft+1, we
get n /∈ PS(wt ). Hence n − s /∈ PS(wt+1).
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600 U. Larsson, S. Rubinstein-Salzedo

Case b = t + 2: Given n ∈ PS(wt ), by (2) s < Ft+2, we must prove that
n − s /∈ PS(wt+2). Observe that, by Lemma 8, if n ∈ PS(wt ) \ PS(wt+1), then
n − Ft+1 ∈ PS(wt+2), which gives n − s /∈ PS(wt+2), since s < Ft+2. Hence, we
may assume that n ∈ PS(wt+1), and so the argument is in analogywith case b = t+1.

Suppose next that (n; r) is not of the form in the statement of the theorem (and we
must demonstrate that there is a move to a position of that form). Then there is a ν

such that

ν∑
i=0

WFt+1,Ft
i < n <

ν+1∑
i=0

WFt+1,Ft
i . (3)

There is a unique positive integer b so that n ∈ PS(wb)\ PS(wb+1). By Lemma 8,
n − Fb+1 ∈ PS(wb+2). Since Fb+2 � 2Fb+1 < Fb+3, (n − Fb+1; 2Fb+1) is a
P-position. �	

6 Two-pile FIBONACCI NIM

6.1 The Zeckendorf approach

The P positions of the two-pile Fibonacci nim game (m,m + k; r) can also be
expressed in terms of the Zeckendorf representation as a generalization of that of the
one-pile game. We think of it as if the smallest pile size m and the initial take-away
amount r are fixed and the larger pile size varies.

Theorem 11 Let m, k � 0 and r � 1. Let t be such that Ft � r < Ft+1, and let e be
such that Fe = z1(k). Then the following is a complete classification of the outcomes
of the position (m,m + k; r):
(1) If e � t , then (m,m + k; r) ∈ N .
(2) If e � t + 2, then (m,m + k; r) ∈ P .
(3) If e = t + 1 and m < Ft , then (m,m + k; r) ∈ P .
(4) If m � Ft and e = t + 1, and either z2(k) = ∞ or z2(k) = Ft+d where

m < Ft + Ft+1 + · · · + Ft+d−3, then let s be the unique integer so that Ft +
Ft+1 + · · · + Ft+s−1 � m < Ft + Ft+1 + · · · + Ft+s . Then

(a) If s is odd, then (m,m + k; r) ∈ N ,
(b) If s is even, then (m,m + k; r) ∈ P .

(5) If e = t + 1, and z2(k) = Ft+d , and m � Ft + Ft+1 + · · · + Ft+d−3, then
(a) If d is odd, then (m,m + k; r) ∈ N ,
(b) If d is even, then (m,m + k; r) ∈ P .

Remark 12 For s � 1, the partial sums Ft + Ft+1 +· · ·+ Ft+s−1 can be written more
concisely:

Ft + Ft+1 + · · · + Ft+s−1 = (Ft+2 − Ft+1) + (Ft+3 − Ft+2)

+ · · · + (Ft+s+1 − Ft+s) = Ft+s+1 − Ft+1.
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Global Fibonacci nim 601

However, in this context it is more natural to leave the series unsummed, as it serves
as a reminder of how the game might be played.

Since Theorem 11 is a bit complicated, let us say something about how it should be
interpreted from a player’s point of view. First, if it is possible to remove z1(k) =: Fe
stones from the m + k pile, then either this move or removing Fe−1 stones from the
m pile is winning. (See the proof for a more complete description of when to play
each of these moves). If it is not possible to remove z1(k) stones from the m + k pile,
then every move in that pile is losing. However, there may still be winning moves in
the m pile, and indeed the only move that might win is to remove Ft stones from the
m pile. If z1(k) � Ft+2, then this move loses. If z1(k) = Ft+1, then the situation is
rather complicated, leading to cases (3)–(5) in the theorem. However, when actually
playing the game, the structure of the theorem is not terribly important: if all moves
except for one are clearly losing and the remaining one leads to complications, by all
means play the complicated one!

We now turn to the proof. One key input is the following Lemma, which we used
in our earlier work on the local move dynamic game:

Lemma 13 (Larsson and Rubinstein-Salzedo 2016, Lemma 4.3) Suppose n > 1 and
1 � k < z1(n). Then z1(n − k) � 2k.

Proof of Theorem 11 We work one case at a time. For the claimed N positions, we
show that there is a move to a position that we claim to be in P , and for the claimed
P positions, we show that every move is to a claimed N position. By Proposition 3,
the claimedN and P positions are, in fact, theN and P positions. Observe that every
position of two-pile Fibonacci nim is of type (1), (2), (3), (4a), (4b), (5a), or (5b).
Let us also note that if k = 0, then the second player can mimic the first player, so
such a position is always a P position. By our convention on z1, such positions are
always of type (2).

We begin with positions of type (1). Suppose first that z2(k) � Ft+3. Then we can
remove z1(k) = Fe stones from the m + k pile to get to (m,m + k − z1(k); 2z1(k)),
which is of type (2), since z1(k − z1(k)) = z2(k) � Ft+3, which is at least as large as
the second Fibonacci number after 2z1(k) < Ft+2. If z2(k) = Fe+2 and m < Fe+1,
then (m,m + k − z1(k); 2z1(k)) is of type (3).

However, if z2(k) = Fe+2 and m � Fe+1, then removing z1(k) stones yields a
position of type (4) or (5). Instead, there is a winning move in the m pile, to (m −
Fe−1, (m − Fe−1) + (Fe−1 + k); 2Fe−1); since z1(Fe−1 + k) � Fe+3, this position is
of type (2).

Suppose we are in a position of type (2). Then we may move in the m + k pile,
to (m,m + k − a; 2a) for 1 � a � r , and since r < z1(k) and hence a < z1(k),
Lemma 13 ensures that z1(k − a) � 2a, so (m,m + k − a; 2a) is of type (1). We may
also move in the m pile to (m − a, (m − a) + (a + k); 2a) for 1 � a � min(r,m),
which is of type (1) since z1(a + k) = z1(a) � a � 2a.

Now, suppose we are in a position of type (3). Then the same arguments as for
type (2) positions again shows that all moves from type (3) positions are to type (1)
positions.

Now, suppose we are in a position of type (4) or (5). (We will distinguish the types
more finely later). Wemaymove in them+k pile to (m,m+k−a; 2a) for 1 � a � r ,
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which is of type (1).Wemay alsomove in them pile to (m−a, (m−a)+(a+k); 2a) for
1 � a � min(m, r). If a 
= Ft , then z1(a+k) = z1(a) � a � 2a, which is of type (1).
The remainingmove is to (m−Ft , (m−Ft )+(Ft +k); 2Ft ), which is of type (4) or (5)
ifm−Ft � Ft+1 and z1(Ft +k) = Ft+2, type (2) if z1(Ft +k) � Ft+3, and type (3) if
m−Ft < Ft+1 and z1(Ft+k) = Ft+2.As a result, the onlymove fromapositionof type
(4) or (5) thatmight be to aP position is themove to (m−Ft , (m−Ft )+(Ft+k); 2Ft ),
and only if this position is of type (4) or (5). When it is to another position of type
(4) or (5), then it decreases s or d by one, depending on whether it is a type (4) or (5)
position, respectively. Hence, a position (m,m+k; r) of type (4) or (5) is aP position
if the (unique) maximal sequence of moves to positions of type (4) or (5) has even
length, and is an N position if the (unique) maximal sequence of moves to positions
of type (4) or (5) has odd length. From a position of type (4), removing consecutive
Fibonacci numbers from them pile eventually results in a position of type (3), whereas
from a position of type (5), removing consecutive Fibonacci numbers from the m pile
eventually results in a position of type (2). Either way, this distinguishes types (4a)
and (4b), as well as (5a) and (5b). �	

6.2 The word approach

As in the case of one-pile Fibonacci nim, it is possible to express the P-positions
of two-pile global Fibonacci nim in terms of partial sums of a word. We generalize
Theorem 10; recall, a one pile position (n; r) ∈ P if and only if n ∈ PS(wt ), where
t = t (r) is such that Ft � r < Ft+1. For two piles, the P positions can also be
described via an infinite word, but the construction is somewhat more technical. Some
of the positions generalize directly the one pile case.

Definition 14 Fix the smallest pile size m � 0 in a position (m,m + k; r), and define
p = p(m) � 0 as a function of m such that Fp � m < Fp+1. If the take-away size
r < Fp−1, then we say that the position (m,m + k; r) is hybrid, and otherwise it is
sturm.

Hence the sturm case applies for the one pile game, i.e. m = 0, or if p > 1 (p = 1
does not apply) and r � Fp−1.

Definition 15 Fix the smallest pile size m � 0 in a position (m,m + k; r), and let
p = p(m) be as in Definition 14. Then α = α(r, p) is the function defined by
Fp+α−1 � r < Fp+α .

Note that a position is sturm if and only if α � 0.
We will show that, for each choice ofm and r , the numbers k for which the position

(m,m + k; r) is a P-position can be described by the partial sums of an infinite word
on two or three letters. When the word has only two letters (the sturm case) it is the
Fibonacci word, where the Fibonacci letters depend on α.

Definition 16 In case α � 0 we consider the word T α(wp), where p = p(m) is given
by the smallest heap size as in Definition 14. If α = 0, then the word is T 0(wp) =
wp = WFp+1,Fp . For α ∈ {1, 2}, the word is T 1(wp) = T 2(wp) = WFp+2,Fp+1 . For
α � 3, the word is T α(wp) = WFp+α,Fp+α−1 .
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For the hybrid games, we recursively build the relevant word for classifying the
P-positions. There are three possible transformations of a letter in a given word. In
each word, each letter is one of three consecutive Fibonacci numbers. The words are
given recursively, for a fixed m, by successively decreasing α (via a decrease in the
take-away size r ) and starting with the sturm case of α = 0.

Given a word on the ordered alphabet A = (x, y, z) (sometimes just (x, y)), where
x > y > z, a possible transformation to the ordered alphabet B = (y, z, v), with
y > z > v, is the map τ given by

τ1 : y → y or z → z
τ2 : x → yz or y → zv
τ3 : x → zvz,

We write “possible transformations” because more information is needed to say when
τ = τi . (Note the similarity of τ3 with the second iteration of the Fibonacci morphism,
that is, the word S2 in Proposition 6).1 For example, starting with the Fibonacci word
on the alphabet A = (x, y), we produce a ‘generalized Fibonacciword’ on the alphabet
B = (y, z, v), by applying τ3 and τ1:

xyxxyxyx · · · �→ zvzyzvzzvzyzvzyzvz · · · .

In applications, we let these transformations be

τ1 : Fi �→ Fi
τ2 : Fi �→ Fi−1Fi−2
τ3 : Fi �→ Fi−2Fi−3Fi−2,

for some i , related toα; wewill use these three transformations to construct amorphism
ξ : A∗ → B∗, and a sequence of infinite words {T α,m(wp)}α�0, with T 0,m(wp) =
wp. Here A∗ and B∗ denote the sets of all words with letters in the alphabets A and
B, respectively.

Definition 17 Consider the hybrid position (m,m+k; r), with Fp � m < Fp+1, and
define α = α(p, r) � 0 by Fp+α−1 � r < Fp+α . Let η = η(m, p) = Fp+1 −m. Let
T 0,m(wp) = wp. The composite transformation

ξ = ξα,m : T α,m(wp) �→ T α−1,m(wp)

is special if Fp+α−1 < η � Fp+α , and otherwise it is standard. If ξ is standard then
we apply τ3 to the largest Fibonacci letter in T α,m(wp), and τ1 to the other letter(s).

In case ξ is special, the translation of a letter depends also on the Fibonacci word
wp; in particular the translation depends on whether α is even (Example 20) or odd
(Example 21). Consider a word W . Denote the partial sum of all letters with index
less than i by W (i). Consider the i th letter fi in T α,m(wp). In case α is

1 Also, note the similarity with the Tribonacci morphism x → xy, y → xz, z → x , which satisfies
Tn = Tn−1Tn−2Tn−3, with fixed point xyxzxyxxyxzxyx yxz . . .. We have indicated the first letter that
differs from our type 1 word in Example 19.
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even if fi = x is the largest letter, then τ(x) = τ2(x) = yz if T α,m(wp)(i) ∈
PS(wp), and otherwise τ(x) = τ3(x) = zvz. If fi is not the largest letter, then
τ( fi ) = τ1( fi ) = fi .

odd if fi = y is the second largest letter, then τ(y) = τ2(y) = zv if T α,m(wp)(i) ∈
PS(wp), and otherwise τ(y) = τ1(y) = y. If fi = x is the largest letter, then
τ(x) = τ3(x) = zvz, and, if fi = z is the smallest letter, τ(z) = τ1(z) = z.

By this definition it follows that the smallest letter is about the size of the take away
size, for all α.

Lemma 18 The smallest letter in T α,m(wp) is Fp+α−1, except for the sturm case, if
0 � α � 1, then the smallest letter is Fp+α . The largest letter is two indexes larger
than the smallest in the hybrid case and one index larger than the smallest in the sturm
case.

Proof The standard case is bydefinition. In the hybrid case, note that, for each iteration,
the largest letter uses τ3 and τ2, in either combination they give the claim. �	

Let us give three generic examples of how the hybrid case applies, beginning with
the standard transformation.

Example 19 [Standard] Suppose that the smallest heap size ism = 26. Then Fp = 21.
If r = 13 � Fp−1 then α = 0 and we obtain a Sturmian word, namely w8. Now, if
the take-away size r decreases from 13 to 12 (with the other parameters fixed), then
α changes from 0 to −1, and so ξ : T 0,26(w8) �→ T−1,26(w8) is

[34, 21, 34, 34, 21, 34, 21, 34, . . .]
�→ [13, 8, 13, 21, 13, 8, 13, 13, 8, 13, 21, 13, 8, 13, 21, 13, 8, 13, . . .].

This means that we start with the Fibonacci word on the alphabet A = (x, y) =
(34, 21) and then apply τ1 to y = 21 and τ3 to x = 34, obtaining an infinite word on
the alphabet B = (y, z, v) = (21, 13, 8).

As we saw in Definition 17, there are only three types of composite transformation
in the hybrid case (although there are infinitely many T α,m). A change in α gives a
new word (without exception), and to know the precise change, the smallest heap size
m has to be taken into account. The case τ2 occurs only in special cases, concerning
the two largest letters (the smallest letter uses only τ1).

Example 20 (Special, even) Here we let m = 26, so that again p = 8, but now with
the take-away sizes r : 5 �→ 4, so that α : −2 �→ −3, and so ξ : T−2,26(w8) �→
T−3,26(w8) is

[13, 8, 13, 8, 5, 8, 13, 8, 13, 13, 8, . . .]
�→ [8, 5, 8, 5, 3, 5, 8, 5, 8, 8, 5, 8, 5, 3, 5, 8, 5, 8, . . .].

In this example, the largest letter “13” becomes “8, 5”, (i.e. τ2) if the partial sum of all
lower terms belongs to PS(w9), and otherwise “13” becomes “5, 3, 5” (i.e. τ3). The
second largest letter “8” does not change (i.e. τ1).
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This means that we start with the Fibonacci word on the alphabet A = (x, y, z) =
(13, 8, 5) and apply τ1 to y = 8 and τ3 to x = 13, obtaining an infinite word on
the alphabet B = (y, z, v) = (8, 5, 3). This is a special transformation, because
η = Fp+1 − m = 34 − 26 = 8 = F6 = Fp−2.

Example 21 (Special, odd) Let m = 25 (so that p = 8) and let r : 8 �→ 7, so that
α : −1 �→ −2. The map ξ : T−1,25(w8) �→ T−2,25(w8) is

[13, 8, 13, 21, 13, 8, 13, 13, 8, 13 . . .]
→ [8, 5, 8, 13, 8, 5, 8, 8, 5, 8, 13, 8, 5, 8, 13 . . .].

In this example, “13” changes to “8, 5” (τ2) if the partial sum of all lower terms belongs
to PS(w9) (or PS(w8)), and otherwise it does not decompose (τ1). In either case, “21”
decomposes to “8, 5, 8′′ (τ3) and “8” does not decompose (τ1). For reference to the
special transformation, here η = 34 − 25 = 9 � F7 = Fp−1.

Of course, in general, for each Fp � m < Fp+1, there are α not defined by any
r . We get that α � −p + 3, for otherwise, by Fp+α−1 � r < Fp+α , r < F2, which
is impossible. In the hybrid case this implies 3 < p, so 3 = F4 � m. Let us give
an example of how the recursive application of τ terminates in case of the special
transformation.

Example 22 As evidenced, in the hybrid case m � 3, but, in case of a special trans-
formation, we get m � 4 (m = 3 gives p = 4 and η = 2, which gives α = 0
by F3+α < η = 2 � F4+α). On the other hand m = 4 gives r = 1, so let
us instead study the first play game case, r = 2 and m = 5. By p = 5, then
α = −1. Obviously, T 0,5(w5) = w5 = [8, 5, 8, 8, 5, 8, . . .], and the first trans-
formation is standard, giving the new alphabet (5, 3, 2), and the word T−1,5(w5) =
[3, 2, 3, 5, 3, 2, 3, 3, 2, 3, 5, 3, 2, 3, 5, 3, 2, 3 . . .]. Next, because α = −1 is odd,

ξ(T−1,5(w5)) = T−2,5(w5) = [2, 1, 2, 3, 2, 1, 2, 2, 1, 2, 3, 2, 1, 2, . . .]. (4)

Consider m = 5 with α = −3. By definition this means that F1 � r < F2, which is
impossible, hence, for m = 5, τ terminates with the word (4).

We state the main result of this section.

Theorem 23 The position (m,m + k; r) ∈ P , with Fp � m < Fp+1, if and only if,
in the sturm case, k ∈ PS(wp+α) if 0 � α � 1 and k ∈ PS(wp+α−1) if α > 1, and
otherwise, in the hybrid case, k ∈ PS(T α,m(wp)).

The proof is similar to that of Theorem 10. There are more tedious details to check,
but all the ideas and techniques are similar.

7 Multi-pile FIBONACCI NIM

The following theorem about (ordinary) nim is well-known:
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Theorem 24 (Bouton) If (n1, . . . , nk) is anim position, then there is a unique nonneg-
ative integer b for which (n1, . . . , nk, b) ∈ P . Furthermore, b < 2max(n1, . . . , nk)
and b � n1 + · · · + nk.

Remark 25 This follows easily from Bouton’s description of the winning strategy in
nim, but it is also possible to prove it (say, by induction on the largest power of 2
occurring in any ni ) without using the winning strategy.

It would be desirable to have a similar statement for multi-pile Fibonacci nim.
However, the best we can do is the following:

Theorem 26 If (n1, . . . , nk;∞) is a multi-pile Fibonacci nim position, then there
is at most one nonnegative integer b for which (n1, . . . , nk, b;∞) ∈ P . When it exists,
we call b the complementary value of (n1, . . . , nk).

Proof Suppose that (n1, . . . , nk, b;∞) ∈ P , and suppose that b′ > b. Then there
is a move from (n1, . . . , nk, b′;∞) to (n1, . . . , nk, b; b′ − b). But the latter is a P
position, since its options are a subset of those of (n1, . . . , nk, b;∞), which is itself
a P position. Hence (n1, . . . , nk, b′;∞) ∈ N . �	
Remark 27 It remains an open question to determine a bound on the complementary
value, when it exists. It appears that most of the time, the complementary value is
“not too much larger” than the maximum of the ni ’s. However, there are some notable
exceptions; for instance:

• (1, 47, 72;∞) ∈ P ,
• (2, 41, 139;∞) ∈ P ,
• (2, 93, 345;∞) ∈ P ,
• (8, 9, 53;∞) ∈ P .

See Table 1 for a table of values of complementary values.

A curious aspect of Theorem 26 is the possibility that there may not be a com-
plementary value for a Fibonacci nim position. It turns out that Fibonacci nim
positions with no complementary values do exist.2

Theorem 28 For any nonnegative integer n, (3, 4, n;∞) ∈ N .

Proof The following four classes partition the nonnegative integers.

(1) B − 2 = PS(w3) = {n : z1(n) � 3} = {0, 3, 5, 8, 11, 13, 16, 18, 21, . . .},
(2) AB − 2 = 1 + PS(w4) = {n : z1(n − 1) � 5} = {1, 6, 9, 14, 19, 22, 27, . . .},
(3) AB − 1 = 2 + PS(w4) = {n : z1(n − 2) � 5} = {2, 7, 10, 15, 20, 23, 28, . . .},
(4) BB − 1 = 4 + PS(w5) = {n : z1(n − 4) � 8} = {4, 12, 17, 25, 33, 38, . . .}.
(Recall that F3 = 2, so that PS(w3) consists of partial sums with letters 3 and 2, and
so forth).

2 A complete proof of all details of this result would involve many tedious verifications, so we merely
provide the main idea and fill in some of the many details.
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Table 1 Complementary values of Fibonacci nim

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 4 6 2 9 3 11 12 5 14 7 8 17 10 16

2 2 4 0 7 1 10 11 3 19 15 5 6 14 24 12 9

3 3 6 7 0 ∞ 11 1 2 16 12 13 5 9 10 17 18

4 4 2 1 ∞ 0 7 10 5 17 16 6 18 13 12 19 69

5 5 9 10 11 7 0 35 4 15 1 2 3 18 22 23 8

6 6 3 11 1 10 35 0 8 7 17 4 2 16 14 13 26

7 7 11 3 2 5 4 8 0 6 13 27 1 15 9 22 12

8 8 12 19 16 17 15 7 6 0 53 11 10 1 57 35 5

9 9 5 15 12 16 1 17 13 53 0 21 27 3 7 76 2

10 10 14 5 13 6 2 4 27 11 21 0 8 26 3 1 24

11 11 7 6 5 18 3 2 1 10 27 8 0 22 21 64 88

12 12 8 14 9 13 18 16 15 1 3 26 22 0 4 2 7

13 13 17 24 10 12 22 14 9 57 7 3 21 4 0 6 20

14 14 10 12 17 19 23 13 22 35 76 1 64 2 6 0 21

15 15 16 9 18 69 8 26 12 5 2 24 88 7 20 21 0

The boxed ∞’s mean that there is no complementary value for these positions

Remark 29 The names for these sets come from the theory of complementary equa-

tions. We let a(n) = �φn and b(n) = �φ2n, where φ = 1+√
5

2 . Then A consists of
all numbers of the form a(n) for some n � 1, B consists of all numbers of the form
b(n) for some n, AB consists of all numbers of the form a(b(n)) for some n, and so
forth. See Clark (2008) for more details on complementary equations.

Adding one to each set gives the sets, B − 1 = AA, AB − 1 = BA, AB and
BB. The sets AA and AB partition A and the sets BA and BB partition B. A and B
partition the positive integers.

We claim that the following moves are to P positions:

(1) If n ∈ B − 2, then (3, 3, n; 2) ∈ P .
(2) If n ∈ AB − 2, then (2, 4, n; 2) ∈ P .
(3) If n ∈ AB − 1, then (1, 4, n; 4) ∈ P .
(4) If n ∈ BB − 1, then (0, 4, n; 6) ∈ P .

Part (4) of the claim follows from Theorem 23, since it is the 2-pile Sturm game
(4, 4 + k; 6) on the word w5. Let us list the moves for the respective three first types
(enumerating as above, and with n belonging to respective subclass):

(1) (3, 3, n − x; 2x), 1 � x � 2, (2, 3, n; 2), (1, 3, n; 4) (we may assume n > 0).
(2) (2, 4, n − x; 2x), 1 � x � 2, (2, 3, n; 2), (2, 2, n; 4), (1, 4, n; 2), (0, 4, n; 4).
(3) (1, 4, n − x; 2x), 1 � x � 4, (0, 4, n; 2), (1, 3, n; 2), (1, 2, n; 4), (1, 1, n; 6),

(0, 1, n; 8).
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We must show that all of these positions are in N . To do this, we show that all of the
following positions are in P:

(i) (0, 1, n; 2) ∈ P if n ∈ B − 1, and (0, 1, n; 6) ∈ P if n ∈ BB − 3 ⊂ AB − 2 ⊂
B − 1.

(ii) (0, 2, n; 4) ∈ P if n ∈ AB − 1.
(iii) (0, 3, n; 2) ∈ P if n ∈ AB = {3, 8, 11, 16, 21, 24 . . .} ⊂ B − 2.
(iv) (1, 1, n; 2) ∈ P if n ∈ B − 2 and (1, 1, n; 4) ∈ P if n ∈ BB ⊂ B − 2.
(v) (1, 2, n; 2) ∈ P if n ∈ BB − 1.
(vi) (1, 3, n; 2) ∈ P if n ∈ AB − 2.
(vii) (2, 2, n; 2) ∈ P if n ∈ B − 2 and (2, 2, n; 4) ∈ P if n ∈ BB ⊂ B − 2.
(viii) (2, 3, n; 2) ∈ P if n ∈ AB − 1.

We begin by observing that in some cases a move from a candidate P position in
some class can be reversed (by the other player), to another P position (by induction)
in the same class. This happens whenever the current letter in the relevant word (for
this class) is sufficiently small and the current player’s move is sufficiently large (on
the third pile). Let us explain this terminology. Say that the alphabet describing the
P-positions is (3, 2), as in (1) above, and that the word used for the third pile size isw3.
Denote the i th letter inw3 by fi , and we consider

∑
i� j fi , representing the size of the

third pile, for some j . By induction, each P position corresponds to some
∑

i� j ′ fi ,
j ′ < j (the base case is (3, 3, 0; ·) ∈ P). A removal of x on this pile corresponds to∑

i� j fi − x . If x = 1, it is not possible to reverse the position to a position in the
same class. In fact the only problematic case is if the current letter f j = 3 and x = 1.
But this case is resolved by instead using (viii) above; (2, 3, n; 2) ∈ P if n ∈ AB − 1,
namely

∑
i� j fi − 1 ∈ AB − 1, since the current letter is 3 (see Clark (2008) for

further details on solutions to such equations). If f j = 2, then there is the case that the
current player removes x = 2 from the third pile. But then, by induction, the move is
to an N -position, since the new take-away size is 4.

By the observation in the previous paragraph, we are done with the first case in (1).
Moreover, from (2, 3, n; 2) we can move to the candidate P position (2, 2, n; 2) (vii),
and from (1, 3, n; 4) we can move either to (1, 1, n; 4), if n ∈ BB = (B − 2) \ AB,
or to (0, 3, n; 2), if n ∈ AB ⊂ (B − 2).

Next,weverify that each candidateN position in (2) abovehas amove to a candidate
P position. Here 0 < n ∈ AB − 2 and the alphabet is (5, 3). For positions of the form
(2, 4, n−x; 2x), 2x � 4, in case the current letter is f j , then if f j −x = 1, the position
can be reversed to a candidate P position of the same type. One of the exceptional
cases is when the current letter is f j = 5 and x = 1. In this case, n − 1 ∈ BB, so that
(2, 2, n−1; 4) is aP position by (vii). (In fact, we have that BB ⊂ AB−3 ⊂ B−2).
There are more variations to verify for the first case, but they are all similar. For the
remaining three proper three-pile cases, we have just seen that (2, 2, n − 1; 4) is a P
candidate; it remains to note that both (2, 3, n; 2) and (1, 4, n; 2) have options to the
candidate P position (1, 3, n; 2).

For case (3), we consider n ∈ AB − 1, so it is similar to (2): one of the cases where
a move does not have a reversible option is when x = 1 and the current letter is 5. In
any case, the option (1, 3, n − 1; 2) is a candidate P position, and this also suffices
for (1, 3, n; 4). There are two more proper 3-pile candidateN positions of this form:
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(1, 2, n; 4) reverses to (0, 2, n − 1; 2) which is a P candidate, and from (1, 1, n; 6),
there is an option (1, 1, z; 2(n− z)), with z ∈ B−2, because the maximum take-away
size is 6. Hence, we have demonstrated how to find P positions (by induction) for all
the N candidates of the forms in (1)–(3).

Next, we show that for each P candidate in (i) to (viii), there is no P-position as an
option. Let us begin to show that (1, 1, z; 2) is reversible. The two-stone removal is
reversible, by the above argument, and themove to (1, 1, z−1; 2) reverses to a position
of the same form, unless the current letter is a 3. In this case there is a response to
(0, 1, z − 2; 2), and where z − 2 ∈ AB − 2, which is a P position, by Theorem 23.
This response is also possible from (0, 1, z; 2), which concludes this case.

For a candidate P position of the form (1, 2, z; 2), note that BB − 3 ⊂ AB − 1,
and so both (0, 2, z; 2) and (1, 2, z − 2; 4) reverse to the P position (0, 2, z − 2; r),
r = 2, 4 respectively. A move to (1, 1, z; 2) reverses to the P position (1, 1, z− 1; 2),
because z − 1 ∈ B − 2. A move to (0, 1, z; 4) reverses to (0, 1, z − 3; 6), which is a
P position (by Theorem 23). The move to (1, 2, z − 1; 2), reverses to (1, 1, z − 1; 2),
which is a P position because z − 1 ∈ B − 2.

For the position (1, 3, z; 2), with z ∈ AB − 2, if two stones are removed from the
third pile, the position reverses to one of the same form. Similarly, from (1, 3, z−1; 2),
it suffices to study the “5” letter case, and thus z − 1 ∈ BB; there is a response to
(1, 1, z − 1; 4) ∈ P . Next, consider (1, 2, z; 2), with z ∈ AB − 2; then respond to
(0, 1, z; 4) ∈ P . Consider (1, 1, z; 4), with z ∈ AB − 2; then respond to (0, 1, z; 2) ∈
P . The options (0, 1, z; 6) and (0, 3, z; 2), with z ∈ AB − 2, are both N positions,
by Theorem 23.

For the position (2, 2, z; r), with z ∈ B−2 and r = 2, 4, playing on the third pile is
reversible to a position of the same type. Playing on the first pile, (1, 2, z; 2) reverses
to (1, 1, z; 2) and playing to (0, 2, z; 4), gives an N position, by Theorem 23.

For the position (2, 3, z; 2), with z ∈ AB − 1, playing on the third pile, it suffices
to find a winning response to the option (2, 3, z − 1; 2) when the current letter is a
“5,” and therefore with z − 1 ∈ BB − 3 ⊂ AB − 2. The option (1, 3, z − 1; 2) ∈ P
suffices (so the letter “5” is not important). The same response obviously works for
the option (1, 3, z; 2). The remaining options to check are (0, 3, z; 4) (which is anN
position by Theorem 23), (2, 2, z; 2), and (1, 2, z; 4). These options have responses
to (0, 2, z; r) ∈ P , for r = 2, 4. �	
Question 30 Are there any other two-pile Fibonacci nim positions (n1, n2;∞)

(besides (3, 4;∞)) with no complementary value?

8 An easier variant: global POWER-OF-TWO NIM

power- of- two nim is a simpler variant of Fibonacci nim. In the classical (one-
pile) formulation, the rules are the same as in Fibonacci nim, except that if the
previous player removed m stones, then the next player may only remove at most m
stones. Thus, the move dynamic can only stay the same or decrease on each move.

The winning strategy is closely related to that of Fibonacci nim, but it relies on
the binary representation of n rather than the Zeckendorf representation. A winning
strategy is to remove the smallest bit from the binary representation of the pile size on
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each move, and a position is a P position if and only if the smallest bit is larger than
the move dynamic.

We represent the multi-pile global power- of- two nim game using the same
notation as we do the multi-pile global Fibonacci nim game. It turns out that we can
describe the P positions of multi-pile power- of- two nim completely. Let a ⊕ b
denote the nim sum of a and b, and let sb(n) denote the smallest power of 2 in the
binary expansion of n, i.e. if n = 2a1 + · · · + 2ak where the ai ’s are distinct powers of
2 with a1 < · · · < ak , then sb(n) = 2a1 . (If n = 0, then we define sb(n) = ∞). Then
we have the following:

Theorem 31 The power- of- two nim game (n1, . . . , nk; r) ∈ P if and only if
sb(n1 ⊕ · · · ⊕ nk) > r .

Corollary 32 The power- of- two nim game (n1, . . . , nk;∞) ∈ P if and only if
the nim game (n1, . . . , nk) ∈ P .

Proof of Theorem 31 The idea is to mimic good play in nim, playing a move that
makes partial progress toward a winning nimmove. To this end, we show that, given a
position that we claim to be anN position, there is a move to a position that we claim
to be a P position, whereas given a claimed P position, all moves are to claimed N
positions. By Proposition 3, this shows that the P positions are exactly as we claim
them to be.

First, suppose that (n1, . . . , nk; r) is a power- of- two nim position with sb(n1⊕
· · · ⊕ nk) � r . Then there is some move ni → n′

i that is a winning move in nim. Let
2a = sb(n1 ⊕ · · · ⊕ nk). Then 2a � r , so removing 2a stones from pile i is a legal
move, to (n1, . . . , n′

i , . . . , nk; 2a). But now sb(n1 ⊕ · · · ⊕ n′
i ⊕ · · · ⊕ nk) � 2a+1, so

this position is a claimed P position.
On the other hand, suppose that sb(n1 ⊕ · · · ⊕ nk) > r , and consider the move

ni → n′
i , where ni − n′

i � r . Then sb(n1 ⊕ · · · n′
i ⊕ · · · ⊕ ni ) = sb(ni − n′

i ), so
the position (n1, . . . , n′

i , . . . , nk; ni −n′
i ) is a claimedN position. This completes the

proof of Theorem 31. �	
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